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ABSTRACT

It is almost a categorical truism that decision problems in the public
domain are very complex. They almost universally involve multiple conflicting
objectives, nebulous types of nonrepeatable uncertainties, costs and benefits
accruing to various individuals, businesses, groups and other organizations--
some of these being nonidentifiable at the time of the decision--and effects
that linger overtime and reverberate throughout the whole societal super-
structure.

iii



CONTENTS

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . 1
2. The Use of Models for Environmental Policy . . . . . . . . . 1

2A. Levels of Decisionmaking. . . . . . . . . . . . . . .4
2B. Paradigms of Decisionmaking . . . . . . . . . . . . . 4

2B1. Mathematical Techniques . . . . . . . . . . . . 5
2B1a. Optimization Procedures. . . . . . . . . 6
2B1b. Game Theory. . . . . . . . . . . . . . . 11
2B1c. Statistical Techniques . . . . . . . . . 12

2B2. Quasi of Nonmathematical Techniques
(Methods of Decisionmaking) . . . . . . . . . . 13

3. Models Recommended for Environmental Management. . . . . . . 15
3A. Multi-Level Decision Approaches . . . . . . . . . . . 19

3A1. Model Coordination (Feasible Method) . . . . . . 21
3A3. Goal Coordination (Dual Feasible Method) . . . . 22
3A3. Underlying Mathematical Structure . . . . . . . 23

3B. Decision Analysis of Risk . . . . . . . . . . . . . . 25
3B1. Theoretical Considerations. . . . . . . . . . . 26
3B2. Operational Considerations. . . . . . . . . . . 32

3C. Cost-Risk/Benefit Analysis. . . . . . . . . . . . . . 33
4. Conclusions and Recommendations for Future Research. . . . . 35

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40



1.

EVALUATION OF DECISION MODELS
FOR ENVIRONMENTAL MANAGEMENT

by

John Sorrentino*

Introduction

Environmental policy concerns itself with protecting our natural
surroundings from damages that generally result from human activity. The
problem reduces to: (a) finding the mix and levels of these activities
that are consistent with “homeostatic” ecologica
preferences; (b) achieving these levels; and (c)
role of government in a market economy.

Economic theory has told us that even an

functioning and society's
deciding the appropriate

deal, perfectly competi-
tive market system fails in the presence of externalities, public goods
and increasing returns to scale. History has shown that these phenomena
do cause trouble in a market-dominated economy. In an effort to achieve
some form of socially desirable allocation of resources in the presence
of market failure and the absence of a “social welfare index,” the govern-
ment must apparently interfere with private decisions.

The discussion below will center around how the Environmental Pro-
tection Agency can use some decision models to complete these tasks. Sec-
tion 2 contains some abstract discussion of models and a survey of some
candidate models for environmental policy, Section 3 describes more fully
three models that are thought to have potential for environmental manage-
men t. The theoretical foundations and operational linkages of these models
to the environmental problem are described. Section 4 concludes the paper
with some remarks about the interrelationships among the recommended
mode 1s, the informational requirements of each, the satisfaction of model
criteria by each and the areas thought promising for future research.

This paper is a response to a charge to identify models useful for
environmental management with a focus on those that allow for the con-
sideration of all tradeoffs.

2. The Use of Models for Environmental Policy

Models are, of course, hypothetical descriptions. Assumptions are
made to “freeze” certain aspects of reality so that others may be explored.
One set of model criteria that a model-builder may require of a model is:

*Professor of Economics, Temple University
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A.

B.1

B.2

C.

Measurability and exactness of fit of variables, parameters
and relationships to the elements of the actual problem.
This would include considerations such as reflection of the
objectives of the DM, the validity of the assumptions and
sufficient breadth and depth of the model.

Ability of the model to be solved via computational methods.

Ability of the model to be tested against observation. Cri-
terion B.1 generally applies to programming problems and
other “operations research” type techniques. Criteria B.1
and B.2 generally apply to statistical techniques. They both
involve considerations such as ease of data acquisition and
ease of computation.

Flexibility of the model to include new aspects and/or feed-
back from operational experience.

Some additional, EPA-specific criteria may be:

D. Ease of translation of the model output into operational
policy actions.

E. Adaptability of the model to a social choice situation.

F. Ability of the model to deal with essential environmental
problems of externalities and public goods.

One must make a distinction between the model-builder (analyst) and
the decision maker (DM). The analyst’s understanding of the problem to be
model led is closely related to the perception and objectives of the DM.
However, whether the DM is an individual or an organization, objectives are
often not explicitly known and/or not amenable to translation into day-to-
day decisions. This makes the job of the analyst considerably more dif-
ficult. On the other hand, modelling difficulties arise when the analyst
makes assumptions that inadvertently remove the essential parts of a prob-
lem and/or “molds” the problem to fit techniques that he is capable of
implementing.

The objective of government agencies is most generally to promote
the “public interest.” EPA is concerned with this in environmental mat-
ters, and their efforts include the following activities:

1. Knowing the operational meaning of “envir onmental. ”

2. Understanding the physical and biochemical dimensions of the
ecosphere.

3. Understanding the relation of the environment to engineering/
technological systems and to economic/political/legal
systems.
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4. Determining socially desirable behavior with respect to the
environment.

5. With a knowledge of 1. to 3., translating 4. into policy
decisions.

Let us concentrate on the relationship of modelling to activities 2.
and 3. The process of understanding the natural laws of the ecosphere
usually entails some initial observations (by modeller or previous re-
searchers), some theoretical constructs, and testing of empirical hypoth-
eses through controlled experimentation. Some feedback generally takes
place from experimentation to hypothesis to theory. In this manner, models
of the ecosphere or smaller ecosystems are created.1

While the physical and biochemical elements make up the ecosphere,
the technological and social systems mentioned in 3. above must be linked
to it. Through technology, engineering creates a link between natural
processes and their use for human needs. Hence, the interface of tech-
nology with the ecosphere must be monitored and understood before it can be
controlled or influenced. The general process of observation, hypothesis
and experimentation is also followed here. Technological components are
appended to natural components in ecological mode
istic picture of the world.

The relationship of the ecosphere to socia
Whereas the ecosphere has an impact on the social
the major concern for environmental policy is the

s, creating’ a more real-

systems is more subtle.
development of societies,
effect on the ecosphere

of economic, political and legal systems. ”These models are less testable
by controlled" experimentation than models of nature and technology. The
environmental analyst must examine them and determine their applicability
to his set of problems. Specific links must be made between the elements
of the ecosphere and the elements of these social systems. Much research
has gone into establishing these links. For example, there are economic
models based on materials flow, environmental input/output and environ-
mental property rights.

One must continually ask whether these linkage models are useful in
the completion of activity 4. above. The problem of determining the social
desirability of human activities is indeed a complicated one. Most social
scientists have abandoned the prospect that society has some global value
function or social welfare function that social decisions are aimed at
maximizing.

The broadest welfare criterion developed by economists is the
“Pareto criterion.” According to this, society should reallocate its re-
sources until a reallocation cannot make anyone better off (in his own
estimation) and everyone else at least as well off. Being equivalent to
a unanimity voting rule, this criterion is difficult to operationalize.
In this void, three general approaches have been used to arrive at social
decisions: (A) utilizing some lower form of efficiency, such as minimum
cost, as a guideline for decisions; (B) voting with some form of majority
rule; and (C) executive edict. The dividing line between (B) and (C)

3



depends on the legal separation of the powers of government entities.

Environmental decisions in the United States must follow one or more
of these channels. Due to the failure of the market system to cope with
externalities and public goods, alternative (A) cannot be achieved pri-
vately. Since socially efficient decisions will differ from those which
are privately efficient, the inducement to individuals and organizations to
choose socially desirable activities must come from (B) or (C) above. Our
purpose is to examine what can be done to make alternative (A) as useful as
possible in implementing environmental management through governmental
action.

2.A. Levels of Decisionmakinq

Consideration of models for environmental decisionmaking necessarily
takes us back to the role of government in a predominantly free enterprise
system. The market system involves a multitude of private decisions being
made according to a heterogeneous set of decision techniques (formal or in-
formal). We assume that government agencies attempt to induce socially
desirable behavior while preserving decentralized individual choice. Con-
sequently, we must consider that there are various “levels" of decisions
being made.

Different levels can be distinguished by the nature and size of the
groups affected by decisions made. Let us assume that the set of all DMs
can be partitioned (all-inclusive with disjoint classes) in this way. In
reality, decision techniques will generally differ among different levels.
For example, legislative bodies may use different techniques than households
for making decisions. This introduces considerable difficulty into the task
of the model-builder.

If a government agency must correctly guide individual decisions, it
must not only know its own objectives and constraints (ultimately, its own
model), hut it must have ideas (ultimately, models) about how those on each
level make decisions. Of course, assuming that each class has a uniform
technique is quite a simplification. Individuals on the same level can use
different techniques. Attempting to model this situation or attempting to
partition DMs by techniques used is possible, but it lacks institutional
structure. Hence, the partition discussed above appears preferable.2

In an effort to represent the complex interdependencies of the real
world, the model-builder must find or devise functional models for each
level as well as specify the interactions among the levels. This appears
to be a permanent disability of social decision processes preserving decen-
tralization. Simplification through aggregation may relieve some of the
complexity problems but at a further sacrifice of realism. As we shall see
below, such are the tradeoffs made by model-builders.

2.B. Paradigms of Decisionmaking

One of the first dimensions in a discussion of decision techniques
is to what degree the problem at hand is quantifiable. Environmental
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decisionmaking involves both qualitative and quantitative modelling, and a
discussion of their similarities and differences may be useful.

in order to use either type of model , one would need a fairly good
understanding of the problem. The attempt is made to arrange elements in
a logically consistent manner. This, however, is generally the point of de-
parture. Once logically constructed, the qualitative model may yield re-
sults that are useful to a DM. This generally is satisfactory when the
problem at hand does not require a precise numerical solution,

The next step in quantitative models is to express the elements of
the problem as variables (controllable elements), parameters (uncontrol-
lable elements) and interreiationships among them. Mathematics is used as
the language of precision. The variables and parameters must be meas-
urable. The interrelationships must be specified by a formal mathematical
structure. Assumptions are made to transform real-world problems into
numerically solvable ones. The nature of the model will be highly depend-
ent on the criteria that one imposes upon it, if one needs partial numer-
ical justification for a basically qualitative decision, his demands for
precision will be less than one who needs an exact numerical solution.

Critics of quantitative modelling often argue that rigid math-
ematical formulation of many social problems hides more about the problem
than it illuminates. Furthermore, they warn that DMs have a tendency to
become complacent. Having a numerical solution induces a feeling that the
problem has been solved. While these flaws are clearly possible, they are
by no means necessary. It is possible for quantitative DMs to put numer-
ical results in the proper perspective.

it is assumed here that quantitative models are generally desirable
in environmental decisionmaking. However, environmental decisions involve
individual and social values that may not be cardinally measurable. in the
following section, we examine some mathematical models that have varying
degrees of “usefulness, " even if value is only ordinally measurable.

2.B.1 Mathematical Techniques

Decisionmaking can simply be defined as a process by which one (or
more) alternative elements is chosen from a set of possible alternatives.
The minimum size of an alternative set is two. Even with one “active”
alternative, a DM has the option not to choose it.

Fundamental to the decision process is the concept of objective.
One must have a reason for solving a decision problem. Objectives can be
expressed at various levels of generality, and the degree to which they are
useful in actual problems is a function of what other elements are subsumed
in them. For example, EPA’s objective of protecting the public interest
does not precisely guide negotiations with U.S. Steel to control its dis-
charges. Keeney and Raiffa (10) suggest that objectives be broad guide-
lines and goals be operational objectives. In this section on mathematical
models, objectives will be used to mean the latter. We shall return to
this question below.
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Stating one or more objectives separates the problem at hand from the
rest of the decision universe. Once this is done, one must realize what the
constraints on the decision variables are. The constraints may be natural,
technological and/or institutional and are considered immutable within the
confines of the immediate problem. As in the systems approach, one can
generalize the decision system to allow fixed elements in the original
problem to vary. At each level, some elements or phenomena will constrain
choice and these must be precisely specified.

Certain decision criteria may be imposed on the choice variables
that are not as fixed as constraints, but do constrain choice. For example,
one may insist that a reallocation of resources to meet environmental stand-
ards have no effect on the distribution of income. For simplicity, we shall
include criteria in the set of constraints. Within the constraints, choices
are made that best achieve the objective. It is difficult to imagine a pol-
icy problem that cannot (at least conceptually) be translated into one of
constrained optimization. When objectives, constraints and criteria can be
rigorously specified , we can make use of the optimization paradigm.

2.B.1.a Optimization Procedures

The techniques discussed in this section all contain measurable var-
iables and parameters, precise mathematical formulations of objectives and
constraints, and the behavioral assumption that the objective function is
being maximized or minimized subject to the constraints on the variables.
The techniques differ according to whether the variables and functions are
considered continuous or discrete, whether the functions and choice sets
satisfy various mathematical properties, whether time is explicitly incor-
porated and whether the variables are considered determinate or probabil-
istic. 3

Linear programing (LP) is a technique in which all of the relevant
functional relations are assumed linear. LP models generally employ con-
tinuous, determinate variables in nonstochastic relationships. One opti-
mizes a linear objective over a constraint set bounded by linear functions.

The attractiveness of LP stems from the ease with which the program
can be solved via several variants of the simplex method. Traded off
against this is the fact that linear models, though widely used, are fairly
gross approximations of actual situations. Broad linear models have been
used to characterize the dimensions of the U.S. economy. In some cases they
are purely conceptual , and in others they can yield numerical solutions.
The models provide some useful insights into the type, direction and degree
of the effects various sectors have on each other. Large-scale programming
techniques are available (15) for solution of some of these broad models.

Input/output models can be set up in the form of LP problems. Gen-
erally, however, they deal with the physical and dollar flows of the out-
puts of several aggregated industries to the industries themselves (closed
system) and to Industries and to final demands of consumers (open systems),
in the latter, if final demands are known, the system is solved for the
amounts of output of each industry that will satisfy industrial and
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consumer demands. Although based on restrictive assumptions such as perfect
competition, long-run zero pure profits, fixed proportions production tech-
nology and constant returns to scale, it is a useful tool for including the
productive sector of the economy in policy-related models. Leontief (17)
has included an environmental sector.

What is called nonlinear programming (NLP) need not be devoid of
linearity. -This model is applicable when at least one of the relationships
in a model is represented by a nonlinear function, Functions are generally
determinate and relationships nonstochastic.  When the constraints are
strictly binding (i.e. must hold with equality), classical Lagrangian tech-
niques can generally be used to generate optimal values of the decision var-
iables. When the constraints are inequalities, generalized Lagrangian con-
cepts become relevant. The Kuhn-Tucker first-order conditions generate
sets of optimal solutions. Other techniques must be used to generate actual
solutions.

With the greater generality of this method come considerable compu-
tational difficulties, even with favorable mathematical properties.
Quadratic programming is the special case of NLP that is most tractable,
as simplex methods can be employed in computation. In other cases, tech-
niques based on gradients (vectors of partial derivatives). are used to
grope along "hills" or "valleys" in search of maxima or minima. The process
can be long, involved and costly. in employing NLP techniques, the deci-
sionmaker  makes the reverse tradeoff of LP. tie opts for greater realism at
the price of computational difficulty.

Two complications of the above programing formulations involve the
introduction of discreteness (integer programming) and  probabilites
(stochastic or chance - constrained programming). Integer restrictions can
occur in otherwise linear and nonlinear problems. Some variables are al-
lowed to take on only the values of O and 1 , while others may take on any
integer values. The O, 1 variables occur in mutually exclusive decisions
where something is done or not. This form of indivisibility can be gen-
eralized to the case where the variables may be chosen only in discrete
lumps.

through
listing
on a va
tions.
is attr
classes

nteger linear models with all O, 1 variables are generally solved
explicit or implicit enumeration. Explicit enumeration involves
all possible solutions according to whether the variables each take
ue of 0 or 1. For n such variables, there are 2 possible solu-
The sheer magnitude may be forbidding. Hence, implicit enumeration
ctive. in this method, the constraints are used to eliminate
of solutions so that the resulting set is manageable.

When integer linear models involve the more general integer vari-
ables, a few different solution methods are applicable. The first involves
enumeration where the integers are each translated into binary (0,1) lan-
guage. The second involves solving the problem as if it were a linear pro-
gram and rounding to the nearest integer solution. The third is called the
“branch and bound” procedure and begins with the normal solution of the
linear program. This solution will not generally be all integer, but the
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optimal objective value is a bound on the all-integer solution.
sion tree format, the branch process consists of moving along the

4 Once the noninteger vaanetting decision nodes for each variable.
gotten, the variable is then restricted to be smaller and greater
next lower and next higher integers respectively. This restricts

n a deci-
paths con-
ue is
than the
the feas-

ible set of the LP problem. The process continues until the LP solution
generates all integer values. The fourth procedure is similar to the third
except that additional constraints called “cutting planes” are derived from
the LP simplex tableau , and these constraints do not eliminate any feasible
integer variables. This procedure also stops when the LP solution is all
integer. The latter three techniques are useful when the linear problem
contains both continuous and discrete variables.

The discrete problem becomes more complicated when the program is
nonlinear. Solution methods are somewhat analogous to the linear case in
that the nonlinear problems may be solved for each set of assumed values
of the discrete variables. Generalized solution processes for mixed prob-
lems are given in Benders (3) and Geoffrion (6).

A generalization of deterministic programming models to perhaps
better reflect real-world phenomena is the introduction of probability.
While the optimization format is preserved, the parameters of the problem
are taken as random variables. When some or all of the coefficients (for-
merly constants) vary according to (known) probability distributions, the
usual solution procedures are nullified. This problem is categorized as
a stochastic or chance-constrained programming problem.

The solution techniques become more complicated and in some cases
are nonexistent. One practical technique is to make the problem deter-
minate and use normal programming procedures. This involves choosing par-
ticular values of the random variables, the most attractive of which would
be their respective means. The problem generated would be a further ap-
proximation of the real-world, given that the model itself is an approxi-
mation of reality.

When the decision elements are random variables, the programming
problems are transformed into maximization or minimization of the expected
value of the objective function, subjected to constraints that have some
probability of being satisfied. Depending on the nature of the underlying
probability distributions and the ultimate mathematical form of the prob-
lem, conditions-may be generated to yield optimal solutions. Generally,
these stochastic problems are nonlinear, even if the related determinate
problem is linear. This further complicates the decision process.

We can combine the discussions of decisionmaking at various levels
and formation of objectives with that of programming models. This leads
to the discussion of multi-level decision techniques and multiple objec-
tive functions. The most general form of the multi-level decision problem
allows for decisions made at each level to be coordinated or influenced
by decisions made at “higher” levels. Higher, in this case, can mean hav--

ing more general objectives under which the decisions of the lower levels
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are subsumed. This framework can neatly characterize the internal work-
ings of an organization such as a corporation or government agency. In
the face of public policy problems, it can be used to represent the inter-
actions of some central authority with individual or group DMs. The sim-
plest model is a dual-level scheme which has the central authority and
private DMs on the high and low levels respectively.

To make the link with mathematical programming, we assume that we
can characterize each DM’s choice problem as a numerical optimization prob-
lem. We invoke the property of the systems approach that any system can
usually be thought of as a part of a more general system, to show how the
levels are linked. Recall that each mathematical model includes variables
and parameters. The parameters can be considered variables in a more gen-
eral system while they are fixed in the smaller one.

The essence of the coordination technique is the ability of the
higher level to influence the decisions of the lower level through the
manipulation of parameters. This manifests itself in two basic forms:
directly affecting the choice variables by introducing parameters to which
decision variables of the lower system must conform (model coordination)
and indirectly causing the DM to choose levels of variables desired by the
higher level through the use of incentives (goal coordination).

These techniques are powerful when the decisions of the various
agents are Iinked through some interaction variables. Both effectively
“uncouple” the decision problems so that output from the lower level can
be aggregated and used in the higher level objective. Although the un-
coupling is artificial, it is reconciled as the lower level decisions are
forced to conform to overall system constraints. A critical feature is
that room is left for some individual choice so that coordination does not
become total control. Some central planning procedures follow this general
format but leave out the possibility of individual choice.

The actual mathematical coordination methods (15, 8, 33) are becom-
ing more computationally tractable. The overall solution involves the
solution of lower-level programming problems under a given set of para-
meters, the collection and aggregation of these results by the higher level
and incorporation of the results into its objective function. Using the
results of the lower-level solutions, the central authority finds the op-
timal value of its objective over its set of coordinating parameters. Of
course, the solution of lower and higher-level programming problems de-
pends on the type of model used and the mathematical properties of the
relationships included.

Analysis of multiple objective functions also fits nicely into the
social policy framework. The objectives of various individuals or inter-
est groups are incorporated into a group or social objective in some man-
ner. The solution of multiple objective problems yields levels of the
choice variables assigned to each of the interested parties. The actual
solution techniques depend on the mathematical form of the composite ob-
jective function and of the constraints that may be imposed. The
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mathematical solution proceeds by either assigning weights to the various
parties and finding the best feasible value of the objective, or by vec-
tor maximization , which searches for the optimal value of each variable
iteratively as the values of the other variables are held constant.

When time is an explicit variable in a problem, the need for tech-
niques of dynamic optimization arise. The classical problem in the calcu-
lus of variations (CW) is to find the trajectory of a ball from an initial
to a terminal location that minimizes the time travel led between points
(under frictionless  conditions). An essential concept in the CV and opti-
mal control (OC) is that of the functional. A functional is a mapping from
a set of functions into real numbers or vectors. An integral is an example
of a functional and many CV and OC models contain maximization or minimiza-
tion of integrals of some value function over time.

The solution of CV problems comes from examining the variation in
the integral value as the choice variables are perturbed by small amounts.
Setting the first variation (analogous to the first derivative) equal to
zero yields what is called Euler’s equation. This first-order, partial
differential equation may be solved for one or more functions that either
maximize or minimize the integral. The sufficiency of these outcomes is
either assumed or demonstrated through complicated mathematical manipula-
tions.

OC models attempt to solve basically the same problems as CV, but
the techniques can be more sophisticated. Given some integral objective
function, the variables in the problem are categorized as state variables,
control variables, costate variables and time. For each point in time,
the state variables are relevant indicators in the problem while the con-
trol variables are elements that can be manipulated through the decision
Process. The state variables are related to the control variables and
time in a s y
control prob
only on time
and time).

Solut

tem of differential equations called state equations. The
em can be characterized as open loop (optimal path depends
or closed loop (optimal path depends on the state variables

on of optimal control problems, as developed by Pontryagin
(22), involves the creation of a Hamiltonian system (similar to a La-
grangian system) which conceptually yields solvable differential equa-
tions. The costate variables are analogous to Lagrangian  multipliers ap-
plied to state equations. The function that optimizes the objective in-
tegral is the solution, and depending on the mathematical properties of
the functions may be a unique and/or global optimum.

Both CV and OC techniques allow the imposition of additional con-
straints. The solution techniques are not altered drastically and basi-
cally follow Lagrangian  procedures. OC can be generalized through the in-
troduction of probability. Stochastic control involves the inclusion of
random variables in the control problem. Adaptive control involves re-
evaluation of the problem at certain decision points in the time horizon
so that the control variables may be adapted to current conditions.
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Dynamic programming (DP) proceeds through discrete time, ostensibly
with the objective being optimized at each point in time. A solution to a
DP problem is a vector of choice variables for each point in time. The
process may be best described on a conceptual decision tree. One must find
the set of sequential decisions that maximizes the value of the objective
over
fins’
node
init

time. Backward recursion is used to solve the problem; i.e., the best
consequence is chosen and the path back to its associated decision
is found. This occurs recursively until the path is traced back to
al time.

Whereas the characterization of dynamic problems in terms of CV,
OC and DP is logically valid, it often happens that unless some restric-
tive mathematical assumptions are made, the problems become extremely
difficult to solve for numerical time paths. Hence, these techniques are
often impractical when precise numerical answers are needed. They can
provide useful normative insights into how to induce the real-world
system to approach some optimal performance.

2 . B .1.b. Game Theory

Game theoretic models are useful when decisionmaking involves some
conflict of interest. Most social policy decisions are of this kind, given
scarcity. The two simplest forms of games are those of an individual
against nature and two individuals against each other. We shall consider
only the latter.

Each individual in a two-person game is assumed to have a set of
strategies to play against the other. For each pair of strategies played,
there is a payoff function that assigns numerical rewards to each player.
The reward structure may be such that what one wins the other loses (zero-
sum) or that the players share some nonzero reward pie (constant sum).
For zero-sum games it was shown by Von Neumann and Morgenstern (32), that
if each player chooses the strategy that harms him least given that the
other attempts to harm him most, then that strategy pair will result in a
solution in pure strategies (determinate game). If a solution does not
exist in pure strategies, then the game is generalized by assigning prob-
abilities to the strategies (mixed strategies). The players are assumed
to maximize expected value, i.e., the sum of rewards from each strategy
weighted by probability of choice. In general, a mixed strategy solution
is found through LP techniques.

When the number of interested parties is greater than two, the pos-
sibility of coalition-formation exists. Players would join coalitions if
the reward they receive in the coalition exceeds the reward from playing
alone. Reward value is assigned to coalitions through the creation of a
two-person game between a coalition and a coalition of all other players.
The payoff to the coalition in the solution to this game is its value.
The function that assigns value to coalitions is called the characteristic
function.

An imputation vector is a vector of rewards to various players in
the game. Two sets of imputations are important. One is the set of
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imputations whereby one player cannot be made better off while others re-
main as well off (set of Pareto optimal imputations). One property of the
Pareto set is that for any imputation outside of the set, one can be found
in the set to dominate it in the sense of granting a higher reward to at
least one player. The other set consists of imputations that are undomi-
nated by any imputations outside of the set (the core). The core is a sub-
set of the Pareto set, but may not exist in some games. Clearly, any social
DM would want the resolution of the conflict to be in the core of the game.

There are several other sophisticated game theoretic models that we
shall ignore here. The rationale for this is that if a situation is not
conducive to the structure of games already discussed, then the more sophis-
ticated game models are irrelevant.

2.B.1.c.  Statistical Techniques

Although probability was introduced in some forms of programming
problems, the approach is basically different from statistical analysis.
Variables here are considered random variables which take on values ac-
cording to some probability distributions. Probability can be defined in
many ways. The classical definition is that of the frequency of correct
outcomes as a ratio of total events that could have had correct outcomes.
The Bayesian definition is that DMs have prior subjective probability dis-
tributions that are changed through learning by observation into posterior
distributions. Both techniques have been used in regression analysis.

In its simplest form, regression analysis attempts to establish
some fairly precise functional relationships between a set of dependent
and a set of independent variables. However, the nature of the relation-
ship depends on type of regression procedure used. The relationship
estimated usually satisfies some desirable properties, e.g., minimum
variance.

Based on cross-sectional and/or time-series data, the relationship
is fitted to the data according to the properties mentioned above.

Regression techniques have become varied and sophisticated. Linear
and nonlinear models are now popular as well as those that mix continuous
and discrete variables. Techniques are available to solve systems of simul-
taneous relations and to test and correct for statistical difficulties such
as serial correlation. Without getting into the mechanics of regression,
we assume here that regression is used to extract “trend” and “deviation
from trend” with respect to the variables involved. These are important
in computer simulation and/or forecasting.

Computer simulation is generally used for one or more of the follow-
ing reasons (24): the original technical problem is too difficult to
solve, the DM is trying to get insight into a complex real situation, or
the DM is solving a problem that does not yet exist in the real world.
Computer models are set up and solved numerically with the use of actual
and hypothetical data. The relationships involved in the computer model
may be gotten from previous data or may be fabricated.
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When computer simulation takes place over time it is equivalent to
scenario-building. Whereas scenarios are created to guide us in decisions
made now that affect us in the future, they are based on assumptions about
a myriad of dimensions of the problem and are subject to “catastrophic”
occurrences that destroy trend. The danger is that the extrapolation of
relationships based on past data may be fairly useless to guide present and
future decisions. Arguments in favor of scenario-building is that sce-
narios put "bounds" around the problem and are better than operating in a
vacuum. Hence, these techniques may be useful in policy analysis, though
the exact results cannot generally be implemented per se.5

Statistical decision theory tends to have more of a Bayesian than
classical underpinning. DMs are thought to have value or utility functions
over the alternative choices in the model. Risk is introduced by assuming
that outcomes happen according to known probability distributions.6 The
probabilities are often subjective, following the Bayesian tradition. Based
on these probabilities and a DM's attitude toward risk, outcomes are gen-
erally chosen in an effort to either maximize expected utility or minimize
expected loss.

Attitude toward risk is implicit in the shape of the utility or loss
function. This follows from the process of determining the probabilities
that need to be assigned to some lottery (composite of outcomes, each with
an assigned probability) that make the lottery equivalent to some reward
gotten from a certain outcome (certainty equivalent).

In an effort to make the value function operational, Von Neumann and
Morgenstern (32) developed a set of axioms which imply a value index that
is cardinally measurable.

2.B.2 Quasi or Nonmathematical Techniques (Methods of Decisionmaking)

Individuals may simply make decisions according to “gut-feelings”
or other nonmathematical, highly subjective methods. The person may, how-
ever, attempt to quantify some, but relatively few, of the elements of the
decision problem. We shall call this quasi-mathematical decisionmaking.

As Arrow (1) has shown, one of the ways that we can expect a solution
to social or group decision problems is to have a dictator. The solution
is simply the set of alternatives that is preferred by that single indi-
vidual. The other method is to have a set of rules which dictate how
choices are to b-e made. In our society, the closest we come to these two
are orders from the President and executive agencies under the guidance of
the Constitution. Arrow showed that under "reasonable" assumptions about
the social choice mechanism, group decisions processes are fraught with
difficulties (including the revered majority rule with the paradox of
voting). There does not exist a social welfare function to generate so-
cially optimal alternatives. In the absence of such a decision process,
we shall discuss four alternatives: voting procedures, delphi processes,
survey methods and cost-risk/benefit analysis. Although the former two
have rather well-developed mathematical foundations, we shall treat them
as nonmathematical for policy purposes.
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The essential ingredients of a voting procedure are a group of DMs,
a set of rules governing the deliberations, a voting rule, and a set of
alternative choices. Although the formal approaches to these problems are
varied and sophisticated, we shall treat simple alternatives here. Assum-
ing some status quo institutional structure, the alternatives for group
choice will amend the structure by changing previous aspects or filling
voids. The DMs can be thought of as representing other DMs and having some
composite preference-function of themselves and their constituents. For
every issue that comes before the group, they then can have a “position”
by which to judge alternative solutions to the issue. If one alternative
is reconcilable with their positions (or becomes reconcilable through argu-
ment, Iogrolling, etc.), they may be induced to vote for it. The alterna-
tive that receives the most favorable votes, subject to some rule about the
minimum percentage of votes necessary, will be chosen.

The alternative chosen is thought to reflect the group’s preferences.
However, under any voting rule short of unanimity, there are those members
who endure a cost of accepting a choice that they voted against. This
type of process can be generalized in a game-theoretic sense (Riker (23))
by allowing the members to form coalitions in order to get certain alterna-
tives chosen,

The Delphi process is somewhat different from the voting process.
To address some particular problem, a group of “experts” is consulted for
their opinions about its solution. The group never meets, and conflicts
inherent in personality confrontations are meant to be avoided. The opin-
ions of the experts are compiled and/or synthesized, and the result is
sent back to the experts for further opinions. The process is thought to
continue and converge to some consensus decision, The process was developed
at Rand Corporation and the literature on it has been growing (26).

Survey methods can also be a nonmathematical approach to decision-
making although the data can be input into quantitative models and sub-
jected to statistical (inferential) methods. In the case of surveys, those
who probably will be affected by the decisions are asked (directly or in-
directly) what their preferences or past decisions over the alternatives
are. An essential element in the process is the creation of a question-
naire whereby the information received is reliable (consistent and ac-
curate) and useful in the problem solution.

The core of cost/benefit (CB) analysis is the estimation of the bad
and good consequences that result from the potential choice of each alter-
native. We consider this to be a quasi-mathematical technique since all
costs and benefits are generally not quantifiable in environment-related
decisions. One attempts to quantify, generally In dollar terms, as many
aspects of the problem as possible. If one alternative is possible, it will
be chosen over not choosing it if the net benefits of choosing it are
greater. When many alternatives are considered, they can be ranked ac-
cording to net benefits, The one(s) with the highest net benefit will be
chosen. If only the quantifiable dimensions of the problem are considered,
then maximizing the expression (Benefits minus Costs) yields the marginal
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benefits-equals-marginal-costs-rule necessary for optimal choice. If qual-
itative dimensions are also included, then a DM can combine the net benefit
calculations with other subjective considerations to yield an overall opti-
mal choice. Since many costs and benefits accrue in the future, the tra-
ditional method of discounted present value is employed. Anticipated costs
and benefits are deflated by discount factors incorporating the time period
and a discount rate. The costs and benefits are summed for each alternative,
allowing direct comparisons. The discount rate is a function of subjective
time preferences and interest rates.

If we weight the future occurrences of costs and benefits by proba-
bilities of their occurring, we effectively transform CB into RB analysis.
Expected present value replaces the present value discussed above,

3. Models Recommended for Environmental Management

In terms of the five activities the EPA must perform in pursuit of
the public interest (discussed before Section 2.A.), we shall consider man-
agement to include the latter three. In fact, we shall take both the eco-
logical and technological systems as given and outside the realm of en-

7 Hence, we will deal with environmental Iinkaqesvironmental management.
to the economic/political/legal systems, the determination of soc
ability and the translation of these into policy actions. All of
very strongly related to the EPA-specific model criteria D, E and
Section 2. We proceed by evaluating the models discussed in Sect
in terms of these activities and criteria.

al desir-
these are
F of
on 2.B.

EPA has the role of representing the environment in the social
decisionmaking process. Broadly speaking, social decisionmaking involves
the decisions of private individuals and firms as well as those of govern-
ment. The goals of individuals, firms, and other government agencies af-
fect the functioning of the EPA. Within government, it must reconcile its
activities (i.e., those which are not explicitly stated in legislation)
with other social objectives. A clear case of this is the energy develop-
ment vs. environmental degradation dilemma. Coexisting with other govern-
mental entities places certain constraints on EPA activities as does its
budget. Having mentioned these intra-governmental concerns, assume that
they are resolved via some exogenous mechanism. Although our general
modelling techniques could handle such problems , we restrict our scope to
intra-EPA problems.

With the help of basic research in and out of EPA, the physical/
biochemical systems are being model led with increasing sophistication.
The interface of these models with actual decisionmaking leads into the
realm of environmental management. Information from the natural sciences
is useful in identifying substances and their concentrations that may have
serious, perhaps irreversible, effects on the environment. It also gives
clues about how the by-products of human consumption and production inter-
face with natural ecological processes. There is no doubt that this in-

formation is necessary for environmental management, but it is clearly not
sufficient. One reason is that the models themselves are approximations

15



and include “error.” The other is that natural science information does
not include the values and preferences of the people in society. It is the
value problem that causes the management problem to be difficult.

In an atomistic market system with no imperfections, decisions made
according to self-interest would theoretically lead to the socially effi-
cient allocation of resources. That this is not the case leads to two re-
lated problems. One is to determine the socially efficient allocation of
resources. The other is that two important sources of market failure, viz.
externalities and public goods, fall squarely into the lap of EPA.

it was noted in Section 2.B.2 that the only guaranteed answers to
the social choice problem are dictatorship and a set of comprehensive writ-
ten edicts. There appears to be no way to incorporate the preferences of
individuals and groups into a consistent decisionmaking tool (social wel-
fare function). Among other things, we have not devised a way to find the
socially preferred state of the environment.

Conceptually, it is possible to formalize the social choice problem
with nearly every type of model or method discussed above. The problem of
finding a Pareto optimal allocation of resources has been model led as a
vector maximum problem with excess demand and natural resource constraints
(2) ● institutional constraints can also be added. As we shall see below,
multi-level and multi-objective techniques are directly applicable. A
game-theoretic model (29) would include coalition formation in the alloca-
tion of resources and would be very closely allied to voting models, if not
methods. Actual voting (i.e., by referendum of all citizens), cost/benefit,
Deiphi and survey techniques seem precluded by the sheer “level” of the
problem. Explicit introduction of time would involve the dynamic optimiza-
tion models. Uncertainty can be introduced to make nearly all of the opti-
mization techniques stochastic, Regression appears difficult as it cru-
cially relies on real data , while simulation is possible with its power of
fabrication.

The practical difficulties of modelling the social choice problem
should be apparent. We can enumerate some in terms of the model criteria
discussed at the beginning of Section 2. Measurability and exactness of
fit would be incredibly poor as would the ability to be solved and/or
tested. The flexibility of the model would be considerable, and it is a
social choice model, Externalities and public goods have been incor-
porated in these models (27, 9), but even wi
policy actions is virtually impossible. Add
decentralized decisionmaking as much as poss
more difficult to solve.

The socially desirable mix and levels

h this the translation into
to this a desire to preserve
ble, and the problem becomes

of environmental activities
are also difficult to achieve because many environmental phenomena are ex-
ternalities and/or public goods. Externalities are defined as objects or
actions that occur as the result of normal economic activity and directly
affect the behavior of other economic agents. The latter are assumed to
have no direct control over them. Externalities are external to the market
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system since, although there is a quantity supplied, there are no supply
and demand schedules to generate market prices.

The trouble caused by externalities is that externality producers
have no private motivation to take the effects that their activities have
on others into account. Depending on whether the externality is beneficial
(e.g., a beautiful garden to a passer-by) or detrimental (e.g., S02 emis-
sions), the activity-levels associated with the externality are either too
low or too high for social efficiency. In effect, the decisions of the
recipients are "coupled" with those of producers through the externality.
This affects the f
in the aggregation

The externa
lities as a source
them as anomalies,

eedom of choice of the victims and also causes problems
of value.

ities literature in economics began discussing externa-
of breakdown in perfectly competitive markets. Treating
researchers tried to develop nonmarket tools to incor-

porate them into the market system. Later, the pervasiveness of externa-
lities was realized and their treatment in the literature broadened. The
bias remains, however, toward solutions that utilize private decisions as
much as possible. The ultimate theoretical result is to get private DMs
to choose socially desirable activity levels in the pursuit of their pri-
vate interests.

The approaches can be broken down into the following, as stated in
Muskin and Sorrentino (21):

. ..(a) taxes based on damages produced to induce externality levels
consistent with Pareto optimal ity; (b) definition of property rights
or licenses which create ownership of the medium in which externali-
ties are expressed; (c) prices for “artificial” commodities in an
extended market system; (d) wealth transfers associated with pri-
vate bargaining solutions; (e) legal discharge limits with penalties
for violation set for a particular space or particular externality
producer; and (f) per unit charges based on the social costs of
deviations from the limits in (e). These methods are not mutually
exclusive. Approach (e) with (f) is a real-world version of (a),
the property rights in (b) may be a starting point for (d), and
the licenses in (b) may be the artificial commodities in (c).

The economic approaches must be contrasted with the legal imposition of
discharge levels and/or control activities. In most cases, these ap-
proaches are static and the variables, including externalities, are de-
terminate. Externalities may have aspects of public goods in models and
in the real world.

Public goods are defined as those commodities whereby the consumption
of any one agent does not detract from the consumption of others. Some
essential aspects of the public goods problem are the nature and size of
the group “sharing” the goods, the degree of sharing, and the economic
rationality of not revealing true preferences for the goods in the hope
that others provide them without excluding anyone. Private producers
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would not provide the goods under these circumstances and the market fails.

The nature and size of the group sharing the good is one primary ele-
ment in the theory of clubs (28). Models were developed that theoretically
determine the socially optimal amounts of the public goods that should be
produced as well as the number of parties that should be allowed in the club.
The type of sharing has been the subject of a considerable literature.
Samuel son (27) defined a pure public good as one in which everyone who con-
sumes the good consumes the entire amount (e.g., national defense).
Mohring and Boyd (20) defined quasi public good as one where each consumer
consumes some fraction of the total quantity of goods. The sum of the
fractions is greater than one to represent sharing. Finally, Holtermann
(9) split public good into the characteristics of availability and utiliza-
tion and called the composite a mixed public good. Availability is the
public aspect and is consumed by all in the relevant group. Utilization
is private, excludable and appropriable.

Having resigned ourselves to a lower level problem than the overall
social choice problem, we can examine the relationships of the modelling
techniques to aspects of the environmental problem.

Mathematical programming techniques are quite useful approximations
to real-world environmental problems if variables, objectives and con-
straints are carefully specified. The optimization paradigm is not an
alien behavioral device, and numerical results can guide policy decisions.
Depending on the particular problem and the need for accuracy, there is
considerable flexibility in being able to use linear, nonlinear, discrete
and dynamic formulations. Nearly all of these can include uncertainty
through the introduction of random variables. The models are generally
flexible, can

)
yield reasonable numerical results (albeit through various

approximations and can be subjected to sensitivity analyses.

The use of programming models has been widespread in the environ-
mental economics 1 iterature. Three LP examples are (11, 13, 21). One
standard paradigm is to find a mix of pollution control techniques that
minimizes the cost of achieving previously chosen environmental standards.
These programs generate dual variables or shadow prices of the environ-
mental constraints that can be used as effluent charges.

While game theory yields insight by depicting explicit strategies
in conflict-of-interest situations, numerical results for policy purposes
generally would be generated through programming techniques, These models
are quite flexible.

The dynamic optimization techniques explicitly introduce the time
dimension. Nearly all decisions made by the EPA have their most signi-
ficant effects in the future. The problem of specifying functions in a
programming model is complicated by having to specify them over time as
well. This allows for more approximation error. Approximation techniques
to solve differential equation systems can be more cumbersome than those
to solve programming problems. Hence, sheer computational difficulty often
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prevents dynamic optimization techniques from being very useful policy
tools. As with game theory, however, these models can yield broad in-
sights. Dynamic environmental control models involve both resource use
and environmental degradation.

Regression can be useful to test various hypotheses about the ef-
fects of environmental decisions. Simulation can be static or dynamic,
determinate or stochastic and may include optimization. Due to its flexi-
bility, a carefully done simulation can yield useful policy guidelines
through reasonable numerical results.

Voting as a method of environmental management will be ignored here-
after. It is assumed that voting has been done to elect officials who vote
on legislation affecting the environment, Delphi and survey techniques can
be important in environmental decisionmaking,  but we can regard them as
sources of input into broader models. For example, Delphi can be used to
set standards for toxic substances , while surveys may provide estimates of
the value of environmental amenities (4).

The three models/methods that are considered most useful for en-
vironmental management are multi-level models, decision theoretic-risk
models and cost or risk/benefit methods. We shall discuss them more fully
in this order, While the basic theoretical foundations are discussed in
some detail, it is the potential for operationality that is crucial,

3.A. Multi-Level Decision Approaches

The multi-level approach to social choice problems was introduced
in Section 2.B.1.a. The discussion of “levels” of decisionmaking in Sec-
tion 2.A. was crudely combined with that of mathematical programming. The
purpose of this section is to proceed more deeply into this decision mech-
anism, thereby exposing its usefulness for environmental decisions.

As stated above, the environmental problem involves a central au-
thority (EPA) and several private DMs (individuals and firms). EPA de-
sires to influence the decisions made by private DMs to guide them toward
socially desirable decisions while preserving decentralization. We will
assume that the variables, objectives and constraints of the central au-
thority’s and the private DMs’ problems are quantifiable. The initial
discussion will be general. Specific programming considerations will
follow.

Let us suppose, then, that we have the following general optimiza-
tion problem:

maximize f (x)
XEX

subject to g(x) Lo, h(x) = 0 (3.1)
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where x is a vector of general variables taken from some “feasible” set,

X = {x:x ~ O}, f is a real-valued function and g, h are vectors of r.v.

functions gj, hk, j=1, . . . . J, k=1, . . . . K. Nonnegativity of variables

will be assumed throughout.

Suppose also that there are i=1, . . . . I “subsystems,” and that the
objective function may be written in separable form:

I
f(x) = ~ fi(x) . (3.2)

i=1

If the system were completely decentralized, the constraints

could be

problem

decomposed Into g1
i, ● *., ‘K

i for each i. There would be no

n using the solutions to the individual prob ems

max fi(x)
iXisx

S t . gi(x) > 0, hi(x) = O

to get the solution of (3.1).

(3.3)

It is often found, however, that the decision subsystems are not
independent.
variables, z,

max
xEX

This can be reflected by introducing “interaction” —

into (3.1), which becomes

f(x,z)

(3.4))S t . g(x,z) 20, h(x,z) = O

initially, let us break (3.4) into two subsystems. The
problem becomes

max f(x,z) = f1(x1,z1) + f2(x2,z2)

S t . g1(x1,z1,z2) z O, h1(x1,z1,z2) = O (3.5)

g2(x2,z1,z2) 2 0, h
2(x2,z1,z2) = O

where x = (x1:x2); z = (z1:z2) and g = (g
1:g2), h = (h1:h2).

. . . .

Although the objective function is expressed in terms of independent
functions, the presence of interaction variables in each constraint system
causes a coupling. The individual problems are no longer independent.

Essentially, then, in order to preserve the desirable effects of
decentralization, something must be done about the coupled subsystems.

20



A very plausible approach is to convert the problem into a multi-level
form, which, through the use of coordinating variables, effects a
decomposition of the interdependent constraint systems.

3.A.1. Model Coordination (Feasible Method)

This “primal” approach actually constrains the interaction variables
to be equal to some fixed value. If we let w be this fixed-valued vector,
then in (3.4). we stipulate that

Using a two-level system
levels:

((1) Level 1. Find indiv

F(w) = max {f(x,w)
Xlzx

z=w.

we can set up the problems of the two

dual maxima which are aggregated as

s.t. g(x,w) ~0, h(x,w) = O} (3.6)

(2) Level 2. Find max F(w). (3.7)
Wcw

The coordinating (or fixed interaction) variable w is determined
by Level 2 (center). The iterative procedure of solving (3.4) in this
form begins with Level 2 giving Level 1 an estimate of w that it thinks
will maximize F(w). Taking this w as given, Level 1 solves its problem
for x. Level 1 then feeds these values to Level 2 who evaluates F(w)
and attempts to find another w. Let W = {w:F(w) exists},

in the form of (3.5), this accomplishes a decomposition of g(x,z]
and h(x,z) into two independent subsystems, each of whose problem now
looks like the following:

max fi(xi,wi)

‘ iE xi

St. gi(xi,w1,w2)
~o

hi(xi,w1,w2) = O.

The problem, of course, can be made more general by increasing the
number of subsystems. (3.5) can become

(3.8)

max f(x,z) = x ~:1 fi(xi,zi)

‘i&xi

S t . gi(xi,z1
i) . . . . zI

i) ~o

hi(xi, z1
i, . . . . zI

i) = 0,

i 1,= ..0, I,
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i
where z. is the vector of interaction variables emanating from system i

J
‘to system j. Also we can generalize, if necessary, to include more than

two levels in the problem.

3.A.2. Goal Coordination (Dual Feasible Method)

Again using the two-level system we can look at another approach to
the coupled subsystem problem. This approach essentially severs the ties
between the coupled subsystems. If zi is a potential variable affecting
subsystem j, it is conceptually “stopped” and replaced in midstream by Wi,
which j receives. The receiving system j treats Wi as if it could deter-
mine its desired value.

This cutting procedure implies that Zi # wi is possible. However,
once independent subproblems  have been created, to insure that the overall
system is optimized, the “interaction balance principle” is invoked. This
states that Zi should equal wi, and a penalty function based on Lagrange
multipliers is introduced to induce such an equality.

The problem is formulated as:

max f(x,z,w,A) = f1(x1,z1) + f2(x2,z2) + A’(z-w)
(x,z,w)

(3.10)

sot. g1(x1,z1,w2) Z 0, h
1(x1,z1,w2) = O

g2(x2,z2,w1) & 0, h2(x2,z2,w2) = O

where A’ is a transposed vector of penalties. The breakdown into two
levels is slightly different from above. Define the set K such that
the (x,z,w) in it satisfy the constraints in problem (3.10). To let the
A be the only multipliers that the second level is explicitly concerned
with, we stipulate that (x,z,w)EK.

(1) Level 1. Find individual maxima that aggregate into

F(A) = m a x f(x,z,w,A) (3.11)
(x,z,w)sK

(2) Level 2. Find A such that z-w. (3.12)

Level 2 coordinates with values of the penalties.  The iterative
procedure is analogous to the feasible method, except for the difference
in coordinating variables.

Expanding the penalty function we get:

A’(z-w) = Al (z1-w1) + AZ (z2-w2)

The subsystem problems each become:

(3.13)
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(3.14)

max fi(xi,zi) + Ai zi - A. w.JJxi,zi,wj

S t . gi(xi,zi,wj )~o

hi(xi,zi,wj) = O

i,j = 1,2, i + j.

This problem can also be generalized to the case of more than two
subsystems and more than two levels.

3.A.3. Underlying Mathematical Structure

As the above discussion has been general, some underlying mathemat-
ical structure must be provided. This is usually provided by the use of
projection in the primal or feasible method and the use of the generalized
Lagrangian  in the dual feasible method. The object in each approach is to
establish a function for which the variables are solved at the “higher”
level and interposed at the “lower” level.

As we have seen above, the primal problem (3.4) can be translated
into the dual-level problem (3.6) and (3.7). The center searches for the
w* that maximizes the aggregate private returns. Because of the uncoupling
of the private problems, this leads to a maximization of the objectives
of each of the private DMs.

Three basic questions must be raised about the practical operation
of this approach. The first question is whether the center’s and the pri-
vate DMs’ problems can be quantified. In general, this must be answered
empirically in any situation. We have assumed quantifiability as a pre-
requisite to recommending this type of model. The second question is
whether the problems have solutions. We have addressed this in general in
Section 2.B.1.a. , and we can apply that discussion directly to the private
DMs’ problems (as per (3.8)). The relationship to the center’s problem
is more subtle.

For each subsystem, let Zi be the vector of interconnection vari-
ables and wi the vector of values which they are given by the center. F (W)
in (3.6) is called the primal function. F(w) is to be maximized over the
set W. The center’s primal problem is “projected” into w-space from the
private DM problems as the latter contribute to F(w) by solving uncoupled
problems (3.8) over the xi. Since (w=w1,, . . . . wI) and the subsystems are
uncoupled, F(w) can be written

F(w) = z .tl F,(wi). (3.15)
.L-.L  1.

Some results due to Geoffrion  (7) establish the efficacy of the
jetted primal problem. The first set-of results is that problem
infeasible when (3.7) is, (A,fl) optimal in (3.4) implies that O
in (3.7), and Q optimal in (3.7) with R optimal in (3.6) implies

pro-
(3.4) is
s opt mal
that 12,GJ)
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is optimal for (3.4). The latter two results show the close relationship
between the primal problem (3.4) itself and the projected primal problem
(3.7). However, solution to (3.7) is conditional on the existence of 2..

Geoffrion also shows that if X is compact and convex, W is convex
and f, g and h are concave, then F(w) is concave.8 This result establishes
the existence of a solution to the projected primal problem as well as
identifying any local maximum (not necessarily unique) as a global maximum.

The dual approach translates problem (3.4) into a two level coordi-
nation problem such as (3.10) and (3.11), (3.12). The Lagrangian function
of the form

L(x,z,w,A) = f(x,z,w) + A’(Z-W) (3.16)

is used as the basis of the procedure. As noted above, the (x,z,w)cK,
which incorporates the private DMs’ feasible choice sets. The interaction
variables, z, are not fixed at value w by the center. The coordination
procedure begins with the central authority proposing a particular A,
which is a penalty vector based on the deviation of z (produced levels)
and w (desired levels). The private DMs solve problems (3.14) and send
the results to the center. These are aggregated by the center, the com-
pliance between z and w checked and a new A sent out. This process con-
tinues until perfect compliance is achieved and the overall objective is
maximized. The latter goal needs some further explanation. We first con-
sider the generalized Lagrangian  function, (3.16).

Expression (3.16) is said to have a saddle-point at (~,~,~,~) if:

(3.17)
AAA

This states that (x,z,w) maximizes L while ~ minimizes it.

Kuhn and Tucker (14) gave conditions for the optimization of a gen-
eralized Lagrangian function which are necessary and under correct con-
vexity assumptions sufficient, for (x,z,w,A) to be an optimum. They also
proved that (x,z,w,A) is a saddle-point of L if (x,z,w) maximizes L over
K, the constraints hold at (x,z,w) and the scaler product of the multiplier
vector with the constraint vector evaluated at (x,z,w,A) equals zero.
What we need from this result is that under certain conditions the A per-
forms the minimizing function in the saddle-point condition. They also
showed that if (x,z,w,A) is a saddle-point for L, then (x,z,~) solves the
primal problem. We are now ready to define the dual problem.

F(A) in (3.11) is called the dual function, defined over A where
A = {A:F(A) exis t s} . The dual problem is defined as:

min F(A)
AEA

Three important
first is that the dual

results adapted
function F(A) ~
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from Lasdon (15) are given.
f(x,z) for all (x,z,w)cK and
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The second is that for (x, z,w)cK and AcA, (~,~,~,~~  is a saddle-point if
(x,z,w) solves the primal, A solves the dual and f(x,z,w) = F(A). This
establishes the dual problem as part of the optimization. The final result
is that F(A) is convex over any convex subset of A. We hesitate to impose
convexity on the set of multipliers as we did with W in the primal ap-
proach. The last result establishes the existence and global (not neces-
sarily unique) property of any optimum.

Once established, then, the primal and dual functions are the tools
by which the center coordinates the lower level problems.

3.B. Decision Analysis of Risk

In Section 2.B.1.c.  , we mentioned the bare elements of statistical
decision theory. This section will expand on those remarks by explaining
how a risk-theoretic analysis of a public policy problem may give insights
and results not provided in other approaches. Much of the discussion is
from Keeney and Raiffa (10) and references therein.

The social decision problem at the basis of this paper is to find a
set of choices that can be deemed desirable in the face of resource scar-
city, multiple (sometimes conflicting) objectives and uncertainty. We
shall here emphasize the latter two.

The necessity of understanding a problem qualitatively before it
is specified quantitatively was mentioned above. In particular, a set of
objectives must be identified. Often a hierarchy is formed, and the level
of detail with which lower and lower level objectives are specified is a
matter of convenience. On the one hand, increased detail may add to the
understanding of the problem. On the other, the increasing complexity
may confuse the DM to the extent that he loses sight of the overall prob-
lem. The correct degree of detail depends on the situation. The lower
level objectives must always be consistent with the overall objectives
and collectively must “cover” it.

If we consider the choices to be actions, we can characterize the
consequences of these actions in terms of the specified objectives. We
shall associate with each objective an attribute. A consequence of an
action will be a vector of levels of these attributes. We shall hence-
forth speak of the multiattribute problem. Attributes are called compre-
hensive if knowing the attribute level is sufficient to know the extent
that the objective has been achieved. They are called measurable if one
can obtain both probability distributions and preference orderings over
their levels. Some desirable properties of attributes are that they be
complete (cover all aspects of the problem), operational, decomposable,
nonredundant and minimal. Choices over actions are based on preference
rankings of the attributes. When exact attributes cannot be found,
proxies are sometimes useful.

We shall discuss the multiattribute problem with respect to theo-
retical characteristics, but the ultimate aim is to stress operational
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aspects. In the case of certainty we shall confront the value function.
Under uncertainty, utility functions will surface. While the initial dis-
cussion is couched in general terms for an individual DM, it will be gen-
eralized to some extent to incorporate group decision problems and pref-
erences over time. Justification for recommending this approach is also
given.

3.B.1 Theoretical.Considerations

The DM must choose an action, asA, from the set of possible actions.
if we assume a vector of attributes (evaluators), (X1, . . . . Xn), theirvalues are denoted as (xl, . . . . Xn )sX where X is a set in consequence
space.

The procedure for establishing preferences over actions with cer-
tain consequences appears to be easier than the uncertain case, though
not inordinately so. We shall assume that there is a one-to-one rela-
tionship of actions to consequences and shall speak of preferences over
consequences. Let R denote the ordering, “preferred or indifferent to.”
We are looking for a value function, v, such that for consequences x and
x’:

XRX ' if and only if (iff) v(x1,.. .,xn) ~v(xl’,. ..,xn'). (3.19)

in general, it would be desirable if

v(x1, . . .,xn) = f[v1(x1), ..., vn(xn)]. (3.20)

The Pareto (vector maximum) criterion discussed in Section 2 allows
us to partially rank the x with a v(x). We can say that x dominates (D) x’
if xi z xi' for all i and xi > xi’ for some i. The set of undominated con-
sequences is the Pareto or efficient set. Every DM would want to achieve
this set. it can be theoretically achieved by iteratively fixing the
levels of all but one attribute and optimizing over the remaining one, or
by setting linear weights over the attributes and optimizing the weighted
sum. The former technique treats attributes as independent without im-
posing judgments on their relative importance. The latter imposes an ad-
ditive structure, and the choice of weights affects the relative importance
of the attributes. if a consequence in the Pareto set is found, it will
have been biased by the weights chosen.

The specific form of the value function depends on the underlying
preference structure over attributes. Important insights may be obtained
from information on how a DM is willing to trade off attributes relative
to each other. Consider the case of two attributes X1, X2. in general,
the rate of substitution between X1 and X2 depends on their levels. sup-
pose, however, that a given amount of X1 “buys” more X2 as the level of
X2 increases and a given amount of X2 buys more X1 as the level of Xl
increases, independently (corresponding tradeoffs condition). This con-
dition holds iff the value function has an additive form:
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v(x1 ,x2) = v1 (XL) + v2(X2). (3.21)

To generalize to the case of more than two attributes, we must give
some additional definitions. We shall concentrate on the case of three
attributes in this paper. The essential comparisons are between a partic-
ular set of attributes and its complement.

For attributes X1, X2, X3, we say that (x1, x2) is conditional
preferred (CP) to (x1’, x2’) given x3 if (x1,x2,x3’)P(x1 ,x2 ,X3'), where
P is translated, “is preferred to.” Attributes Xl, X2 are preferentially
independent (PI) of X 3 if the conditional preferences in (X1,X2) space
given X3’ do not depend on the level X3’. If each pair of attributes is
PI of the third, the attributes are pairwise preferentially independent
(PPI) . it can be shown that V(X1,X2,X3) is additive iff X 1 ,X 2,X3 are PPI.
PPI also implies the corresponding tradeoffs condition above. Attributes
X1,, . . ..Xn are mutually preferentially
every subset is PI of its complement.
value function

V(x ,.*.,x
n) = ~ ~:1 vi(xi)

The crucial point here is that

independent (MPI) if every subset
We can have the general additive

(3.22)

if the above conditions hold on the
preferences of the DM, then the convenient additive value function may
be used.10,11

in the case of uncertainty about which consequences will follow
from an act, the above discussion must be altered. Let us assume that we
initially have only one attribute Y which takes on various values,
y1, ... ,yn.

12 Assume also that the DM has ranked these levels such that
y1<y2<...<y .

Y

We can generate a lottery by attaching probabilities (as-
sumed known to the best (yn) and worst (Y1) levels of the attribute ac-
cording to the Von Neumann-Morgenstern (32) tradition. Denote this
lottery [Y1, Hi, yn] where Hi is the probability of receiving yn and l-~i
the probability of receiving yl. The DM sets 111=0 and IIn=l. We should
have that HI<... <~n, and each Hi forms a numerical scale for the yi.

13The
expected value of the Hi can be used to numerically scale probability dis-
tributions over the yi. For action a’ in the discrete probability case,
we have:

~1=~
- i:l pi’~i” (3.23)

Actual utility functions can be shown to be linear transformations of the
II” For our purposes, we shall assume that utility functions are monoton-
ically increasing in levels of the attribute.

if a lottery L has consequences Yl,. ..,yn with probabilities
P1,) . . ..Pn. and we denote the uncertain consequence by ~, then we can define
expected consequence as:

Y= E(Y) =  Z ~~1 PiYi* (3.24)

27



The expected utility of L is:14

E[u(~)] = Z & Pi u(Yi)* (3.25)

We define the certainty eq uivalent (CE) of a lottery L as ~ such
that yIL (where I "is indiffernet to") or

. .
u(~) = E[u’(~)]  or ~ = u‘%[u(?)I). (3.26)

Two utility functions are called strategically equivalent (SE) if
they yield the same ranking over lotteries. It can be shown that strate-
gically equivalent utility functions are linear transformations of each
other.

Another important property of utility functions is the implicit at-
titude toward risk. We shall generally discuss risk aversion here. In
nearly all cases, the opposite of the conditions for risk aversion char-
acterize risk proneness. The in-between case is called risk neutrality.

We shall call a DM risk averse if he prefers the expected conse-
quence of a lottery to the lottery itself. For uncertain ~, we have
that:

u[E(~)] > E[u(~)]. (3.27)

This is equivalent to saying that the DM will prefer the mean as the safer
bet, that the DM’s utility function is concave, and, since the right hand
term in (3.27) is the CE, that the latter is less than the expected conse-
quence of L.

The traditional measure of risk aversion is:

-+
U“( )r(y) =-uy (3.28)

where the primes denote derivatives. Two utility functions u1, u2 are SE if
r1(y) = r2(y).

The risk premium (RP) of a lottery is defined as the expected con-
sequence m i n u s  the CE,

RP(~) =Y-j. (3.29)

This is positive if the D M  is risk averse, as he prefers the mean conse-
quence to the CE of the lottery. Along with monotonicity and risk aver-
sion, the way in which risk aversion changes with
attribute has implications on the specific form 01

With uncertainty and multiattributes, we w
tional concepts of independence. If Xl,. ..$Xn are
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n - space, they are considered additive independent if preferences over
lotteries over them depend not on their joint probability distribution
but on their marginal ones.15 What is sometimes called the fundamental
result of additive utility theory is that if all attributes are additive
independent in the DM’s preferences, his utility function is additive.
For two attributes, these can be written as either:

u(X1,X2) = u(x1,x20) + u(x10 ,x2) (3.30)

or
u(x1,x2)  = k1u1(x1) + k2u2(x2) (3.31)

where U(X10,X2O)=O, u(X11,X21)=1 for arbitrary (X11,X21) such that

(x11,x20)P(x10,x20) and (x10,x21)P(x10,x20); u1(x1) is the conditional

u function on x1, u1(x1O)=O, u(x1)=1; u2(x2) is the conditional u function

on x2, u2(x20)=O, u2(x21)=1; k1=u(x11,x20) and k2=u(x10,x21).

If additive independence holds for all n attributes, then the ad-
ditive utility function may be written:

u(x1,. ..,xn )=x ~:1 ki ui(xi), (3.32)

Attribute X1 is utility independent (UI) of X2 if the conditional
preferences over lotteries on the levels of X1 do not depend on the par-
ticular level of X2. This is analogous to preferential independence under
certainty. In fact, UI implies PI. X1 UI X2 does not necessarily imply
the reverse. When the reverse also holds, we call this mutual utility
independence (MUI). For n attributes, any subset of attributes is UI of
its complement if conditional preferences over lotteries involving changes
in the ‘initial set do not depend on the actual levels of the complementary
attributes.

x1 UI X2 iff u(0,X20)SE U(0,X2) for all x2, which implies that u
can be written:

U(X1,X2) = g(x2) + h(x2)u(x1,xz’) (3.33)

where g and h are positive and depend only on x2. (3.33) says that the u
function for any value x2 is a positive linear transformation of the u
function for any’other (or any particular) value x2.

If X1, X2 are MUI, then the u function is multilineal. It can
come in either form:

U(X1,X2) = u(x1,x2°)  + u(x1°,x2)  + ku(xl,x2°)u(x10  ,x2) (3.34)
or

U(X1,X2) = klul (xl) + kzuz(xz)  + klzul(xl)uz(xz) (3.35)

where the same conditions that followed equation (3.31) hold, klz=l-kl-kz~
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and k=klz/klkz are additional seal ing factors. In (3.34), it can be easily
seen that if k#O, then u is multiplicative and if k=O, u is additive.16

For three dimensions, if the attributes are UI of their respective
complements, then:

u(xl,x2,x3) = klul(xl)+kzuz(xz)  + ksus(xs)  + klzklkul(xl)uz(xz)

+ k13k1k3u1(xl)u3  (x3) + kzskzksuz(xz)u3(x3)

+ k123k1k2k3u1  (x1)u2(x2)u3(xs)  . (3.36)

The additive and multiplicative forms are again special cases. With the
blossoming of (3.36), it should not surprise the reader that we do not go
to higher dimensions.

To theoretically relate the previous part of Section 3.B. to social
choice, we will discuss how it may be applied to the latter problem. The
two basic paradigms involve the (benevolent) dictator and the participatory
group.

Consider n attributes and m individuals. Assume that our central
DM can assess individual value or utility functions vi or u] for all in-

dividuals.

Under certainty we are generally

and under

v ( x )  = VDIV1(X), .*.,VM(X)L

uncertainty:

u(x) = uD[ul(x), . . ..um(x)l.

ooking for:

(3.37)

(3.38)

vD and uDD are the central DM’s (CDM’s) value and utility functions. The
CDM must consider tradeoffs over the m individuals while the latter con-
sider tradeoffs over the n attributes. It is assumed here that

v(x) = z j~l ‘j[vj* ‘j(x)]

and
u(x) = z m A . u .*[ v. (x) ]

j=l J J J

(3.39)

(3.40)

where v.*, u * are the CDM’S feelings about v , u , the "marginal" v
J j j  j

and u functions for j . If the CDM th inks  tha t  v
j
and u are honestly

j
revealed, it  can follow that:

v *(x) = v (x) (3.41)
j j

uj*(x) = uj(x) (3.42)
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and that:
v(x) = ~ m A . V . ( x )j=1 J J

u(x) = E .: A.U.(x)
J-l J J

(3*43)

(3.44)

Consider first the case of certainty. We mentioned in Section 2.B.2.
that Arrow (1) showed the conceptual impossibility of a consistent group
ordering reflecting individual preferences. Some assumptions will be used
to get around the impossibility by ultimately making interpersonal compar-
isons of utility.

U“ as attributes in the CDM’S decisionconsider ‘j’ J
following assumptions will be used:

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

Attributes V., Vk are PI of their complement,
J

problem. The

T.
Jk”

AIB . If A improves to A’ for j, everyone else as well off,
then A’ P B.

The Uj are AI.

u.* SE u. for all j.
J J

Uj is UI of ~j for all j implies that:

u (Ul,. . .,,.,...,
D J

‘ m )  = 9j(”j) + ‘ j u g *  f o r  all j .

Let consequences X1, X2, x 3 be indifferent to everyone but
person j. CDM’S preference over lottery [xi,p,x2] vs. X3 is
based on his probability estimates and j’s utility.

If all j have the same u:, this should be the group u
function. J

(Al’) Uj, Ukare PIof~jk.

It is obvious that while attributes are subsumed, the decision-
theoretic notions are being applied to value and utility functions as
“person-related” attributes. The first result we can get is that (Al)
and

w h e

all

add

(A.2) hold iff

v(x) = z m v.*[vj (x)], (3.45)j=l J

e OSVj~l and-vj~ is a positive monotonic transformation of v. for
J

j. If we let v.’ E v.~(v.), then (3.45) reduces to a more common

tive form which: howe~er,Jreflects equity comparisons by the CDM.17

Another result is that (A.3) and (A.4) hold iff (3.44) holds with

O s u. A 1, the weighted additive utility function.
J

Assumptions (A.4) and (A.5) for mZ2 imply that:
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uD(ul, ”””, um) = x j~~ ‘j”j(x)  + z m A. ‘.(x)U~(X)
k>j j=l Jk J

+ .0.  + ~
l’2...m Uj(x) “*” urn(x), (3.46)

where OSu, ujsl, O<ALS 1.

Assumptions (Al) or (Al’), (A.4) and (A.5) imply for m>3 that:

u (Ul, ““” ,Um)=zm A. u.(x) +A X m  AjAkuj (X)uk(x)
D j=l J J k>j j=l

+.. .+~‘-h2”””Amudx)”””  UM(X),(3.47)

whereO~u., u~sl,od. ~1 for all j, A>-l. When A=O, (3.47) is
J J

of additive form. When A#O, (3.47) can be transformed into multiplica-
tive form.

Finally, we have that for @2, (A.1) or (A1'), (A.4), (A.5) and
(A.7) hold iff u is of the form of (3.44).

3.B.2. Operational Considerations

It should be obvious to the reader by now that the deqree to which
preferences of a DM at any level can be reflected in numerical
crucially related to what conditions hold on the preferences.
theoretical discussion shows that the presence of preferential
or utility independence simplifies matters to varying degrees.
erational terms, it would be extremely convenient to have simp
or multiplicative value or utility functions.

When assessing the preferences of actual DMs, the goal

indices is
The above
additive
in op-

e additive

s to dis-
cern structure and meaning from answers to hypothetical questions. The
DM may not know how he actually feels about certain choices and may not
have any logical means of comparing choices. in attempting to ascertain
preferences in actual practice, a decision analyst should be careful to
ask simple questions of the DM and to be sure not to mold the DM’s feel-
ings into a ’convenient mathemat

An important part of the
objectives and attributes as we
generate mixes of attributes (i
issues have been clarified, the
in a consistent manner. The ea

cal form.

assessment of preferences is specifying
1 as identifying alternative actions that
e., generate consequences). Once these
problem remains to rank the alternatives
iest case would contain a finite number

of actions with discrete amounts of a single attribute. The DM would
be asked to express his feelings by assigning numerical values to the
attribute levels. if a continuous value function were required, inter-
polation and/or extrapolation could be used with some consistency checks
on the “gaps” to obtain it.
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The introduction of a second attribute complicates the matter. If
the corresponding tradeoffs condition holds, then “conjoint scaling" tech-
niques can be used to assess the value of increments in each attribute in
terms of the other independently. The same holds true with preferential
independence in higher dimensions. The independence conditions allow us
to evaluate each attribute separately. There is a strong motivation to
choose attributes that are as distinct from each other as possible. On
the other hand, i f  there appears to be a “correct” set of attributes, the
gains from transforming one or more to obtain independence may outweigh
the loss of correctness.

The assessment of Von Neumann-Morgenstern utilities over (multi-
attribute) consequences and lotteries over consequences is a complex
undertaking. With appropriate questioning, a DM should be able to make
the needed comparisons for few actions and one attribute. The expected
utility criterion is a popular and reasonable tool in this case that is
helpful in inferring risk aversion. The condition of monotonicity and
the behavior of risk aversion as the attribute level increases together
imply specific forms of utility functions. If such information is gotten
from the DM, then a specific utility function can be assigned to him.

Several reasons for being concerned about utility independence are
that it implies convenient utility function forms that simplify assess-
ment and operational verifiability, it is somewhat real istic when used
in real-world problems, it is quite amenable to sensitivity analysis, and
it allows the DM to decentralize his problem so that sub-DMs may solve
parts of it. The multilinear u function that results from UI is more gen-
eral than the additive one resulting from additive independence. Hence,
it is applicable to a greater variety of real-world problems.

3.C. Cost-Risk/Benefit Analysis

The brief discussion of CB and RB analyses in Section 2.B.2 pre-
sented the core of the techniques. We need to elaborate on some points
and provide a justification for recommending them. For simplicity, we
shall only discuss RB analysis as it subsumes CB.

Consider a set of alternative policy actions, A= {al,. ..,an}.
We assume that ail infeasible (in any sense) choices are left out of A.
Denote B(ai) and C(ai) as the benefit and cost functions defined over
the ai. As noted above, B and C include only the measurable dimensions
of the problem. ‘If all benefits and costs accrue in the present for each
alternative, then [B(ai) - C(aL)] would be used to rank the ai.le This
ranking, combined with qualitative considerations, yields the ultimate
choice. The simple problem, however, can become complicated.

Let us assume that benefits and costs accrue in the future, as in
most environmental policies. B (ai) and Ct(ai) will denote benefits and

fcosts accruing in period t if a ternative ai is chosen. Future benefits
and costs are rarely known with certainty. We can consider the levels
of each to be random variables. As with the other methods, if we do not
assume that the probability distributions are known, the problem is
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intractable. Even when the distributions are known, the expected present
value calculation is simpler if we use the expected values of benefits
and costs for each t.

Applying the discount factor for discrete t would yield:

EPVi = E T [~t(ai) - ~t(ai)] (l+r)-t,, t=l. .

and for continuous t would yield:

EPvi = f: [Ft(ai) -~t(ai)] e-rt d t

(3.48)

(3.49)

for all ai,, where ~, ~ denote expected values. By either method, the ai

can be ranked by EPVi. The mechanics of RB is essentially characterized

by equation (3.48) or (3.49).

While the foregoing mechanism is mathematically simple, actual
estimation of the Bt and Ct functions can be very difficult. Estimation
of explicit monetary costs is fairly straightforward, although propri-
etary interests as well as the uncertainty of the future may even inter-
fere with this. Capturing implicit or opportunity costs and aesthetic
costs is more difficult. Add to this the problem of deciding at what
level to stop adding ripple effects (secondary, tertiary, etc.), and cost
estimation begins to be more art and less science.

One might generally state that broadly construed, benefits are
avoided costs and vice versa. With respect to the environmental problem,
one can speak of the costs of pollution as the benefits of control. It
is the estimation of the latter that is of strong current interest.

The pioneering efforts of measuring environmental control benefits
include Lave and Seskin (16) for air pollution abatement and Knetch and
Davis (12) for recreational uses of the environment. Since much of the
“Methods Development" work (4) and Freeman’s new book (5) are dedicated
to this area, we shall not get into too much detail here.

The problem reverts back to the absence of a social welfare index.
Every policy or change in policy would be reflected in a change in the
value of the index. Application of the Pareto criterion would always
yield desirable changes. However, due to its operational restrictive-
ness, economists have developed (hypothetical) compensation tests to check
the desirability of change. The result is that changes should be made
if those who gain (lose) from the change can (cannot) induce through
potential monetary payment the losers (gainers) to accept the change
(reject the change) for all distributions of wealth. This approach would
achieve Pareto optimality if payments were actually made and if the pay-
ments could be translated into appropriate individual welfare gains.
R/B analysis essentially operational izes these esoteric welfare notions.
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Candidates for less ethereal “gains” and “losses” include econom
(i.e. , consumers’plus producers) surplus and the related willingness-i

pay measures, as well as property value and income differentials compar
different levels of environmental control.

c
o-
ng

The operational approaches to obtaining these measures include de-
mand and supply estimation, competitive bidding for scarce resources, and/
or surveys. The relative reliabilities of these approaches has been the
subject of much discussion (4).

4.

dat
Our
ben

Conclusions and Recommendations for Future Research

This paper amounts to a survey of decision models and the recommen-
on of three specific ones as amenable to environmental management.
conclusion is that each of the multi-level, risk-theoretic and risk/
fit approaches appear useful for operational purposes. While the

first two models appear more desirable, the third method will dominate
in the short run.

The most common bond of the three recommended models/method is that
they are all prescriptions to deal with the same multiobjective, uncer-
tainty-ridden problem.

The multi-level approach can be used to give a general equilibrium
perspective, categorizing DMs by levels with generally different decision
techniques. It directly involves specification of objectives and con-
straints to the point of quantification. Time and uncertainty of para-
meters can be introduced, but they complicate the programs considerably.

The devices for uncoupling in this approach directly apply to the
interactions caused by externalities and public goods. The two coordi-
nation mechanisms correspond closely to the EPA problem of deciding
whether to advocate direct regulation and/or emissions charges.

Decision analysis emphasizes close analysis of objectives and at-
tributes. While this is necessary for operation of this approach, it can
also be fed into the multi-level approach. Perhaps the most important
attribute of decision theory is the analysis of the effects on behavioral
utility functions of attitudes toward risk and uncertainty. The latter
creep into the EPA problem all the way from accumulating information on
variables and interrelationships to the results of its policy decisions
on ail affected agents through space and time. While uncertainty can be
included in the above optimization techniques it is almost considered
parametric or peripheral.

in this analysis, risk aversion and its behavior can be measured
and empirical implications drawn. There is hypothesizing and experi-
mentation with independence of preferences over objectives, time and/or
individuals and groups. The results of these studies can be an input into
the muiti-level approach, much as optimization from multi-level is used
in decision analysis (e.g., maximizing expected utility). The explicit

35



introduction of weights over individuals or groups can spawn careful con-
sideration of equity issues.

implicit in the decision-theoretic approach is the use of some vari-
ant of Von Neumann-Morgenstern utility. The restrictive axioms necessary
for its use provide fodder for the canon of critics wary of molding real-
world problems into convenient mathematical boxes. This approach to the
value problem is analogous to Leontief’s input/output system. Though based
on highly restrictive assumptions, they both provide some mechanism for
decisionmaking which is better than ad-hocery.

Risk/benefit analysis incorporates measurement, but not to the level
of value or utility functions. Observable data is used whenever possible.
Freeman (5) points out that these measures (and their uses) may be incon-
sistent with generally accepted value theory. R/B usually involves opti-
mization and can incorporate time and uncertain outcomes,

The informational demands of the three approaches strongly influence
their usefulness. In general, information theory such as given in Marschak
and Radner (18) and “Methods Development” (4, Vol. IV) can broadly guide
decisions on the accumulation , processing and value of information. Form-
ally, the theoretical techniques fit easily into the risk-theoretic frame-
work.

Information necessary to operate the above three approaches include
data on the variables and functions of the natural environment, the
economic/political/legal systems as well as objectives and constraints of
EPA and its divisions. The explicit goal of the multi-level approach is
to limit the amount of information needed by the center to approximate a
general equilibrium solution. This is done through the creation of in-
dependence and solution of subproblems  by individual agents.

Risk analysis seems to demand considerable information from the
heads of social and individual DMs if more careful analysis of objectives
and preferences than implicit in the multi-level approach is undertaken.
Information about the future is a problem in all three techniques.

Specific recommendations for future research (and accompanying in-
formation acquisition) include the precise specification in the multi-
level approach of externalities and public goods as interaction variables.
Uncoupling techniques can then be used to create independence, thereby
making the approach more operational. Solution algorithms must also be
researched.

With risk analysis, the priority should be to research the objec-
tives and preferences of EPA itself with further understanding of its ef-
fects on individuals and firms. Explicit analysis of the existence and
cost of risk a v e
improvement.

Research

sion in past EPA actions may yield insights for future

nto the refinement of risk/benefit analysis may lead
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to the application of the other techniques.

This research appears vital. The “environmental problem” will not
disappear, and quantification of as much of the problem as is possible
can minimize room for guessing. The concluding words of the Nobel speech
of laureate in economic sciences, Herbert Simon), imply that despite prob-
lems this research is worthwhile:

With all these qualifications and reservations, we do understand
today many of the mechanisms of human rational choice. We do
know how the information processing system called Man, faced with
complexity beyond his ken , uses his information processing capaci-
ties to seek out alternatives, to calculate consequences, to resolve
uncertainties and thereby -- sometimes, not always -- to find ways
of action that are sufficient unto the day, that satisfice. (30, p.511)
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REFERENCES

1It might be said that the model that survives critical testing
effectively becomes the reality of the situation. Two prominent examples
are Bohr’s model of the atom and Leontief’s input/output model of the
production sector of the economy. Both impose logical order on real-
world phenomena , although one cannot assert unequivocally that they are
true. Modelling of ecological processes is becoming a sophisticated
tool for environmental analysis. Functional models represent the eco-
sphere in policy analysis.

2Examples of decisionmaking at various levels are readily avail-
able and the modelling implications fairly apparent. One such example
is a bill for a windfall profits tax on price-decontrolled petroleum
sales decided upon through a congressional majority-rule voting pro-
cedure. This affects the behavior of oil producers and refiners who
are thought to be long-term profit maximizers , and oil product consumers
who may be firms or individuals. The latter two groups may be considered
profit and utility maximizers respectively.

3The usual mathematical properties are convexity of the relevant
decision sets and concavity or convexity of the functions. The former
means that all linear combinations of all pairs of points in the set are
contained in the set. Concavity (convexity) of a function means that the
function value of a linear combination of any two points is greater (less)
than a linear combination of the function values. Strict convexity as-
sumptions are usually used to guarantee unique, global optima.

4A decision tree is generally a dimensionless graph in the form of
a network in which there are sequential-decision nodes and consequence
nodes.

5An example of where simulation can lead is given in the Club of
Rome’s report (19).

6Uncertainty is sometimes said to exist if these probability dis-
tributions are not known.

7Excluding technological systems is done for simplicity. It is
clear that technology must be involved in environmental management. We
imply here that technology will be employed based on economic, political
or legal incentives.

8A set is compact if it is containable in a sphere of finite radius
and it contains all points, a sphere around which contains points in and
out of the set (boundary points).
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9We ignore the fact here that since we have equality constaints in
(3.16), the problem is considerably easier. Recall that inequality con-
straints of the private DM problems were suppressed.

10ln this analysis, a “willingness-to-pay” apparatus may be developed
as money becomes an attribute and the rates of substitution between money
and other attributes are estimated.

11CP establishes independence for a single value of Z, PI extends
this over all z, and MPI extends PI over all attribute pairs.

12The reader should not confuse this with an n-dimensional vector
of attributes.

13The implication is that the "intensity of feeling” for the Certain
receipt of any yi is gauged by the necessary probability of winning the
highest reward needed to make the certain outcome and the lottery equiva-
lent in the eyes of the DM.

14The continuous analogs to (3.24) and (3.25) would be defined with
an integral and probability density functions replacing summation and dis-
crete probabilities.

15lf the possible consequences were arrayed side-by-side in a
matrix, this means that preferences over a row with various probability
distributions over the row are independent of all other rows.

160ne might also note that through suitable transformation, (3.34)
can be put into multiplicative form.

17Equity relates to the distribution of wealth in general or the
distribution of the “environmental burden "in particular"

180f course, an alternative method of some repute is the benefit/
cost ratio.
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