

2017-2018 Annual Monitoring Network Plan for the North Carolina Division of Air Quality

Volume 2

Site Descriptions by Metropolitan Statistical Area

F. The Washington Monitoring Region

June 30, 2017

State of North Carolina | Department of Environmental Quality | Division of Air Quality 1641 Mail Service Center | 217 W. Jones Street, Suite 4000 | Raleigh, NC 27699-1641 919 707 8400 T

Table of Contents

List of Figures
List of TablesF3
F. The Washington Monitoring RegionF4
(1) The Greenville MSAF4
(2) The Goldsboro MSAF7
(3) The New Bern MSAF8
(4) The Non-MSA Portion of the Washington Monitoring RegionF9
(5) The Virginia Beach-Norfolk-Newport News MSAF15
Appendix F.1 Annual Network Site Review Forms for 2015F16
Appendix F-2. Scale of Representativeness
Appendix F-3. Region 4 Requested Siting Information for the Pitt County Agricultural Center Site Relocation
Appendix F-4. PCS Phosphate, Inc. – Aurora Siting Analysis and Additional Site Information
Siting Analysis for the Bayview Ferry Site (PCS Phosphate Aurora)F32
Region 4 Requested Information for Sites (PCS Phosphate Aurora)F56

List of Figures

Figure F1. The Washington monitoring region	F4
Figure F2. Locations of monitors in the Greenville MSA	F4
Figure F3. Aerial view of the Pitt Co Ag Center site	F4
Figure F4. The Pitt Co Ag Center ozone and fine particle monitoring site	F4
Figure F5. Pitt Co Ag Center site looking north	F6
Figure F6. Pitt Co Ag Center site looking west	F6
Figure F7. Pitt Co Ag Center site looking east	F6
Figure F8. Pitt Co Ag Center site looking south	F6
Figure F9. Ozone monitors surrounding the Goldsboro MSA and probability of exceeding the	2015 ozone
standard	F7
Figure F10. Map of ozone exceedance probability for the New Bern MSA	F9
Figure F11. Location of the Jamesville monitoring site	F9
Figure F12. Jamesville ozone, particle and sulfur dioxide monitoring site	F10
Figure F13. Looking north from the Jamesville site	F10
Figure F14. Looking northwest from the Jamesville site	F10
Figure F17. Looking northeast from the Jamesville site	F10
Figure F18. Looking east from the Jamesville site	F10
Figure F15. Looking west from the Jamesville site	F11
Figure F16. Looking southwest from the Jamesville site	F11

Figure F19. Looking southeast from the Jamesville site	F11
Figure F20. Looking south from the Jamesville site	F11
Figure F21. Location of the Bayview Ferry site (B) relative to the Aurora site (A)	F12
Figure F22. Bayview Ferry sulfur dioxide monitoring site	F12
Figure F23. Looking north from the Bayview Ferry site	F12
Figure F25. Looking east from the Bayview Ferry site	F12
Figure F24. Looking west from the Bayview Ferry site	F13
Figure F26. Looking south from the Bayview Ferry site	F13
Figure F27. New and old LCC monitoring site locations	F13
Figure F28. Lenoir Community College ozone monitoring site	F13
Figure F29. Looking north from the LCC site location	F14
Figure F30. Looking west from the LCC site location	F14
Figure F31. Looking east from the LCC site location	F14
Figure F32. Looking south from the LCC site location	F14
Figure 33. 2012 Traffic count map near the Pitt County Agriculture Center (from DOT)	
Figure 34. Location of the proposed monitoring station relative to the population of Greenville	F27
Figure 35. Windrose for Greenville using all data (from NC State Climate Office)	F27
Figure 36. Greenville springtime wind rose (from NC State Climate Office)	F28
Figure 37. Greenville summertime wind rose (from NC State Climate Office)	F28
Figure 38. Greenville fall time wind rose (from NC State Climate Office)	F28
Figure 39. Greenville wintertime wind rose (from NC State Climate Office)	F28
Figure 40. Figure E-1 from Appendix E used to determine spatial scale of representativeness for pa	
monitors	F29
Figure 41. Location of monitoring station relative to permitted facilities	F31

List of Tables

Table F1. Site Table for Pitt County Agriculture Center	F5
Table F2. Site Type Appropriate Siting Scales	F25
Table 61. Table E-1 of Appendix E To Part 58-Minimum Separation Distance Between Roady	ways And
Probes Or Monitoring Paths For Monitoring Neighborhood And Urban Scale Ozone (O3) And C	xides Of
Nitrogen (No, No ₂ , No _x , No _y)	F29
Table 62. Other considerations in selection of the Pitt County Agriculture Center Site	F30

F. The Washington Monitoring Region

The Washington monitoring region, shown in Figure F1, consists of five sections: (1) the Greenville metropolitan statistical area, MSA, (Pitt County), (2) the Goldsboro MSA (Wayne County), (3) the New Bern MSA (Craven, Jones and Pamlico counties) (4) the non-MSA portion of the Washington monitoring region (Beaufort, Bertie, Camden, Chowan, Dare, Greene, Hertford, Hyde, Lenoir, Martin, Pasquotank, Perquimans, Tyrrell and Washington counties) and (5) the Virginia Beach-Norfolk-Newport News MSA (Currituck and Gates counties).

(1) The Greenville MSA

The Greenville MSA consists of Pitt County. The principal city is Greenville. The North Carolina Division of Air Quality, DAQ, operates one monitoring site in this MSA – a collocated ozone and fine particle monitoring site at the Pitt County Agricultural Center in Greenville. Table F1 summarizes site monitoring information. Figure F2 shows the site location. Both monitors began operating April 1, 2008. Figure F3 through Figure F8 provide views of the site and views looking north, east, south and west from the site.

Figure F3. Aerial view of the Pitt Co Ag Center site

Figure F1. The Washington monitoring region The red dots show the approximate locations of most of the monitoring sites in this region.

Figure F2. Locations of monitors in the Greenville MSA

A is the Pitt County Agriculture Center ozone and fine particle monitoring site. The circle represents the neighborhood scale of 4 Km.

Figure F4. The Pitt Co Ag Center ozone and fine particle monitoring site

Table F1. Site Ta	Die I	or Pi	tt County	Ag	riculture C	enter						
Site Name:					ounty Agricul	ture Cent	ter					
AQS Site Identificati	on Ni	umbei	r 37	37-147-0006								
Location:			40	403 Government Circle								
			Gi	reen	ville, North C	arolina						
CBSA:	Gre	enville	e, NC			CBSA #: 24				247	'80	
Latitude	35.6	638610	C				Da	tum:			WC	3 S84
Longitude	-77.	35805	50									
Elevation	7 m	eters										
Parameter Name	Met	thod				Methoo Referen		D		nple atior		Sampling Schedule
	Inst	rumen	tal With Ultr	a Vi	olet							
Ozone	Pho	tometi	ry (047)			EQOA-	-0880)-047	1-H	our		Mar. 1 to Oct. 31
PM 2.5 local	R &	P Mc	odel 2025 PM	12.5	Sequential							Every Third Day,
conditions	w/W	VINS -	- Gravimetric	c An	alysis (118)	RFPS-0)498-	-118	24-1	Hour		Year Round
PM 2.5 local			BAM-1022 N	Aass	Monitor w/							
conditions	VSC	CC				EQPM	1013	3-209	1-H	our		Year Round
Date Monitor Establi	ished	: Oz	zone									April 1, 2008
Date Monitor Establi	ished	: PN	A 2.5 local co	ondit	ions							April 1, 2008
Date Monitor Establi	ished	PN	A 2.5 local cC	Cond	itions, contin	uous						April 8, 2016
Nearest Road:		New	Hope/Detenti	ion /	Detention Dr	rive						
Traffic Count:		None	available – e	estim	ated < 3100		Yea	ar of C	ount:		201	12
							Mo	nitor				
Parameter Name		Dista	nce to Road		Direction to	o Road	Ty	ре		Stat	eme	nt of Purpose
										Real	-tim	e AQI reporting.
Ozone			200 meters		West		SL	AMS		Con	plia	nce w/NAAQS.
PM 2.5 local condition	ıs		200 meters		West				Con	plia	nce w/NAAQS.	
PM 2.5 local condition	ıs		200 meters		Wes				Real-time AQI reporti		e AQI reporting	
D (N			itoring		C I		Co	table formation of the second se	on			l to Move or
Parameter Name		Obje			Scale	1	ι0 Ι	NAAQ	>	Cha	-	
Ozone			lation Exposu		Neighborho		Yes			None		
PM 2.5 local condition			lation Exposu		Neighborho		Yes			May go to 1-in-6 day		to 1-1n-6 day
PM 2.5 local condition	IS	-	lation Exposu		Neighborho		3.5	No		Non	e	
			Meets Part 5	8	Meets Part			ets Par				Meets Part 58
Domony of or: Norma			Appendix A	1.0	Appendix (pendix				Appendix E
Parameter Name			Requirement	เร	Requireme		ĸe	quirem				Requirements
Ozone			Yes		Yes				Yes			Yes
PM 2.5 local condition			Yes		Yes			No req				Yes
PM 2.5 local condition	18		Yes		Yes			No req				Yes
Parameter Name		Prob	e Height (m))	Distance to	A A	ţ	Dista			es	Obstacles
Ozone			4.5			neter			20 me			None
PM 2.5 local condition			2.4			neters			20 me			None
PM 2.5 local condition	is		2.3		2 meters		>20 meters				None	

Table F1. Site Table for Pitt County Agriculture Center

Figure F5. Pitt Co Ag Center site looking north

Figure F6. Pitt Co Ag Center site looking west

Figure F7. Pitt Co Ag Center site looking east

Figure F8. Pitt Co Ag Center site looking south

In 2016 the site was relocated on the property due to the construction of a building near the original location. For details on the relocation see Appendix F-3. Region 4 Requested Siting Information for the Pitt County Agricultural Center Site Relocation. In 2016 a continuous fine particle monitor was added to the site.

The **lead monitoring network requirements** as modified in 2016¹ do not result in any lead monitors in the Greenville MSA. The Greenville MSA does not have any permitted facilities located within its bounds that emit 0.5 ton or more per year of lead.² Changes to the **ozone monitoring requirements** in 2015 did not result in more monitoring in the Greenville MSA. The MSA currently has the minimum number of monitors required by 40 CFR 58 Appendix D for population exposure monitoring in urban areas. Ozone monitoring began a month earlier on March 1 instead of April 1 starting in 2017. The 2010 **nitrogen dioxide monitoring requirements**³ did not add nitrogen dioxide monitors in the Greenville MSA because the

¹ Revisions to Ambient Monitoring Quality Assurance and Other Requirements, Federal Register, Vol. 81, No. 59, Monday, March 28, 2016, p. 17248, available on the worldwide web at <u>https://www.gpo.gov/fdsys/pkg/FR-2016-03-28/pdf/2016-06226.pdf</u>.

² United States Environmental Protection Agency. (2017). *TRI Explorer* (2015 Dataset (released March 2017)) [Internet database]. Retrieved from <u>https://www.epa.gov/triexplorer</u>, (May 04, 2017).

³ Primary National Ambient Air Quality Standards for Nitrogen Dioxide, Federal Register, Vol. 75, No. 26, Feb. 9, 2010, available on the worldwide web at <u>https://www3.epa.gov/ttn/naaqs/standards/nox/fr/20100209.pdf</u>.

population is less than 500,000. The 2010 **sulfur dioxide monitoring requirements** also did not result in more monitoring in this area because there are no large sources of sulfur dioxide in the MSA. The changes to the **carbon monoxide monitoring requirements** did not result in additional monitoring in this MSA because the population is less than one million.

(2) The Goldsboro MSA

The Goldsboro MSA consists of Wayne County. The major metropolitan area is the City of Goldsboro. The DAQ does not operate any monitoring sites in the Goldsboro MSA. The fine-particle monitoring site located at Dillard Middle School was shut down on Dec. 31, 2015.

Currently, the DAQ does not monitor for ozone in Goldsboro because there are ozone monitors in the neighboring counties of Johnston and Lenoir. Figure F9 shows the locations of these monitors as well as the Leggett and Pitt County monitors in relation to the Goldsboro MSA. Modeling also indicates that the probability of there being an exceedance of the 2015 ozone standard in the Goldsboro area is only moderate, around 50 percent. The surrounding ozone monitors should adequately characterize the ozone concentrations in the Goldsboro area.

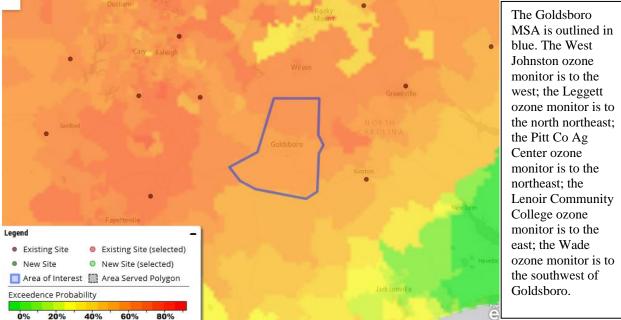


Figure F9. Ozone monitors surrounding the Goldsboro MSA and probability of exceeding the 2015 ozone standard

The **lead monitoring network** requirements, as modified in 2016,⁴ did not add any lead monitors in the Goldsboro MSA. The Goldsboro MSA does not have any permitted facilities located within its bounds that emit 0.5 tons or more per year of lead.⁵

⁴ Revisions to Ambient Monitoring Quality Assurance and Other Requirements, Federal Register, Vol. 81, No. 59, Monday, March 28, 2016, p. 17248, available on the worldwide web at <u>https://www.gpo.gov/fdsys/pkg/FR-2016-03-28/pdf/2016-06226.pdf</u>.

The 2010 **nitrogen dioxide monitoring requirements**,⁶ as modified in 2016, also did not increase the number of monitors in the Goldsboro MSA because its population is less than 1,000,000. The 2010 **sulfur dioxide monitoring requirements** did not result in additional sulfur dioxide monitors because there are not enough emissions or people in the MSA to require PWEI monitoring. The 2011 changes to the **carbon monoxide monitoring requirements** also did not result in the addition of any carbon monoxide monitors because the population is less than one million.

(3) The New Bern MSA

The New Bern MSA is made up of three counties – Craven, Jones and Pamlico counties. The DAQ currently does not operate any monitoring stations in the New Bern MSA. The current monitoring regulations do not require the DAQ to operate any monitors in this area.

The **lead monitoring** network requirements, as modified in 2016,⁷ do not require lead monitors in the New Bern MSA. The MSA does not have any permitted facilities located within its bounds that emit 0.5 tons or more of lead per year.⁸

The 2015 **ozone monitoring requirements** did not require adding an ozone monitor to the New Bern MSA. As shown in Figure F10, modeling indicates that the area has a low probability of exceeding the 2015 ozone standard. The DAQ operates an ozone monitor just to the west of the MSA at Lenoir Community College, which has a higher probability of exceeding the standard than anywhere in the MSA. The EPA operates a clean air status and trends network, CASTNET, monitor just to the east of the MSA. These two monitors should adequately characterize ozone concentrations in this area.

This area also did not have to add any monitors to comply with the 2010 **nitrogen dioxide monitoring** requirements because it does not have any roadways that exceed the population threshold.⁹ It also did not need to add monitors for the 2010 **sulfur dioxide monitoring requirements** because there are no facilities in the MSA emitting large enough quantities of sulfur dioxide to trigger source-oriented monitoring. This area will also not need to add monitors to comply with the **changes to the carbon monoxide monitoring requirements** because the population is less than one million.

⁵ United States Environmental Protection Agency. (2017). *TRI Explorer* (2015 Dataset (released March 2017)) [Internet database]. Retrieved from <u>https://www.epa.gov/triexplorer</u>, (May 04, 2017).

⁶ Primary National Ambient Air Quality Standards for Nitrogen Dioxide, Federal Register, Vol. 75, No. 26, Feb. 9, 2010, available on the worldwide web at <u>https://www3.epa.gov/ttn/naaqs/standards/nox/fr/20100209.pdf</u>.

⁷ Revisions to Ambient Monitoring Quality Assurance and Other Requirements, Federal Register, Vol. 81, No. 59, Monday, March 28, 2016, p. 17248, available on the worldwide web at <u>https://www.gpo.gov/fdsys/pkg/FR-2016-03-28/pdf/2016-06226.pdf</u>.

⁸ United States Environmental Protection Agency. (2017). *TRI Explorer* (2015 Dataset (released March 2017)) [Internet database]. Retrieved from <u>https://www.epa.gov/triexplorer</u>, (May 04, 2017).

⁹ Primary National Ambient Air Quality Standards for Nitrogen Dioxide, Federal Register, Vol. 75, No. 26, Feb. 9, 2010, available on the worldwide web at <u>https://www3.epa.gov/ttn/naaqs/standards/nox/fr/20100209.pdf</u>.

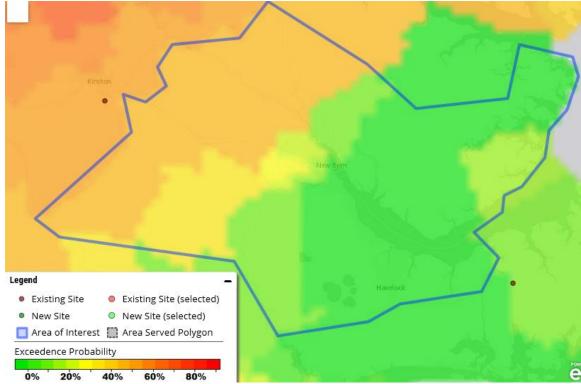


Figure F10. Map of ozone exceedance probability for the New Bern MSA

(4) The Non-MSA Portion of the Washington Monitoring Region

The non-MSA Portion of the Washington monitoring region consists of 14 counties: Beaufort, Bertie, Camden, Chowan, Dare, Greene, Hertford, Hyde, Lenoir, Martin, Pasquotank, Perquimans, Tyrrell and Washington. No MSAs are located here. The Kill Devil Hills micropolitan statistical area, MiSA, is in Dare County and the Washington MiSA is in Beaufort County. Camden, Pasquotank and Perquimans counties are included in the Elizabeth City MiSA. The Kinston MiSA is in Lenoir County. The DAQ operates three monitoring sites in this area. These sites are located at Jamesville in Martin County, at Lenoir Community College in Lenoir County and at the Bayview Ferry in Beaufort County. Figure F11 shows the location of the Jamesville monitoring site.

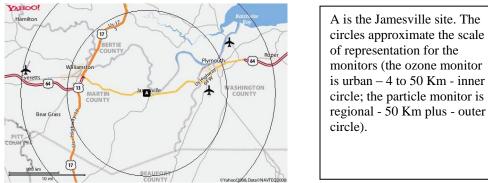


Figure F11. Location of the Jamesville monitoring site

Figure F12. Jamesville ozone, particle and sulfur dioxide monitoring site

At the **Jamesville** site, 37-117-0001, the DAQ operates a seasonal ozone monitor, a special purpose sulfur dioxide monitor that operates for 12 months every three years and a special purpose PM₁₀ monitor that operates for 12 months every three years. Figure F12 through Figure F20 provide a view of the Jamesville site as well as views looking north, northeast, east, southeast, south, southwest, west and northwest from the site. The fine-particle monitors at this site were shut down on Dec. 31, 2015.

Figure F13. Looking north from the Jamesville site

Figure F14. Looking northwest from the Jamesville site

Figure F15. Looking northeast from the Jamesville site

Figure F16. Looking east from the Jamesville site

Figure F17. Looking west from the Jamesville site

Figure F18. Looking southwest from the Jamesville site

Figure F19. Looking southeast from the Jamesville site

Figure F20. Looking south from the Jamesville site

At the **Bayview** Ferry site in Beaufort County the DAQ operates a sulfur dioxide monitor. This site began operating in January 2011 to replace the Aurora sulfur dioxide monitoring site. Figure F21 shows the locations of the two sites. In 2010 the PCS Phosphate manufacturing facility started logging near the Aurora sulfur dioxide monitoring site, located on the fence-line of their manufacturing facility. Although PCS rerouted the logging trucks so they no longer went by the monitoring station and indicated the area near the monitoring site was not scheduled to be mined until sometime around 2015, the DAQ relocate the monitor across the Pamlico River to the Bayview Ferry station because more people live there and the new site is downwind of the PCS facility. Figure F22 to Figure F26 show the site and views looking north, east, south and west. This site is source-oriented, located downwind of the PCS Phosphate facility in Beaufort County.

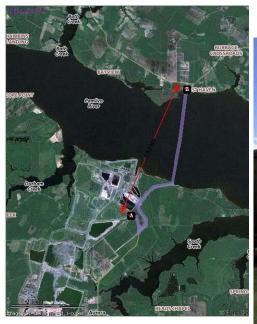


Figure F22. Bayview Ferry sulfur dioxide monitoring site

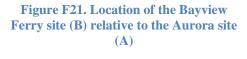


Figure F23. Looking north from the Bayview Ferry site

Figure F24. Looking east from the Bayview Ferry site

Figure F25. Looking west from the Bayview Ferry site

Figure F26. Looking south from the Bayview Ferry site

At the **Lenoir Community College** site, 37-107-0004, the DAQ operates a seasonal ozone monitor and a rotating special purpose PM_{10} monitor that operates for 12 months every third year. In 2009, a screen was installed between the monitoring site and nearby baseball field to block glare from an observatory from interfering with the people playing baseball. In 2010, a large scoreboard was also installed. Thus, in 2011, the DAQ moved the site to another location on the campus. Figure F27 shows the locations of the old monitoring site and the new monitoring site to the west. The monitoring site and views looking north, east, south and west are provided in Figure F28 through Figure F32. The collocated meteorological tower measuring wind speed, wind direction, two-meter and 10-meter ambient temperature, relative humidity, solar radiation and rain fall was shut down on Nov. 3, 2014. The fine particle monitor at this site was shut down at the end of 2013.

Figure F27. New and old LCC monitoring site locations

Figure F28. Lenoir Community College ozone monitoring site

Figure F29. Looking north from the LCC site location

Figure F30. Looking west from the LCC site location

Figure F31. Looking east from the LCC site location

Figure F32. Looking south from the LCC site location

The **lead monitoring** network requirements, as modified in 2016,¹⁰ do not require lead monitors in this area of the Washington monitoring region. The non-MSA portion of the Washington monitoring region does not have any permitted facilities located within its bounds that emit 0.5 tons or more of lead per year.¹¹

2015 **ozone monitoring requirements** require monitoring to start one month earlier on March 1 instead of April 1 starting in 2017. The 2010 **nitrogen dioxide monitoring** requirements¹² did not result in additional monitoring in this area because there is not an MSA with a population of 1,000,000 or more and there are not any roadways that exceed the traffic threshold. The DAQ does not expect the 2010 **sulfur dioxide monitoring** requirements to increase the number of monitors in this area because the the existing source-oriented monitor at Bayview is adequate

¹⁰ Revisions to Ambient Monitoring Quality Assurance and Other Requirements, Federal Register, Vol. 81, No. 59, Monday, March 28, 2016, p. 17248, available on the worldwide web at <u>https://www.gpo.gov/fdsys/pkg/FR-2016-03-28/pdf/2016-06226.pdf</u>.

¹¹ United States Environmental Protection Agency. (2017). *TRI Explorer* (2015 Dataset (released March 2017)) [Internet database]. Retrieved from <u>https://www.epa.gov/triexplorer</u>, (May 04, 2017).

¹² Primary National Ambient Air Quality Standards for Nitrogen Dioxide, Federal Register, Vol. 75, No. 26, Feb. 9, 2010, available on the worldwide web at <u>https://www3.epa.gov/ttn/naaqs/standards/nox/fr/20100209.pdf</u>.

and appropriately sited to serve as the required source-oriented monitor for the PCS Phosphate facility. The 2011 **changes to the carbon monoxide monitoring requirements** will not add additional monitors to the area because the population is under one million.

(5) The Virginia Beach-Norfolk-Newport News MSA

The North Carolina portion of the Virginia Beach-Norfolk-Newport News MSA is made up of two counties - Currituck and Gates. The DAQ currently does not operate any monitoring sites in these two counties. The DAQ has an agreement with Virginia that Virginia will fulfill all North Carolina's monitoring requirements for the Currituck and Gates County portion of the Virginia Beach-Norfolk-Newport News MSA.¹³

The **lead monitoring** network requirements, as modified in 2016,¹⁴ do not require any lead monitoring in these counties. These counties do not have any permitted facilities located within their bounds that emit 0.5 tons or more of lead per year.¹⁵

The 2015 **ozone monitoring requirements** did not add monitors to these counties. They are part of an MSA that already meets the population exposure monitoring requirements for urban areas.

This area is not required to add monitors to comply with the 2010 **nitrogen dioxide monitoring** requirements¹⁶ because it does not have any roadways that exceed the traffic threshold. It also is not required to monitor by the 2010 **sulfur dioxide monitoring requirements** because there are no facilities in these counties emitting large enough quantities of sulfur dioxide to trigger source-oriented monitoring. This area will also not need to monitor to meet the **carbon monoxide monitoring requirements** because those requirements will be met by Virginia.

¹³ North Carolina - Virginia Monitoring Agreement, 05/09/2016, available at <u>http://xapps.ncdenr.org/aq/documents/DocsSearch.do?dispatch=download&documentId=7862</u>.

¹⁴ Revisions to Ambient Monitoring Quality Assurance and Other Requirements, Federal Register, Vol. 81, No. 59, Monday, March 28, 2016, p. 17248, available on the worldwide web at <u>https://www.gpo.gov/fdsys/pkg/FR-2016-03-28/pdf/2016-06226.pdf</u>.

¹⁵ United States Environmental Protection Agency. (2017). *TRI Explorer* (2015 Dataset (released March 2017)) [Internet database]. Retrieved from <u>https://www.epa.gov/triexplorer</u>, (May 04, 2017).

¹⁶ Primary National Ambient Air Quality Standards for Nitrogen Dioxide, Federal Register, Vol. 75, No. 26, Feb. 9, 2010, available on the worldwide web at <u>https://www3.epa.gov/ttn/naaqs/standards/nox/fr/20100209.pdf</u>.

Appendix F.1 Annual Network Site Review Forms for 2015

Pitt County Agricultural Center in Greenville

Jamesville

Bayview Ferry

Lenoir Community College in Kinston

Region_WARO Site Name Pitt Ag			AQS Site # 37- <u>147</u> - <u>0006</u>					
Street Address			<u>Circle</u>		City <u>Greenville</u>			
Urban Area 🤇	GREEN			Core-based S	tatistical Area G	reenville, NO	C	
		Enter Ex	kact					
Longitude	<u>-77.360</u>	<u>126</u>	Latitude	35.641276		thod of Me		
In Decimal Degree			In Decimal D	-	Other (explain)		on: <u>Google Earth</u>	
Elevation Above						<u>7.9</u>		
Y30		et probe <u>N</u>	<u>vew Hope Rd</u> .	ADT <u>0</u> Year (Choose an item <u>0</u>			
Comments:	Distance of site to nearest major road (m) <u>690.00</u> Direction from site to nearest major road <u>WNW</u>							
					ite to nearest major roa	ad <u>WNW</u>		
Name of nearest m	najor road	<u>HWY 3</u>	<u>3</u> ADT <u>1528</u>	Year <u>2015</u>				
Comments:	-3							
Site located near e	lectrical s	substation	/high voltage p	oower lines?			Yes 🛛 No 🗌	
Distance of site t						789Direction	n to RR <u>WNW</u> NA	
OPTIONAL						(m)	_ Direction	
Distance between					ection from site to wat s, loose bulk storage		NA tracks	
construction acti						, stacks, ven	is, ranfoad fracks,	
					0013.			
Construction plane	ed to begi	n in 2017,	350 meters S	<u>SW.</u>				
ANSWER ALL	APPLIC	CABLE Q	UESTIONS:					
Parameters	2	M	amitaning Ohi	io otivio	C 1-		Man Han Tama	
1 al ameters	`	IVI	onitoring Obj	ecuve	Scale		Monitor Type	
□ NA	,	1 <u></u> 1)	2010-011 N	a .				
□ NA □ SO ₂ (NAAQ	QS)	Gener	ral/Backgroun	d	Micro	_	AMS	
□ NA □ SO2 (NAAQ □ SO2 (trace-le	(S) evel)	Gener Highe	ral/Backgroundest Concentration	d ion		SLA SPN	AMS	
$\square NA \square SO_2 (NAAQ \square SO_2 (trace-lo \square NO_2 (NAAQ \square NO_2 (NAAQ \square NAAQ \square NAAQ NAA NAAA NAA NAA NAA NAA NAA NAA NAA NAA NAAA NAAAA NAAAA NAAA NAAA NAAA NAAA NAAAA NAAAA NAA$	(S) evel)	Gener Highe	ral/Backgroun est Concentrati O3 Concentrat	d ion ion	Micro	SPN	AMS	
□ NA □ SO2 (NAAQ □ SO2 (trace-le	(S) evel)	Gener Highe Max Popul	ral/Backgroun est Concentrati O3 Concentrat lation Exposur	d ion ion e	Micro Middle Neighborhood	SPN	AMS	
□ NA □ SO ₂ (NAAQ □ SO ₂ (trace-la □ NO ₂ (NAAQ □ HSNO _y □ O ₃ □ NH ₃	QS) evel) QS)	Gener Highe Max Popul Sourc	ral/Backgroun est Concentrati O3 Concentrat lation Exposur ce Oriented	d ion ion e	☐Micro ☐Middle ☑Neighborhood ☐Urban		AMS A or Network Affiliation ORE	
□ NA □ SO ₂ (NAAQ □ SO ₂ (trace-la □ NO ₂ (NAAQ □ HSNO _y ○ O ₃ □ NH ₃ □ Hydrocarbo	QS) evel) QS)	Gener Highe Max Popul Source	ral/Backgroum est Concentrati O3 Concentrat lation Exposur ce Oriented sport	d ion ion e	Micro Middle Neighborhood		AMS M or Network Affiliation	
□ NA □ SO ₂ (NAAQ □ SO ₂ (trace-la □ NO ₂ (NAAQ □ HSNO _y ○ O ₃ □ NH ₃ □ Hydrocarbo □ Air Toxics	QS) evel) QS) n	Gener Highe Max Popul Source Trans	ral/Backgroun est Concentrati O3 Concentrat lation Exposur ce Oriented port nd Backgroun	d ion e d	☐Micro ☐Middle ☑Neighborhood ☐Urban		AMS A or Network Affiliation ORE	
 NA SO₂ (NAAQ SO₂ (trace-le NO₂ (NAAQ HSNO_y O₃ NH₃ Hydrocarbo Air Toxics CO (trace-le 	2S) evel) 2S) n evel)	Gener Highe Max Popul Sourc Trans Upwi Welfa	ral/Backgroundest Concentration O3 Concentration Exposur the Oriented the Oriented the Dackgrounder Related Im	d ion e d pacts	Micro Middle Neighborhood Urban Regional	SPN NOC NCC	AMS <i>M</i> or Network Affiliation ORE Official PAMS	
NA SO ₂ (NAAQ SO ₂ (trace-le NO ₂ (NAAC HSNO _y O ₃ NH ₃ Hydrocarbo Air Toxics CO (trace-le Probe inlet height	2S) evel) 2S) n evel) (from gro	Gener Highe Max Popul Sourc Trans Upwi Welfa	ral/Backgroun est Concentrati O3 Concentrati lation Exposur ese Oriented sport nd Backgroun are Related Im 5 m? Yes 🔀	d ion e d pacts	Micro Middle Neighborhood Urban Regional tive actual measured he	SPN Monito NCC Unc eight from gro	AMS <i>A</i> or Network Affiliation ORE Official PAMS pund (meters) <u>4.50</u>	
 NA SO₂ (NAAQ SO₂ (trace-le) NO₂ (NAAQ HSNO_y O₃ NH₃ Hydrocarbo Air Toxics CO (trace-le) Probe inlet height Distance of outer 	(S) evel) (from gro edge of p	Gener Highe Max Popul Sourc Trans Upwi Welfa Sound) 2-15	ral/Backgroun est Concentrati O3 Concentrati lation Exposur ese Oriented sport nd Backgroun are Related Im 5 m? Yes X from horizonta	d ion e d pacts No C al (wall) and/or	Micro Middle Neighborhood Urban Regional tive actual measured he	SPN Monito NCC Unc eight from gro	AMS <i>M</i> or Network Affiliation ORE Official PAMS	
 NA SO₂ (NAAQ SO₂ (trace-le NO₂ (NAAQ NO₂ (NAAQ NO₂ (NAAQ NO₂ (NAAQ HSNO_y O₃ NH₃ Hydrocarbo Air Toxics CO (trace-le Probe inlet height Distance of outer Actual measured of Distance of outer 	2S) evel) 2S) n evel) (from gro edge of p distance fi edge of p	Gener Highe Max (Popul Sourc Trans Upwi Welfa Sound) 2-1: robe inlet rom outer	ral/Backgroun est Concentrati O3 Concentrati lation Exposur se Oriented nd Backgroun are Related Im 5 m? Yes from horizonta edge of probe from other mo	d ion e d pacts No C al (wall) and/or to supporting s pnitoring probe	Micro Middle Neighborhood Urban Regional vertical (roof) support tructure (meters) <u>1.5</u> inlets > 1 m?	eight from groc Yes	AMS M or Network Affiliation ORE Official PAMS pund (meters) <u>4.50</u> > 1 m? Yes 🛛 No 🗌	
 NA SO₂ (NAAQ SO₂ (trace-le NO₂ (NAAQ NO₂ (NAAQ NO₂ (NAAQ NO₂ (NAAQ HSNO_y O₃ NH₃ Hydrocarbo Air Toxics CO (trace-le Probe inlet height Distance of outer Actual measured of Distance of outer 	2S) evel) 2S) n evel) (from gro edge of p distance fi edge of p	Gener Highe Max (Popul Sourc Trans Upwi Welfa Sound) 2-1: robe inlet rom outer	ral/Backgroun est Concentrati O3 Concentrati lation Exposur se Oriented nd Backgroun are Related Im 5 m? Yes from horizonta edge of probe from other mo	d ion e d pacts No C al (wall) and/or to supporting s pnitoring probe	Micro Middle Neighborhood Urban Regional vertical (roof) support tructure (meters) <u>1.5</u>	eight from groc Yes	AMS M or Network Affiliation ORE Official PAMS pund (meters) <u>4.50</u> > 1 m? Yes 🛛 No 🗌	
 NA SO₂ (NAAQ SO₂ (trace-le NO₂ (NAAQ NO₂ (NAAQ NO₂ (NAAQ NO₂ (NAAQ HSNO_y O₃ NH₃ Hydrocarbo Air Toxics CO (trace-le Probe inlet height Distance of outer Actual measured of Distance of outer 	(S) evel) (S) evel) (from gro edge of p distance f edge of p	Gener Highe Max Popul Sourc Trans Upwi Welfa bund) 2-1: robe inlet robe inlet robe inlet	ral/Backgroundest Concentration O3 Concentration Concentration Export and Backgrounder are Related Imp from horizontated of probe from other moder drip line? Yes	d ion e d pacts No C al (wall) and/or to supporting s pnitoring probe	Micro Middle Neighborhood Urban Regional rive actual measured he vertical (roof) support tructure (meters) <u>1.5</u> inlets > 1 m? (answer *'d question	eight from groc Yes	AMS M or Network Affiliation ORE Official PAMS pund (meters) <u>4.50</u> > 1 m? Yes 🛛 No 🗌	
 NA SO₂ (NAAQ SO₂ (trace-le) NO₂ (NAAQ HSNO_y O₃ NH₃ Hydrocarbo Air Toxics CO (trace-le) Probe inlet height Distance of outer Actual measured of Distance of outer Is probe > 10 m *Distance from pr 	(from groups of provide the providet the provide the provide the providet the providet the	Gener Highe Max (Source Trans Upwi Welfa ound) 2-15 robe inlet robe inlet robe inlet robe inlet earest tree hearest tree	ral/Backgroundest Concentration Exposure Concentration Exposure Concentration Exposure Concentration Exposure and Backgrounder Related Im Som? Yes from horizontatedge of probe from other moder from other moder drip line? Yes concentration of the section of the	d ion e d pacts No [] C al (wall) and/or to supporting s probe (es [] *No [Yes] *No [a from probe to	Micro Middle Neighborhood Urban Regional rive actual measured have vertical (roof) support tructure (meters) 1.5 inlets > 1 m? (answer *'d question tree *Height of t	eight from groc Yes	AMS M or Network Affiliation ORE Official PAMS pund (meters) <u>4.50</u> > 1 m? Yes 🛛 No 🗌	
 NA SO₂ (NAAQ SO₂ (trace-le) NO₂ (NAAQ NO₂ (NAAQ HSNO_y O₃ NH₃ Hydrocarbo Air Toxics CO (trace-le) Probe inlet height Distance of outer Actual measured of Distance of outer Is probe > 20 m fr *Is probe > 10 m 	(from groups of provide the providet the provide the provide the providet the providet the	Gener Highe Max (Source Trans Upwi Welfa ound) 2-15 robe inlet robe inlet robe inlet robe inlet earest tree hearest tree	ral/Backgroundest Concentration Exposure Concentration Exposure Concentration Exposure Concentration Exposure and Backgrounder Related Im Som? Yes from horizontatedge of probe from other moder from other moder drip line? Yes concentration of the section of the	d ion e d pacts No [] C al (wall) and/or to supporting s probe (es [] *No [Yes] *No [a from probe to	Micro Middle Neighborhood Urban Regional rive actual measured have vertical (roof) support tructure (meters) 1.5 inlets > 1 m? (answer *'d question tree *Height of t	eight from groc Yes	AMS M or Network Affiliation ORE Official PAMS pund (meters) <u>4.50</u> > 1 m? Yes 🛛 No 🗌	
 NA SO₂ (NAAQ SO₂ (trace-le) NO₂ (NAAQ HSNO_y O₃ NH₃ Hydrocarboo Air Toxics CO (trace-le) Probe inlet height Distance of outer Is probe > 20 m fr *Is probe > 10 m *Distance from pr Are there any obst *Identify obstacle 	(from gro evel) (from gro edge of p distance fi edge of p from the n from the n tacles to a	Gener Highe Max (Popul Sourc Trans Upwi Welfa ound) 2-14 robe inlet robe inlet robe inlet robe inlet earest tree hearest tree hearest tree tree tree hearest tree be (m)	ral/Backgroundest Concentration Exposures Concentration Exposures of Concentration Exposures of Concentration Exposures of Concentrated Immare Related Immonite and Backgrounder Related Immonite from horizontated ge of probe from other moder of the probe in the concent of the probe in the probability of the probe in the probability of the proba	d ion e d pacts No C al (wall) and/or to supporting s mitoring probe (es \vee *No [Yes *No [from probe to rer *'d question: st (m)D	Micro Middle Neighborhood Urban Urban Regional regional regional (answer *'d question] (answer *'d question] tree*Height of t No ⊠ irection from probe inl	eight from gro ing structure > Yes ns)	AMS AMS or Network Affiliation ORE Official PAMS ound (meters) <u>4.50</u> > 1 m? Yes \le No \ No \ NA \	
NA SO2 (NAAQ SO2 (trace-letter) NO2 (NAAQ NO2 (NAAQ HSNOy O3 HYROCATOO Air Toxics CO (trace-letter) Probe inlet height Distance of outer Is probe > 20 m fr *Is probe > 10 m *Distance from pr Are there any obst *Identify obstacle *Is distance from	(from gro evel) (from gro edge of p distance fi edge of p com the no from the no from the no tacles to a in I inlet prob	Gener Highe Max (Popul Sourc Trans Upwi Welfa ound) 2-15 robe inlet robe inlet robe inlet robe inlet robe inlet earest tree hearest tree hearest tree tree tree (m)	ral/Backgroundest Concentration Exposures Concentration Exposures of Concentration of Concentration for the concentration of Concentrati	d ion e d pacts d no content al (wall) and/or to supporting so al (wall) and/or to supporting so mitoring probe (es \vee *No [Yes *No [n from probe to rer *'d question: at (m) D ice the height th	Micro Middle Middle Neighborhood Urban Regional Regional rive actual measured here vertical (roof) support tructure (meters) 1.5 inlets > 1 m? (answer *'d question tree *Height of t s) No ⊠	eight from gro ing structure > Yes ns) ree (m) et to obstacle es above the p	AMS AMS or Network Affiliation ORE Official PAMS ound (meters) <u>4.50</u> > 1 m? Yes \le No \ No \ NA \	

Site Information

SITEREV2016 PG

Parameters	Monitoring Objective	Scale	Site Type
NA	General/Background	Micro	SLAMS
Air flow < 200 L/min ⊠ PM2.5 FRM	Highest Concentration	Middle	SPM
\square PM10 FRM	Population Exposure	Neighborhood	Monitor Network Affiliation
PM10 Cont. (BAM)		4.000 (ATM) (ATM)	
PM10-2.5 FRM	Source Oriented	Urban	NCORE
PM10-2.5 BAM PM10 Lead (PB)	Transport	Regional	SUPPLEMENTAL
\square PM2.5 Cont. (BAM)	Welfare Related Impacts		SPECIATION
PM2.5 Spec. (SASS)			Monitor NAAQS Exclusion
PM2.5 Spec. (URG) PM2.5 Cont. Spec.			NONREGULATORY
	ground) $\square < 2 \text{ m} $ $\boxtimes 2-7 \text{m}$	🗌 7-15 m	> 15 m
	from probe inlet to ground (meters)		
	probe inlet from horizontal (wall) and		
	from outer edge of probe inlet to sup		
Distance (Y) between out volume monitor at the site	er edge of probe inlets of any low vol a = 1 m or greater?	ume monitor and any other	Iow Yes No NA
	er edge of all low volume monitor inl	ets and any Hi-Volume PM	
or TSP inlet = 2 m or grea	ater?		Yes No NA X
	onitors (Two FRMs, FRM & BAM, F.	RM & ∗Yes 🛛 (a	nswer *'d questions) No 🗌 NA 🗌
TEOM, BAM & TEOM) * Entire inlet opening of a	collocated PM 2.5 samplers (X) within	n 2 to 4 m of	
each other?	1 ~ 7	Yes 🛛	No Give actual (meters) 2.09
	mpler inlets within 1 m vertically of		No Give actual (meters) <u>0.06</u>
	collocated with a SASS monitor at the collocated speciation samplers inlets (
Give actual (meters)	conocated speciation samplers milets (A) whilin 2 to 4 in of each	
	on sampler inlets within 1 m vertically	of each other? Yes 🗌 🗄	No 🗌 Give actual (meters)
	onitor collocated with a PM2.5 monit	or at the site $*$ Yes \square (answer *'d questions) No 🛛 NA 🗌
to measure PM10-2.5?	collocated PM10 and PM2.5samplers	······································	
2 to 4 m of each other?	conocated rivito and riviz. scamplers	101 F1010-2.5 (X) within	Yes 🗌 No 🗌
*Are collocated PM10 an	d PM2.5 sampler inlets within 1 m ve		Yes 🗌 No 🗌
Is probe > 20 m from the	nearest tree drip line? Yes 🛛 🏾 🎌	No 🗌 (answer *'d question	s)
*Is probe > 10 m from the		Jo 🗌	
*Distance from probe to t	ree (m) Direction from probe	to tree*Height of tre	ee (m)
15	air flow? *Yes 🗌 (answer *'d quest		
	Distance from probe inlet (m) obe to obstacle at least twice the heigh		
	est traffic lane (m) $\underline{236}$ Direction f		
RECOMMENDATION			
	status? Yes 🛛 *No 🗌 (answer	*'d questions)	
2	objective? Yes (enter new obje		
	resentativeness? Yes [] (enter new		
	es 🗌 No 🗌		
	ocated 350 meters to the NNW and be	egan sampling January 1, 20	016. Collocated PM 2.5 BAM
began sampling April 8, Date of Last Site Picture	2016. es 2016 New Pictures Submitted	2 Ves 🗌 No M	
			Data
Ambient Monitoring Co	ordinator <u>Steven Daniels</u>		Date <u>May 8, 2017</u>

SITEREV2016 PG

Region_WAI	Region_WARO Site Name Jamesville				AQS Site # 37- <u>117-0001</u>			
Street Addre	ss-1210 Hayes	Street			City Jamesvil	le		
Urban Area	Not in an Urbar	n Area	Core-based	Stat	istical Area N	one		
Enter Exact								
Longitude	<u>-76.906249</u>	Latitude	<u>35.8100</u>	<u>66</u>	Me	thod of Meas	suring	
In Decimal D	egrees	In Decima	al Degrees		Explan	ation: <u>Goog</u> l	e Earth	
Elevation Ab	ove/below Mear	n Sea Level	(in meters)	Ē.		<u>13.25</u>		
Name of nearest road to inlet probe <u>Hayes Street ADT</u> Year Choose an item Comments: <u>Dead end, unpaved road (ADT not available)</u> Distance of site to nearest major road (m) <u>119.00</u> Direction from site to nearest major road <u>SSW</u> Name of nearest major road <u>US 64 Bypass ADT</u> <u>8100</u> Year Choose an item <u>2015</u> Comments:						road <u>SSW</u>		
Site located n	ear electrical su	bstation/hig	gh voltage po	ower	·lines?	Yes		
Distance of si	te to nearest rai	road track		(m)	<u>175</u> Direc	tion to RR <u>SS</u>	SW NA	
OPTIONAL Distance of site to nearest power pole w/transformer (m) <u>50</u> Direction <u>NNE</u>								
Distance between site and drip line of water tower (m) Direction from site to water tower NA								
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools. Site surrounded by cultivated fields.								

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Monitor Type				
Ozone (O3)	General/Background Highest Concentration Max O3 Concentration Population Exposure Source Oriented Transport Upwind Background Welfare Related Impacts	 Micro Middle Neighborhood Urban ℝegional 	SLAMS				
Probe inlet height (f	rom ground) 2-15 m? Yes 🛛 No 🗍 Giv	e actual measured height fro	om ground (meters) 4.50				
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting structure > 1 m? Yes \boxtimes No \square Actual measured distance from outer edge of probe to supporting structure (meters) <u>1.60</u>							
	ge of probe inlet from other gas monitoring probe		Yes 🛛 No 🗌 NA 🗌				
Is probe > 20 m from	n the nearest tree drip line? Yes 🛛 *No 🗌 (answer *'d questions)					
*Is probe > 10 m from the nearest tree drip line? Yes \square *No \square							
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)							
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛							
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes No Distance of probe to nearest traffic lane (m) 129 Direction from probe to nearest traffic lane <u>SSW</u>							
	Distance of probe to hearest traine tane (iii) $\frac{122}{122}$ Direction noil probe to hearest traine tane $\frac{55W}{122}$						

SITEREV2016 JVSITEREV2016 JV

0701	1 (0) 1700	DECOLO		TTOTTO
OZONE	MONITOR	. RECOMN	/IENDA	HONS:

- 1) Maintain current monitor status? Yes 🛛 *No 🗌 (answer *'d questions)
- *2) Change monitoring objective? Yes 🗌 (enter new objective _____) No 📃-
- *3) Change scale of representativeness? Yes 🗌 (enter new scale ____) No 🗌
- *4) Relocate monitor? Yes 🗌 No 🗌

Comments: None.

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Monitor Type				
□ SO ₂ (DRR) ⊠ SO ₂ (NAAQS) □ SO ₂ (trace-level)	General/Background Highest Concentration Population Exposure Source Oriented Transport Upwind Background Welfare Related Impacts	☐ Micro ☐ Middle ☐ Neighborhood ☐ Urban ⊠ Regional	□INDUSTRIAL ⊠SLAMS □SPM				
Probe inlet height (from ground) 2-15 m? Yes 🛛 No 🗌 Give actual measured height from ground (meters) 4.5							
	Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting structure > 1 m? Yes \square No \square Actual measured distance from outer edge of probe to supporting structure (meters) <u>1.8</u>						
Distance of outer edge of	probe inlet from other monitoring probe inle	ts > 1 m?	Yes 🛛 No 🗌 NA 🗌				
Is probe > 20 m from the r	nearest tree drip line? 🛛 Yes 🖾 🛛 *No 🗌 (answer *'d questions)					
*Is probe > 10 m from the nearest tree drip line? Yes *No *No **No **No **Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)							
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛							
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes No Distance of probe to nearest traffic lane (m) <u>129</u> Direction from probe to nearest traffic lane <u>SSW</u>							

SULFUR DIOXIDE MONIT	FOR RECOMMENDATIONS:
BOBI OIL DIOTHER MOTOR	

1) Maintain current monitor status?	Yes 🖂	*No 🗌 (answer *'c	l questions)	
*2) Change monitoring objective?	Yes 🗌 (e	nter new objective) No 🗌-	
*3) Change scale of representativene	ess? Yes [(enter new scale	_) No 🗌	

*4)	Relocate monitor?	Yes	
-1)	renound monnor:	100	

Comments: JV SO2 monitor is rotational. Monitor run for one year every third year.

Date of Last Site Pictures 2012 New Pictures Submitted? Yes 🛛 No 🗌	
Reviewer Peter Susi	Date <u>1-6-2017</u>
Ambient Monitoring Coordinator Steven Daniels	Date <u>May 8, 2017</u>

Revised 2017-05-12

SITEREV2016 JVSITEREV2016 JV

Region_WARO	Site N	te Name <u>Bayview</u> AQS Sit			te # 37- <u>013-0151</u>	
Street Address <u>-229 H</u>	wy 306N	C	City <u>Bath</u>			
Urban Area Not in a	n Urban Area	Core-based S	Statistical Area	None		
En	ter Exact		Method of Measuring			
Longitude <u>-76.74</u>	Latitude <u>3</u>	5.428				
In Decimal Degrees	In Decimal De	grees <u>C</u>	Other (explain) Explanation: Goog			Earth
Elevation Above/below	/ Mean Sea Level	(in meters)	ers) <u>1.54</u>			
Name of nearest road t	o inlet probe <u>HW</u>	<u>Y 306N</u> ADT	240 Year Choo	ose one <u>2015</u>	the style of style style style style	n ya na tu tu tu tu
Comments: Bayview I	Ferry entrance					
Distance of site to near	est major road (m) <u>377.00</u> Direc	tion from site to	o nearest major	road <u>N</u>	
Name of nearest major	road Hwy 92 AI	DT <u>1739</u> Year	Choose one 20	015		
Comments:						
Site located near electr	ical substation/hig	h voltage powe	r lines?		Yes	No 🖂
Distance of site to near	est railroad track		(m)	Directio	n to RR	_ 🛛 NA
OPTIONAL Dista	nce of site to near	est power pole	w/transformer	(m)	Dire	ection
Distance between site and	d drip line of water	tower (m)	Direction from	n site to water to	wer	NA
Explain any sources of	potential bias; inc	clude cultivated	fields, loose bu	lk storage, stac	eks, vents,	railroad
tracks, construction act	ivities fast food r	estaurants and	swimming nool	e		

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Monitor Type			
⊠ SO₂(DRR) □ SO₂(NAAQS) □ SO₂(trace-level)	General/Background Highest Concentration Population Exposure Source Oriented Transport Upwind Background Welfare Related Impacts	☐ Micro ☐ Middle ☐ Neighborhood ☑ Urban ☐ Regional	⊠INDUSTRIAL □SLAMS □SPM			
Probe inlet height (from ground) 2-15 m? Yes No Give actual measured height from ground (meters) 5.5						
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting structure > 1 m? Yes \square No \square Actual measured distance from outer edge of probe to supporting structure (meters) <u>1.35</u>						
Distance of outer edge of probe inlet from other gas monitoring probe inlets > 0.25 m? Yes No NA						
Is probe > 20 m from the nearest tree drip line? Yes \square *No \boxtimes (answer *'d questions)						
*Is probe > 10 m from the nearest tree drip line? Yes \times *No						
*Distance from probe to tree (m) 12 Direction from probe to tree E *Height of tree (m)						
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛						
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes 🗌 No 🗌						
Distance of probe to near	est traffic lane (m) <u>70</u> Direction from probe to nearest	traffic lane <u>NW</u>				

SULFUR DIOXIDE MONITOR RECOMMENDATIONS:	
1) Maintain current monitor status? Yes 🛛 *No 🗌 (answer *'d questions)	
*2) Change monitoring objective? Yes [(enter new objective) No [-	
*3) Change scale of representativeness? Yes 🗌 (enter new scale) No 🗌	
*4) Relocate monitor? Yes 🗌 No 🗌	
<u>Comments:</u> Bayview Ferry Terminal is 65 meters to the west and is a SO2 source. A Title V Industrial SC source is 6500 meters to the SW across the Pamlico Sound. Date of Last Site Pictures <u>2016</u> New Pictures Submitted? Yes No 🛛	<u>02</u>
ReviewerDa	te
Ambient Monitoring Coordinator <u>Steven Daniels</u> Date <u>May</u>	8, 2017
Revised 2017-05-12	

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

SITEREV2016 BV

Region WARO	Site Name Lenoi	r Community Col	AQS	S Site # 37-1	.07-0004		
Street Address-231 HWY 58 South			City <u>Kinston, NC</u>				
Urban Area KINST	ON	Core-based Sta	tistical Area Kir	nston, NC			
	Enter Exact						
Longitude <u>-77.56</u>	itude <u>-77.5668</u> Latitude <u>35.2322</u> Method of M			thod of Mea	asuring		
In Decimal Degrees	In Decim	al Degrees	Other (explain) Explanation: Google Earth				
Elevation Above/below	Mean Sea Level (in	n meters)		<u>15</u>			
Name of nearest road to	inlet probe Colleg	<u>e Dr</u> ADT	Year				
Distance of ozone probe	to nearest traffic la	ane (m) <u>194</u> Directi	on from ozone prob	be to nearest	traffic lane <u>NW</u>		
Comments: On campus							
Name of nearest major r	road <u>HWY 70</u> AD	T <u>16000</u> Year	<u>2015</u>				
Distance of site to neare	st major road (m)	386.00 Direction f	rom site to nearest r	najor road	<u>N</u>		
Comments:							
Site located near electric	al substation/high	voltage power lines	;?		Yes 🗌 No 🖂		
Distance of site to neare	Distance of site to nearest railroad track (m) Direction to RR NA						
OPTIONAL Distance of site to nearest power pole w/transformer (m) Direction							
Distance between site an	nd drip line of wate	r tower (m)	Direction from site	to water tow	er NA		
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools.							
·	-						

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

3

Parameters	Monitoring Objective	Scale	Site Type				
\bigcirc O ₃	General/Background	Micro	SLAMS				
	Highest Concentration Max O3 Concentration	Middle					
	Population Exposure	Neighborhood	_				
	Source Oriented	Urban					
	Upwind Background Welfare Related Impacts	Regional					
Probe inlet height (from ground) 2-15 m? Yes 🛛 No							
Give actual measu	red height from ground (meters)	<u>3.78</u>					
	Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting						
	structure $> 1 \text{ m}$? Yes \boxtimes No \square Actual measured distance from outer edge of probe to supporting structure (meters) <u>1.02</u>						
Is probe > 20 m from the nearest tree drip line? Yes \times *No \square (answer *'d questions)							
*Is probe > 10 m from the nearest tree drip line? Yes \sim *No \sim							
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)							
Are there any obst	acles to air flow? *Yes 🗌 (ansv	ver *'d questions) No 🔀					
	Distance from probe inlet (m probe to obstacle at least twice the he						

SITEREV2016 LC

Revised 2017-05-12

RECOMMENDATIONS:

1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)	
*2) Change monitoring objective? Yes 🗌 (enter new objective:) No	
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌]
*4) Relocate site? Yes No	
Comments: A rotational PM10 monitor is scheduled for 2017	
Date of Last Site Pictures: 2015 New Pictures Submitted? Yes 🗌 No 🔀	
Reviewer	Date:
Ambient Monitoring Coordinator Steven Daniels	

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

SITEREV2016 LC

Revised 2017-05-12

Appendix F-2. Scale of Representativeness

Each station in the monitoring network must be described in terms of the physical dimensions of the air parcel nearest the monitoring station throughout which actual pollutant concentrations are reasonably similar. Area dimensions or scales of representativeness used in the network description are:

- a) Microscale defines the concentration in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- b) Middle scale defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometers.
- c) Neighborhood scale defines concentrations within an extended area of a city that has relatively uniform land use with dimensions ranging from about 0.5 to 4.0 kilometers.
- d) Urban scale defines an overall citywide condition with dimensions on the order of 4 to 50 kilometers.
- e) Regional Scale defines air quality levels over areas having dimensions of 50 to hundreds of kilometers.

Closely associated with the area around the monitoring station where pollutant concentrations are reasonably similar are the basic monitoring exposures of the station.

There are six basic exposures:

- a) Sites located to determine the highest concentrations expected to occur in the area covered by the network.
- b) Sites located to determine representative concentrations in areas of high population density.
- c) Sites located to determine the impact on ambient pollution levels of significant sources or source categories.
- d) Sites located to determine general background concentration levels.
- e) Sites located to determine the extent of regional pollutant transport among populated areas.
- f) Sites located to measure air pollution impacts on visibility, vegetation damage or other welfare-based impacts and in support of secondary standards.

The design intent in siting stations is to correctly match the area dimensions represented by the sample of monitored air with the area dimensions most appropriate for the monitoring objective of the station. The following relationship of the six basic objectives and the scales of representativeness are appropriate when siting monitoring stations:

1. Highest concentration	Micro, middle, neighborhood (sometimes urban		
	or regional for secondarily formed pollutants)		
2. Population oriented	Neighborhood, urban		
3. Source impact	Micro, middle, neighborhood		
4. General/background & regional transport	Urban, regional		
5. Welfare-related impacts	Urban, regional		

Table F2. Site Type Appropriate Siting Scales

Appendix F-3. Region 4 Requested Siting Information for the Pitt County Agricultural Center Site Relocation

On Aug. 7, 2015, Tim Corley, with Pitt County, called the North Carolina Division of Air Quality (DAQ) about the potential leasing of the property near or on which the DAQ Pitt Ag ambient air monitoring station is in Greenville, North Carolina. Further conversations with Mr. Corley indicated that the organization leasing the property would be building a building that would create an obstruction for the current monitoring station. Thus, on Sept. 30, 2015, DAQ contacted Mr. Corley to see if the monitoring building could be relocated approximately 325 meters to the other side of the property as shown in Figure F3. Mr. Corley agreed to this location on Oct. 21, 2015.

The monitors affected by this relocation are 37-147-0006-44201-1 and 37-146-0006-88101-1. The DAQ operates these monitors to ensure that the air in the Greenville area complies with the national ambient air quality standards. The fine particle monitor is suitable for comparison to the annual fine particle national ambient air quality standard. Views from the proposed site looking north, east, south and west are shown in Figure F5 through Figure F8.

The new monitoring site is located 35 meters from the trees to the north, 55 meters from the trees to the east, 30 meters from the trees to the south and 119 meters from the trees to the west. The tallest trees are estimated to be 15 meters in height. The nearest road is New Hope/Detention Drive located approximately 200 meters to the west. This road does not have any traffic count data; however, as shown in Figure 33, N. Greene Street, located approximately 650 meters west, had an average annual daily traffic count of 8,700 in 2012. Old Creek Road, located approximately 375 meters to the south southeast, had an average annual daily traffic count of 3,100 in 2012. The probe and inlet heights for the new monitoring station are approximately the same as the probe and inlet heights for the old monitoring station, approximately 3.8 meters for ozone and 2.3 meters for fine particles.

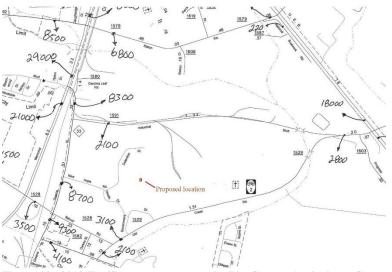


Figure 33. 2012 Traffic count map near the Pitt County Agriculture Center (from DOT)

The Air Quality System identification number and street address for the site remained the same: 37-147-0006 and 403 Government Circle, Greenville, North Carolina. The new latitude and longitude is 35.641276 and -77.360358. The sampling and analysis methods (AQS codes 047 for ozone and 145 for fine particles) and operating schedules (hourly for ozone and one-in-three day for fine particles) for both monitors remained the same. The monitoring objective for both monitors continued to be population exposure. Figure 34 shows the location of the monitoring stations relative to the population center of Greenville. Based on the wind roses in Figure 35 through Figure 39, the new monitoring station is located downwind of Greenville during springtime and summer when the ozone concentrations are the highest. The spatial scale of representativeness for both monitors is be urban based on the location of the roadways and the amount of traffic on those roads. (See Figure 40 and Table 3.)

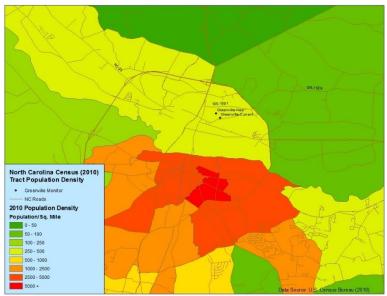
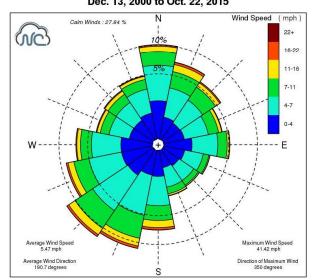
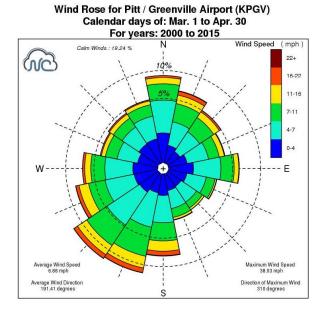
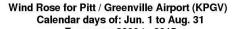




Figure 34. Location of the proposed monitoring station relative to the population of Greenville



Wind Rose for Pitt / Greenville Airport (KPGV) Dec. 13, 2000 to Oct. 22, 2015

Figure 35. Windrose for Greenville using all data (from NC State Climate Office)

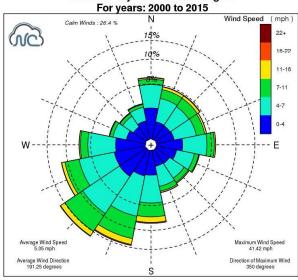
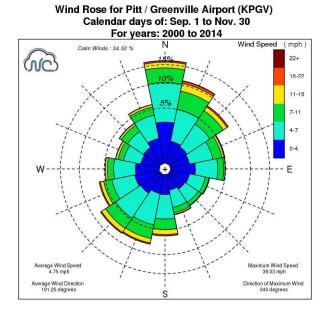
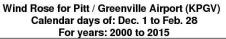




Figure 37. Greenville summertime wind rose (from NC State Climate Office)

Figure 38. Greenville fall time wind rose (from NC State Climate Office)

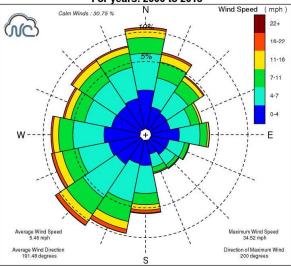


Figure 39. Greenville wintertime wind rose (from NC State Climate Office)

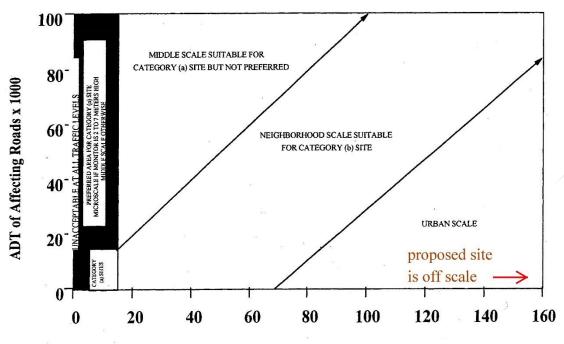


Figure E-1. Distance of PM samplers to nearest traffic lane (meters)

Figure 40. Figure E-1 from Appendix E used to determine spatial scale of representativeness for particle monitors

 Table E-1 of Appendix E To Part 58—Minimum Separation Distance Between Roadways And

 Probes Or Monitoring Paths For Monitoring Neighborhood And Urban Scale Ozone (O3) And Oxides

 Of Nitrogen (No, No2, Nox, Noy)

Roadway average daily traffic, vehicles per day	Minimum distance ¹ (meters)	Minimum distance ^{1 2} (meters)	
≤1,000	10	10	
10,000	10	20	
15,000	20	30	
20,000	30	40	
40,000	50	60	
70,000	100	100	
≥110,000	250	250	

¹Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.

²Applicable for ozone monitors whose placement has not already been approved as of Dec. 18, 2006.

These two monitors are representative of air quality in the Greenville metropolitan statistical area.

The new monitoring site was not provided to the public for comment because the location for the monitors is on the same property. Thus, the move was not considered a significant enough change to warrant providing it to the public for comment. Table 4 summarizes other factors DAQ evaluated when choosing the new location for the monitoring station. Location of permitted facilities are shown in Figure 41.

T 11 1 0 1				~		a
Table 4. Other of	considerations in	selection	of the Pitt	County A	Agriculture	Center Site

Factor	Evaluation	
Long-term Site Commitment	Pitt County was willing to provide DAQ with a long-term	
	lease agreement and does not plan to develop the current area	
	any time in the near future	
Sufficient Operating Space	300 meter by 50-meter open area free of trees and buildings	
Access and Security	Current building and outdoor monitor have not been	
	vandalized. New location is near a walking trail. The outdoor	
	monitor will be inside a locked fence.	
Safety	Appropriate electrical permits were obtained.	
Power	Overhead powerlines are located 325 meters east of the site.	
	Overhead power can be brought in from there or from the	
	detention center parking lot approximately 50 meters to the	
	north.	
Environmental Control	The monitoring shelter was placed with the door to the north	
	so that sunlight does not shine in through the window and	
	warm up the building.	
Exposure	The monitoring station is at least 20 meters from the driplines	
	of trees and is not near any trees or buildings that could be an	
	obstacle to air flow.	
Distance from Nearby Emitters	There are two permitted facilities with 0.5 miles of the	
	proposed location:	
	Metallix Refining, Inc., located at 251 Industrial Blvd, 467	
	meters north northwest of the monitoring station, emitted 1.5	
	tons of NOx, 0.1 tons of VOC and 0.2 tons of fine particles in	
	2011.	
	Attends Health Care Products, Inc., located at 1029 Old	
/	Creek Road, 567 meters east of the monitoring station,	
	emitted 20.7 tons of PM10 in 2011.	
Proximity to Other	The monitoring station is located about 2 kilometers from the	
Measurements	Pitt-Greenville Airport.	

Figure 41. Location of monitoring station relative to permitted facilities (yellow pins are small, blue pins are synthetic minor and red pins are Title V facilities)

Appendix F-4. PCS Phosphate, Inc. – Aurora Siting Analysis and Additional Site Information

Siting Analysis for the Bayview Ferry Site (PCS Phosphate -- Aurora)

SO₂ DATA REQUIREMENTS RULE MONITOR SITING ANALYSIS

PCS Phosphate Company, Inc. – Aurora Facility Permit No. 04176T53 Facility ID No. 0700071 Aurora, North Carolina

Prepared for:

PCS Phosphate Company, Inc. 1530 NC Highway 306 South Aurora, NC 27806

Prepared by:

AECOM Technical Services of North Carolina, Inc. 1600 Perimeter Park Drive, Suite 400 Morrisville, NC 27560

April 2016

TABLE OF CONTENTS

1.0	Introduction			1-1
2.0	Facilit 2.1	1		
3.0	Monit		g Analysis	
	3.1 Analysis Approach and Model Selection			
		3.1.1	Meteorological Data	
		3.1.2	Receptors	
		3.1.3	Sources	
		3.1.4	Modeled Emissions	
	3.2 Modeli		ing Results and Ranking Methodology	
		3.2.1	Ranking Results	

List of Figures

- Figure 2-1. Site and SO₂ Monitor Locations
- Figure 3-1. SO₂ DRR Full Receptor Grid
- Figure 3-2. SO₂ DRR Near Receptor Grid
- Figure 3-3. Source and Building Layout
- Figure 3-4. Modeled NDVs
- Figure 3-5. Receptor NDV Ratio to Maximum NDV
- Figure 3-6. Top 200 NDVs
- Figure 3-7. Top 50 NDVs
- Figure 3-8. Frequency of Daily Maximums
- Figure 3-9a. Location of Top 50 NDVs with Rank
- Figure 3-9b. Location of Top 50 NDVs with Rank (Area 1)
- Figure 3-9c. Location of Top 50 NDVs with Rank (Area 2)
- Figure 3-9d. Location of Top 50 NDVs with Rank (Area 3)

List of Tables

Table 3-1.Modeled Stack ParametersTable 3-2.Top 20 Ranking Receptors by Score

1.0 INTRODUCTION

On June 22, 2010, the EPA revised the primary sulfur dioxide (SO₂) National Ambient Air Quality Standard (NAAQS) (75 FR 35520). The EPA promulgated a new 1-hour daily maximum primary SO₂ standard at a level of 75 parts per billion (ppb), based on the 3-year average of the annual 99th percentile of 1-hour daily maximum concentrations.

On May 13, 2014, the EPA proposed the Data Requirements Rule (DRR) for the 1-Hour SO₂ NAAQS (79 FR 27445). The final DRR was promulgated on August 21, 2015 (80 FR 51051) and requires states to gather and submit to the EPA additional information characterizing SO₂ air quality in areas with larger sources of SO₂ emissions. In the DRR, air agencies have the choice to use either monitoring or modeling to characterize SO₂ air quality in the vicinity of priority SO₂ sources, and submit the modeling and/or monitoring to the EPA on a schedule specified by the rule.

This analysis was conducted to identify a suitable 1-hour SO₂ source-oriented monitoring site location to satisfy the DRR for PCS Phosphate Company's Aurora Facility (PCS Aurora). Currently, there is an SO₂ monitor located about 6 kilometers (km) to the northeast of PCS Aurora, located at 229 NC Highway 306 North, Bath, NC. The 1-hour background monitored air concentration for this monitor, based on 2012-2014 data is 23 ppb ($60.1 \mu g/m^3$).

This report provides a summary of modeling results and associated analyses of these results using methodologies discussed in EPA's SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document (Monitoring TAD) that indicates the suitability of locating a monitoring station in vicinity of the PCS Phosphate, Inc. Aurora, NC facility (PCS Aurora facility). Results of this monitor siting analysis indicate that the Bayview monitor that is currently operating near the facility and was originally sited by the North Carolina Division of Air Quality (NC DAQ) for the purposes of monitoring SO₂ concentrations in the vicinity of the PCS Aurora facility is very highly ranked in accordance with the Monitoring TAD and is suitably located to provide a reliable indication of ambient air quality in the vicinity of the PCS Aurora facility.

1-1

2.0 FACILITY INFORMATION

2.1 Facility Description and Location

The PCS Aurora facility mines phosphate ore and manufactures products including sulfuric acid, phosphoric acid, solid and liquid fertilizers, animal feed supplements, and food grade, purified phosphoric acid.

The PCS Aurora facility operates under the terms and conditions of Permit No. 04176T53 issued by NCDEQ DAQ (effective date September 24, 2015). Permitted sources of SO₂ at the PCS Aurora facility consist of three double-absorption sulfuric acid plants, one distillate oil-fired boiler, six vertical fluidized bed phosphate rock calciner units, one phosphate rock dryer, one coal/coke pulverizer and thermal dryer system, two diammonium phosphate plants, four superphosphoric acid plants, four phosphoric acid trains, two pug mills, one defluorination kiln, and one diesel-fired emergency engine.

PCS Aurora is located in Aurora, North Carolina in Beaufort County. The facility is approximately 7 km north of the town of Aurora along the shore of the Pamlico River. The NAD83 UTM Zone 18 coordinates of the facility are 338705 meters Easting and 3916240 meters Northing. Figure 2-1 shows the site location and the location of the current SO_2 monitor, known as the Bayview monitor.

3.0 MONITOR SITING ANALYSIS

3.1 Analysis Approach and Model Selection

As suggested by the Monitoring TAD, the modeling followed the recommendations of the SO₂ NAAQS Designations Modeling Technical Assistance Document (Modeling TAD). According to the Modeling TAD, given the source-oriented nature of SO₂, dispersion models are appropriate air quality modeling tools to estimate near-field concentrations. The AMS/EPA Regulatory Model (AERMOD version 15181) was used, as suggested in the Monitoring TAD. AERMOD is the preferred air dispersion model because it is capable of handling rural and urban areas, flat and complex terrain, surface and elevated releases, and multiple sources (including, point, area, and volume sources) to address ambient impacts for the designations process.

3.1.1 Meteorological Data

AERMOD-ready meteorological data was created by processing surface data from the Marine Corps Air Station (MCAS) in Cherry Point, upper air data from the Newport, NC National Weather Service (NWS) site, and onsite meteorological data collected by PCS. The DRR requires modeling to be performed for the most recent three year period. The most recent quality-assured dataset at this time is the 2012-2014 meteorological data.

3.1.2 Receptors

The dispersion modeling receptor grids were developed following procedures outlined in the *New Source Review Workshop Manual* (October 1990), the *North Carolina PSD Modeling Guidance* (January 2012), and the Modeling TAD. A detailed discrete receptor grid system was created to assess air quality impacts in all directions from the PCS Aurora facility to a distance of up to 21.5 km from the property boundary.

Discrete receptors were placed along the property line at 100-meter intervals. A 100-meter grid spacing was used from the property line out to a distance of approximately 1 km, 250-meter grid spacing from 1 km to 3 km, 500-meter grid spacing from 3 km to 5 km, 1 km grid spacing from 5 km to 10 km. The remaining grid from 10 km to approximately 20 km used 2 km grid spacing. According to the Modeling TAD, receptors should only be placed where it is suitable for the placement of a permanent monitor; therefore receptors on PCS property and over water were removed. Figure 3-1 presents the full modeling receptor grid, while Figure 3-2 presents the near-field receptor grid along with the PCS Aurora property boundaries.

Terrain data used in the analysis was obtained from the USGS Seamless Data Server at http://viewer.nationalmap.gov/viewer/. The 1 arc-second NED data was obtained in the GeoTIFF format and used in determining receptor elevations and hill heights using AERMAP.

3.1.3 Sources

There are multiple SO_2 emissions sources present at the PCS Aurora facility, all of which were modeled as point sources.

The AERMOD model uses a steady-state Gaussian plume equation to model emissions from point sources such as stacks and vents. All point sources were modeled using actual stack exhaust parameters. The following parameters were used for modeling the point sources: emission rates (grams/sec), stack height (m), stack diameter (m), stack exit velocity (m/sec), stack exhaust temperature (K), and direction-specific building/structure dimensions (m). Building/structure locations, sizes, and orientations relative to stacks were input into BPIP-PRIME to calculate building parameters for AERMOD. Table 3-1 presents a list of the modeled facility point sources and their associated parameters. The source and building/structure layout for modeling is shown in Figure 3-3.

Source ID Source Description		Stack Height (m)	Temperature (K)	Exit Velocity (m/s)	Stack Diameter (m)	Normalized Emission Rate (g/s)
103SO	SA Plant No. 5	44.2	346.43	10.25	3.2004	hourly varying
104SO	SA Plant No. 6	49.99	343.37	10.66	2.9718	hourly varying
105SO	SA Plant No. 7	50.3	349.8	9.73	3.66	hourly varying
110NEW	Auxiliary Boiler	15.2	402.8	11.55	1.34	annually varying
20150	Calciner #1	30.5	347.8	13.11	1.8288	annually varying
20250	Calciner #2	30.5	346.5	13.13	1.8288	annually varying
20350	Calciner #3	30.5	348.3	13.62	1.8288	annually varying
204SO	Calciner #4	30.5	347.2	14.02	1.8288	annually varying
20550	Calciner #5	30.5	348.7	348.7 12.62		annually varying
206SO	Calciner #6	30.5	347.9	12.83	1.8288	annually varying
210SO	Rock Dryer	30.5	336.65	15.09	1.8288	annually varying
215SO	Coal Pulverizer/Dryer Baghouses	30.5	339.98	17.89	0.7376	annually varying
302SO	DAP No.3 Plant	44.2	330.26	9.58	2.7432	annually varying
303SO	DAP No.2 Plant	41.45	341.32	13.96	2.74	annually varying
330SO	SPA #1	30.05	300.82	2.62	0.51	annually varying
331SO	SPA #2	30.05	297.15	1.52	0.51	annually varying
332SO	SPA #3/#4	30.02	296.37	1.49	0.61	annually varying
401SO	PA#1 Crossflow/Venturi Scrubber Stack	39.62	308.98	18.082	1.01	annually varying
404SO	PA#2 Crossflow Scrubber Stack	39.62	314.32	15.749	1.01	annually varying
406SO	PA#3 Crossflow Scrubber Stack	30.48	320.26	19.832	1.01	annually varying
409SO	PA#4 Crossflow Scrubber Stack	39.62	321.04	16.332	1.01	annually varying
701SO	DFP Kiln Stack	60.35	349.3	17.94	1.68	annually varying
80150	Mill Area Generator	3.7	778.7	74.58	74.58 0.3	
802SO	Calciner Building Diesel Generator	3.7	778.7	74.58	0.3	annually varying

Table 3-1. Modeled Stack Parameters

AECOM

3-3

3.1.4 Modeled Emissions

Hourly data was available for the three Sulfuric Acid Plants (103SO, 104SO, and 105SO) from CEMS monitors. Sulfur dioxide emissions from these sources comprise over 96% of the total annual emissions from the facility. Hourly data for other sources was not available; therefore, average hourly emission rates for each source were used in the modeling. Following the example in Appendix A of the Monitoring TAD, these emission rates were normalized and used as inputs to the model (Table 3-1). Because of the linear scalability of emissions to modeled concentrations, the relative model results using normalized emissions can be used to predict the location of maximum concentration gradients. The emissions rates were normalized by dividing each source's hourly emission rate by the highest overall hourly emission rate over all stacks.

3.2 Modeling Results and Ranking Methodology

Following the guidance outlined in Appendix A of the Monitoring TAD, normalized modeled impacts were used to determine suitable locations for an SO₂ monitor near PCS Aurora. The three-year average of each year's 4th daily highest 1-hour maximum concentration (99th percentile of daily 1-hour maximum concentrations) was calculated for each receptor. This value is commonly referred to as the design value (DV). Because normalized emissions were used to calculate these values, the results are referred to as normalized design values (NDVs) in this analysis.

Figure 3-4 shows the NDVs for the receptors near PCS Aurora, totaling 12,571 receptors within the modeling domain. To better understand the relative difference between the NDVs, Figure 3-5 shows the ratio of the NDV at each receptor to that of the overall maximum NDV. In the figures, the receptors with the highest values are in the black area surrounded by the darker purple. From the NDV ratio results, 200 receptors with the highest values were selected for further analysis. The receptors having the top 200 and top 50 NDVs are shown in Figures 3-6 and 3-7, respectively. The highest NDVs in the figures are shown in black.

Figures 3-6 and 3-7 show the prioritized locations that were first evaluated to select a monitor location. The primary objective of this analysis was to find a sufficient number of feasible locations with predicted peak and/or relatively high SO₂ concentrations where a permanent monitoring site could be located. However; according to Appendix A of the Monitoring TAD, the site selection process also needed to account for the frequency in which a receptor has the daily maximum concentrations. The frequency is the number of times each receptor was estimated to have the maximum daily 1-hour concentration. Figure 3-8 shows the results of the frequency analysis.

Each receptor's frequency value was used with its NDV to create a relative prioritized list of receptor locations. This process is referred to in Appendix A of the Monitoring TAD as a scoring strategy. The list of receptors was developed through the following steps:

- 1. The NDVs were ranked from highest to lowest. Rank 1 means the highest NDV.
- 2. The frequencies for the receptors were ranked from the highest to lowest. Rank 1 means the highest number of days having the daily maximum value.

AECOM

- 3. The NDV rank and the frequency rank were added together to obtain a score.
- 4. The scores were ranked from lowest to highest. The receptors with the lowest scores were identified as the most favorable locations for the monitor.

3.2.1 Ranking Results

Table 3-2 shows a summary of the ranking results for the top 20 receptors. Figure 3-9a shows the receptor locations that ranked in the top 50 (note that as shown in Table 3-2 there were some ties in rankings). Figures 3-9b, c, and d show a closer view of the three areas with the highest receptor rankings.

When selecting an adequate location for a monitor, considerations should be made regarding the availability of electrical power, security of the monitor, accessibility, proper instrument exposure, and assurance of long term use of the site.

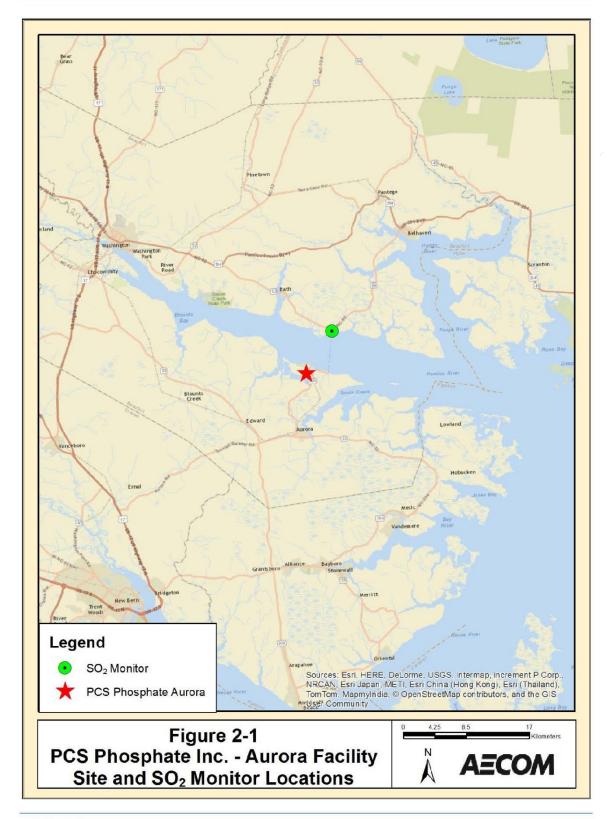
The location of the current Bayview monitor is the highest ranking location (15 out of 12,571) to be free of concerns. Since the monitor has been operating in its current location since 2010, electrical power, security, accessibility, instrument exposure, and long term use of the site are in good standing in this location. The higher ranking locations are either in heavily forested areas, on private property, or do not have an uninhibited sight-line to the facility.

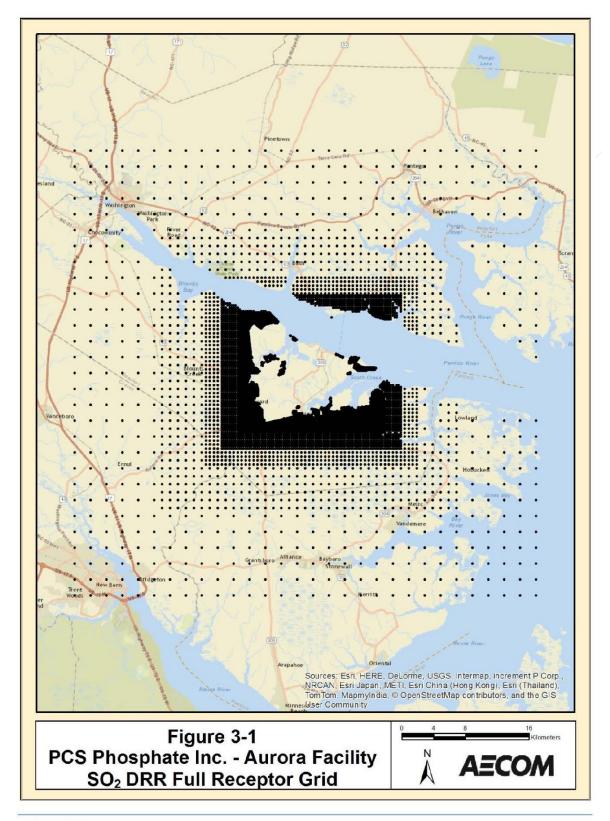
In 2010, the DAQ moved the SO_2 monitor located just off PCS property to its current location. The current site was chosen due to more people living on the north side of the river and due to the fact that the location is downwind of the PCS Phosphate facility¹.

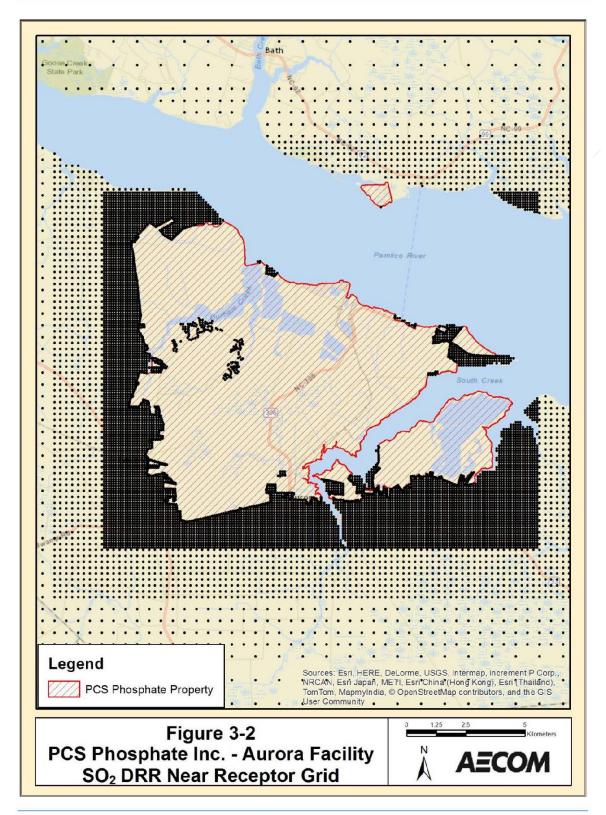
¹ 2015-2016 Annual Monitoring Network Plan for the North Carolina Division of Air Quality. Volume 2. July 23, 2015.

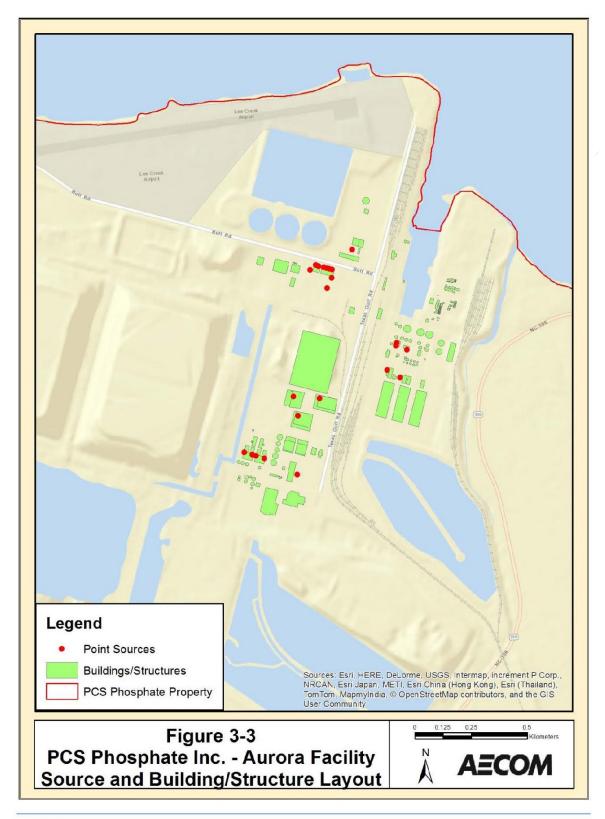
Monitor Siting Analysis

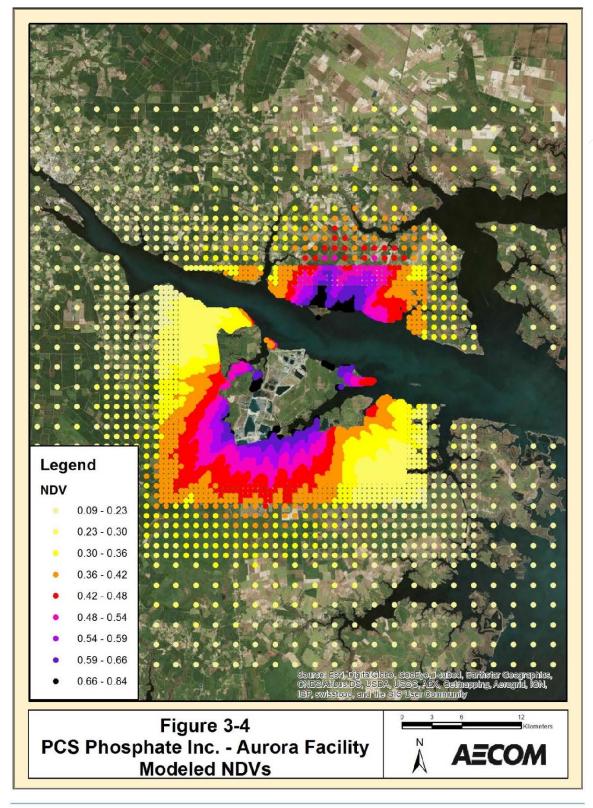
UTM Zone 17 (NAD83)		Normalized Design	NDV Rank	Frequency	Frequency	Score	Score	Comments on	Siting Concerns
Easting (m)	Northing (m)	Value (NDV)	NDV Kank	Count	Rank	Score	Rank	Location	
334213.65	3913970.37	0.83	2	23	3	5	1	Border of PCS and private property, SE of Louden Rd.	Property owner
334266.51	3914037.05	0.84	1	12	12	13	2		permission; power;
334465.88	3914583.32	0.80	17	12	13	30	3		heavily forested area
334297.73	3914255.81	0.77	34	22	18	52	4		and the second second second
340881.8	3916405.2	0.75	56	35	1	57	5	Border of PCS and NCDOT property, north of Hwy. 306	Heavily forested area very close to the river bank.
340000	3922500	0.75	53	17	6	59	6	Private property, south of Hwy. 92	Heavily forested area
340500	3922250	0.78	29	8	31	60	7		Property owner permission; power
333966.75	3913800.31	0.81	14	5	48	62	8	Border of PCS and private property, SE of Louden Rd.	Property owner permission; power; heavily forested area
334289	3914773.78	0.77	36	9	26	62	8		
343250	3921750	0.75	54	14	9	63	10	Private property, south of Hwy. 99	Property owner permission; power; trees
343000	3921750	0.76	45	10	21	66	11		
340250	3922500	0.74	62	13	10	72	12	Private property, south of Hwy. 92	Heavily forested area
340300	3921000	0.72	72	30	2	74	13	Private property, end of Gum Point Rd.	Property owner permission; power
335521.8	3909263.5	0.72	71	20	4	75	14	Border of PCS and private property, west of Hwy. 306	Property owner permission; power; near railroad tracks
342045	3921898	0.74	61	10	22	83	15	Site of Bayview Monitor	Location of current monitor
342750	3922000	0.75	51	7	34	85	16	Private property, south of Hwy. 99	Heavily forested area
334347.68	3914675.34	0.81	9	3	80	89	17	Border of PCS and private property, west of Bonnerton Rd.	Property owner permission; power
334284.47	3914856.14	0.76	50	6	39	89	17		
336245.15	3909815.98	0.72	90	15	7	97	19	On PCS property, north of Brantley Swamp Rd.	On PCS property; wetlands area
342500	3922000	0.72	74	9	27	101	20	Private property, south of Hwy. 99	Heavily forested area

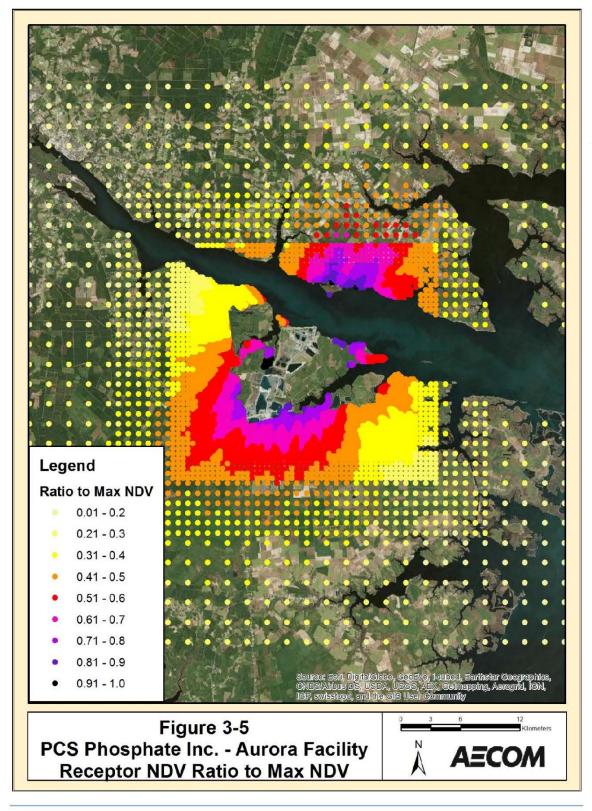

Table 3-2. Top 20 Ranking Receptors by Score

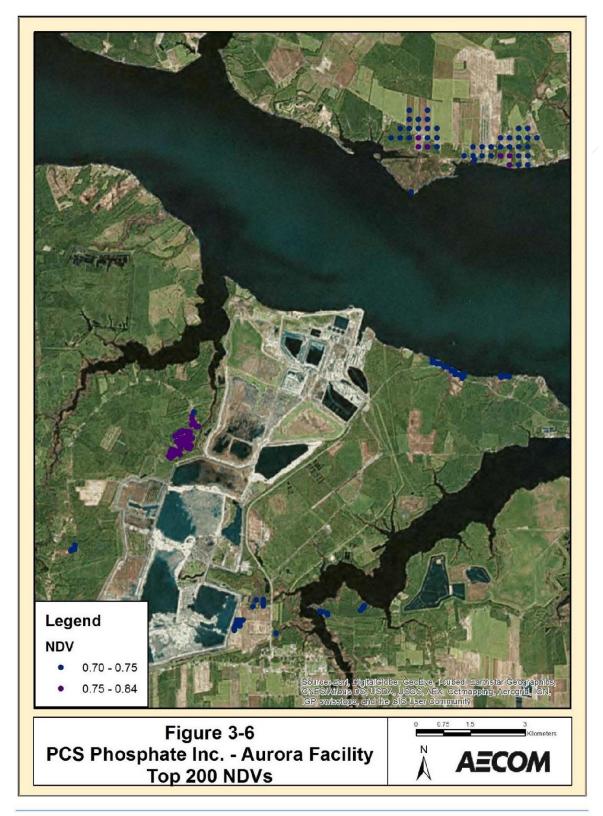

AECOM

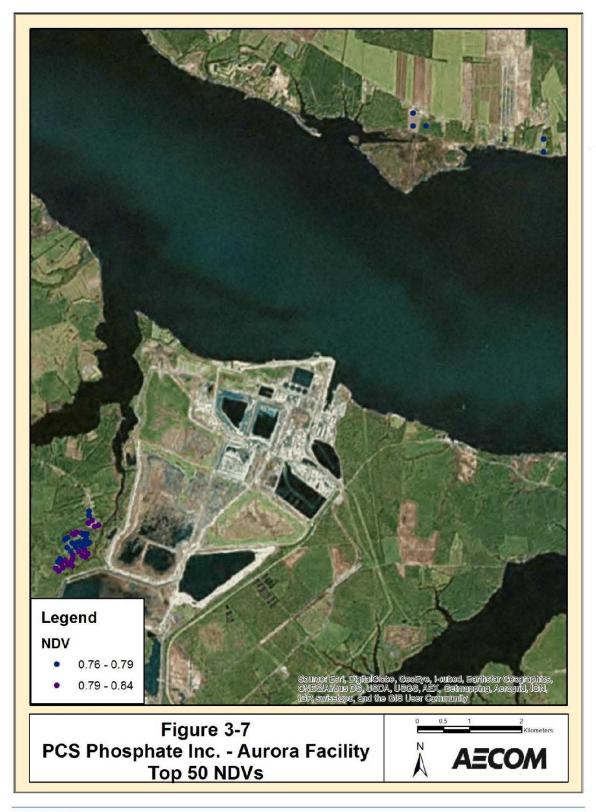

3-6

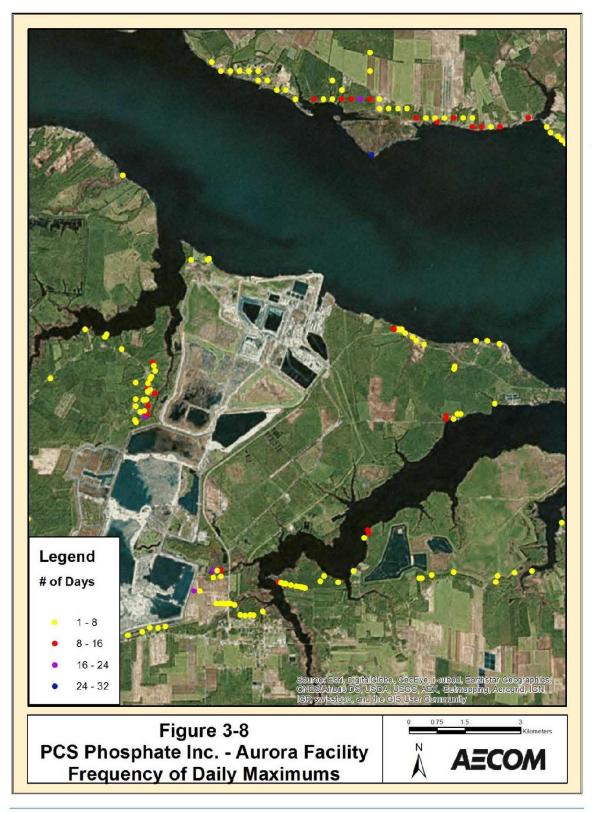

Figures

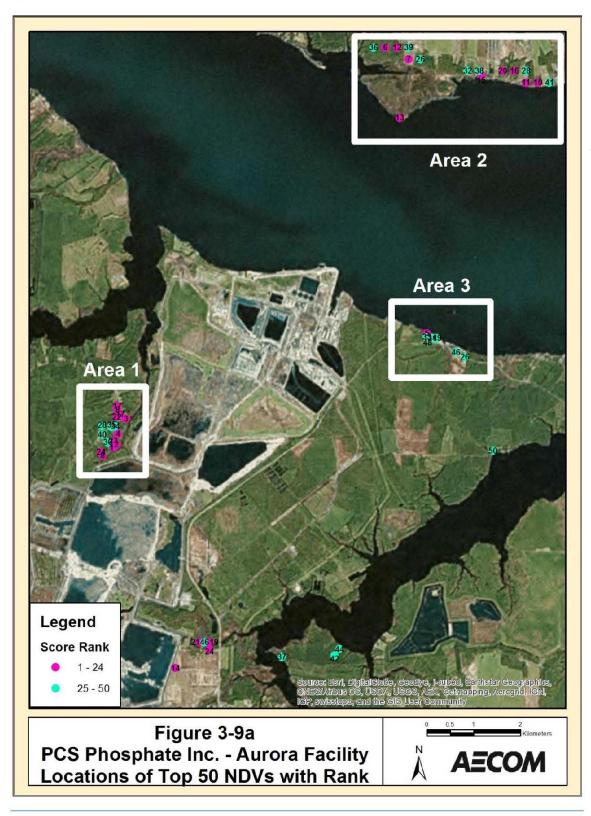

AECOM

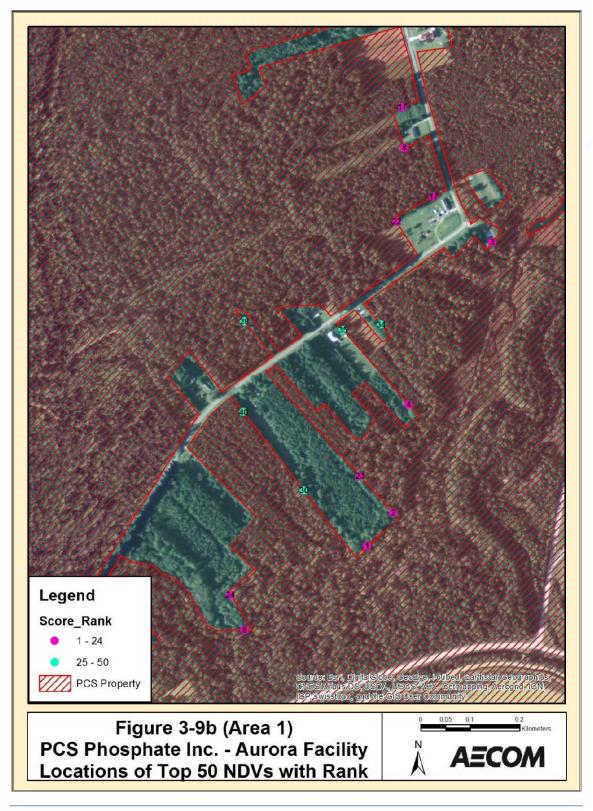


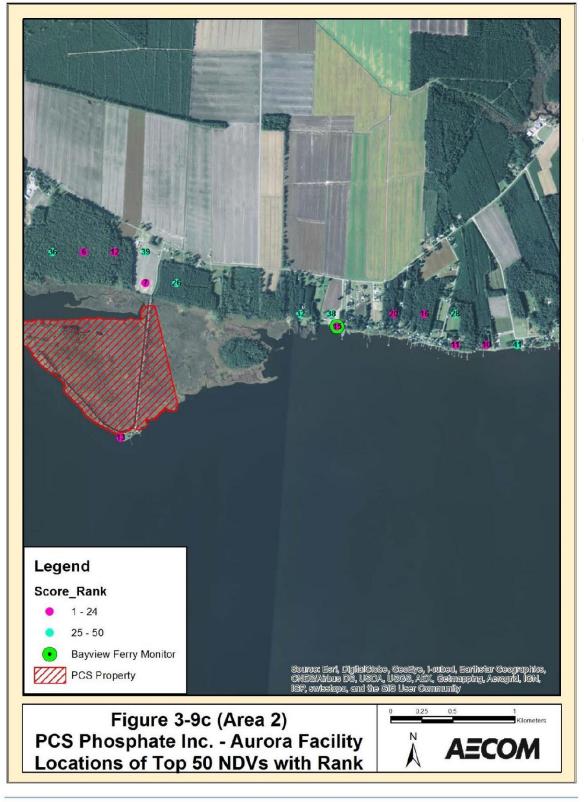


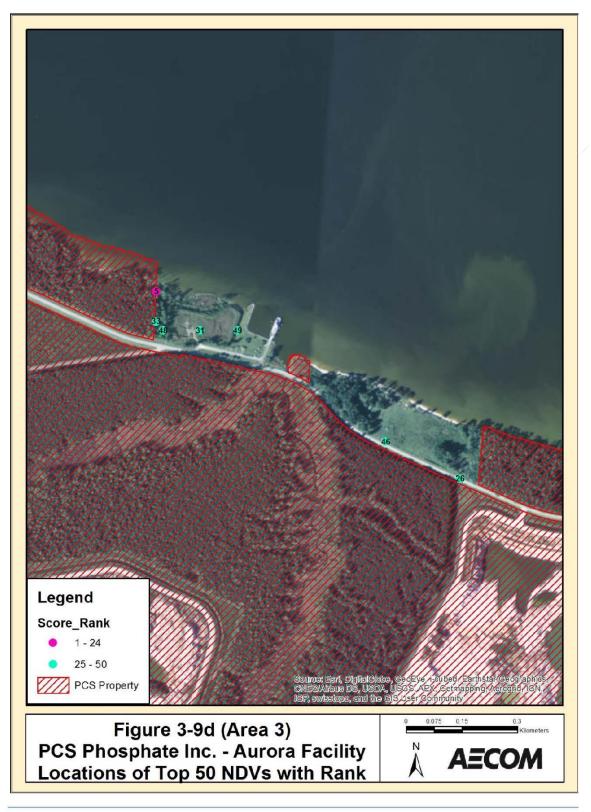


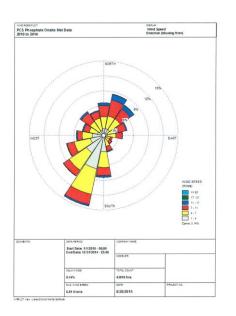












Region 4 Requested Information for Sites (PCS Phosphate -- Aurora)

NOTE: The SO2 DRR monitoring site for PCS Phosphate is the existing Bayview site located directly across the Pamlico River from the facility. For details on this site, refer to subsection (4) The Non-MSA Portion of the Washington Monitoring Region of this section.

The onsite wind rose and aerial photo below show the monitor to be directly downwind of the facility.

