

2017-2018 Annual Monitoring Network Plan for the North Carolina Division of Air Quality

Volume 2

Site Descriptions by Division of Air Quality Regional Office and Metropolitan Statistical Area

E. The Fayetteville Monitoring Region

June 30, 2017

State of North Carolina | Department of Environmental Quality | Division of Air Quality 1641 Mail Service Center | 217 W. Jones Street, Suite 4000 | Raleigh, NC 27699-1641 919 707 8400 T

Table of Contents

List of Figures	E2
List of Tables	E3
E. The Fayetteville Monitoring Region	E4
(1) The Non-MSA Portion of the Fayetteville Monitoring Region	E4
(2) The Fayetteville MSA	E6
Appendix E.1 Annual Network Site Review Forms for 2016	E15
Appendix E-2. Scale of Representativeness	E25

List of Figures

Figure E1. The Fayetteville monitoring region	E4
Figure E2. Location of the Candor monitoring site	E4
Figure E3. The Candor CASTNET, air toxics, mercury deposition and particle monitoring site	e, 37-123-
0001	
Figure E4. Looking north from the Candor site	E6
Figure E5. Looking west from the Candor site	E6
Figure E6. Looking east from the Candor site	
Figure E7. Looking south from the Candor site	
Figure E8. Monitors located in the Fayetteville MSA	E7
Figure E9. Location of Honeycutt site (B) relative to Golfview (A)	E8
Figure E10. Honeycutt ozone and sulfur dioxide monitoring site, 37-051-0010	E8
Figure E11. Looking north from the Honeycutt site	E9
Figure E12. Looking east from the Honeycutt site	E9
Figure E13. Looking west from the Honeycutt site	E9
Figure E14. Looking south from the Honeycutt site	E9
Figure E15. Wade ozone monitoring Site, 37-051-0008	E10
Figure E16. Looking north from Wade site	E10
Figure E17. Looking west from the Wade site	E10
Figure E18. Looking east from the Wade site	E10
Figure E19. Looking south from the Wade site	E10
Figure E20. The William Owen particle monitoring site	E12
Figure E21. Looking north from the William Owen site	E13
Figure E22. William Owen Site looking northeast	E13
Figure E23. William Owen site looking northwest	E13
Figure E24. Looking west from the William Owen site	E13
Figure E25. William Owen Site looking southwest	E13
Figure E26. Looking east from the William Owen site	E13
Figure E27. William Owen site looking southeast	E14
Figure E28. Looking south from the William Owen site	E14

List of Tables

ble E1. Site Information Table for Candor	E5
ble E2. Site Information Table for Honeycutt	Е9
ble E3. Site Information Table for Wade	E10
ble E4. Site Information Table for William Owen School	E12
ble E5. Site Type Appropriate Siting Scales	E25
ble E3. Site Information Table for Wade ble E4. Site Information Table for William Owen School	E1

E. The Fayetteville Monitoring Region

The Fayetteville monitoring region, shown in Figure E1, consists of three sections: (1) the non-Metropolitan Statistical Area, MSA, portion of the Fayetteville monitoring region -Bladen, Harnett, Montgomery, Moore, Richmond, Robeson, Sampson and Scotland counties, (2) the Fayetteville MSA, Cumberland and Hoke Counties and (3) the southeastern portion of the Charlotte-Gastonia-Concord MSA, Anson County, previously discussed as part of the Mooresville Monitoring Region in Section C.

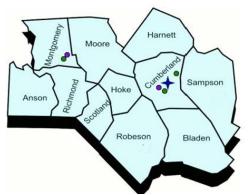


Figure E1. The Fayetteville monitoring region The dots show the approximate locations of most of the monitoring sites in this region.

(1) The Non-MSA Portion of the Fayetteville Monitoring Region

The non-MSA portion of the Fayetteville monitoring region contains eight counties - Bladen, Harnett, Montgomery, Moore, Richmond, Robeson, Sampson and Scotland. It has no MSAs. The Southern Pines-Pinehurst Micropolitan Statistical Area is in Moore County. The Dunn Micropolitan Statistical Area is in Harnett County and the Lumberton Micropolitan Statistical Area is in Robeson County. The North Carolina Division of Air Quality, DAQ, currently operates one monitoring site in this area of the Sand Hills at Candor in Montgomery County. The location of the Candor monitoring site is shown in Figure E2.

Figure E2. Location of the Candor monitoring site A is the Candor fine particle, air toxic and CASTNET monitoring site. The circle approximates the neighborhood scale, 0.5 to 4 kilometers [Km].

At the Candor site, the DAQ operates a continuous fine particle beta attenuation monitor, BAM; a rotating every third year PM₁₀ monitor; air toxics volatile organic compound and carbonyl monitors; and ambient temperature, relative humidity, wind speed and direction sensors. Table

E1 summarizes monitoring information for the site. Figure E3 through Figure E7 show the site and views looking north, east, south and west. The Candor site is collocated with a clear air status and trends network, CASTNET, site.

Site Name:	Can			Cunu		S Site	Identi	fication Nu	mher	37-123-00	001		
Location:			Candor, North	[¬] arolina		20 510	Juciti			07-125-00	01		
CBSA:	150	Not in a CE		caronna		CBSA	4 :	00000	Eleva	ation	173	1 meters	
Latitude		35.2632		Datu		NAD83	Lieve		175.	1 meters			
Parameter		33.2032	Longitude	-79.8366	515	Duru	Meth		Samp	le Sa	Sampling		
Name		Method						rence ID	Durat		chedu		
PM 2.5 local			AM-1020 Mass	w/VS	SCC.					Schedule			
conditions, B.	AM	170				,	EQP	M-0308-170) 1-hour	· Y	ear-ro	und	
PM10 total 0-											ear-ro	und,	
10um STP		Met One Be	eta Attenuation	BAM-10	020		EQP	M-0798-122	2 1-hour	ev	very th	nird year	
Volatile organ	nic	SS 6L- pres	ssurized canister	w/ cryc	ogenic					E	very s	ixth day,	
compounds		preconcenti	ration: GC/MS				Not a	applicable	24-hou	*	ear-rou		
Carbonyl											•	ixth day,	
compounds			H-CART-KI O					applicable	24-hou		ear-rou		
Date Monito	r Esta	ablished	PM 2.5 local co							Aug. 1			
		F	PM10 total 0-1				nonitor	•		Feb. 1			
		-	Volatile organi		ounds					Jan. 26		2	
			Carbonyl comp		1					July 3,			
Nearest Road	d:		McCallum Ro				Count:	270	Yea	r of Cou	nt:	2013	
			Distance to	Direc	tion to	0			G ()				
Parameter N	ame		Road	Road			Moni	Monitor Type		Statement of Purpose Real-time data reporting.			
DM 2 5 11			1070	ers North north				10			portin	g.	
PM 2.5 local	condi	tions, BAM	1079 meters	North north			SLAN	15	AQI repo	orting.	.:		
PM10 total 0-	10	STD	1079 meters	North	north	aast	Spacie	al purpose		tion, PSI			
Volatile organ			1079 meters	North				egulatory					
Carbonyl con			1079 meters	North							ackground monitor ackground monitor		
Carbonyrcon	ipoun		1079 meters	Hortin	noru	least		on-regulatory General ba				to Move	
Parameter N	ame		Monitoring () biectiv	e	Scale		Comparison	to NAAC		Chang		
I di unicici i i	ume		General backs			Jeane		omparison		20 01 (mang	C	
PM 2.5 local	condi	tions. BAM	welfare relate		ts	Regio	nal	Ye	S		No	ne	
PM10 total 0-			General backs			Regio		Ye			No		
Volatile organ			General backs			Regio		Not app			No		
Carbonyl con	npoun	ds	General back	ground		Regio		Not app			No	ne	
*	-							Requireme		•			
Parameter N	ame		Appendix	A	App	endix	С	Арре	ndix D	Ар	pendi	хE	
PM 2.5 local	condi	tions, BAM	Yes			Yes			es		Y		
PM10 total 0-			Yes			Yes			plicable		Y		
Volatile organ	nic co	mpounds				applic	cable		plicable		Y	es	
Carbonyl con	npoun	ds				applic	cable	Not ap	plicable		Y	es	
Parameter N	Parameter Name Probe Height in meters					Dist	ance to	Support	Distance	e to Tree	s O	bstacles	
PM 2.5 local	1 2.5 local conditions, FRM 2.46					> 2 m	eters	>20 1	meters		None		
	PM10 total 0-10um STP 3.17				1	2.87 m	neters	>20 1	meters		None		
	nic compounds 3.91				1.117 meters			> 20 meters			None		
Carbonyl con			3.9				1.117 r			meters		None	
Curtonyi con	poun		5.5			I			0				

Table E1. Site Information Table for Candor

Each CASTNET dry deposition station measures:

- Weekly average atmospheric concentrations of sulfate, nitrate, ammonium, sulfur dioxide and nitric acid; and
- Hourly concentrations of ambient ozone levels.

The CASTNET meteorological equipment was transferred to the DAQ in 2012.

The Candor site is located on the eastern edge of the Uwharrie National Forest. In 2013 the DAQ added a beta attenuation monitor, BAM, and a one-in-six-day carbonyl sampler to support a background monitoring study. July 1, 2015, the BAM became the primary monitor at the site and the FRM was shut down.

Figure E4. Looking north from the Candor site

Figure E5. Looking west from the Candor site

Figure E3. The Candor CASTNET, air toxics, mercury deposition and particle monitoring site, 37-123-0001

Figure E6. Looking east from the Candor site

Figure E7. Looking south from the Candor site

There are no new monitoring requirements that will require additional monitoring in this area.

(2) The Fayetteville MSA

The Fayetteville MSA consists of two counties: Cumberland and Hoke. The major metropolitan area is the City of Fayetteville. The DAQ currently operates three monitoring sites in the Fayetteville MSA. These sites are all located in Cumberland County at William H. Owen

Elementary School and E. Melvin Honeycutt Elementary School in Fayetteville and at Wade. The Golfview site in Hope Mills was shut down on Oct. 31, 2014. The locations of these monitors are shown in Figure E8.

The Honeycutt ozone and sulfur dioxide monitoring site is the green dot to the south; the Wade ozone monitoring site is the green dot to the northeast the William Owen particle monitoring site is the red dot in the center.

Figure E8. Monitors located in the Fayetteville MSA

At the **Honeycutt** site, the DAQ operates a seasonal ozone monitor and a special purpose sulfur dioxide monitor that operates for 12 months every three years. DAQ established this site in April 2015. The DAQ discovered in February 2014 that the golf course where the Golfview monitoring station was located was closed and the property where the monitor was located was for sale. The property owner agreed to allow DAQ to continue using the site until the property sold. The property sold in August 2014 and the new owner requested the DAQ move the monitoring station as soon as possible. The DAQ investigated surrounding properties to identify a potential location for the monitoring station. The property abuts YMCA property on one side and city property on the other. The DAQ considered relocating the monitoring station about 100 meters southeast to the YMCA property, however, the YMCA never responded to the request. Thus, the DAQ worked with the school system to move the site to E. Melvin Honeycutt Elementary School at 4665 Lakewood Drive, Fayetteville, North Carolina. As shown in Figure E9, the school is located about 3.2 Kilometers northwest of the former Golfview location.

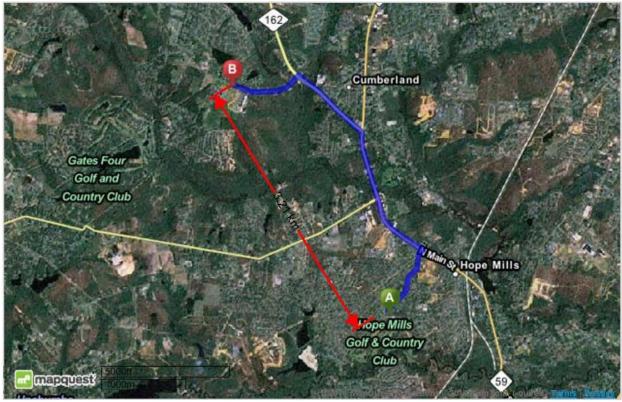


Figure E9. Location of Honeycutt site, B, relative to Golfview, A

Figure E10 through Figure E14 show the site and views looking north, east, south and west. Table E2 summarizes monitoring information for the site. The Honeycutt ozone site is the upwind site for the Fayetteville MSA. Sulfur dioxide monitoring occurs here every third year because the site is a good background site for obtaining data for Prevention of Significant Deterioration modeling requirements. This sulfur dioxide monitor operated May 2015 to May 2016 and will operate again in 2018. In July 2016, the U.S. Census Bureau, Population Division, estimated 380,389 people lived here.

Figure E10. Honeycutt ozone and sulfur dioxide monitoring site, 37-051-0010

Figure E11. Looking north from the Honeycutt site

Figure E13. Looking west from the Honeycutt site

Figure E12. Looking east from the Honeycutt site

Figure E14. Looking south from the Honeycutt site

	Site II	numa		le lor H	uney	Cull								
Site Name:	Honey	ycutt				AQS Si	te Io	dent	ificatio	n Nur	nber:	37-(051-0010	
Location:	4665	Lakewoo	d Drive, F	ayetteville	, Nor	th Caroli	na	CB	BSA:	Fayer	tteville, N	IC	CBSA #:	22180
Latitude	Latitude 35.00165 Longitude					-78.990)75		Datu	n:		WG	S84	
Elevation		59.1 m	eters											
					Method Reference				San	nple				
Parameter N	neter Name Method				ID				Dur	ation	Sam	pling Sche	dule	
		Instrum	nental with	ultra viole	et									
Ozone		photom	etry, 047			EQOA-	0880	0-04	7	1-H	our	Marc	ch 1 to Oct	. 31
		Instrum	nental with	pulsed								Year	-round; ev	ery third
Sulfur dioxide	e	fluores	cence, 060			EQSA-()486	5-060	0	1-H	our	year		
Date Monito	n Eatak	lichod	Ozone									May	9, 2015	
Date Monito	r Estat	insneu:	Sulfur di	oxide								May	9, 2015	
Nearest Road	d:	Lakewo	od Drive		Traf	fic	13	,000,		Y	ear of C	ount	: 2014	
					Cou	nt:								
					Dire	ction to								
Parameter N	ame	Distanc	e to Road		Road	d		Mo	onitor T	Гуре	Statem	ent o	f Purpose	
											Real-tir	ne A	QI reportin	g and
											forecast	ting.	-	-
Ozone			34 meters			North		SL	AMS		Compli	ance	w/NAAQS	5.
								Spe	ecial		Prevent	ion o	f significar	nt
Sulfur dioxide	e		34 meters			North		pur	rpose		deterior	ation	, PSD, mo	deling
								Sui	itable f	or Co	mparisoi	1 P	roposal to	Move
Parameter N	ame	Monito	ring Obje	ctive	Scal	e		to]	NAAQ	S		0	r Change	
Ozone		Populati	ion exposu	ire	Neig	hborhood	1			Yes		N	one	
		Populati	ion exposu	ire										
Sulfur dioxide	e	General	backgrou	nd	Neig	hborhood	1			Yes		N	one	

Table E2. Site Information Table for Honeycutt

Parameter Name	Meets Part 58 Appendix A Requirements	Meets Part 58 Appendix C Requirements	Meets Part 58 Appendix D Requirements	Meets Part 58 Appendix E Requirements
Ozone	Yes	Yes	Yes	Yes
Sulfur dioxide	Yes	Yes	Not applicable	Yes
Parameter Name	Probe Height in meters	Distance to Support	Distance to Trees	Obstacles
Ozone	4.22 meters	1.2 meters	>20 meters	None
Sulfur dioxide	4.22 meters	1.5 meters	>20 meters	None

Table E2. Site Information Table for Honeycutt

Because 40 CFR 58 Appendix D requires MSAs with more than 350,000 people to have two ozone monitors, this site is the second required ozone site for the Fayetteville MSA.

At the Wade site, the DAQ operates a seasonal ozone monitor. A picture of the site as well as views looking north, east, south and west are provided in Figure E15 through Figure E19. Table E3 summarizes monitoring information for the site. The Wade site was established as the downwind site for the Fayetteville MSA. 40 CFR 58 Appendix D currently requires the Fayetteville MSA to have two ozone monitoring sites.

Figure E16. Looking north from Wade site

Figure E17. Looking west from the Wade site

Figure E15. Wade ozone monitoring Site, 37-051-0008

Figure E18. Looking east from the Wade site

Figure E19. Looking south from the Wade site

Table E3. Site Information Table for Wade											
Site Name:	Wade			AQS Sit	e Iden	tific	ation Numb	er:	37-051-	8000	
Location:	Location: 7112 Covington Lane, Wade, North Carolina CBSA: Fayetteville, NC CBSA #: 22180										
Latitude	35.158686	Longitude	-78.728035	Datu	n:	WC	GS 84	Eleva	tion	43 m	eters

Parameter									od		Sample			
Name	Meth	hod						Reference ID Du			Duration	Samplin	g Schedule	
Ozone	Instru	mental w	ith ultra vio	olet photor	netry,	047	H	EQOA-0880-047 1-Hour			1-Hour	March 1 to Oct. 31		
Date Monito	r Estal	blished:	Ozone									May 8, 1	990	
Nearest Road	d:	Coving	ton Road			Tra	affic C	Count	t:	1300 Y e	ear of Count	:	2014	
Parameter N	ame	Distance	e to Road	Direction	n to Ro	oad	Mon	itor '	Туре	State	ment of Pur	pose		
										Comp	oliance w/NA	/NAAQS. Real-time A		
Ozone		87 n	neters	W	'est		SLA	MS		repor	ting & foreca	asting.		
									Suita	ble for	Comparison	1 Propos	al to Move	
Parameter N	lame	Monitor	ring Objec	tive	Sca	ıle		to NAAQS			AQS	or Cha	nge	
Ozone		Highest	concentrati	on	Urt	oan				Y	es	None		
				Ν	leets 4	0 C1	F <mark>R P</mark> a	rt 58	8 Requ	ıiremen	ts for:			
Parameter N	lame	[A]	ppendix A		Appendix C				Append	lix D	Apj	oendix E		
Ozone			Yes		Yes					Yes	8	Yes		
Parameter N	ame	Probe H	leight in m	eters	Distance to Su			apport Distance		Distance to Trees		'rees Obstac		
Ozone			4.22		1.2 meter			r >20 meters				None		

Table E3. Site Information Table for Wade

At the William Owen site, the DAQ operates a one-in-six-day fine particle FRM and continuous fine particle and PM₁₀ monitors. Figure E20 shows the site. Table E4 summarizes monitoring information for the site. Views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure E21 through Figure E28. The meteorological tower with wind speed and wind direction sensors, ambient temperature sensors at 10 meters and 2 meters, rainfall and solar radiation sensors was shut down on Nov. 12, 2014. In mid-January 2016, the collocated high-volume PM₁₀ monitors at the site were shut down and replaced with a low-volume continuous PM₁₀ monitor. At the end of 2015 the well-impactor ninety-six, WINS, on the FRM was replaced with a very sharp cut cyclone, VSCC. This change was made because the VSCC is easier and less expensive to maintain. In mid-2017, a one-in-six-day collocated fine particle FRM will be added to the site.

Figure E20. The William Owen particle monitoring site

Site Name:	-		n School							ation Numb	e r 37-0	51-0009	
Location:				vet	teville, North (c Iu			570	51 0007	
-	Fayettev			<u> </u>			BSA #	:	22180)			
	35.0414		Longitud	e	-78.953112	Datum: WGS84 Elevation 65						63 met	ers
Parameter N	Name	Meth	od					Met	hod R	eference ID	Sample Duration	Samplin Schedu	
PM 2.5 local conditions, FRM R & P Model 2025 Sampler w/VSCC -								RFP	S-100	6-145	24-Hour	Every si year-rou	xth day; ind
PM 2.5 local conditions, B		Met C VSCC		102	22 Mass Monit	or w		EQP	PM-10	13-209	1-Hour	Year-ro	und
PM10 total 0 STP, primary		Met C			nuation BAM-	-	-	<u> </u>		98-122	1-Hour	Year-ro	
Date Monitor Established: PM 2.5 lo					ocal conditions, primary monitor ocal conditions, continuous monitor tal 0-10um STP, primary monitor							Jan. 1, 1 Dec. 30 Jan. 1, 1	, 2015
Nearest Roa	d:		Raefo	ord	Road	Τ	raffic (Cour	nt:	40,000	Year of	Count:	2012
Parameter N	lame						ection Road	Mo Tyj	onitor pe	Statement	of Purpose	e	
PM 2.5 local	conditio	ons, pri	mary		210 meters	Nor	th		AMS	Compliance			orting.
PM 2.5 local	conditio	ons, cor	ntinuous		210 meters	Nor	th	SL	AMS	Real-time A	QI reporti	ng & foreca	asting.
PM10 total 0	-10um S	TP, pr	imary		210 meters	Nor	th	SL	AMS	Compliance	w/NAAQ	S.	
Parameter N	lame				onitoring bjective		Scale	•		Suitable for Compariso	-	Proposal t or Change	
PM 2.5 local				Po	pulation expos	sure	Urba	n		Yes	5	None	
	PM 2.5 local conditions, continuous Population exposure U				Urba			No		None			
PM10 total 0-10um STP, primary Population exposure U							Urba			Yes		None	
						r			Part 58	Requireme			
Parameter N	lame			A	Appendix A	Ap	pendix	к С		Appendix	D	Appendi	x E
PM 2.5 local			*	Yes Yes Yes Yes									
PM 2.5 local conditions, continuous Yes Yes Yes Yes						es							

Table E4. Site Information Table for William Owen School

Tuble 14. Site information 14							
PM10 total 0-10um STP, primary	Yes		Yes	Y	Yes		Yes
Parameter Name	Probe Height i	n meters	Distance to	Support	Distance to	Trees	Obstacles
PM 2.5 local conditions, primary	2.38		> 2 m	eters	>20 met	ters	None
PM 2.5 local conditions, continuous	4.666		> 2 m	eters	>20 met	ters	None
PM10 total 0-10um STP, primary	2.64		2.3	38	>20 met	ters	None

Table E4. Site Information Table for William Owen School

Figure E21. Looking north from the William Owen site

Figure E22. William Owen Site looking northeast

Figure E23. William Owen site looking northwest

Figure E24. Looking west from the William Owen site

Figure E25. William Owen Site looking southwest

Figure E26. Looking east from the William Owen site

Figure E27. William Owen site looking southeast

Figure E28. Looking south from the William Owen site

Additional monitoring could be required in the Fayetteville MSA to comply with the 2010 **lead monitoring** requirements,¹ as revised in 2016². In the 2014 toxics release inventory Fort Bragg calculated its fugitive lead emissions to the ambient air from its firing ranges using AP-42 emission factors and determined it emitted less than 0.5 tons.³ DAQ requested a waiver from either placing a monitor at the fence line of the base or to doing modeling to show that the air beyond the fence line of the base is less than 50 percent of the standard. Because the emissions are lower than 0.5 tons,⁴ the EPA is currently not requiring DAQ to do any lead monitoring.⁵ There are no other new monitoring requirements that will require additional monitoring in this area.

¹ Revisions to Lead Ambient Air Monitoring Requirements, Federal Register, Vol. 75, No. 247, Monday, Dec. 27, 2010, p. 81126, available on the worldwide web at <u>https://www.gpo.gov/fdsys/pkg/FR-2010-12-27/pdf/2010-32153.pdf#page=1</u>.

² Revisions to Ambient Monitoring Quality Assurance and Other Requirements, Federal Register, Vol. 81, No. 59, Monday, March 28, 2016, p. 17248, available on the worldwide web at <u>https://www.gpo.gov/fdsys/pkg/FR-2016-03-28/pdf/2016-06226.pdf</u>.

³ United States Environmental Protection Agency. 2014 Toxic Release Inventory, released March 2015, available on the worldwide web at <u>https://iaspub.epa.gov/triexplorer/tri_release.chemical</u>.

⁴ United States Environmental Protection Agency. (2017). *TRI Explorer* (2015 Dataset (released March 2017)) [Internet database]. Retrieved from <u>https://www.epa.gov/triexplorer</u>, (May 04, 2017).

⁵ United States Environmental Protection Agency. (2011). *FY 2011 State of North Carolina Ambient Air Monitoring Network Plan, U.S. EPA Region 4 Comments and Recommendations* (Oct. 20, 2011). Available on the worldwide web at <u>http://xapps.ncdenr.org/aq/documents/DocsSearch.do?dispatch=download&documentId=7843</u>

Appendix E.1 Annual Network Site Review Forms for 2016

Candor

Honeycutt

Wade

William Owen in Fayetteville

	1		Site mon							
Region_FRO	Site Na	ame <u>Cando</u>	<u>r</u>		A	QS Site # 37 -	- <u>123</u> - <u>0001</u>			
Street Address-136 Perry Dr City Candor Urban Area Not in an Urban Area Core-based Statistical Area None										
Urban Area Not in a	n Urban 4	Area	Stat	istical Area 🛛	None					
10.000 (10.000 (10.000))	Enter E									
Longitude -79.836	<u>6613</u>	Latitude				lethod of Me				
In Decimal Degrees		In Decimal			Interpolation		n: <u>Google Earth</u>			
Elevation Above/below				-		<u>173.1</u>				
Name of nearest road to inl	et probe	McCallum Re	<u>d</u> ADT <u>270</u> Ye	ear la	test available <u>20</u>	013				
Comments:		() 								
Distance of site to nearest r		1 1			1	road <u>NNE</u>				
Name of nearest major road	d <u>McCall</u>	<u>um Rd</u> ADT	<u>270</u> Year late	est ava	ailable <u>2013</u>					
Comments:										
Site located near electrical			e power lines?				Yes 🗌 No 🛛			
Distance of site to neares					(m) <u>8787</u>		n to RR <u>ENE</u> NA			
OPTIONAL Distan							n) <u>10</u> Direction <u>SSW</u>			
Distance between site and o					on from site to wa					
Explain any sources of p construction activities, fa						e, stacks, veni	is, rainoau tracks,			
	ist 100 u 1	ostaurantis, t	ind swinning	poor						
None expected		-								
ANSWER ALL APPLIC.	ABLE QU	JESTIONS:								
Parameters	M	onitoring Ol	ojective		Scale	N	Monitor Type			
□NA	Mana	ral/Backgrou	un d	-	Miara		MS			
\Box SO ₂ (NAAQS)		est Concentra			Micro					
\square SO ₂ (trace-level)		O3 Concentr			Middle	SPM_				
□ NO2 (NAAQS) □HSNOy		lation Expos	o and the states				Network			
$\Box O_3$		e Oriented	0	Nei	ghborhood	Affiliatio				
NH ₃					Urban	NCO	RE			
Hydrocarbon	<u> </u>	sport		1		Unof	ficial PAMS			
Air Toxics		nd Backgrou	13	X	Regional					
	Wells	are Related I	mpacts							
Probe inlet height (from g	round) 2-1	5 m? Yes		Give	e actual measured	height from gro	ound (meters) <u>3.91</u>			
Distance of outer edge of										
					, , II	J	 Construction and Construction and Construction 			
Actual measured distance					· · · ·					
Distance of outer edge of j						a second	No 🗌 NA 🗌			
Is probe > 20 m from the r	nearest tree	e drip line?	Yes 🗶 *No	рЦ(answer *'d questi	ons)				
*Is probe > 10 m from the nearest tree drip line? Yes \square *No \square										
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)										
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛										
*Identify obstacle	*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle									
*Is distance from inlet pro	be to obst	acle at least t	wice the height	that t	he obstacle protru	ides above the j	probe? Yes 🗌 No 🔲			
Distance of probe to neare	st traffic l	ane (m) <u>107</u>	<u>19</u> Direction fr	rom p	robe to nearest tra	iffic lane <u>NNE</u>				

Site Information

2016 Candor Site Review

Parameters	Monitoring Objective	Scale	Site Type
🗌 NA			SLAMS
Air flow < 200 L/min	General/Background	Micro	3 13 10 10 10 10 10 10 10 10 10 10 10 10 10
PM2.5 FRM	Highest Concentration	Middle	SPM
PM10 FRM PM10 Cont. (BAM)	Population Exposure	Neighborhood	Monitor Network Affiliation
PM10-2.5 FRM	Source Oriented	Urban	NCORE
🔲 PM10-2.5 BAM	Transport	Regional	SUPPLEMENTAL
PM10 Lead (PB) PM2.5 Cont. (BAM)	Welfare Related Impacts		SPECIATION
PM2.5 Spec. (SASS)			Monitor NAAQS Exclusion
PM2.5 Spec. (URG) PM2.5 Cont. Spec.			NONREGULATORY
Probe inlet height (from g	ground) 🔲 < 2 m 🛛 🛛 2-7r		≥ 15 m
	e from probe inlet to ground (meters)		
	probe inlet from horizontal (wall) a		
	e from outer edge of probe inlet to su ter edge of probe inlets of any low ve		
low volume monitor at th	e site = 1 m or greater?		
or TSP inlet = 2 m or gre			PM-10 Yes No NA
TEOM, BAM & TEOM)		* Y es 🗋 (an	swer *'d questions) No 🗌 NA 🔀
	collocated PM 2.5 samplers (X) with		
each other? *Are collocated PM2 5 sa	ampler inlets within 1 m vertically o		No Give actual (meters) No Give actual (meters)
	collocated with a SASS monitor at t		
	collocated speciation samplers inlets		
Give actual (meters)	_		
	on sampler inlets within 1 m vertical		No 🗌 Give actual (meters)
Is a low-volume PM10 m site to measure PM10-2.5	onitor collocated with a PM2.5 mon	itor at the *Yes \square (and	swer *'d questions) No 🗌 NA 🔀
	collocated PM10 and PM2.5sampler	rs for PM10-2.5 (X)	Yes 🗌 No 🗌
within 2 to 4 m of each o			
	nd PM2.5 sampler inlets within 1 m v		Yes No
		*No 🔲 (answer *'d questio	ons)
	· · · · · · · · · · · · · · · · · · ·	*No 🗌	
	tree (m) Direction from pro		tree (m)
	o air flow? *Yes 🗌 (answer *'d que		1
	Distance from probe inlet (m) obe to obstacle at least twice the heig		
	est traffic lane (m) 1079 Directio		
RECOMMENDATIONS:	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1	
	tatus? Yes 🛛 *No 🗌 (answer *		
	bjective? Yes 🗌 (enter new objec		
*3) Change scale of repre	esentativeness? Yes 🔲 (enter new	v scale _) No 🗖	
*4) Relocate site? Yes	🗌 No 🗌		
Comments:			
Date of Last Site Pictures	12/9/15 New Pictures Subm	itted? Yes 🔲 🛛 No 🛛	
Reviewer Jennifer McHor	ne Sides		Date <u>12/12/16</u>
Ambient Monitoring Coor	rdinator Mitchell Revels		DateJanuary 12, 2017
. 			

Region_FRO Site Name Honeycutt				AQS Site # 3	37- <u>051</u> - <u>001</u>	10	
Street Address-4665 Lakewood Dr			City Fayett	<u>eville</u>			
Urban Area FAYETTEVILLE Core-based Sta			atistical Area	Fayetteville	e, NC		
Enter Exact							
Longitude	<u>-78.990536</u>	Latitude	9				
			35.001803		Method of	Measurin	g
In Decimal De	grees	In Decin	nal Degrees	Interpolatio	<u>n</u> Explana	ation: <u>Go</u>	ogle Earth
Elevation Abo	ve/below Mea	ın Sea Lev	el (in meters)		<u>60.</u>	.04	
Name of neare	st road to inle	t probe <u>Fi</u>	isher Road ADT	` <u>16000</u> Year	latest availa	able <u>2014</u>	
Comments: Lakewood Dr - 13000 (2014)							
Distance of site to nearest major road (m) 40.00 Direction from site to nearest major road NNE							
Name of nearest major road Bingham Drive (NC 162) ADT 31000 Year latest available2014							
Comments:				SIC CM			
Site located near electrical substation/high voltage power lines? Yes No							
Distance of site to nearest railroad track (m) Direction to RR NA							
OPTIONAL Distance of site to nearest power pole w/transformer (m) 77 Direction E							
Distance between site and drip line of water tower (m) Direction from site to water tower NA							
Explain any so	ources of poter	ntial bias;	include cultivate	ed fields, loose	bulk storag	e, stacks, v	vents, railroad
tracks, constru	ction activitie	s, fast foo	d restaurants, an	d swimming p	ools.		

Site Information

None expected

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Monitor Type
⊠ Ozone (O₃)	General/Background Highest Concentration Max O3 Concentration Population Exposure Source Oriented Transport Upwind Background Welfare Related Impacts	☐ Micro ☐ Middle ☑ Neighborhood ☐ Urban ☐ Regional	SLAMS SPM
Probe inlet height (fr	rom ground) 2-15 m? Yes 🛛 No 🗌 Giv	e actual measured height fro	om ground (meters) 4.22
Distance of outer edg	ge of probe inlet from horizontal (wall) and/or ver tance from outer edge of probe to supporting struc		ture > 1 m? Yes \square No \square
	ge of probe inlet from other gas monitoring probe		Yes 🛛 No 🗌 NA 🗌
Is probe > 20 m from	n the nearest tree drip line? Yes 🛛 *No 🗌 (answer *'d questions)	
*Distance from prob	m the nearest tree drip line? Yes \square *No \square be to tree (m) Direction from probe to tree		
Are there any obstac	les to air flow? *Yes 🔲 (answer *'d questions) N	io 🛛	
*Identify obstacle	Distance from probe inlet (m)Direc	tion from probe inlet to obst	acle
*Is distance from inl	et probe to obstacle at least twice the height that t	he obstacle protrudes above	the probe? Yes 🗌 No 🔲
Distance of probe to	nearest traffic lane (m) 34 Direction from prob	be to nearest traffic lane N	

2016 Honeycutt Site Review2016 Honeycutt Site Review

1) Maintain current monitor status?	Yes 🛛	*No 🔲 (answer *'c	l questions)	
*2) Change monitoring objective?	Yes 🗌 (e	enter new objective	<u>)</u> No 🗌-	
*3) Change scale of representativene	ess? Yes	(enter new scale) No 🗖	

*4) Relocate monitor? Yes 🗌 No 🗌

Comments:

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Monitor Type			
□ SO ₂ (DRR) ⊠ SO ₂ (NAAQS) □ SO ₂ (trace-level)	General/Background Highest Concentration Population Exposure Source Oriented Transport Upwind Background Welfare Related Impacts	☐ Micro ☐ Middle ☐ Neighborhood ☑ Urban ☐ Regional	□INDUSTRIAL □SLAMS ⊠SPM			
Probe inlet height (from ground) 2-15 m? Yes 🛛 No 🗌 Give actual measured height from ground (meters) 4.22						
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting structure > 1 m? Yes \boxtimes No \square Actual measured distance from outer edge of probe to supporting structure (meters) <u>1.5</u>						
Distance of outer edge of probe inlet from other monitoring probe inlets $> 1 \text{ m}$? Yes \boxtimes No \square NA \square						
Is probe > 20 m from the nearest tree drip line? Yes \times *No \square (answer *'d questions)						
*Is probe > 10 m from the nearest tree drip line? Yes \square *No \square						
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)						
Are there any obstacles to air flow? *Yes \square (answer *'d questions) No \blacksquare						
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle						
*Is distance from inlet pro	be to obstacle at least twice the height that the	he obstacle protrudes above	the probe? Yes 🗌 No 🔲			
Distance of probe to neare	st traffic lane (m) <u>34</u> Direction from prob	be to nearest traffic lane \underline{N}				

SULFUR DIOXIDE MONITOR RECOMMENDATIONS:

1) Maintain current monitor status? Yes 🛛 *No 🗌 (answer *'d questions)	
*2) Change monitoring objective? Yes 🗌 (enter new objective) No 📃-	
 *3) Change scale of representativeness? Yes (enter new scale) No *4) Relocate monitor? Yes No 	
Comments: SO2 shutdown 6/16 until 2018 for 3 yr cycle	
Comments. <u>302 shutdown 6/16 until 2018 for 5 yr cycle</u>	
Date of Last Site Pictures $12/3/15$ New Pictures Submitted? Yes \square No	
Reviewer Jennifer McHone Sides	Date <u>December 7, 2016</u>
Ambient Monitoring Coordinator Mitchell Revels	Date <u>January 12, 2017</u>
Davised 2017 01 12	

2016 Honeycutt Site Review2016 Honeycutt Site Review

Region_FRO Site Name Wade			AQS Site # 37- <u>051</u> -0008		
Street Address-7112 Covington Road				City <u>Wade</u>	- M (100 M
Urban Area FAYETTEVILLE Core-based Sta			ased Statis	stical Area Fayet	teville, NC
T at least the target the	Enter E	M/N	1.507		1 01 5
6	78.7281	Latitude <u>35</u> In Decimal Degrees	5.1587		od of Measuring
In Decimal Degrees				Interpolation Ex	planation: <u>Google Earth</u> 151.00
Elevation Above/below Mean Sea Level (in meters) 151.00 Name of nearest road to inlet probe Covington Road ADT 130 Year latest available 2014					
Distance of ozone probe to nearest traffic lane (m) $\underline{87}$ Direction from ozone probe to nearest traffic lane W					
250 B C C C C C C C C C C C C C C C C C C) - 1600 (2014); Wad			
		ADT <u>48000</u> Year 1	1 N 1 N 1 N 1	14.0 ST0000000	<u></u>
		oad (m) <u>792.00</u> Dire			r road <u>ESE</u>
Comments:				-	
Site located near ele	ctrical substat	tion/high voltage pow	er lines?		Yes 🗌 No 🗙
Distance of site to n					Direction to RR <u>NW</u> NA
		to nearest power pole			(m) <u>91</u> Direction <u>W</u>
		e of water tower (m)			
					cks, vents, railroad tracks,
construction activitie	es, fast 100d r	estaurants, and swimr	ning pools		
none expected					
ANSWER ALL APP	LICABLE Q	UESTIONS:			
Parameters	Monito	ring Objective		Scale	Site Type
\bigcirc O ₃		Background	Micro		SLAMS
		Concentration Concentration	Middl	e	
		on Exposure			SPM
	Source C			borhood	
	Transpor		Urbar	ı	
		Background			
			II IKegio	nal	
	Welfare	Related Impacts		nal	
and the first of the second seco	Welfare (from ground	Related Impacts d) 2-15 m? Yes 🔀	No 🗌	nal	
Give actual measu	Welfare (from ground red height fr	Related Impacts d) 2-15 m? Yes om ground (meters)	No 🗌 4.22		
Give actual measu Distance of outer e	Welfare (from ground red height fr edge of probe	Related Impacts d) 2-15 m? Yes om ground (meters) e inlet from horizon	No 🗌 4.22		of) supporting
Give actual measu Distance of outer e structure > 1 m? Y	Welfare (from ground red height fr edge of probe es No	Related Impacts d) 2-15 m? Yes om ground (meters) e inlet from horizon	No <u>4.22</u> tal (wall)	and/or vertical (ro	
Give actual measu Distance of outer e structure > 1 m? Y Actual measured d	(from ground red height fr edge of probe es (No) listance from	Related Impacts d) 2-15 m? Yes om ground (meters) e inlet from horizon outer edge of probe	No 4.22 tal (wall) tat suppo	and/or vertical (ro	eters) <u>1.20</u>
Give actual measu Distance of outer e structure > 1 m? Y	(from ground red height fr edge of probe es (No) listance from	Related Impacts d) 2-15 m? Yes om ground (meters) e inlet from horizon outer edge of probe	No <u>4.22</u> tal (wall)	and/or vertical (ro	eters) <u>1.20</u>
Give actual measu Distance of outer e structure > 1 m? Y Actual measured d	(from ground red height fr edge of proba- es No [listance from om the neare	Related Impacts d) 2-15 m? Yes om ground (meters) e inlet from horizon outer edge of probe st tree drip line?	No 4.22 tal (wall) tat suppo	and/or vertical (ro	eters) <u>1.20</u>
Give actual measu Distance of outer e structure > 1 m? Y Actual measured d Is probe > 20 m free	(from ground red height fr edge of probe es No listance from om the neare	Related Impacts d) 2-15 m? Yes om ground (meters) e inlet from horizon outer edge of probe st tree drip line? rest tree drip line? n) Direction	 No □ 4.22 tal (wall) e to suppo Yes ⊠ Yes □ n from pro 	and/or vertical (roo orting structure (mo *No (answer * *No (answer *) obe to tree (answer *)	eters) <u>1.20</u>
Give actual measu Distance of outer e structure > 1 m? Y Actual measured d Is probe > 20 m fre *Is probe > 10 m f	Welfare (from ground red height fr edge of probe es No listance from om the neare from the near obe to tree (r	Related Impacts d) 2-15 m? Yes om ground (meters) e inlet from horizon outer edge of probe st tree drip line? rest tree drip line? n) Direction	 No □ 4.22 tal (wall) e to suppo Yes ⊠ Yes □ n from pro 	and/or vertical (roo orting structure (mo *No (answer * *No (answer *	eters) <u>1.20</u> *'d questions)

Site Information

2016 Wade Site Review

Revised 2017-01-12

1

RECOMMENDATIONS:	
1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)	
*2) Change monitoring objective? Yes 🗌 (enter new objective:) No]
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌	
*4) Relocate site? Yes 🗌 No 🗌	
Comments:	
Date of Last Site Pictures: December 10, 2016 New Pictures Submitted? Yes	No 🛛
Reviewer Jennifer McHone Sides	
Ambient Monitoring Coordinator Mitchell Revels Date: Ja	<u>nuary 12, 2017</u>

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Region FRO Site Name William Owen			AQS Site # 37	- <u>051-0009</u>	
Street Address-4533 Raeford Road			City <u>Fayetteville</u>		
Urban Area FAYETTEVILLE Core-based Sta			istical Area Fayetteville, I	NC	
Enter Exact					
Longitude <u>-78.9531</u>	Latitude	<u>35.0414</u>	Method of M	easuring	
In Decimal Degrees	In Decimal	Degrees	Interpolation Explanation	on: <u>Google Earth</u>	
Elevation Above/below Mean Se	a Level (in me	eters)	<u>63.70</u>)	
Name of nearest road to inlet pro	be <u>Raeford R</u>	oad ADT	Latest available <u>42000</u> Year	<u>2014</u>	
Distance of ozone probe to neare	st traffic lane	(m) Direct	ion from inlet to nearest traff	ic lane	
Comments:					
Name of nearest major road Rad	eford Road AI	DT <u>42000</u> Year	latest available 2014		
Distance of site to nearest major road (m) 210.00 Direction from site to nearest major road N					
Comments:					
Site located near electrical substation/high voltage power lines? Yes Ves No					
Distance of site to nearest railroa	Distance of site to nearest railroad track (m) <u>837</u> Direction to RR N NA				
OPTIONAL Distance of site					
Distance between site and drip line of water tower (m) Direction from site to water tower 🕅 NA					
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks,					
construction activities, fast food restaurants, and swimming pools.					
None expected					

Site Information

Instructions:

Address: Sometimes local addresses change. Confirm the local address of the site using a 911 locator or the address used by the local utility company, community or county to identify the site location.

Urban Area: If the monitor is located within the bounds of an urban area (an incorporated area with a population of 10,000 or more people), select the appropriate urban area from the list. Otherwise select "Not in an Urban Area". Core-Based Statistical Area (CBSA): If the monitor is located within a county that is part of a metropolitan statistical area (MISA) or a micropolitan statistical area (MISA), then it is located within a core-based statistical area. If the monitoring station is located in a county included in a MSA or MISA, select the appropriate CBSA from the list. Otherwise select "None".

Longitude and Latitude: The longitude and latitude should be entered in decimal degrees. Use a conversion program, such as http://transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html, to convert to decimal degrees.

Road Information: For the nearest road to the inlet probe, list whatever roadway that carries vehicles that is closest to the probe, whether or not it is a named or public road and even if the road has very little traffic. Use the comments space if necessary to describe the road or the source of the annual average daily traffic (AADT) counts. If the monitor is located near an unnamed, little used, private road, use the nearest major road space to list the closest named public road to the site. Include the distance and direction of the nearest major road from the site as well as the AADT if it is available. If the closest road is a small public road but there is a large major roadway such as an interstate highway, divided highway, major thoroughfare, etc., near the monitoring station use the nearest major road space to list the information about this major roadway. Include the distance and direction of the major road from the site as well as the AADT. The AADT for state roads can be obtained from the North Carolina Division of Transportation at <u>http://www.ncdot.gov/travel/statemapping/trafficvolumemaps/default.html</u>. For AADT values for local roadways contact the appropriate local governments.

Any Sources of Potential Bias: Use this space to record any information about the site that is not requested elsewhere. Especially note any changes to the site that occurred near the site in the past year, such as road construction, building construction, new businesses, businesses closing, or changes in traffic patterns, crops or other agricultural activities.

2016 William Owen Site Review2016 William Owen Site Review

1

Parameters	Monitoring Objective	Scale	Monitor Type		
Air flow < 200 L/min ▼ PM2.5 FRM	General/Background	Micro	SLAMS		
PM10 FRM	Highest Concentration	 Middle	SPM		
PM10 Cont. (BAM)	Population Exposure	Neighborhood			
PM10-2.5 FRM	Source Oriented		□ Nonregulatory		
PM10-2.5 BAM PM10 Lead (PB)		⊠ Urban	Supplemental Speciation		
\square PM2.5 Cont. (BAM)		Regional			
PM2.5 Spec. (SASS)	Welfare Related Impacts				
PM2.5 Spec. (URG)					
PM2.5 Cont. Spec.	n ground) $\Box < 2 \text{ m}$	$\square 7 \square 7 \square 5$			
	n ground) $\square < 2 \text{ m} _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ $		m□ ≥ 15 m		
			1.46		
	of probe inlet from horizontal ($\sum_{n=0}^{\infty} N = \sum_{n=0}^{\infty} $	(wall) and/or vertical (platform or roof)		
supporting structure > 2		lat to anno artin a starat	NA		
	nce from outer edge of probe in		ure (meters) <u>NA</u>		
	outer edge of probe inlets of any low volume monitor at the site		Yes 🛛 No 🗌 NA 🗌		
	outer edge of all low volume me				
second sets advented range and advented and and advented and advented adv	A CALL MARKET AND A CALL AND A CA	onnor ninets and any	Yes 🗌 No 🗌 NA 🔀		
Hi-Volume PM-10 or TSP inlet = 2 m or greater? Are collocated PM2.5 Monitors (Two FRMs, FRM & BAM, FRM *Yes X (answer *'d questions)					
& TEOM, BAM & TEOM) Located at Site? No \square NA \square					
* Entire inlet opening of collocated PM 2.5 samplers (X) within 2 to Yes X No					
4 m of each other? (1) while 2 is a sample is (1) while 2 is (1) if (1) if (1) is (1) if (1) is (1) if (1) if (1) if (1) is (1) if (1) is (1) if (1) i					
*Are collocated PM2.5 sampler inlets within 1 m vertically of each Yes 🛛 No 🗋					
other? Give actual (meters): 0.25					
Is an URG 3000 monitor collocated with a SASS monitor at the site? *Yes (answer *'d questions) No 🕅 NA					
* Entire inlet opening of	collocated speciation samplers inl	ets (X) within 2 to 4 m of	of each other? Yes 🗌 No 🗌		
Give actual (meters)					
-	tion sampler inlets within 1 m	vertically of each othe	r? Yes 🗌 No 🗌		
Give actual (meters)					
	Is a low-volume PM10 monitor collocated with a PM2.5 monitor *Yes (answer *'d questions) at the site to measure PM10-2.5? No 🕅 NA				
	of collocated PM10 and PM2.5	samplers for PM10-2.5	(V)		
within 2 to 4 m of each		·····I ····· ··· · ····· · ····	$Yes \square No \square$		
	and PM2.5 sampler inlets with	in 1 m vertically of ea	ch Yes 🗌 No 🗌		
other?	•	2			
Is probe > 20 m from the second se	he nearest tree drip line? Yes	*No 🗌 (answe	r *'d questions)		
*Is probe > 10 m from	the nearest tree drip line? Ye	es 🗌 *No 🗌			
*Distance from probe t	•	om probe to tree	*Height of tree (m)		
Are there any obstacles		*'d questions) No 🛛			
*Identify obstacle	Distance from probe inlet (m)	Direction from prot	be inlet to obstacle		
*Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes \square No \square					

RECOMMENDATIONS:
1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)
*2) Change monitoring objective? Yes 🗌 (enter new objective:) No 🗌
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌
*4) Relocate site? Yes No
Comments:
Data of Lost Site Distances December 4, 2015 New Distance Submitted? Vec

Date of Last She Fictures. December 4, 2015 New Fictures Submitted? Tes	
Reviewer <u>Jennifer McHone Sides</u>	Date: <u>12/16/16</u>
Ambient Monitoring Coordinator Mitchell Revels Da	ate: January 12, 2017

Instructions (continued):

Trees: The probe or inlet must be at least 10 meters or further from the drip line of trees. A distance of at least 20 meters between the probe and any tree or trees is preferred.

Obstacles: An obstacle is anything that restricts air flow. A tree can be an obstacle because it has branches and leaves that restrict the flow of air but a pole is not considered to be an obstacle. To avoid interference from obstacles, the probe or inlet must have unrestricted airflow and be located away from obstacles. The distance from the obstacle to the probe or inlet must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path.

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

2016 William Owen Site Review

4

Appendix E-2. Scale of Representativeness

Each station in the monitoring network must be described in terms of the physical dimensions of the air parcel nearest the monitoring station throughout which actual pollutant concentrations are reasonably similar. Area dimensions or scales of representativeness used in the network description are:

- a) Microscale defines the concentration in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- b) Middle scale defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometers.
- c) Neighborhood scale defines concentrations within an extended area of a city that has relatively uniform land use with dimensions ranging from about 0.5 to 4.0 kilometers.
- d) Urban scale defines an overall citywide condition with dimensions on the order of 4 to 50 kilometers.
- e) Regional Scale defines air quality levels over areas having dimensions of 50 to hundreds of kilometers.

Closely associated with the area around the monitoring station where pollutant concentrations are reasonably similar are the basic monitoring exposures of the station.

There are six basic exposures:

- a) Sites located to determine the highest concentrations expected to occur in the area covered by the network.
- b) Sites located to determine representative concentrations in areas of high population density.
- c) Sites located to determine the impact on ambient pollution levels of significant sources or source categories.
- d) Sites located to determine general background concentration levels.
- e) Sites located to determine the extent of regional pollutant transport among populated areas.
- f) Sites located to measure air pollution impacts on visibility, vegetation damage or other welfare-based impacts and in support of secondary standards.

The design intent in siting stations is to correctly match the area dimensions represented by the sample of monitored air with the area dimensions most appropriate for the monitoring objective of the station. The following relationship of the six basic objectives and the scales of representativeness are appropriate when siting monitoring stations:

1. Highest concentration	Micro, middle, neighborhood, sometimes urban
	or regional for secondarily formed pollutants
2. Population oriented	Neighborhood, urban
3. Source impact	Micro, middle, neighborhood
4. General/background & regional transport	Urban, regional
5. Welfare-related impacts	Urban, regional

Table E5. Site Type Appropriate Siting Scales