

NATIONAL ACADEMY OF SCIENCES COMMITTEE TO REVIEW ADVANCES MADE TO THE IRIS PROCESS

February 1-2, 2018

Office of Research and Development NCEA, IRIS

INTRODUCTION AND OVERVIEW OF IMPROVEMENTS TO THE IRIS PROGRAM

Tina Bahadori* and Kris Thayer

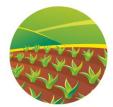
[*Speaking]

Office of Research and Development NCEA, IRIS

- Created in 1985 to foster consistency in the evaluation of chemical toxicity across the Agency.
- IRIS assessments contribute to decisions across EPA and other health agencies.
- Toxicity values
 - Noncancer: Reference Doses (RfDs) and Reference Concentrations (RfCs).
 - Cancer: Oral Slope Factors (OSFs) and Inhalation Unit Risks (IURs).
- IRIS assessments have no direct regulatory impact until they are combined with
 - Extent of exposure to people, cost of cleanup, available technology, etc.
 - Regulatory options.
 - Both of these are the purview of EPA's program offices.

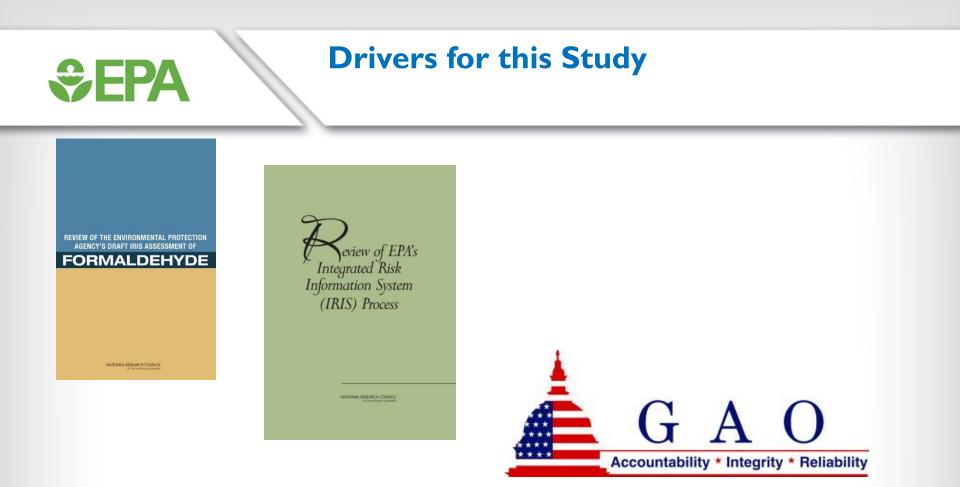
IRIS Provides Scientific Foundation for Agency Decision Making

- Clean Air Act (CAA)
- Safe Drinking Water Act (SDWA)
- Food Quality Protection Act (FQPA)
- Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)
- Resource Conservation and Recovery Act (RCRA)
- Foxic Substances Control Act (TSCA)


SEPA

RIS

- Agency Strategic Goals
 Childron's Health
- Children's Health
- Environmental Justice



- In January 2017, EPA appointed new leadership to the National Center for Environmental Assessment and to its IRIS Program.
 - NCEA Director: significant experience in the chemical and energy industries, and formerly the Director of ORD's Chemical Safety for Sustainability National Research Program, Tina Bahadori brings knowledge of TSCA, innovative applications of computational toxicology, and exposure science.
 - IRIS Program Director: As a recognized leader in systematic review, automation, and chemical evaluations, Kris Thayer brings experience in early partner and stakeholder engagement and input, and demonstrated actions to increase capacity and transparency in assessments.
- Improved responsiveness and accountability through Senior Leadership Team.
- Integrating across the spectrum of human and ecological RA practices.

https://www.gao.gov/highrisk/transforming_epa_and_toxic_chemicals/why_did_study

Fiscal Year 2017 Appropriations

https://www.congress.gov/114/crpt/srpt281/CRPT-114srpt281.pdf

SEPA

NAS (2014) Overarching Statements

"Overall. the committee finds that substantial improvements in the IRIS

Overall, the committee finds that substantial improvements in the IRIS process have been made

2014

Review of EPAs Integrated Risk Information System (IRIS) Process

WITCHIG, RESEARCH COLLINES.

The [2011] committee recognized that its suggested changes would take several years and an extensive effort

EPA has not only responded to the recommendations made in the NRC formaldehyde report, but is well on the way to meeting the general systematic review standards

moved forward steadily in planning for and implementing changes in each element of the assessment process

The committee commends EPA for its substantive new approaches...the revisions will transform the IRIS Program

Program. [p.135]

Previous Phased Improvements to the IRIS Program

• Revising the structure of assessments to enhance the clarity and transparency of presentation:

- Detailing the methods underlying each step of draft development (e.g., literature search strategy).
- Restructuring the document into separate hazard identification and dose-response chapters.
- Replacing lengthy study summaries with synthesis text, supported by standardized tables and graphs.

• Implementing "IRIS Enhancements"

- An updated process for developing and reviewing assessments that increases public input and peer consultation at earlier stages of assessment development, and clarifies processes for considering new evidence and scientific issues.
- Establishing the SAB Chemical Assessment Advisory Committee (CAAC)
 - 5 IRIS assessments completed CAAC review since 2014.

• Restructuring the IRIS Program to create expertise-specific workgroups and improved assessment oversight.

SEPA

Quality Management

• Assessment Development and Review

- Quality management inherent to systematic review methodology (e.g., independent screening of studies)
- Rigorous review process includes internal, public, and external peer review

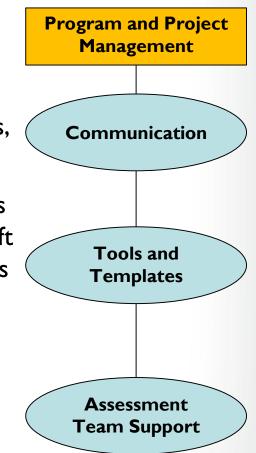
Scientific Support Teams

- Systematic review methods (Systematic Review Workgroup)
- Systematic review support to chemical assessment teams (e.g., screening, study evaluation, data extraction, use of specialized software, etc. – train the trainer model)
- Discipline-specific workgroups (e.g., epidemiology, PBPK, neurotoxicology, etc.)
- Executive oversight

Roles and Responsibilities

- Assessment plans, protocols, and draft assessments indicate contributors and roles
- Given current budget there is very limited use of contract support to conduct assessments

Training


- regular training via skill-building seminars, focused discussions, and retreats

Improved Practices for Timeliness and Resource Management

Current Program and Project Management in IRIS:

- *Centralized communication processes* for providing staff with updates on near-term priorities, template materials, and other process-oriented decisions.
- Development and maintenance of templates and checklists for key steps of assessment development using Microsoft SharePoint and Project as collaborative, web-based tools for assessment teams and project managers (document management and storage; scheduling support).
- Dedicated IRIS Program staff and on-site programmatic contractor support to facilitate continued implementation of program and project management principles.

GAO 2017 Report

- Acknowledged the actions ORD has taken to enable the IRIS Program to produce timely, transparent, and credible assessments in support of EPA's mission.
- Discussions with GAO during and after the release of the 2017 High Risk Report have focused on approaches to demonstrate how management and integrity initiatives within IRIS are supporting the transformation of the program

Summary of 2015 and 2017 GAO High Risk Criteria Ratings of the IRIS Program						
GAO High Risk Criteria 2015 Rating 2017 Ra						
Leadership Commitment	Met	Met				
Monitoring	Partially Met	Met				
Action Plan	Partially Met	Partially Met				
Demonstrated Progress	Not Met	Partially Met				
Capacity	Not Met	Partially Met				

- IRIS is engaged in continual ongoing discussion with GAO regarding recommendations from the 2008, 2012, and 2013 reports.
- Of the seventeen recommendations issued in these three reports, as of June 2017, we have successfully closed ten recommendations and are rapidly moving to address the remaining seven.

€PA

IRIS Multi-Year Agenda

Released to the public December 2015

- Result of a survey EPA program and regional offices for their assessment needs balanced with resource availability.
- Other chemicals were also carried over from earlier prioritizations
- Reflects global priorities
- In FY 2018, reaffirm priorities; identify new or more urgent needs.
- Engage states.

Group	Chemicals				
	Manganese				
	Mercury/methylmercury				
1	Nitrate/nitrite				
	Perfluoroalkyl compounds				
	Vanadium and compounds				
	Acetaldehyde				
2	Ammonia (oral)				
2	Cadmium and compounds				
	Uranium				
	Di-(2-ethylhexyl) phthalate				
	Dichlorobenzene isomers				
3	Methyl t-butyl ether (MTBE)				
	Nickel and compounds				
	Styrene				

Set EPA

A Portfolio Approach

- Moving away from a 'one-size-fits-all' approach to risk assessment towards a spectrum of assessment products to meet specific decision contexts;
- Facilitating the incorporation of new science into risk assessment and decision-making;
- Enabling assessments to be better tailored to meet needs of decision makers;
- Increasing the number of chemicals that can be evaluated for their effects on human health by utilizing constrained resources in the most efficient manner.

SEPA

Leading Edge of Science – Systematic **Review**

NAS 2017: **Reflections and** Lessons Learned from the Systematic Review

CONSENSUS STUDY REPOR

Systematic Review Methods IN AN OVERALL STRATEGY FOR EVALUATING LOW-DOSE TOXICITY

- "....one disadvantage in conducting a systematic review is that it can be time and resource intensive, particularly for individuals that have not previously conducted a systematic review." [p. 157]
- "The committee discussed at length whether it could provide EPA with advice about when a systematic review should be performed but decided it could not be more specific because that decision will depend on the availability of data and resources, the anticipated actions, the time frame for decision making, and other factors." [p.157]
- "The committee also recognized that it might be advantageous for EPA to build on existing systematic reviews that are published in the peer-reviewed literature." [p. 157]
- "The committee recognizes that the methods and role of systematic review and meta-analysis in toxicology are evolving rapidly and EPA will need to stay abreast of these developments, strive for transparency, and use appropriate methods to address its questions." [p.157]

EPA Leading Edge of Science – New Data Streams

Next Generation IRIS

- IRIS in the 21st Century implement recommendations of the NAS 2017 report, Using 21st Century Science to Improve Risk-Related Evaluations;
- New Approach Methods see poster session
- Collaborate with Tox21
 - build expert-judgment case studies that inform assessment development and fill gaps in assessments, especially for data poor chemicals;
 - inform where resources should be strategically invested to generate additional data.
- Create efficiencies engage other agencies to share common practices, data, and tools, and more efficiently leverage resources across the federal government.
- Refresh science MOU's with academia and other federal agencies; strategic staffing; deeper engagement with health agencies in states.

How is IRIS Evolving?

Increase transparency and full implementation of systematic review

 implement using approaches that foster consistency across the IRIS Program; many active and all new starts address systematic review-related recommendations of 2014 NAS report

• Modernize the IRIS Program

 through automation and machine learning to expedite systematic review, incorporation of emerging data types

Modularize product lines

 implement a portfolio of chemical evaluation products that optimize the application of the best available science and technology. These products will allow IRIS to remain flexible and responsive to clients within the EPA as well the diverse collection of stakeholders beyond EPA, including states, tribal nations, and other federal agencies.

• Enhance accessibility

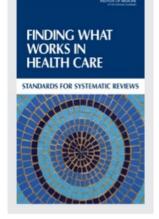
 provide outreach and training to make systematic review practices ubiquitous and more accessible; enhance data sharing through publicly available software platforms for assessments developed by EPA, other federal and state agencies, industry, academia and other thirdparties.

IRIS has Addressed the Major NAS 2014 Recommendations

NAS 2014 Topics	IRIS Process Improvements			
General Process Issues (Chapter 2)	 Quality management pipeline implemented Program and project management processes implemented Frequent opportunities for stakeholder engagement 			
Future Directions (Chapter 8 "Lessons Learned" and "Looking Forward")	 Processes being implemented include flexibility to incorporate evolving methods in systematic review and risk assessment Increased collaboration with federal partners and international experts prevents duplication of effort and maintains cutting edge approaches Current research efforts and training serve to ensure that methods and staff are able to adapt to changing scientific contexts and sources of evidence, including new and emerging data types 			

SESSION I: SYSTEMATIC REVIEW IN THE IRIS PROGRAM - EVIDENCE IDENTIFICATION

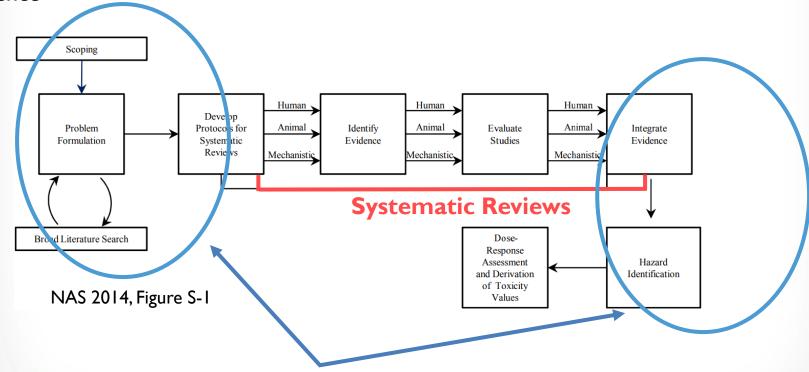
Kris Thayer*, Andrew Kraft*, April Luke, Beth Radke, Michele Taylor


[*Speaking]

Office of Research and Development NCEA, IRIS

Systematic Review

A structured and documented process for transparent literature review¹


"As defined by IOM [Institute of Medicine], systematic review 'is a scientific investigation that focuses on a specific question and uses explicit, pre-specified scientific methods to identify, select, assess, and summarize the findings of similar but separate studies."" [p. 4] (NRC, 2014)

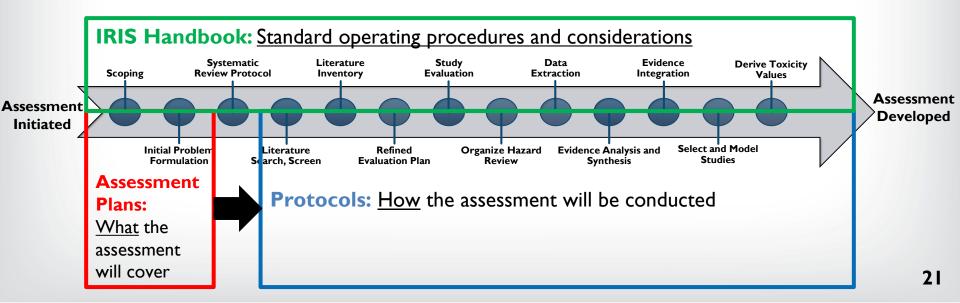
¹ Institute of Medicine. Finding What works in Health Care: Standards for Systematic Reviews. p.13-34.The National Academies Press.Washington, D.C. 2011

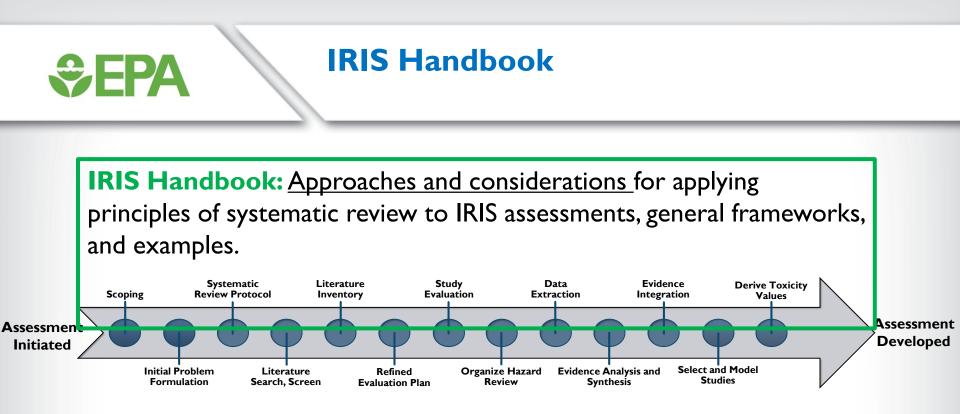
Systematic Review Elements (NAS 2014)

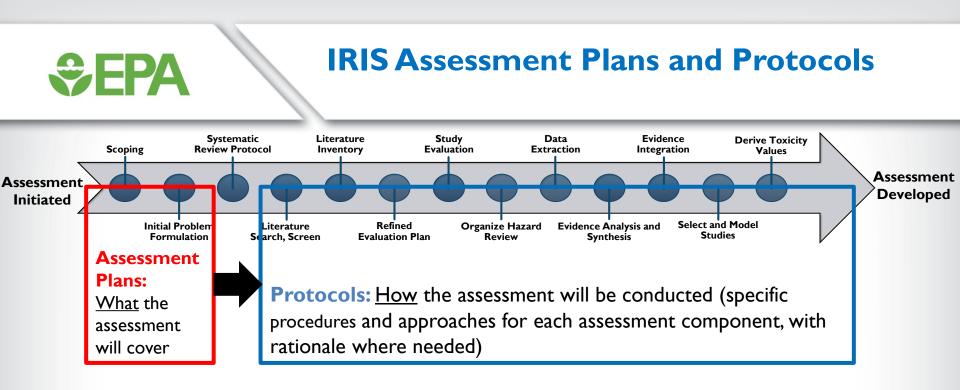
"In the context of IRIS, the committee has defined systematic review as including protocol development, evidence identification, evidence evaluation, and an analytic summary of the evidence"

EPA

IRIS also considers these phases as part of its systematic review process

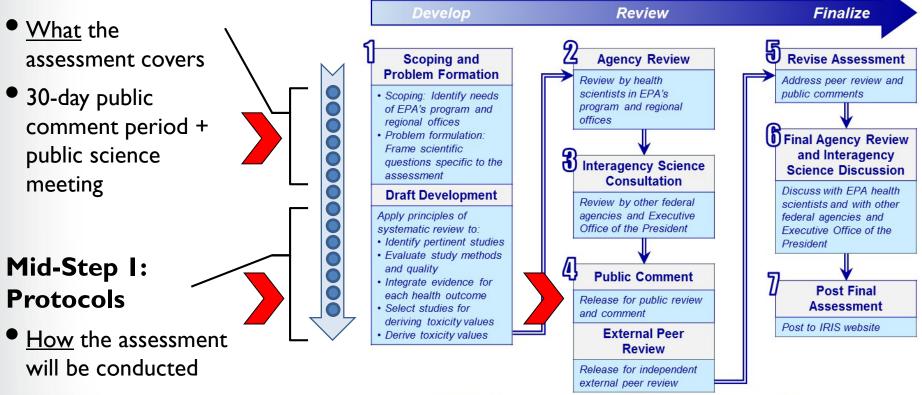

Scoping, Problem Formulation, and Protocol Development


Office of Research and Development NCEA, IRIS


Address several NAS 2014 High Priority (Box 8-1) Recommendations

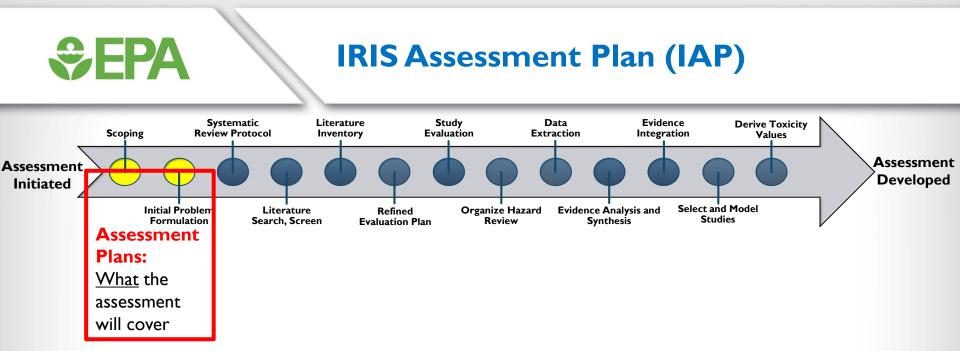
- "EPA needs to...complete documents, such as the draft handbook, that provide detailed guidance for developing IRIS assessments." (Chapter 2, General Process)
- "EPA should include protocols for all systematic reviews conducted for a specific IRIS assessment as appendixes to the assessment." (Chapter 3, Problem Formulation and Protocol Development)

- IRIS Handbook level of detail aimed for EPA staff and contractors, e.g., use of HERO, timelines for internal review steps, etc.
- Currently being updated to reflect Agency input, evolving IRIS practices as systematic review approaches are tested through implementation, and public comment received on chemical-specific protocols (e.g., chloroform)
- Evergreen to reflect future advances
- Anticipate public release in 2018



- Chemical-specific documents
- IRIS Assessment Plans (IAPs) are problem formulation and scoping documents that include more elements of systematic review
- Protocols outline methods, including updates to the IAPs
- IAPs and protocols include proposed "modularity," targeted focus and use of existing assessments
- Templates created to promote consistency across the IRIS Program, which is implemented across NCEA divisions and geographical locations

Set EPA


IRIS Assessment Plans, Protocols, and 7-Step IRIS Process

Early Step I: IRIS Assessment Plans

 30-day public comment

Opportunities for Public Comment

- Scoping and initial problem formulation determinations
 - Background and Agency need, exposure context, objectives and specific aims, key areas
 of scientific complexity
 - Includes draft PECO (Populations, Exposures, Comparators, and Outcomes) criteria which outlines evidence considered most pertinent
 - Internal review of IAP fosters early and focused Agency engagement
- Released for a 30-day public comment period + public science discussion (beginning of IRIS Step 1)
 - Examples: chloroform, ethylbenzene, nitrate/nitrite (Sept 2017), uranium (Jan 2018)

IRIS Assessment Plan (IAP) Content

Table 1. EPA program and regional office interest in an as uranium

					3.OVE
Program or regional					PEC
office	Oral	Inhalation	Statutes/regulations	Antici	CON
Office of Land and Emergency Management	~		CERCLA	Uranium toxico used to make r response or re short-term rem	The
Region 10 ^a	~			response actio to conduct sho Superfund site costs from pot Uranium is liste under CERCLA National Priori	of uranium systematic Given the e not be a for directly on this assess will be diss
ow	v		Safe Drinking Water Act	Uranium toxico used to inform associated with found in water. level goals of 0 contaminant lev were published	specific ain risk determ contamina The maxin µg/L and m vel of 30 µg

2.4. KEY SCIENCE ISSUES

Based on the preliminary literature survey, the following key scientific issues have been identified that warrant evaluation in this assessment.

Uranium occurs in the environment in a variety of forms to which humans may be exposed, ٠ including metallic uranium, soluble uranium salts, and poorly soluble uranium compounds. In developing the IRIS assessment, consideration will be given to the approach used by ATSDR of providing toxicity values suitable for all soluble forms of uranium versus possible alternatives, addressing specific forms of uranium (e.g., more soluble versus poorly soluble versus insoluble species). Taking into account any new research, the assessment will develop and use a rationale for the specific categories of uranium compounds assessed.

3. OVERALL OBJECTIVE, SPECIFIC AIMS, AND DRAFT PECO (POPULATIONS, EXPOSURES, COMPARATORS, AND OUTCOMES) CRITERIA

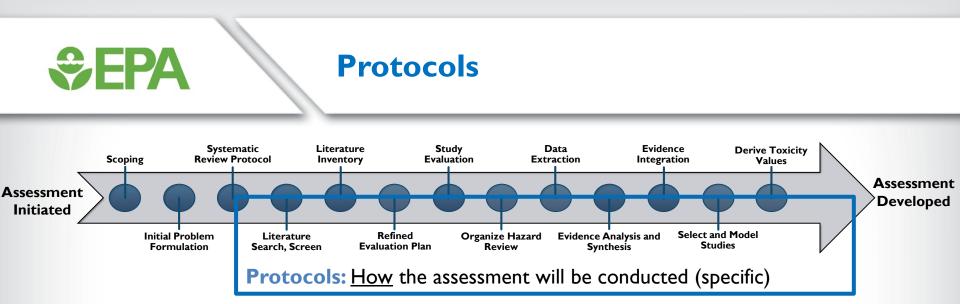
3.1. SPECIFIC AIMS Th

 Building on f epidemiolog outlined in t 	Table 2. Draft PECO (populations, comparators, exposures, and outcomes) criteria for the uranium assessment					
ATSDR litera	PECO element	Evidence				
 Conduct stud toxicological subsequent a assessment's 	Population ^a	Human: Any population and all life stages (e.g., children, general population, occupational, or high exposure from an environmental source). The following study designs will be considered most informative: controlled exposure, cohort, case-control, cross-sectional, and ecological. Note: Case reports and case series will be tracked during study screening but are not the primary focus of this assessment. They may be retrieved for full-text review and subsequent evidence synthesis if no or few more informative study designs are available. Case reports alo can be used as supportive information to establish biologic plausibility for some target organs and health outcomes.				
 Examine who toxicity value 		Animal: Nonhuman mammalian animal species (whole organism) of any life stage (including preconception, in utero, lactation, peripubertal, and adult stages).				
kidney toxici will examine of additional uranium.	Exposure	Exposure based on administered dose or concentration, biomonitoring data (e.g., urine, blood, or other specimens), environmental, or occupational-setting measures (e.g., air, water levels), or job title or residence. Studies on natural uranium and depleted uranium will be included, studies on enriched uranium or those specific to radiation exposure from uranium will not be included. Mixture studies for animals will be included if they have an arm with a uranium compound only.				
If newer PEC considered a		Human and animal: Oral exposure will be examined. Other exposure routes, including dermal, inhalation, or injection, will be tracked during title and abstract as "supplemental information."				
synthesis/in studies used	Comparator	Human: A comparison or reference population exposed to lower levels (or no exposure/exposure below detection levels) of uranium or to uranium for shorter periods.				
using the me		Animal: Quantitative exposure versus lower or no exposure with concurrent vehicle control group.				
Extract data considered i	Outcomes	All noncancer health outcomes. In general, endpoints related to clinical diagnostic criteria, disease outcomes, histopathological examination, or other apical/phenotypic outcomes will be prioritized for evidence synthesis over outcomes such as biochemical measures.				
considered in						

"Evaluating individual mechanistic studies for uranium is not anticipated to be critical given the extent of the For the ident experimental animal evidence for noncancer outcomes and findings of earlier reviews. For mechanistic information, (including bo this assessment will primarily rely on other published authoritative sources, such as public health agency reports and expert review articles. using a narra

examined by ATSDR where important new studies are not identified, EPA will seek to base its hazard conclusions on ATSDR's findings unless compelling reasons for further review are identified.

⇔EPA


IAP Can Include Literature Surveys

- Broad surveys to assess extent and nature of evidence, level of effort, type of expertise required
- Surveys inform decisions on targeted focus, e.g., evidence streams to consider core-PECO (versus supplemental), health outcomes likely covered in assessment
- Surveys may be developed based on other assessments, manual review of studies, or through use of specialized software applications

Nitrate/Nitrite (survey based on IARC 2010 and ATSDR 2017 assessments)

	Н	luman	Studie	es	Animal Studies					
Outcomes	Occupational epidemiology	General population epidemiology	Controlled exposure	Case reports and case series reports	Chronic	Subchronic	Short-term	Acute	Multi-generational	Gestational
Cancer		60			13					
Cardiovascular		1	1	3						
Dermal and ocular				1						
Developmental		14							2	6
Endocrine(thyroid)		6	1		4	3	1			
Gastrointestinal	1			7	5	1				
Hematological		25	3	10	4	6	3	1		
Hepatic					3			2		
Immunological										
Metabolic disease		8								
Musculoskeletal										
Neurological and sensory			1	6	1	1			1	
Renal					1					
Reproductive			3		2	2			1	
Respiratory										
Other					9	2	1		1	

The numbers represent the numbers of studies that investigated a particular health effect, and not the number of studies that identified a positive association with exposure.

- Assessment specific stand-alone method documents that do <u>not</u> rely on the IRIS Handbook to convey methodology
- Comments received on IAP are considered when preparing the protocol (updated IAP text is included in the protocol)
- Released for 30-day public comment period (during Step 1 of IRIS Process)
- List of included, excluded, and studies tagged as supplemental will be disseminated through protocols (either during initial release or as an update)
- Protocol is iterative Knowledge gained during implementation may result in revisions to the protocol to focus on the best available evidence. Major revisions are documented via updates, e.g., changes to specific aims or PECO

Protocol Content

3. OVERALL OBJECTIVES, SPECIFIC AIMS, ANE 6. STUDY EVALUATION (REPORTING, RISK OF BIAS, POPULATIONS, COMPARATORS, EXPOSUR **OUTCOMES (PECO) CRITERIA**

Т	The overall objective of this assessment is to identify adverse health effects an
characte	· · · · · · · · · · · · · · · · · · ·
develop	Updated IAP text and PECO
is to der	
studie <mark>s</mark> ,	based on nublic comments
for chlo	
derived	4. LITERATURE SEARCH AND SCREENING
RfC that	
methods	STRATEGIES
evaluati	
3.1. <mark>S</mark> I	4.1. U APPENDICES
• 1	state, an APPENDIX A. ELECTRONIC DATABASE SEARCH STRATEGIES
•	state, an APPENDIX A. ELECTRONIC DATABASE SEARCH STRATEGIES

5. REFINED EVALUATION PLAN

The evidence base for this assessment was relatively small and pul assessment plan did not suggest a change was warranted to the specific ai refined analysis plan was needed (i.e., all PECO-relevant studies will be co assessment).

T.2. LI	SU="CONSTRUCTION BUILDING TECHNOLOGY" OR SU="ASTRONOMY
1	ASTROPHYSICS" OR SU="ARCHAEOLOGY" OR SU="OPERATIONS RESEARCH
the last l	MANAGEMENT SCIENCE" OR SU="ANTHROPOLOGY" OR SU="SPORT SCIENCES" OR SU="ART" OR SU="PALEONTOLOGY" OR SU="TELECOMMUNICATIONS" OR
EPA's He	SU="CHEMISTRY" OR SU="POLYMER SCIENCE" OR SU="ENGINEERING" OR
identifie	SU="ENVIRONMENTAL SCIENCES ECOLOGY" OR SU="FOOD SCIENCE TECHNOLOGY" OR SU="SCIENCE TECHNOLOGY OTHER TOPICS" OR
updated	SU="BIOTECHNOLOGY APPLIED MICROBIOLOGY" OR SU="AGRICULTURE" OR
only on t	SU="SPECTROSCOPY" OR SU="CRYSTALLOGRAPHY" OR SU="INTEGRATIVE COMPLEMENTARY MEDICINE" OR SU="WATER RESOURCES" OR SU="NUTRITION
in silico)	DIETETICS" OR SU="LIFE SCIENCES BIOMEDICINE OTHER TOPICS" OR
is preser	SU="PARASITOLOGY" OR SU="THERMODYNAMICS" OR SU="OPTICS" OR SU="BIOPHYSICS" OR SU="TROPICAL MEDICINE" OR SU="VETERINARY SCIENCES"
range of ,	OR SU="RESEARCH EXPERIMENTAL MEDICINE" OR SU="MARINE FRESHWATER

IRIS assessments evaluate each study's methods using uniform approaches for each group of similar studies s

AND SENSITIVITY) STRATEGY

that affect the mag study to detect a tr animal toxicology

supplemental mate

Analysis

Sensitivity

prominent role in t elements that may be coll Table 3. St Choices about what data t analyses that inform the s Epid following the identificatio Exposure measurer Outcome ascertainn the data extraction workfl Participant selection extraction. Studies evalua Confounding therefore, will not be cons Selective reporting minimal data extraction.

high confidence studies a Study evalu The data extraction The study evaluati available for download fro limitations (focusin [NOTE: The following bro result), considering (preferred), Mozilla Foxfi null. The study eva Internet Explorer.] Data e of the results) in the independently checked by

by discussion or consultat verified, they will be "loc WebPlotDigitizer (http:/ information from figures

concerns for the re 7. DATA EXTRACTION OF STUDY METHODS AND RESULTS

Data extraction an 8. PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL IDENTIFICATION, DESCRIPTIVE SUMMARY, AND EVALUATION

PBPK (or classical pharmacokinetic [PK]) models should be used in an assessment when an applicable one exists and no equal or better alternative for dosimetric extrapolation is available. be less relevant during PE Any models used should represent current scientific knowledge and accurately translate the science into computational code in a reproducible, transparent manner. For a specific target organ/tissue, it may be possible to employ or adapt an existing PBPK model, or develop a new PBPK model or an alternate quantitative approach. Data for PBPK models may come from studies with animals or humans, and may be in vitro or in vivo in design.

8.1. IDENTIFYING PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELS

PBPK modeling is the preferred approach for calculating a human equivalent concentration (HEC) according to the hierarchy of approaches outlined in EPA guidance (U.S. EPA, 2011a). For chloroform, metabolism is a major component of target organ toxicity, and PBPK models are available to account for interspecies differences in metabolism between rats, mice, and humans (Sasso et al., 2013; Corley et al., 1990). Chloroform is metabolized to the reactive metabolites phosgene and dichloromethyl free radical in humans and animals by cytochrome P450-dependent pathways (Gemma et al., 2003; Constan et al., 1999).

Because of the role of metabolism in the production of target organ toxicity, and the reactive

From draft chloroform protocol (2018)

Protocol Content

9. SYNTHESIS WITHIN LINES OF EVIDENCE

For each potential health effect outcomes; or a broad hazard category) Table 9. Primar effect evidence, ar syntheses^a written to emphas Consideration the evidence integ Repeated studies or group c exist, the Consistency "differing" association, temp Stronger humans (U.S. EPA Stronger o mechanistic st Increases i Specificall Biological concentra are drawn as f first be analyzed a gradient (doseor comple response)^b necessari First. a lack of data within considered the available meet chemic Given wh particular chloroform, a syr step in small effect Strength (effect may consid evaluation of carc magnitude) and cohere other exp precision errors and In para results ac 9.1. SYNTHE (i.e., low p the che Supporting To assess Mechanistic effects; changes in established bio evidence evidence strength. While a lack of related to strength, it may do so if findings de biological Human evidence: studies in expose plausibility Animal evidence: studies in exposed Findings across the database that fit similarity in results for related effect dose-dependent progression of link Coherence Conversely, an observed lack of cha subsequently) with the effect of inte informed by the known biological d toxicokinetic/dynamic understandin Natural Human evidence only: Reductions in experiments Although rare, such reductions can Human evidence only: The exposure Temporality evaluation of exposure measures fo

10. INTEGRATION ACROSS LINES

For the analysis of most health outcomes, IRIS assessme and mechanistic evidence. Depending on the assessment scope animal evidence, conclusions for mechanistic evidence may be

wi	selection pro						
	scope of this						
HUM	HUMAN EVIDENCE STREAM CONCLUSION						
	The synthesis of evidence about health effects						
	and mechanisms from human studies is combined (integrated) to draw a conclusion						
comb	(0	within the stream		\sum	not supersed		
	Studies and	Factors that increase	Factors that decrease	Summ	detailed con		
ANI	interpretation	confidence	confidence		EPA's Reviev		
ANI		or Outcome Group			Benchmark i		
		m Human Studie	(<i>Бепспта</i> гк I		
The sy	 References Study confidence 	 Consistency Dose-response 	 Unexplained inconsistency 	 Results infon affected/ una 	(U.S. EPA, 20		
an	(based on	gradient	Imprecision	· Human evide			
com	evaluation of risk of bias and	 Coherence of observed effects 	 Indirectness/ applicability 	plausibility: d data influenc	Carcinogens		
	sensitivity) and explanation	(apical studies) Effect size (magnitude,	 Poor study quality/ high risk of bias 	judgement (e	For		
	 Study design 	severity)	Other (e.g.,	precursors in			
d animais d	description	 Biological plausibility Low risk of bias/ high 	Single/Few Studies; small	Could be multip			
it into a co		quality	sample size)	study confide	nce or popul esuits betero		
cts withi <mark>n a</mark>		 Insensitivity of null/ negative studies 	Evidence demonstrating	anoma re	Dauna motoro		
ked effects		 Natural experiments 	implausibility		13		
anges that		Temporality			12.		
terest could		an Effect in Anin					
developme	 References Study confidence 	 Consistency and Replication 	 Unexplained inconsistency 	 Results information affected/ una 			
ng of the c	(based on	Dose-response	Imprecision	 Evidence info 			
n effect the	evaluation of risk of bias and sensitivity)		 Indirectness/ applicability 	plausibility for discuss how			
provide co	and explanation	observed effects	Poor study quality/		e within stream		
provide co	 Study design description 	(apical studies) Effect size (magnitude,	high risk of bias Other (e.g.,		.g., evidence of coherent		
e occurs be		severity)	Single/Few	molecular chi	anges in animal studies)		
or each stu		 Biological plausibility Low risk of bias/ high 	Studies; small sample size)		tiple rows (e.g., by study		
		quality Insensitivity of null/	 Evidence demonstrating 		species, or exposure		
		negative studies	implausibility		if this informs results eterogeneity		
		-					

11. DOSE-RESPONSE ASSESSMENT: STUDY SELECTION AND QUANTITATIVE ANALYSIS

The previous sections of this protocol describe how systematic review principles are applied to support transparent identification of health outcomes (or hazards) associated with exposure to the chemical of interest in conjunction with evaluation of the quality of the studies considered during hazard identification. Selection of specific data for dose-response assessment and performance of the dose-response assessment is conducted after hazard identification is complete, and builds off this step in developing the complete IRIS assessment. The dataset selection process involves database- and chemical-specific biological judgments that are beyond the scope of this protocol, but are discussed in existing EPA guidance and support documents. This section of the protocol provides an overview of points to consider when conducting the doseresponse assessment, particularly statistical considerations specific to dose response analysis that support quantitative risk assessment. Importantly, the considerations outlined in this protocol do not supersede existing EPA guidance. Several EPA guidance and support documents provide more detailed considerations for the development of EPA's traditional dose-response values, especially EPA's Review of the Reference Dose and Reference Concentration Processes (U.S. EPA, 2002), EPA's Benchmark Dose Technical Guidance (U.S. EPA, 2012b), Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005a), and Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens (U.S. EPA, 2005b).

For IRIS toxicological reviews, dose-response assessments are typically performed for both

12. PROTOCOL HISTORY

Convincing

evidence

of no effect

Release date: (January 2018 [chloroform protocol version 1])

Figure 4. Evidence profile table template.

30

From draft chloroform protocol (2018)

\$EPA

Publicly Available Examples

Assessment Plans

September 27-28, 2017

- Chloroform
- Nitrate/nitrites
- Ethylbenzene

January 26, 2018

• Uranium

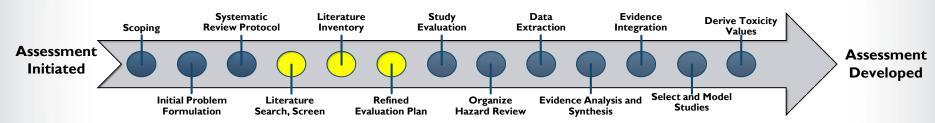
Protocol

January 26, 2018

- Targeted focus: chloroform, uranium, chloroprene
- Modularity: ethylbenzene
- Use of existing assessments conducted by others: nitrate/nitrate, uranium (ATSDR assessments)
- IAPs and/or protocols will be released for most inprogress assessments
 - Which document is released depends on extent
 of refinement in scope compared to previous
 public sharing and maturity of the draft
 assessment
- Chloroform (includes list of included studies)

Rapid systematic review

• EPA response to the Chloroprene Request for Correction (posted January 29, 2018)


Literature Searching, Screening, and Inventories*

Office of Research and Development NCEA, IRIS

* includes basic methodological details

Second PriorityNAS 2014: High Priority (Box 8-1)Recommendations

"...include a section on evidence identification that is written in collaboration with information specialists trained in systematic reviews and that includes a search strategy for each systematicreview question being addressed in the assessment. Specifically, the protocols should provide a line-by-line <u>description of the search strategy, the date of the search, publication</u> <u>dates searched, and explicitly state the inclusion and exclusion criteria..."</u>

- Protocols outline the specifics of the literature search and screening approaches, including inclusion and exclusion criteria in PECO tables
- Dedicated information technologists help formulate searches, and screening decisions are tracked in HERO (tagging)
- Manual and semi-automated approaches are being used to identify relevant studies
- Inventories of basic study methods organize evidence for refinement and evaluation
- Changes and updates are documented in the protocol

SEPARoutine Evidence Identification Processes

Database Searches

Screening

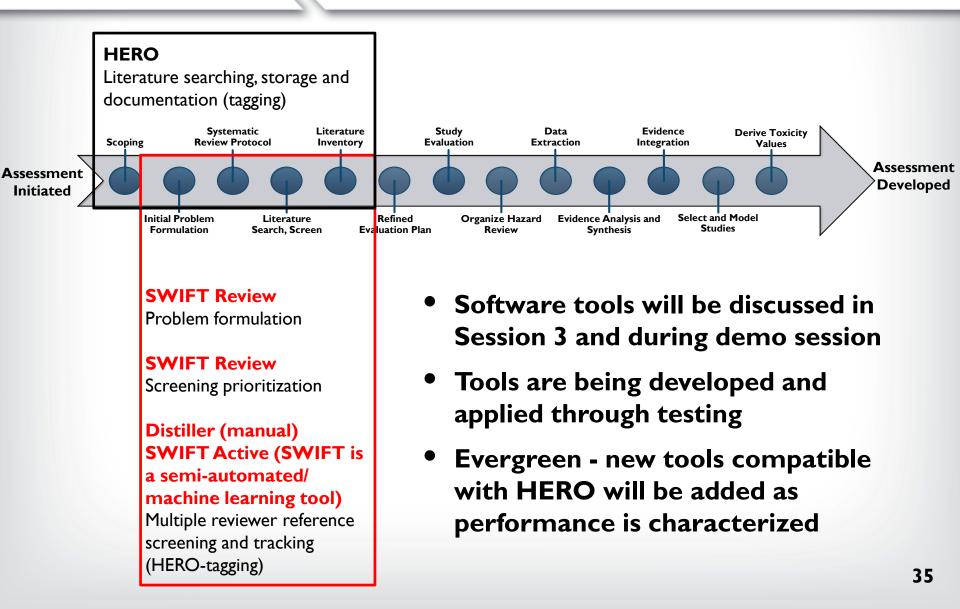
I.Title/abstract

2. Full text

Inventories

Health Outcome & PBPK Studies

- Tag studies by line of evidence and outcome
- Distribute to disciplinary experts for review


- Identify peer-reviewed and "gray" (unpublished) literature
- PubMed, ToxLine, and Web of Science are standard (others can be included as needed)
- Conduct regular search updates
- Details of search strategy, dates, and retrieved records are presented in protocols and assessments

- Use manual and automated approaches
- ≥ 2 screeners
- Tag studies as excluded, meeting PECO
- criteria, or supplemental information
- Screening decisions available in HERO
- Typically do not apply language-restrictions
- Review reference list of included studies and relevant reviews to identify studies missed from database searches
- Share list of included studies with public to further ensure all relevant studies included

Supplemental Studies

- Includes in vitro and other mechanistic evidence (e.g., non-PECO exposure route; non-PECO animal model; toxicokinetic data)
- Inventories contain basic study methods for evaluation and prioritization decisions

Use of Specialized Software Tools for Literature Search and Screening

Sepa

Evidence Identification in Protocols

4. LITERATURE SEARCH AND SCREENING STRATEGIES

4.1. USE OF EXISTING ASSESSMENTS

Describe any use of existing assessments that serve as starting points for the literature search.

4.2. LITERATURE SEARCH STRATEGIES

Literature search strategies were developed using key terms and words related to the PECO statement. Development

4.4. SCREENING PROCESS

relevant search terms the relevant and appropriate previously identified prin and (3) reviewing search words were crafted into specificity of the search that 100% of the previou database has its own sea each database's uni ue s

The following databases

- PubMed
- Web of Science

application a would include any specialized software tools

Studies that comply with the criteria specified in the PECO Statem inclusion while those that do not meet these criteria will be excl the exclusion criteria noted below will be applied. However, the will be revie 4.5. LITERATURE SURVEYS AND SUM searching. During title/abstract or full-text screening, Recoil features such as health outcome Studi ADME, etc.). Th these evidence for pri pape assessment as s

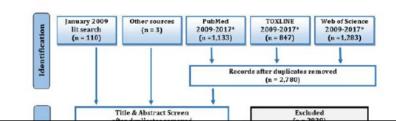
- othe epidemiological Studi inhalation, mixt anesthetic, stud
 - or exposure to supporting info inventory of stu for each potenti generation and biological proce

4.6. TRACKING STUDY F

INFORMATION

literature flow diagram (see Figure 2). Categories for exclusion included the following: (1) not relevant to PECO; (2) review, commentary, or letter with no original data; (3) conference abstract or thesis (and the criteria for including unpublished data, described above, were not met); or (4) unable to obtain full-text.

15


16

17

18

19

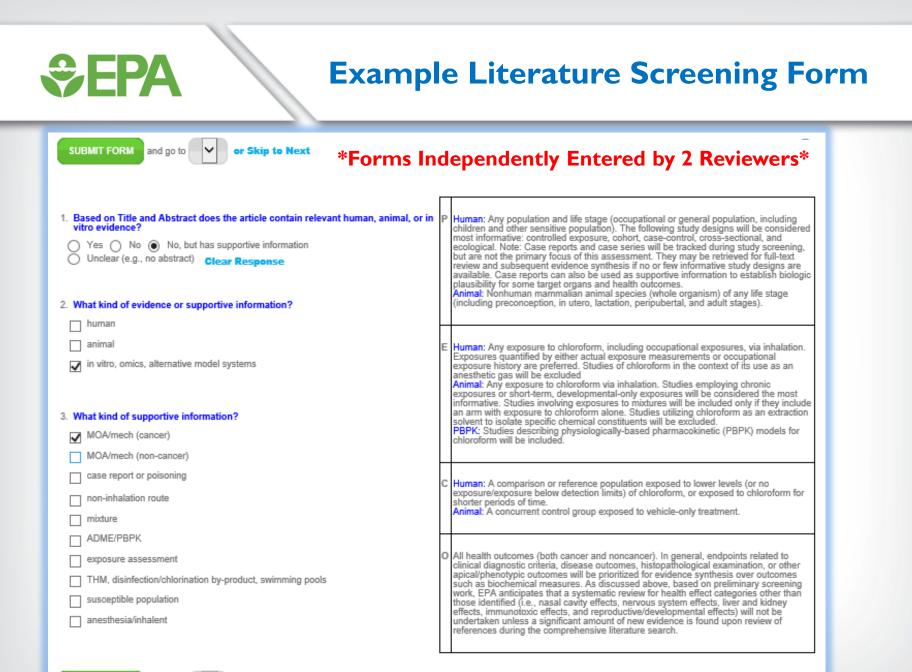
20

special topics

4.3. UNPUBLISHED DATA 21

- 22 IRIS only includes publicly accessible, peer-reviewed information in its evaluations. However,
- 23 it is possible that unpublished data directly relevant to the PECO statement may be identified
- 24 during the course of the assessment. In this case, EPA is able to obtain external peer review if the
- owners of the data are willing to have the study details and results made publicly accessible. The

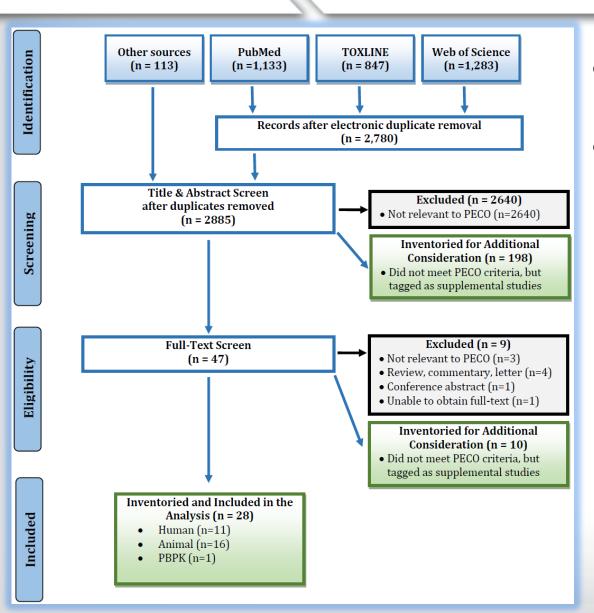
4.4.1. Multiple publications of the same data


Multiple publications with overlapping data for the same study (e.g., publications reporting subgroups, additional outcomes or exposures outside the scope of an evaluation, or longer followup) can be identified by examining author affiliations, study designs, cohort name, enrollment criteria, and enrollment dates. If necessary, study authors will be contacted to clarify any uncertainty about the independence of two or more articles. IRIS will include all publications on the study, select one study to use as the primary, and consider the others as secondary publications The main reason for exclusion as being related to the primary record during data abstraction. The primary study

36

PECO Criteria to Identify Studies

i			
PEC	O element	Evidence	
Populations ^a		Human: Any population and lifestage (occupational or general population, including children and other sensitive populations). The following study designs will be considered most informative: controlled exposure, cohort, case-control, cross-sectional, and ecological. Note: Case reports and case series will be tracked during study screening, but are not the primary focus of this assessment. They may be retrieved for full-text review and subsequent evidence synthesis if no or few informative study designs are available. Case reports can also be used as supportive information to establish biologic plausibility for some target organs and health outcomes.	ioritized based on likelihood to
		nce from in vitro, in silico, and other types of mechanistic studies will be pr t evidence synthesis conclusions for human health. For chloroform, mech	
\vdash		ered for evaluation if they have the potential of impacting the existing 200	
		ring questions identified during the human and animal evidence synthese Studies of chloroform in the context of its use as an anesthetic gas will be excluded.	· · ·
<u>E</u> xpo	osures	Animal: Any exposure to chloroform via inhalation. Studies employing chronic exposures or short-term, developmental-only exposures will be considered the most informative. Studies involving exposures to mixtures will be included only if they include an arm with exposure to chloroform alone. Studies utilizing chloroform as an extraction solvent to isolate specific chemical constituents will be excluded.	
		Studies describing physiologically-based pharmacokinetic (PBPK) models for chloroform will be included.	
<u>C</u> om	parators	Human: A comparison or referent population exposed to lower levels (or no exposure/exposure below detection limits) of chloroform, or exposed to chloroform for shorter periods of time.	
		Animal: A concurrent control group exposed to vehicle-only treatment.	
<u>O</u> uto	comes	All health outcomes (both cancer and noncancer). In general, endpoints related to clinical diagnostic criteria, disease outcomes, histopathological examination, or other apical/phenotypic outcomes will be prioritized for evidence synthesis over outcomes such as biochemical measures. As discussed above, based on preliminary screening work, EPA anticipates that a systematic review for health effect categories other than those identified (i.e., nasal cavity effects, nervous system effects, liver and kidney effects, immunotoxic effects, and reproductive/developmental effects) will not be undertaken unless a significant amount of new evidence is found upon review of references during the comprehensive literature search.	Example from the draft chloroform protocol 37



SUBMIT FORM and go to

Skip to Next Draft example based on chloroform using Distiller

Tracking: Literature Flow Diagrams

- Track rationale for fulltext exclusions
- Use HERO to share repositories of included, excluded, and supplemental studies

Example modeled on the draft chloroform protocol

Example Details Routinely Extracted (female reproductive toxicity in animals):

- Outcome category (e.g., fertility) and/or Specific endpoint (e.g., number of litters)
- Species (e.g., rat; alternative [nonmammalian] animal)
- Exposure duration (e.g., chronic; multi-generational; gestational)
- Exposure route (e.g., oral [gavage]; in vitro)

Assessment-Specific Extraction Details (generic examples):

- Exposure levels tested
- Test article details, such as purity or isomeric composition

Results are Typically <u>Not</u> Included in Inventories

Developing Extraction Forms (all 3 lines of evidence) to be interoperable with HAWC

Test compound	DBP		Maternal age at init. gestational exp.	NA
Species	Rat		Subject age at in vivo exposure initiation	PND21
Exposure type	In vivo		Lifestage at in vivo exposure initiation	Weaning 🗸
In vivo exposure route	Oral-gavage		Dose/concentration	0, 500 mg/kg-day
Strain of exposed test m	model Sprague-Dawley		Exposure duration	Single exposure
Sex of exposed test mo	del M	\sim	Exposure period	Postnatal only 🗸

⇔EPA

Discipline-specific experts consider whether and how to further refine or prioritize studies/outcomes for evaluation (based on study design features)

- Health effect studies meeting PECO criteria (e.g., organized by outcome):
 - Considers ADME and other key science issues (supplemental studies reviewed)
 - Opportunity to discuss outcome grouping (e.g., based on known biology/MOA) and handling of key science issues during outcome-specific study evaluations
 - Studies with certain design features or specific outcomes may be selected or prioritized for evaluation and synthesis (e.g., based on exposure duration, administration, or levels tested; or endpoint specificity)

• Supplemental mechanistic studies (e.g., organized by test system, mechanistic event, or key characteristic [of carcinogens]) are considered iteratively:

- Identifies other studies on specific aim mechanistic questions (e.g., mutagenicity)
- Organizes the available evidence to allow for pragmatic evaluations of key issues that arise during review of PECO-specific human and animal studies (Session 2)

Refinements are tracked and updated in the assessment protocol

IRIS has Addressed the Major NAS 2014 Recommendations

NAS 2014 Topics	IRIS Process Improvements
General Process Issues (Chapter 2); Problem Formulation and Protocol Development (Chapter 3)	 Draft IRIS Handbook of program SOPs is being reviewed within EPA IAPs allow early comment on problem formulation More frequent Agency engagement facilitates scope refinement Assessment protocols describe methods and allow for iteration Re-occurring staff training and template IAPs and protocols promote consistency and quality control
Evidence Identification (Chapter 4)	 Consultation with information technologists and subject experts Adopts current systematic review best practices, including use of specialized tools Transparent documentation (e.g., literature flow diagrams)

See Demonstrations:

- <u>Sciome Workbench for Interactive computer-Facilitated Text mining</u> (SWIFT Review and SWIFT Active)
- <u>Health Assessment Workspace Collaborative (HAWC)</u>
- <u>Heath Effects Research Online (HERO)</u>

SESSION 2: SYSTEMATIC REVIEW IN THE IRIS PROGRAM- EVIDENCE EVALUATION

Xabier Arzuaga*, Catherine Gibbons*, Barbara Glenn*, Andrew Kraft*, Beth Radke*, Kris Thayer

[*Speaking]

Office of Research and Development NCEA, IRIS

Evaluating Individual Studies: Reporting Quality, Risk of Bias, and Sensitivity

Office of Research and Development NCEA, IRIS

NAS 2014 High Priority (Box 8-1) Recommendations on Evidence Evaluation

"When considering any method for evaluating individual studies, EPA should select a method that is transparent, reproducible, and scientifically defensible. Whenever possible, there should be empirical evidence that the methodologic characteristics that are being assessed in the IRIS protocol have systematic effects on the direction or magnitude of the outcome."

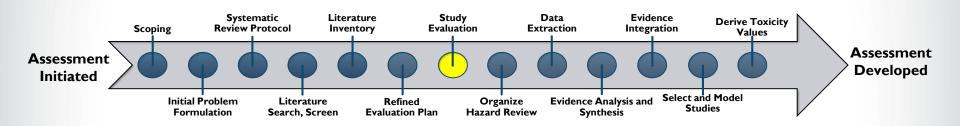
"EPA should specify the empirically based criteria it will use to assess risk of bias for each type of study design in each type of data stream."

"To maintain transparency, EPA should **publish its risk-of-bias** assessments as part of its IRIS assessments."

€PA

Study Evaluation – Developing an Approach

- Considered and drew from existing tools for study evaluation.
- Developed approaches for both epidemiology and toxicity studies that:
 - Addresses study sensitivity and identifies potential sources of bias.
 - Transparently presents the criteria/considerations used to consistently evaluate and judge each study/outcome.
 - Provides access to the rationale for discipline-specific decisions made during the evaluation process.
- Objective of the approach: Identify the most informative and reliable studies for evidence synthesis and integration.



PBPK Model Evaluation

Criteria	Example information	Prior to use, relevant PBPK models will:			
	Biological basis for the model is accuratee.g., Predicts dose metrics expected to be relevant	 Be thoroughly evaluated based 			
	Consideration of model fidelity to the biological system strengthens the scientific basis relative to standard extrapolation (default) approaches	on scientific and technical criteria (examples to the left).			
Scientific	 e.g., Can the model describe critical behavior, such as nonlinear kinetics in a relevant dose range, better than the default (i.e., BW^{3/4} scaling)? 	• Undergo QA/QC on model equations, parameters (including			
	Principle of parsimony (i.e., model complexity or biological scale should be commensurate with data available to identify parameters)	primary/secondary sources), and model code.			
	Model describes existing PK data reasonably well, both in "shape" (e.g., matches curvature) and quantitatively (e.g., within a factor of $2-3$)	For details, please see:			
	Model equations are consistent with biochemical and biological understanding	• <u>Poster</u> :			
	Well-documented model code is readily available to EPA and public	Systematic evaluations of PBPK			
	Set of published parameters clearly identified, including origin/derivation	models for human health risk			
	Parameters do not vary unpredictably with dose	assessment			
Initial technical	• e.g., Any dose dependence in absorption constants is predictable across the dose ranges relevant for animal and human modeling	• <u>EPA website</u> :			
	 Sensitivity and uncertainty analysis has been conducted for relevant exposure levels (local sensitivity analysis is sufficient, though global preferred) e.g., A sound explanation should be provided when sensitivity of the dose metric to model parameters differs from what is reasonably expected 	EPA Response to the Request for Correction of the IRIS Toxicological Review of Chloroprene (2018)			

Evaluation of Individual Health Effect Studies

- General approach same for human and animal studies
- Evaluation process focused on:
 - Internal validity/bias
 - Sensitivity
 - Reporting quality

- Questions in IRIS Protocol Template highlight general study attributes or elements to consider
- Subject-matter knowledge is used to formulate a list of issues to consider in the evaluation
- Develop a set of considerations based on exposure and outcomespecific knowledge

Study Evaluation Overview of Epidemiological and Animal Toxicity studies

Uninformative

	Individual study level domains									
		Animal		Epidemiological						
Reporting Qu	uality		Exp	Exposure measurement						
Selection or F	Perfo	rmance Bias	Ou	Outcome ascertainment						
Confounding/	/Varia	able Control	Pop	oulation Sel	ection					
Reporting or A	Attri	tion Bias	Co	nfounding						
Exposure Met	Exposure Methods Sensitivity			Analysis						
Outcome Mea	Outcome Measures and Results Display			Sensitivity						
			Selective reporting							
	۵	Domain Judgment			Overall					
	•	Good		Ň	High					
	•	Adequate			Medium					
	-	Poor			Low					

Critically Deficient

_

Sepa

Individual Domain Ratings for Epidemiological and Animal Toxicity Studies

	IRIS Judgment	How to interpret
++	Good	Appropriate study conduct relating to the domain & minor deficiencies not expected to influence results.
÷	Adequate	A study that may have some limitations, but not likely to be severe or to have a notable impact on results.
-	Poor	Identified biases or deficiencies interpreted as likely to have had a notable impact on the results or prevent reliable interpretation of study findings.
	Critically Deficient	A judgment that the study conduct relating to the domain introduced a serious flaw that is interpreted to be the primary driver of any observed effect or makes the study uninterpretable. Study is not used without exceptional justification.

Overall Study Confidence Ratings for Epidemiological and Animal Toxicity Studies

Rating	Description
High	No notable deficiencies or concerns identified; potential for bias unlikely or minimal and sensitive methodology.
Medium	Possible deficiencies or concerns noted, but resulting bias or lack of sensitivity would be unlikely to be of a notable degree.
Low	Deficiencies or concerns were noted, and the potential for substantive bias or inadequate sensitivity could have a significant impact on the study results or their interpretation.
Uninformative	Serious flaw(s) makes study results unusable

€PA

General Considerations to Evaluate Outcomes from Animal Toxicology Studies

Domain	Metric
Reporting Quality	Reporting of information necessary for study evaluation
Selection or	Allocation of animals to experimental groups
Performance Bias	Blinding of investigators, particularly during outcome assessment
Confounding/Variable Control	Control for variables across experimental groups
Reporting or Attrition Bias	Lack of selective data reporting and unaccounted for loss of animals
Exposure Methods Sensitivity	Characterization of the exposure to the compound of interest
	Utility of the exposure design for the endpoint of interest
	Sensitivity and specificity of the endpoint evaluations
Results Display	Usability and transparency of the presented data

- Approach based on the Cochrane Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I)¹, modified for environmental and occupational exposures
- Start by considering an "ideal" study for each domain, identifying "critical deficiencies", then developing criteria to define other levels of confidence
- Emphasis is on discerning bias that would produce a substantive change in the estimated effect estimate.

¹Sterne, Hernan, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016; 355:i4919.

Epidemiology Evaluation Domains

Domain	Core Question
Exposure measurement	Does the exposure measure reliably distinguish between levels of exposure in an appropriate time window?
Outcome ascertainment	Does the outcome measure reliably distinguish the presence or absence (or degree of severity) of the outcome?
Population selection	Is there evidence that selection into or out of the study (or analysis sample) was jointly related to exposure and outcome?
Confounding	Is confounding of the effect of the exposure likely?
Analysis	Does the analysis strategy and presentation convey the necessary familiarity with the data and assumptions?
Sensitivity	Are there concerns for study sensitivity?

Domain

Example of Considerations by Domains

Core Question

ExposureDoes the exposure measure reliably distinguish between levels**measurement**of exposure in an appropriate time window?

Examples of Prompting Questions:

- Does the exposure measure capture the variability in exposure among the participants, considering intensity, frequency, and duration of exposure?
- Does the exposure measure reflect a relevant time window?
- Was exposure measurement likely to be affected by knowledge of outcome or by presence of the outcome (i.e., reverse causality)?

Examples of Follow-up Questions:

- Is the degree of exposure misclassification likely to vary by exposure level?
- If there is a concern about the potential for bias, what is the predicted direction of the bias on the effect estimate?

Study Evaluation: Final Review in HAWC

Elizabeth Radke

Amanda Persad

HAWC

Home / Chloroform UH

EPA

SELECTED ASSESSME Chloroform UHA (20 Available Modules Literature review Management dashb Study list Risk of bias Endpoint list Visualizations Executive summary DOWNLOAD8 Download datasets

Adequate

Good. Case-control study. 181 cases (71% participation), 52% participation in controls

Controls identified from previous study of NHL, general pop identified with RDD and Medicare files.

Case participation not assoc. with site, age, or gender. Control participation associated with age, not site or gender.

▼

Normal

<u>__x</u>

Copy Notes

Adequate

+

Questions, instruction text, and drop down rating options are customizable by user

Adequate

Good-Fair. Cases from SEER. Inclusion criteria and participation rates included. Controls selected either through random digit dialing or Medicare/ Medicaid Service files. Eligibility criteria for cases and controls mentioned. Study design is not a cohort or nested case-control design.

Copy Notes

US

Т

Good-Fair. Case-control study. Cases from SEER. 181 cases (71% participation), 52% participation in controls. Inclusion criteria and participation rates included. Controls selected either through random digit dialing or Medicare/ Medicaid Service files.

Eligibility criteria for cases and controls mentioned. Study design is not a cohort or nested case-control

design. Control participation associated with age.

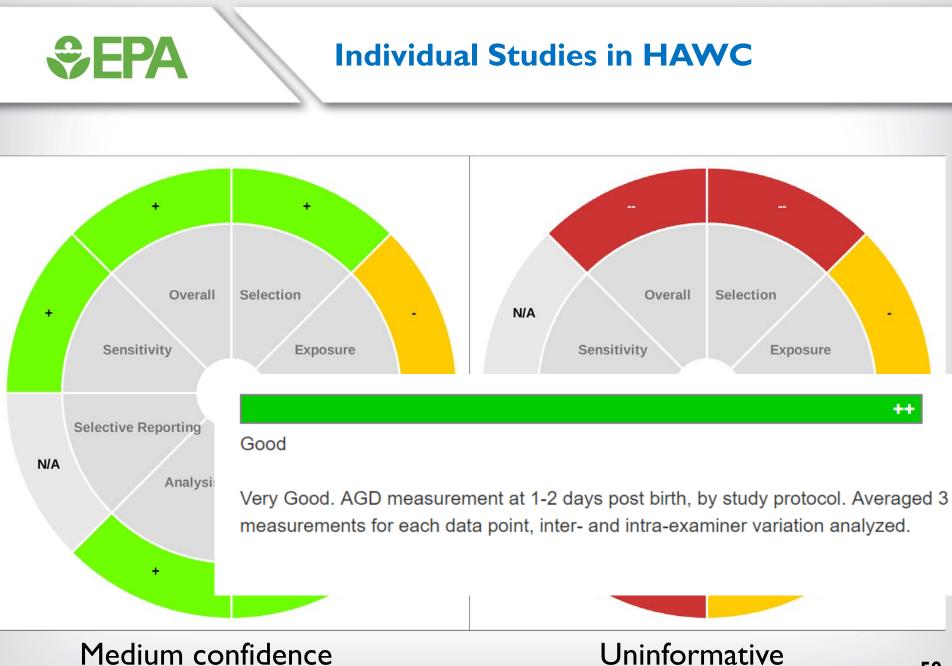
B

 introls selected either design. Control

Public Assessments

id notes for justification.

pation rates included.


tudy design is not a

idicare/ Medicaid Service

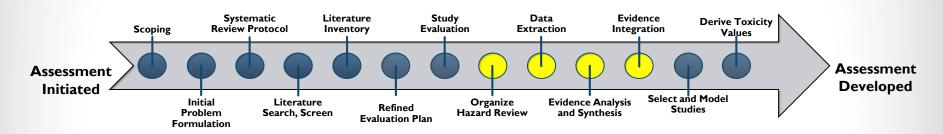
Your HAWC

es and frequencies of bout job start and end igh likelihood of recall ctual exposure measures

b title, and employers all bias, with cases

Study Evaluation Summary in HAWC

	Study 1	Study 2	Study 3	Study 4	Study 5	Study 6					
Population selection	++	+	++	_	++	+	Le		gend		
		-				-	Dom	ain judgement	Overall study rating		
Exposure measurement	-	_		_	_	_	++	Good	н	High confidence	
Exposure measurement	-		-	-	-	_	+	Adequate	м	Medium confidence	
Outcome ascertainment	++	++	++	+	_	++	NR	Not reported			
				•			-	Poor	L	Low confidence	
Confounding	+	+	+	-	+	+		Critically deficient	U	Uninformative	
Analysis	++	++	++	+	-	+	N/A	Not applicable			
Sensitivity	+	-	+	-	-	+					
Overall study confidence	Μ	L	М	L	L	Μ					


- Initial and iterative improvements to study evaluation
 - Ammonia, Inhalation (final 2016)
 - RDX (peer review draft 2016)
 - TBA (peer review draft 2017)
 - ETBE (peer review draft 2017)
- Current methods for study evaluation
 - Chloroform protocol (2018)
 - EPA Response to Chloroprene Request for Correction (2018)

Evaluating Confidence in a Body of Evidence: Evidence Synthesis and Integration to Reach Hazard Conclusions

Office of Research and Development NCEA, IRIS

Synthesis and Integration of Evidence Linking Exposure and Health Effects: Purpose

Synthesis: To describe the types of information within each line of evidence (human, animal and mechanistic), and to analyze and present study results regarding a given health effect to facilitate integration judgments.

- Decisions about the organization of the synthesis made prior to data extraction
- Narratives, but not study by study summaries

SEPA

Highlight information that informs the hazard evaluation

Integration: To develop judgments regarding strength of evidence for a health effect across lines of evidence

 A two-step process involving transparent and structured approaches for drawing summary conclusions across lines of evidence

NAS 2014: Relevant Comments and Recommendations

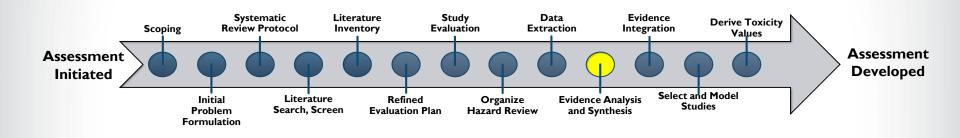
- The NAS 2014 report discusses the complexities with organizing analyses around mechanism, noting that, "The history of science is replete with solid causal conclusions in advance of solid mechanistic understanding." (NRC, 2014, p. 90).
- The current approach focuses first on the available human and animal studies on health effects, incorporating mechanistic information at various stages of assessment development to clarify identified gaps in understanding (e.g., human relevance of animal-model data).
- "The risk-of-bias assessment of individual studies should be carried forward and incorporated into the evaluation of evidence among data streams." (NAS 2014 Recommendation, Box 8-1)
- The results of the evaluation of individual studies is a critical component of the current evidence synthesis processes and integration frameworks.

NAS 2014: Relevant High Priority (Box 8-1) Recommendations

"EPA should continue to improve its evidence-integration process incrementally and enhance the transparency of its process. It should either maintain its current guided-expert-judgment process but make its application more transparent or adopt a structured (or GRADE-like) process...the committee does not offer a preference but suggests that EPA consider which approach best fits..."

"EPA should expand its ability to perform quantitative modeling of evidence integration."

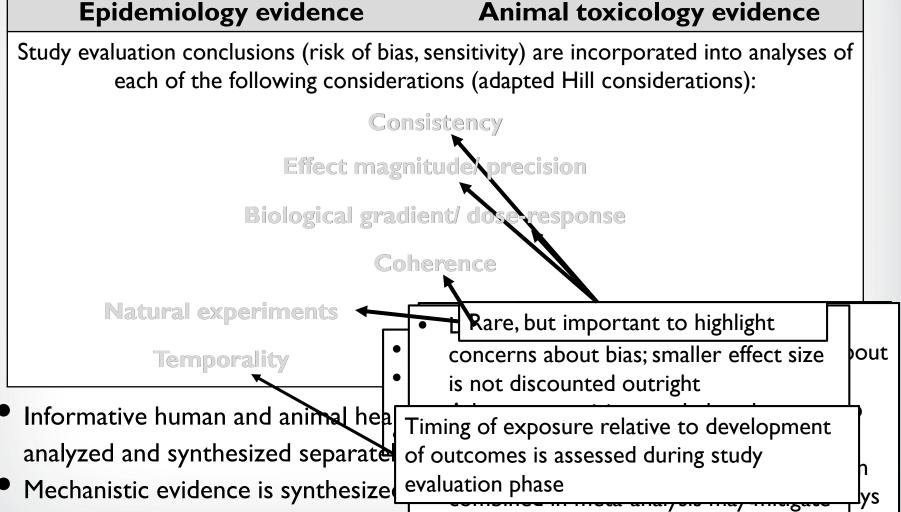
- The current approach continues to use a guided expert judgment process, but structured sets of categorical criteria for decision-making within that process are more explicitly defined.
- The current frameworks, and documentation of decisions within these frameworks, enhance transparency, reproducibility, and comparability across health effects and assessments; these approaches are evolving within NCEA and across the field.
- Current research activities include quantitative methods to integrate evidence across streams (e.g., Bayesian approaches; see Session 4)



Synthesizing Evidence on Health Effects – Organization and Structure

Some questions about the evidence

- What outcomes are relevant to each health hazard domain and at what level (e.g., health effect or subgroupings) should synthesis occur?
- What populations were studied (e.g., general population, occupations, life stages, species, etc.) and do responses vary?
- Can study results be described across varying exposure patterns, levels, duration or intensity?
- Are there differences in the confidence in study results for different outcomes, populations, or exposure?
- Does toxicokinetic information explain differences in responses across route of exposure, other aspects of exposure, species, or life stages?
- How might dose response relationships be presented (specific study results or across study results)?


Scientific Judgment in Analysis and Synthesis of Evidence

EPA

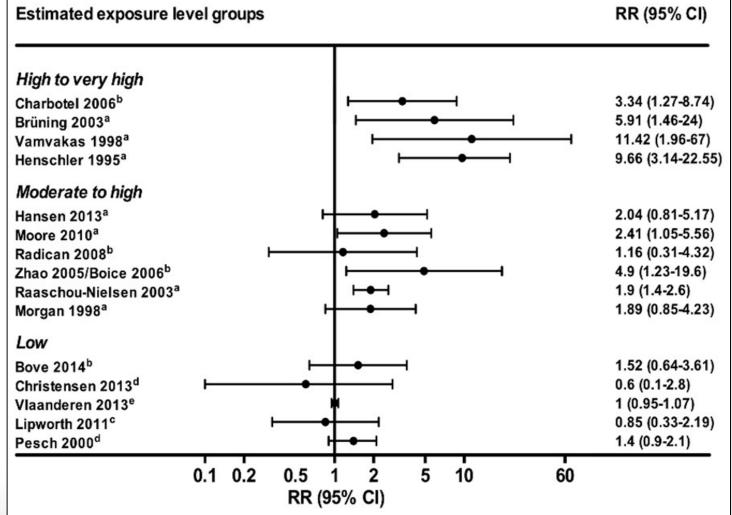
- Synthesis of evidence is more than counting the number of "positive" and "negative" studies
- Must systematically consider the influence of bias and sensitivity when describing study results and synthesizing evidence
- Synthesis should primarily be based on studies of medium and high confidence (when available)
- Analysis should try to draw conclusions about the strength of evidence from findings across collections of studies

the human and animal health effect evidencerns about chance

Synthesis Examples: Epidemiology

	Overall Study utility fallking		KK (95 % CI)		
TCE and	High				
kidnov	Zhao 2005		4.9 (1.2-20)		
kidney	Charbotel 2006	•	3.3 (1.3-8.7)		
cancer:	Moore 2010		2.4 (1.1-5.6)		
stratification	Moderate Hansen 2013 —		2.0 (0.8-5.2)		
by utility	Radican 2008	•	1.2 (0.3-4.3)		
	Morgan 1998 -	•	1.9 (0.9-4.2)		
	Brüning 2003	•	5.9 (1.5-24)		
	Low to Low/Moderate (Overall bias likely towards null)				
	Raaschou-Neilsen 2003		1.9 (1.4-2.6)		
	Vlaanderen 2013		1.0 (1.0-1.1)		
	Lipworth 2011	<u> </u>	0.9 (0.3-2.2)		
	Bove 2014	_ •	1.5 (0.6-3.6)		
	Christensen 2013 ←		0.6 (0.1-2.8)		
	Pesch 2000a –	_•	1.4 (0.9-2.1)		
Highest exposure level	Low (Overall bias likely towards overestimate of RR)				
graphed for each	Henschler 1995	•	9.7 (3.1-23)		
•	Vamvakas 1998	\longrightarrow	11 (2.0-67)		
study	0.1 RR (95	10 5% CI)	100		

RoC Monograph on Trichloroethylene. January 2015. https://ntp.niehs.nih.gov/go/797306

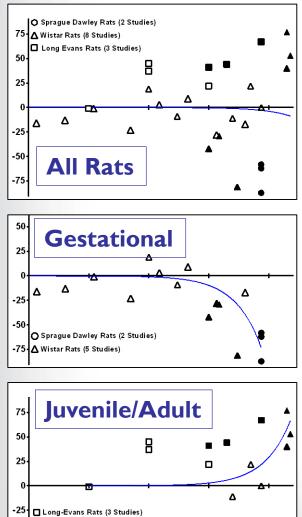

Overall study utility ranking

RR (95% CI)

\$EPA

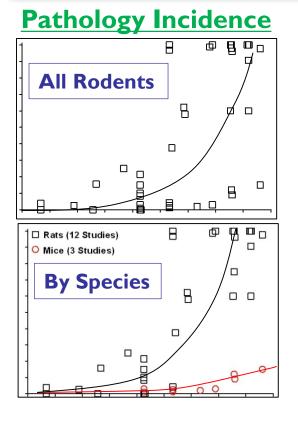
Synthesis Examples: Epidemiology

TCE and Kidney Cancer: stratification by exposure level

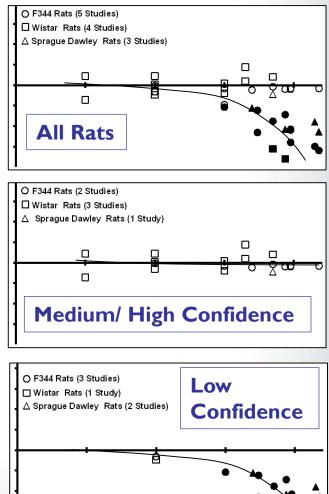


EPA. 2011. Toxicological Review of Trichloroethylene

⇔EPA


Synthesis Examples: Animal Toxicology

Hormone Level



▲ Wistar Rats (3 Studies)

-50

Behavioral Function

⇔EPA

Mechanistic Evidence

"Mechanistic data represent a wide variety of studies not intended to identify an adverse outcome." (NRC, 2014)

- When evaluating mechanistic evidence, the scope is larger than "in vitro" data
- Mechanistic inventories collected at earlier stages may include:
 - In vivo (cellular, biochemical, molecular)
 - In vitro or ex vivo (human or animal tissues or cells)
 - Non-animal or non-mammalian alternative animal models
 - Big data ('omics or high-throughput assays)
 - "Intervention" studies (pharmacologic, environmental, genetic)

"...there might be hundreds of *in vitro* and other mechanistic studies of a given chemical..." (NRC, 2014)

"For a given chemical, multiple mechanisms might be involved in a given end point, and it might not be evident how different mechanisms interact in different species to cause the adverse outcome." (NRC, 2014)

"When human data are nonexistent, are mixed, or consistently show no association and an animal study finds a positive association, the importance of mechanistic data is increased..." (NRC, 2014)

To narrow the scope of the analyses of mechanistic information, IRIS applies an iterative approach to identifying key mechanistic questions at various stages of the systematic review

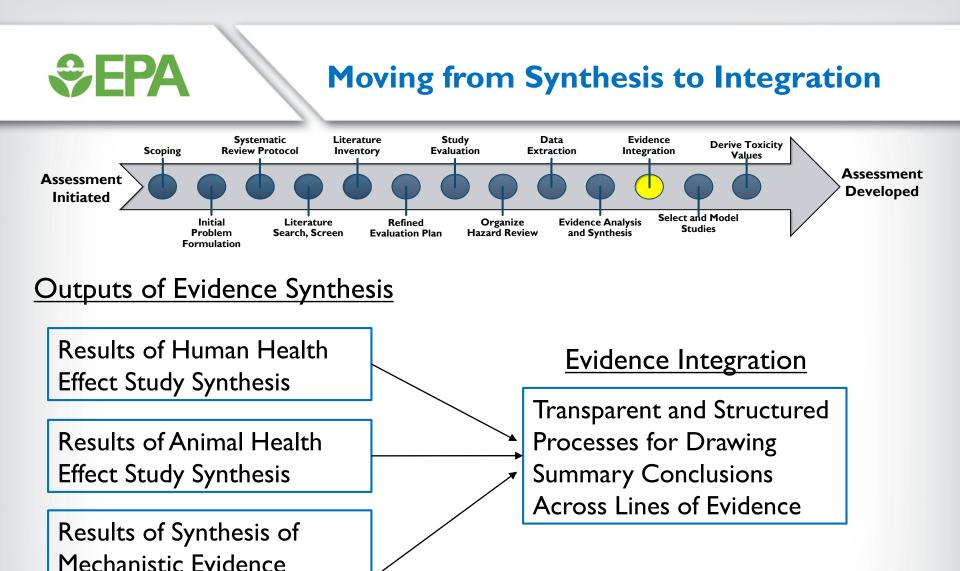
- Problem formulation identifies predefined analyses (e.g., when a mutagenic MOA is indicated)
- Literature inventory allows identification of studies on an organ system that human and animal studies meeting the PECO criteria have not examined
- Human and animal evidence syntheses may flag impactful qualitative and quantitative analyses

Human and animal evidence syntheses may flag impactful mechanistic analyses

- Identify precursor events for apical toxicity endpoints
- Inform susceptibility (species, strain, or sex differences; at -risk populations or lifestages)
- Inform human relevance of animal data (note: the level of analysis will vary depending on the impact of the animal evidence)
- Provide biological plausibility (i.e., to human or animal health effect data when evidence is weak or critical uncertainties are identified)
- Establish mechanistic relationships (or lack thereof) across sets of potentially related endpoints/outcomes to inform the consideration of coherence during evidence integration
- Aid extrapolation (high-to-low dose; short-to-long duration; route-to-route)
- Improve dose-response modeling and quantification of uncertainties

SEPA Mechanistic Analysis Focused on Specific Questions

Examples of when these analyses have been triggered in recent IRIS Assessments:


- Benzo[a]pyrene (2017): The descriptor "carcinogenic to humans" was supported by strong mechanistic evidence that established the biological plausibility of the animal findings occurring in humans, despite lack of human exposure data
 - Key precursors (BPDE-DNA adducts) were identified in humans exposed to PAH mixtures that are specific to B[a]P, form mutational spectra unique to B[a]P, and are associated with cancer in humans
- Dichloromethane (2011): The cancer risk estimate was specifically derived for a susceptible subpopulation (GSTT1+/+) identified by the mechanistic evaluation
 - Differing results in vivo were explainable by species and tissue differences in the availability of GST
 - PBPK modeling addressed the variability in this population
- Documentation and transparency is key for future mechanistic analyses

SEPA

Focused mechanistic evaluations

"Several criteria should be considered in assessing in vitro toxicology studies for risk of bias and toxicologic relevance. Relevance should be determined in several domains, including cell systems used, exposure concentrations, metabolic capacity, and the relationship between a measured in vitro response and a clinically relevant outcome measure. Few tools are available for assessing risk of bias in in vitro studies. Because of the nascent status of this field, the committee can provide only provisional recommendations for EPA to consider...EPA should carry out, support, or encourage research on the development and evaluation of empirically based instruments for assessing bias in...mechanistic studies." (NRC, 2014)

- Prioritize studies of relevant endpoints and associated assays by toxicologic relevance (e.g., model systems; dose range; sensitivity and specificity of assay)
- Conduct individual study evaluations on the most impactful studies
- EPA is exploring the use of existing tools, including adaptations of IRIS study evaluation tools
- Organizational frameworks (e.g., EPA's MOA framework using modified Hill considerations; visual AOP-like constructs) are useful for organizing and documenting these analyses transparently to convey conclusions for evidence integration

Informing the Human and

Animal Syntheses

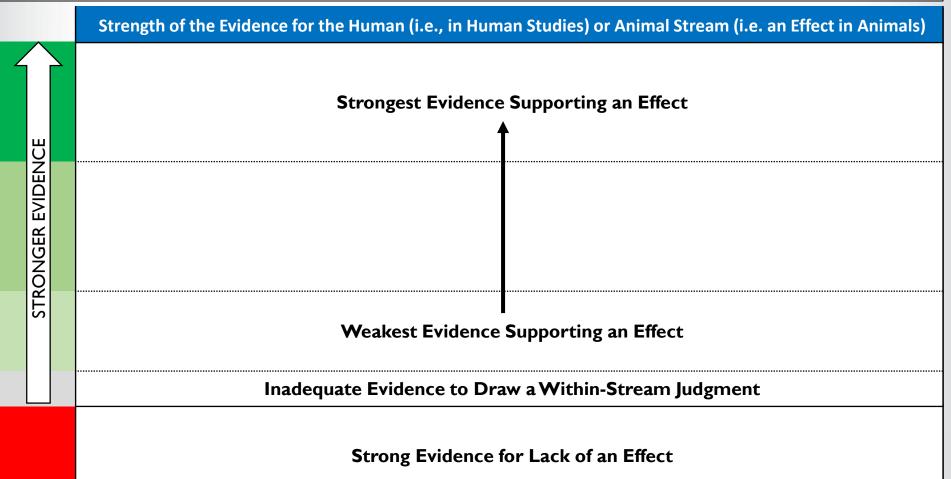
77

Evidence Integration Involves a Sequential, Two-Step Process

 Evidence synthesis interpretations for each consideration relating to causality are combined across lines of evidence using transparent, <u>structured frameworks</u>

€PA

Step I: "Within-Stream" Integration	Step 2: "Across-Stream" Integration
Judge the <u>Strength of the Evidence</u> from the: • Human Evidence Stream • Animal Evidence Stream	 Draw <u>Overall Evidence Integration Conclusions</u> based on: Combined Human and Animal Evidence Streams
Human health effect study synthesis conclusions for each consideration are integrated in light of mechanistic evidence in exposed humans or human cells (or other human models)	The judgments regarding the strength of the human and animal evidence streams are integrated in light of evidence on the human relevance of the findings in animals, susceptibility, and the coherence of the findings across
<u>Characterize the Strength of the Evidence for an Effect in</u> <u>Animals (Animal Evidence Stream Judgment)</u>	evidence streams.
Animal health effect study synthesis conclusions for each consideration are integrated in light of mechanistic evidence in exposed animals or animal cells (or other relevant models)	


Within-Stream (Human; Animal Stream) **Evidence Judgment Considerations**

	Human Evidence Stream	Animal Evidence Stream					
Individual Studies	 High or medium confidence studies provide stronger evidence within evaluations of each Hill consideration Interpreting results considers biological as well as statistical significance, and findings across studies 						
Consistency	• Different studies or populations increase strength • Different studies, species, or labs increase strength						
Dose- response	 Simple or complex (nonlinear) relationships provide stronger evidence Dose-dependence that is expected, but missing, can weaken evidence (after considering the findings in the context of other available studies and biological understanding) 						
Magnitude, Precision	 Large or severe effects can increase strength; further consider imprecise findings (e.g., across studies) Small changes don't necessarily reduce evidence strength (consider variability, historical data, and bias) 						
Coherence	 Biologically related findings within an organ system, within or across studies, or across populations (e.g., sex) increases evidence strength (considering the temporal- and dose-dependence of the relationship) An observed lack of expected changes reduces evidence strength 						
	 Informed by mechanistic evidence on the biological development of the health effect or toxicokinetic/ dynamic knowledge of the chemical or related chemicals 						
Mechanistic Evidence on Biological Plausibility	•	n evidence outright, but it can if well-conducted					
Light blue rov	vs highlight mechanistic inferences; "temporality" and "r	atural experiments" not shown 79					

Step I: Framework for Within-Stream Evidence Judgments

The Hill-based considerations are applied to judge the strength of the evidence from human studies and, separately, the evidence for an effect in animals

Step 2: Framework for Overall Evidence Integration Conclusions

Judgments regarding the strength of the human and animal evidence streams are combined to draw a conclusion for a given human health effect

€PA

	Strongest Conclusion for a Human Health Effect					
CONCLUSION						
STRONGER CON	Weakest Conclusion for a Human Health Effect					
	Inadequate Evidence to Draw a Conclusion					
	Strong Support for No Human Health Effect					

⇔EPA

Evidence Profile Table: Supports the Evidence Integration Narrative

"the weight of evidence descriptions need to indicate the various determinants of weight... to be able to understand what elements (such as consistency) were emphasized" [NRC, 2011]; "No matter what method is used to integrate the different kinds of evidence available for an IRIS assessment, using a template for the evidence-integration narrative could help to make IRIS assessments more transparent." [NRC, 2014]

[Studies and interpretation	Factors that increase strength	Factors that decrease strength	Summary of findings	Within stream evidence judgments	Inference across evidence streams	Overall conclusion
	[Health Effect	or Outcome Group	ping]				
	Evidence from • References • Study confidence (based on evaluation of risk of bias and sensitivity) and explanation • Study design description	gradient	 Unexplained inconsistency Imprecision Indirectness/ applicability Poor study quality/ 		Describe strength of the evidence from human studies, and primary basis: + + + Strongest evidence + + O Weakest evidence - O Inadequate Strong evidence for no effect	 findings in animals Cross-stream coherence (i.e. for both health effect-specific and mechanistic data) Other inferences: Information on susceptibility MOA analysis inferences: precursors, cross-species inferences of toxicokinetics, or quantitative implications Relevant information 	Describe conclusion(s) and primary basis for the integration of all available evidence (across human, animal, and mechanistic): +++ Strongest conclusion ++
	Evidence for • References • Study confidence (based on evaluation of risk of bias and sensitivity) and explanation • Study design description	 an Effect in Anim Consistency and Replication Dose-response gradient Coherence of observed effects (apical studies) Effect size (magnitude, severity) Biological plausibility Low risk of bias/ high 	 Unexplained inconsistency Imprecision Indirectness/ applicability Poor study quality/ high risk of bias 	 affected/ unaffected) across studies Animal mechanistic evidence informing biological plausibility for effects in animals: discuss how mechanistic data influenced the within stream judgment (e.g., evidence of coherent molecular changes in animal studies) Could be multiple rows (e.g., by study 	evidence for an effect in animals, and primary basis:	le.g., read across:	which the conclusions were primarily reliant
		quality Insensitivity of null/ negative studies 	Evidence demonstrating implausibility	confidence, species, or exposure duration) if this informs results heterogeneity	– – U – – – Strong evidence for no effect		82

Evidence Integration Conclusions

- For Cancer, conclusions on the integrated evidence for each cancer type (or grouping) are evaluated in the context of MOA information to develop an evidence integration narrative that includes a descriptor for carcinogenicity:
 - carcinogenic to humans; likely to be carcinogenic to humans; suggestive evidence of carcinogenic potential; inadequate information to assess carcinogenic potential; or not likely to be carcinogenic to humans
- For Noncancer Effects, frameworks for evaluating the integrated evidence have been developed to add structure and transparency to the evidence integration narrative(s), which include(s) the relevant exposure context.
 - IRIS has not yet incorporated standardized descriptors for noncancer effects
 - The NAS recommended incremental improvements in this area, including recommendations to "Develop uniform language to describe strength of evidence on noncancer effects" [p. 92, 2014]
 - The specific way in which these conclusions are summarized is currently being tested and discussed within EPA

IRIS has Addressed the Major NAS 2014 Recommendations

NAS 2014 Topics	IRIS Process Improvements
Evidence Evaluation (Chapter 5)	 Individual studies are evaluated for reporting quality, risk of bias, and sensitivity
	 Decisions and supporting rationale are clearly documented
	 Study evaluations impact subsequent assessment decisions
Evidence Integration for Hazard Identification	across human, animal, and mechanistic studies (based on Hill)
(Chapter 6)	 Standardized templates documenting key evidence integration decisions have been developed (evidence profile tables)

See Posters and Demonstrations:

- Male reproductive toxicity in studies of phthalates (4 posters on a case study for each of the 3 lines of evidence and the overall evidence integration)
- Combining data within species (poster on meta-analytical approaches)
- PBPK model evaluation for human health assessments (poster)
- <u>Health Assessment Workspace</u> <u>Collaborative</u> (demonstration)

SESSION 3: DEVELOPMENT AND APPLICATION OF SPECIALIZED TOOLS FOR SYSTEMATIC REVIEW

Kris Thayer*, Michele Taylor*, Amina Wilkins, Xabier Arzuaga

[*Speaking]

Office of Research and Development NCEA, IRIS

- "[EPA] need to consider developing a strategic plan for continuous updating of the IRIS methodology... For example, such a strategic plan should address:
 - Applying advances in data retrieval and text-mining

"The committee also found that the proposed format for the assessments should enhance "user friendliness" and transparency. The evidence tables and data displays in the new documents are moving to the standard practice for systematic reviews." [p. 136]

Current Application of Systematic Review Software

- Specialized software tools make the process more efficient
 - Time and cost savings, improved data management, increased transparency
- NOT all systematic review software tools are intended to automate/semiautomate the process, e.g., HAWC helps manage information content
 - Currently, automation tools are most advanced for evidence identification
- Prefer free tools when possible to help address needs of a potentially large community of users in environmental and biomedical sciences
- Incorporate tools after confirming acceptable performance and interoperability with HERO
 - A toolbox approach, not a "one and only" tool model
- Organized multiple IRIS staff training sessions in 2017 and created a support team ("train the trainers" model)

Research Activities

- Developing tools to help automate beyond evidence identification is a long-term research commitment
 - Major hurdle is lack of training/test sets for model development
 - Better performance expected for more structured content (e.g., animal bioassay compared to epidemiological studies)
- Any progress on semi-automation could result in large time and cost savings
- In 2017, NCEA created an interagency agreement with NTP to leverage resources
 - Current activities focus on creating test/training sets and model development for basic content of animal studies (e.g., test chemical, species, dose levels, randomization, etc.).
 - Other parts of EPA can also utilize interagency agreement
- Innovation challenges may be required to identify solutions for capturing complex content, i.e., table content, information spread across multiple sentences and paragraphs

SEPA

Suite of Systematic Review Software Tools – Upcoming Demonstrations

SWIFT Review: Scoping and Problem Formulation

About blog careers software contact Q

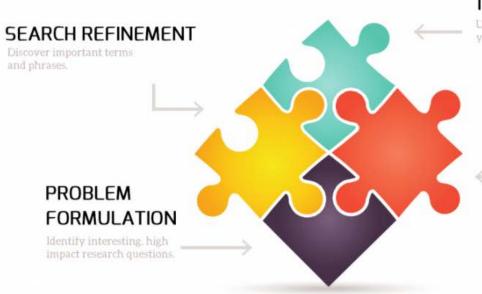
SWIFT-Review

SWIFT

SWIFT-Review (SWIFT is an acronym for "Sciome Workbench for Interactive computer-Facilitated Text-mining") is a freely available interactive workbench which provides numerous tools to assist with problem formulation and literature prioritization. SWIFT-Review puts the systematic review expert in the driver's seat by providing several features that can be used to search, categorize, and prioritize large (or small) bodies of literature in an interactive manner. SWIFT-Review utilizes newly developed statistical text mining and machine learning methods that allow users to uncover over-represented topics within the literature corpus and to rank order documents for manual screening.

https://www.sciome.com/swift-review/

GET SWIFT


SWIFT-Review is a desktop application that runs on both Windows and Mac. To obtain your free license for SWIFT Review, simply browse to the **Sciome Software** web page to login and/or create your SWIFT-Review account. Once you have logged in, you will find links to download the Windows and Mac installation software which you can use to set up SWIFT-Review on your

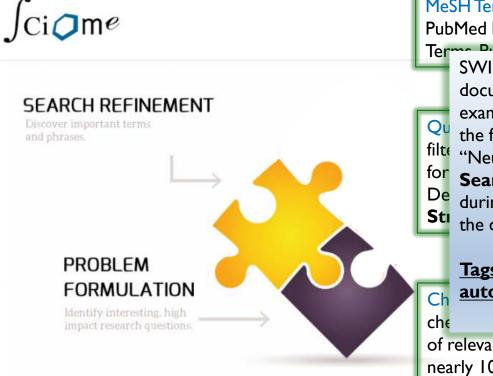
∫Ci⊘me

Increased Efficiency During Scoping and Problem Formulation

Can be used to screen studies according to the PECO statement

TOPIC MODELING

Built-in <u>and</u> user-defined search queries allow targeted surveys of the literature corpus


LITERATURE PRIORITIZATION

Use machine learning to triage your reading list.

Machine learning prioritizes relevant literature, reducing the screening burden by at least 50%

€PA

"Tags" Facilitate Searching During Problem Formulation

MeSH Terms and Bibliographic Data: Documents originating from PubMed bring along their associated Medline tags, including MeSH Terms Publication Time Pharmacelogical Actions atta SWIFT-Review tags are labels assigned to bibliographic documents that are organized into tag categories. For example, the tag category "Health Outcomes" includes the following tags: "Cancer," "Cardiovascular," and "Neurological." When used with the Tag Browser or Search functionalities, tags facilitate increased efficiency during scoping and problem formulation by quickly finding the documents you're interested in.

Tags can be assigned both manually and automatically using a variety of mechanisms:

of relevance to environmental health researchers, such as the nearly 10,000 Tox21 chemicals

Sepan Built-in and User-Defined Search Strategies

SWIFT-Review - [C:\Users\mtaylo07\Deskto File Tools Reports Help Tag Browser Search Browse MeSH Tree Query: (Help) Clear Execute Batch Query Clear Execute Batch Query Showing 9150 of 9150 loaded documents (Score Training Item? Included? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
🛞 SWIFT-Rev	iew - [C:\l	Jsers\mta	ylo07	\Deskto	
File Tools Re	ports He	elp			
Tag Browser	Search	Browse	MeSH	Tree	ł
Query: <u>(He</u>	l <u>p)</u>				
				_	
Clear E	Execute	Bato	h Que	ery	
A T					
Showing 915	i0 of 915	0 loaded	docu	ments (
Score					(
JUIE	Training	Item?	Inclu	ided?	
	Training	Item?	Inclu	ided?	
0	Training	Item?	Inclu	ided?	
0 0 0	Training	Item?	Inclu	ıded?	
0 0 0	Training	Item?	Inclu	Ided?	
0 0 0 0 0	Training	Item?	Inclu	Ided?	27
0 0 0	Training	Item?	Inclu	Ided?	

Search Term	Document Section	Example Search	
contents	Entire Document (default)	"estrogen receptor"	- 0
id	PubMed ID	id:23276611	
title	Title text	title:"Third generation"	
abstract	Abstract text	abstract:"estrogen receptor"	
tiab	Title OR abstract text	tiab:"randomized"	
			ammatory,
journal	Journal name	journal:"Medicina"	antimycobacteri
pubyear	Publication year	pubyear:2013	antiniycobacteri
author	Author name	author:Coronado	ntial oil of
mesh_mh	MeSH heading	mesh_mh:Adenocarcinoma	
mesh_mh_noexp	MeSH heading (no explosion). Disables default behavior, which is to "explode" MeSH terms to retrieve citations that contain not only the requested	mesh_mh_noexp:Adenocarcinoma	w. and
	term, but also MeSH terms below it in the hierarchy.	mach she (Nakami an Lie	car Santos, J; Kassuya, CAL;
mesh_sh	MeSH subheading	<pre>mesh_sh:("chemically induced")</pre>	C; Góis Ruiz, ALT; Ann Foglio
mesh_code	MeSH numeric code	<pre>mesh_code:("c04.557.470.200. 025")</pre>	
suppchem	MeSH Supplementary chemical name	suppchem:estrogens	
mesh_pubtype	MeSH Publication type	mesh_pubtype:review	Journal
			I, Asian Pacific journal of cancer
pharm_actions	MeSH pharmacological actions	<pre>pharm_actions:"Antineoplasti c Agents"</pre>	, Journal of occupational and en
tox21	Tox21 Chemical name	tox21:"ampicillin"	ne Annales Pharmaceutiques Fra
Health_Outcomes	Health outcomes tag set	Health_Outcomes:Bacterial*	Natural product research
7938087 Bioactiv	Execute Close	pas Turan, S; Bit	is, L Pharmaceutical biology
3749106 Bioassa	0.000	ndath, S; Raghav	an, R; Asian Pacific journal of cancer

Tag Browser Search by Health Outcome

SWIFT-Review - [C:\Users\mtaylo07\Desktop\SWIFT Review\NAS Session 3.stp]

File Tools Reports Help

Tag B	rowser Search Browse MeSH Tree	e Heatmap Browser	Prioritized Lists	Document Preview Pie Chart Bar Chart	
Healt	n Outcomes		~	Health Outcomes	
	Tag	Code(s)	Count	Number of Documents	
Q	Cancer		2832 🔨	3,000 2,750 2,250 2,250 2,250 2,250 1,750 1,250 1,250 500 2250 0	
	Hematological and Immune		2209	,750 ,250 ,000 ,750 ,000 ,750 ,000 ,750 ,000	
	[No Tag]		2130	Cancer	
	Developmental		2117	Hematological and Immune -	
	Nutritional and Metabolic		1680	Developmental	
	Mortality		1463	Nutritional and Metabolic	
	Endocrine		1293	Mortality -	
	Hepatic		1151		
	Respiratory		1051	Endocrine	
	Gastrointestinal		1032 ¥	Hepatic	\vee

Showing 2832 of 9150 loaded documents (1 selected; 27 total included; 50 total training docs.)

Score	Training Item?	Included?	RefID	Title	Year	Authors	Journal	
0.95	\checkmark	\checkmark	h1022338	Identification of genotoxic compounds in drink	1998	Le Curieux, F.; Erb, F.; Marzin, D.		^
0.95			h1021972	Mutagenicity study of carbon tetrachloride and	1998	Sasaki, T.; Suzuki, M.; Noda, K.;	Journal of Toxicological Sciences	
0.95			h630464	Advances in research on carcinogenic and gen	1993	Daniel, F. B.; Meier, , J. R.; Deang	Annali dell'Istituto superiore di sa	
0.95			h1024901	Cytosine attack by free radicals arising from br	1993	Castro, G. D.; Castro, J. A.	Teratogenesis, Carcinogenesis, an	
0.95	\checkmark	\checkmark	h1010308	International Commission for Protection Again	1992	Lohman, P. H. M.; Mendelsohn, M	Mutation Research: Fundamental a	
0.95	\checkmark	\checkmark	h1024875	International Commission for Protection Again	1992	Mendelsohn, M. L.; Moore, D. H.;	Mutation Research	
0.95			h1024972	Rational approach to the quantification of gen	1992	Benigni, R.	Environmental and Molecular Muta	
0.95			h194881	An association between mutagenicity of the Ar	1991	Roldán-Arjona, T.; García-Pedraja	Mutagenesis	
0.95			h1023024	Volatile Organohalogen Compounds from the	1991	Rosenberg, C.; Nylund, L.; Aalto,	Chemosphere	~

- 0 ×

€PA

\$ EPA	Tag Browser Search by Health Outcome
---------------	--------------------------------------

SWIFT-Review - [C:\Users\mtaylo07\Desktop\SWIFT Review\NAS Session 3.stp]

File Tools Reports Help

Tag Browser Search Browse MeSH Tree Heatmap Browser Prioritized Lists			ioritized Lists	Document Preview Pie Chart Bar Chart
Heal	th Outcomes		~	Health Outcomes
	Tag	Code(s)	Count	
Q	Cancer		2832 ^	
Q	Hematological and Immune		2209	PReproductive (824)
Q	[No Tag]		2130	Hepatic (1151)
9	Developmental		2117	Skin and Connective Tissu (554)
Q	Nutritional and Metabolic		1680	Endocrine (1293)
Q	Mortality		1463	Musculoskeletal (508)
Q	Endocrine		1293	Mortality (1463)
Q	Hepatic		1151	
Q	Respiratory		1051	Nutritional and Metabolic (1680)
Q	Gastrointestinal		1032	14%
Q	Reproductive		824	Developmental (2117) Hematological and Immune (2209)
Q	Renal		713	
Q	Neurological		698	
Q	Skin and Connective Tissue		554 ~	

Showing 2832 of 9150 loaded documents (1 selected; 21 total included; 40 total training docs.)

Score	Training Item?	Included?	RefID	Title	Year	Authors	Journal	
0.95			h1021972	Mutagenicity study of carbon tetrachloride and	1998	Sasaki, T.; Suzuki, M.; Noda, K.;	Journal of Toxicological Sciences	^
0.95			h630464	Advances in research on carcinogenic and gen	1993	Daniel, F. B.; Meier, , J. R.; Deang	Annali dell'Istituto superiore di sa	
0.95			h1024901	Cytosine attack by free radicals arising from br	1993	Castro, G. D.; Castro, J. A.	Teratogenesis, Carcinogenesis, an	
0.95	\checkmark	\checkmark	h1010308	International Commission for Protection Again	1992	Lohman, P. H. M.; Mendelsohn, M	Mutation Research: Fundamental a	
0.95	\checkmark	\checkmark	h1024875	International Commission for Protection Again	1992	Mendelsohn. M. L.: Moore. D. H.:	Mutation Research	~

D

 \times

Searching Additional Tag Categories Tox2l Chemicals

SWIFT-Review - [C:\Users\mtaylo07\Desktop\SWIFT Review\NAS Session 3.stp]

File Tools Reports Help

EPA

Tag Browser Search Browse MeSH Tree Heatmap Browser Prioritized Lists

Healt	n Outcomes	\sim		All To	x21 Chemicals	 ~	
	Tag	 Count			Tag	 Count	
Q	Cancer	2832	^	-	chloroform	 2323	^
	Hematological a	2209		-	methanol	 529	
2	[No Tag]	2130		-	[No Tag]	345	
9	Developmental	2117		1	phenol	 279	E
2	Nutritional and	1680		1	ethyl acetate	 270	
2	Mortality	1463		1	ethanol	 231	
Q	Endocrine	1293		1	hexane	 222	1
2	Hepatic	1151		-	1-butanol	 126	
2	Respiratory	1051		1	carbon tetrachlo	 113	2
2	Gastrointestinal	1032		1	benzene	 109	a
2	Reproductive	824		1	bromodichloro	 88	i
2	Renal	713		1	trichloroethylene	 87	
Q	Neurological	698		1	acetic acid	 79	g
Q	Skin and Conne	554	~	-	acetone	 75	~ 1

A classification framework and practical guidance for establishing a mode of action for chemical carcinogens Keyword

Butterworth, B. E., Regulatory Toxicology and har

the recently released U.S. Environment protection Agency (U.S. EPA) Supplemental ruidance for Assessing Risk frequearly Life Exposure to Carcinogens (SGAC) provides indance to account for potential increased early life susceptibility to carcinogens that are cting via a mutagenic mode of action. While determination of the mode of carcinogenic action a central to the SGAC procedures and other regulatory risk assessments, little guidance is aven as to the approaches, criteria, and nature of the evidence required to define a mutagenic node of action. The purpose of this paper is to provide a framework along with practical

Showing 2832 of 9150 loaded documents (1 selected; 21 total included; 40 total training docs.)

Score	Training Item?	Included?	RefID	Title	Year	Authors	Journal	
0.694			h625865	Investigation of xenobiotics metabolism, genot2	2007	Ghanayem, B. I.; Hoffler, U.	Current Drug Metabolism	^
0.694			h466288	Ochratoxin A in nephropathic patients from tw 2	2007	Dinis, A. M. P.; Lino, C. M.; Pena,	Journal of Pharmaceutical and Bio	
0.694			h51530	1,3-Dichloropropene epoxides: intermediates i 1	1998	Schneider, M.; Quistad, G. B.; Cas	Chemical Research in Toxicology	
0.694			h194881	An association between mutagenicity of the Ar 1	1991	Roldán-Arjona, T.; García-Pedraja	Mutagenesis	
0.687			h3697745	Cell proliferation and apoptosis during chlorof 2	2010	Carter. 1. H.: Carter. H. W.: Richm	Cancer Research	

Abstract

×

Text Highlighting

Interactive Displays Reveal Patterns of Available Evidence

SWIFT-Review - [C:\Users\mtaylo07\Desktop\SWIFT Review\NAS Session 3.stp]

File Tools Reports Help

€PA

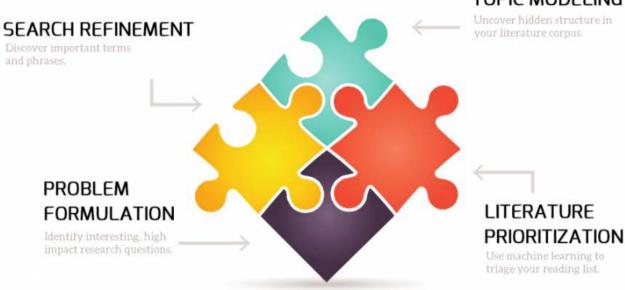
Tag Browser Search Browse MeS	H Tree	Heatn	nap Bro	owser	Prioriti	zed Lis	ts					5	Document Preview Pie Chart Bar Chart
Choose Row/Columns	Cancer	Cardiovascular	Developmental	Endocrine	Gastrointestinal	Hematological and Immune	Hepatic	Mortality	Musculoskeletal	Neurological	Nutritional and Metabolic	Concorti	Reversible inhibition of intercellular communication among cardiac myocytes by halogenated hydrocarbons
Animal	55	179	545	454	310	781	658	617	211	234	609	16	Sciences (1992)
Human	736	169	674	253	269	717	291	488	156	212	380	15	
In Vitro	819	172	701	410	371	869	515	544	235	226	706	18	▼Abstract
	<											>	National Institute for Occupational Safety and Health.
▲▼													

Showing 169 of 7701 loaded documents (1 selected; 21 total included; 40 total training docs.)

Score	Training Item?	Included?	RefID	Title	Year	Authors	Journal
0.596			h3719854	Effect of Ocimum basilicum L. on cyclo-oxygen	2014	Umar, A.; Zhou, W.; Abdusalam,	Journal of Ethnopharmacology
0.712			h1068173	[Polymorphism of the angiotensin-converting e 2	2002	Tseluĭko, V. I.; Kravchenko, N. A.;	Tsitologiia i Genetika / Cytology an
0.5			h1067237	The natural compound n-butylidenephthalide d 2	2006	Tsai, N. M.; Chen, Y. L.; Lee, C. C	Journal of Neurochemistry
1			h13593	Reversible inhibition of intercellular communica	1992	Toraason, M.; Breitenstein, M. J.;	Toxicological Sciences
0.617			h1066216	Association of interleukin-6, interleukin-12, an	2008	Timasheva, Y. R.; Nasibullin, T. R	Biochemical Genetics
0.521			h1024888	[Occupational scleroderma due to organic solve]	1992	Tibon-Fisher, O.; Heller, E.; Ribak,	Ha-Refuah
0.625			h1066417	The content of lipoperoxidation products in nor	2001	Tertov, V. V.; Kaplun, V. V.; Mikha	Molecular and Cellular Biochemistry
0.883			h1067777	A TREK-1-like potassium channel in atrial cells 2	2001	Terrenoire, C.; Lauritzen, I.; Lesag	Circulation Research
0.521			h2873352	[Evaluation of the significance of molecular met]	2011	Susever, S.; Yeğenoğlu, Y.	Mikrobiyoloji Bulteni

D

 \times


Publication Year by Health Outcome

i.	5 •∂-+						Choro	oform 5 Year.x	lsx - Excel			$\epsilon^{\pm \epsilon}$	Та	ylor, MicheleN		- (a x
F	le Home Insert Page I	Layout Fo	rmulas (Data Reviev	v View	🖓 Tell n	ne what yo	ou want to do									A Share
4	Calibri	* 11	• A A	= = 4	»• 🗗	Wrap Text	[General	×				>	∑ AutoSun ↓ Fill +	Zľ	2	
Past	e 😽 Format Painter 🛛 B 🛛 🖳	• 🖽 • 🛓	<u>් - A</u> -			Merge & Ce	enter *	\$ - % ,	00. 0. 0.¢ 00.	Conditional Formatting *	Format as Cell Table * Styles		Delete Forma	t 🏹 Clear *	Sort & Filter • 1		
	Clipboard %	Font	G		Alignment		5	Number	15		Styles		Cells		Editing		
A1	• : × 🗸	f _x															
1	A	J	к	L	м	N	0	р	Q	R	s	r	UN	w	x	Y	
		944	949	954	959	964	696	974	979	984	686	1	666	2009	2014	2017	
1		1940-1944	1945-1949	1950-1954	1955-1959	1960-1964	1965-1	1970-1974	1975-1	1980-1984	1985-1989	tast-osst	1995-1999	2005-2	2010-2	2015-2	
2	Cancer	0	1	1	0	0	1	3	47	7 36	19	266	230	1	100 C	131	116
3	Cardiovascular	0	1	2	0	0	0	0	1	3 2	0	46	29	60	77	94	34
4	Developmental	0	0	0	2	1	1	0	24	4 17	6	252	220	288 3	22 3	23	152
5	Endocrine	0	0	0	0	2	2		31	3 31	6	98	107	145 1	.34 1	24	61
	Gastrointestinal	0	0	0	0	1	2	0	20		3	61	60			.72	82
	Hematological and Immune	0	0	1	1	3	2		34		6	156	158			77	142
	Hepatic	0	0	1	2	4	12		31		13	205	139			.09	46
	Mortality	0	2	2	2	1	3		30		5	244	220			.97	96
	Musculoskeletal	0	0	0	0	1	1	0	10	2	0	47	30			17	45
	Neurological	0	0	0	0	0	0	-	19		2	83	55			31	58
11111	Nutritional and Metabolic	0	0	0	0	2	8	1.11	31		5	167	137			1000	117
_	Ocular and Sensory	0	0	0	0	0	0			9 0	2	52	54			13	41
11000	Renal	0	1	0	3	2	4	4	24		8	111	79			65	33
and the second second	Reproductive	0	0	0	0	0	0	2	1		4	82	56			11	52
	Respiratory	0	0	1	3	3	0	8	21		8	151	134			41	62
17	Skin and Connective Tissue	0	0	0	0	0	0	0	1	8 1	0	57	45	70	70 1	.00	34

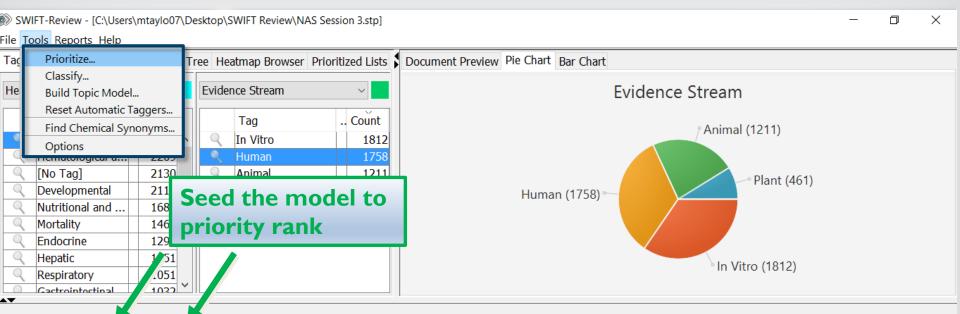
Priority Ranking Reduces Screening Burden

TOPIC MODELING

٦

Automated Priority Ranking Reduces Screening Burden

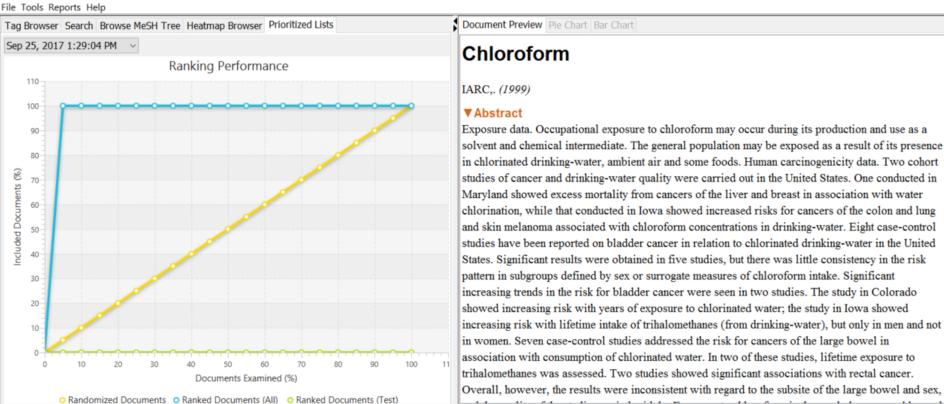
∫Ci**⊘**me


Incorporate human curated training sets or manually annotate **"included"** and **"excluded"** training **"seeds"** to automatically priority rank the remaining documents. TOPIC MODELING

Uncover hidden structure in your literature corpus.

LITERATURE PRIORITIZATION

Use machine learning to triage your reading list.


Topic modeling is a statistical methodology (Latent Dirichlet Allocation or LDA) that automatically computes then categorizes documents according to pre-defined topics. Users can also customize their own topic model by choosing Tools > Build Topic Model

Showing 1758 of 9150 مطوط docum راجع (1 selected; 21 total included; 40 total training docs.)

Score	Training Item?	Included?	RefID	Title	Year	Authors	Journal	
0.269			h699241	The relationship between multiple myeloma a	2010	Gold, L. S.; Stewart, P. A.; Millike	Occupational and Environmental	^
0.261			6759108	Epidemiological evidence of carcinogenicity of	1982	Cantor, KP	Environmental health perspectives	
0.243			h3719592	Toxic potentials of ten herbs commonly used f	2015	Abudayyak, M.; Özdemir Nath, E.;	Turkish Journal of Medical Sciences	
0.241			h3698164	Application of ultrasound-assisted emulsificati	2014	Asghari, A.; Fazl-Karimi, H.; Barfi,	Human & Experimental Toxicology	
0.241			h1292499	Antioxidant, genotoxic and antigenotoxic activi	2012	Chaabane, F.; Boubaker, J.; Louss	BMC Complementary and Alternati	
0.24			h1068198	Genotoxicity and toxicity assessment in urban	2006	Cardozo, T. R.; Rosa, D. P.; Feide	Mutation Research	
0.24			h3698004	The use of endemic Iranian plant, Echium am	2015	Uysal, H.; Kızılet, H.; Ayar, A.; Ta	Toxicology and Industrial Health	
0.24			11518606	Classification of carcinogenic chemicals in the	2001	Greim, H; Reuter, U	Toxicology	
0.238			h1024786	In vitro protective effects of Terminalia arjuna	2002	Pasquini, R.; Scassellati-Sforzolini,	Journal of Environmental Patholo	\sim

Priority Ranking Improves Literature Screening Efficiency

SEPA

SWIFT-Review - [C:\Users\mtaylo07\Desktop\SWIFT Review\NAS Session 3.stp]

solvent and chemical intermediate. The general population may be exposed as a result of its presence in chlorinated drinking-water, ambient air and some foods. Human carcinogenicity data. Two cohort studies of cancer and drinking-water quality were carried out in the United States. One conducted in Maryland showed excess mortality from cancers of the liver and breast in association with water chlorination, while that conducted in Iowa showed increased risks for cancers of the colon and lung and skin melanoma associated with chloroform concentrations in drinking-water. Eight case-control studies have been reported on bladder cancer in relation to chlorinated drinking-water in the United States. Significant results were obtained in five studies, but there was little consistency in the risk pattern in subgroups defined by sex or surrogate measures of chloroform intake. Significant increasing trends in the risk for bladder cancer were seen in two studies. The study in Colorado showed increasing risk with years of exposure to chlorinated water; the study in Iowa showed increasing risk with lifetime intake of trihalomethanes (from drinking-water), but only in men and not in women. Seven case-control studies addressed the risk for cancers of the large bowel in association with consumption of chlorinated water. In two of these studies, lifetime exposure to

Showing 7701 of 7701 loaded documents (1 selected; 20 total included; 40 total training docs.)

Score	Training Item?	Included?	RefID	Title	Year	Authors	Journal
0.906	\checkmark	\checkmark	h1068322	Chloroform	1991	Meldrum, M.	
0.903			h1065954	Chloroform	1999	IARC,	
0.903	\checkmark	\checkmark	h1022997	Chloroform	1994	IPCS,	

đ Х

102

Automated Priority Ranking

∫Ci**⊘**me

ABOUT BLOG CAREERS SOFTWARE CONTACT

SWIFT-Active Screener

SWIFT-ACTIVESCREENER

SWIFT-Active Screener is a web-based, collaborative systematic review software application. Active Screener was designed to be easy-to-use, incorporating a simple, but powerful, graphical user interface with rich project status updates. What makes Active Screener special, however, is its behind-the-scenes application of state-of-the-art statistical models designed to save screeners time and effort by automatically prioritizing articles as they are reviewed, using user feedback to push the most relevant articles to the top of the list.

IMPROVED RANKING MODEL

The computer suggests the next articles to screen based on previously included articles.

SWIFT Active Screener Capabilities -Improved Ranking Model

- Web-based, real-time, collaborative, systematic review software application
- State-of-the-art statistical models prioritize articles <u>as they are being reviewed</u>
- Experience suggests screening burden is reduced by at least 50% (likely more)
- Algorithm improves from screenerinput without training "seeds" further increasing efficiency (more efficient than implementing a "seed studies" only model)
- Option to "seed" studies if relevant on/off topic literature has been identified
- Incorporates a graphical user interface to provide project status updates
- User-defined screening levels
 - Level I: Title and Abstract
 - Level 2: Full text screening
 - Level 3: Conflict Resolution

Customize Inclusion/Exclusion Criteria According to the PECO Statement

Review				• A	dd New Review
Level 1 - Title & Abstract +					
Review Name *	Level Name *				
Chloroform	Level 1 - Title & Abstract				
Inclusion/Exclusion Question *			C	Question Type	
Include this reference?				Radio Buttons 💉 🖌 Require	d?
Answers					
Yes, include the reference	▲ MMT_US	SEPA ~	*	Included 🗸	
No, exclude the reference			*	Excluded 🗸	
Add Answer					
Add Question					
How many times would you like	the reference to be screened?				
Screening Users					
Screening Users	Level Screener		Proie	ect Admin	
User					
User Taylor, Michele					
User					

€PA

User Input Improves the Algorithm to Priority Rank While Screening

SWIFT ACTIVESCREENER

€PA

IER

Chloroform 🗨 🕒 🖆 🔛 🌣

🐣 MMT_USEPA 🗸

 \sim

Screening References

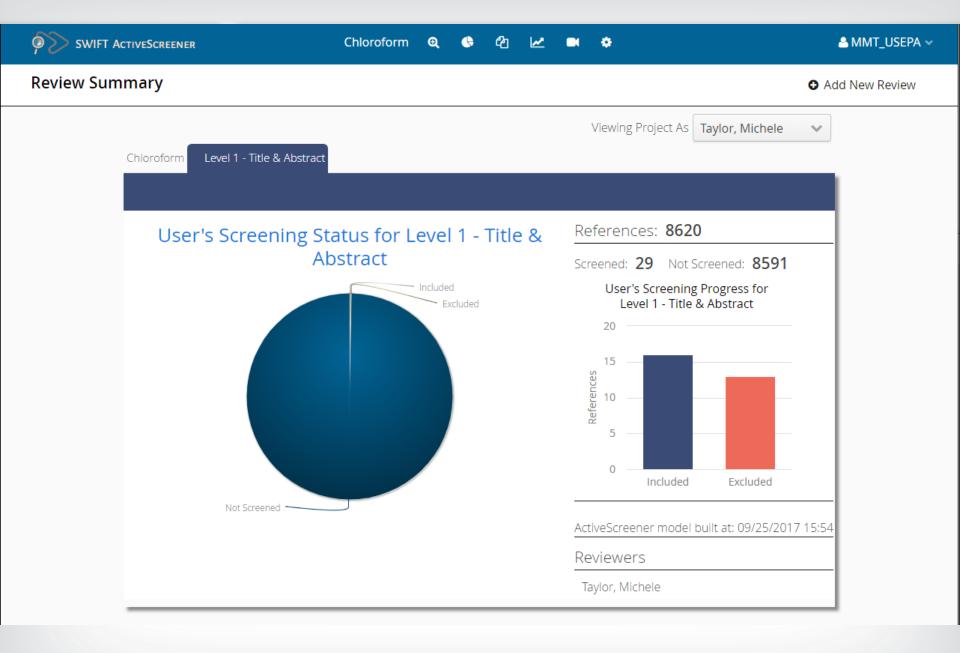
Add New Review

0.3%

Level 1 - Title & Abstract

Include	Exclude	Detailed Screen	ID	Title
۲	0	Q	1619902	Hepatotoxicity and lethality of halomethanes in Mongolian gerbils pretreated with chlordecone, phenobarbital or mirex
۲	۰	Q	1619890	Central nervous effect and blood level regressions on exposure time paralleled in solvents (toluene, carbon tetrachloride and chloroform)
۲	۰	Q	1619889	DNA damage as a consequence of chloroform-induced cytotoxicity in male F344 rat and B6C3F1 mouse hepatocytes in vitro
۲	۰	Q	1619865	Suppression of pulmonary host defenses and enhanced susceptibility to respiratory bacterial infection in mice following inhalation exposure to trichloroethylene and chloroform
۲	۰	Q	1619857	Carcinoembryonic antigen, alpha-fetoprotein, and prostate-specific antigen in the sera of industrial workers exposed to phenol, formaldehyde, urea, and mixed vapors
۲	۰	Q	1619856	Ranking of chemicals for carcinogenic potecya comparative study of 13 carcinogenic chemicals and an examination of some of the issues involved
۲	۰	Q	1619852	Metabolism of haloforms to carbon monoxide: Il in vivo studies
۲	۰	Q	1619846	A painless burn: systemic toxicity after dermal exposure to chloroform
۲	•	Ð	1619844	U.S. Environmental Protection Agency's revised cancer guidelines for carcinogen risk assessment

"Seed" studies when Relevant On/Off Topic Literature is Identified

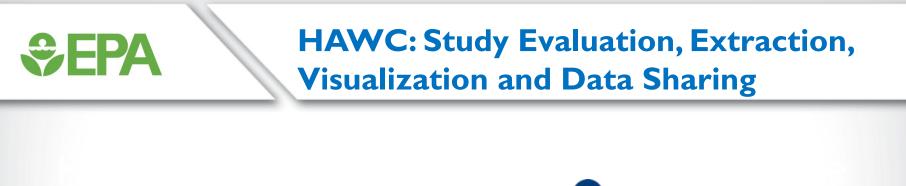

lanag	e Referenc	es				Add New Review
Status	~	Level		~		8620 References
Seed	Full Text	History	ID	Title	Current Level	Status
~	Ø	≔	1619917	Predicting rodent carcinogenicity of halogenated hydrocarbons by in vivo biochemical parameters	Level 1 - Title & Abstract	Not Screened
-	Ø	≔	1619916	Systemic inflammatory response due to chloroform intoxicationan uncommon complication	Level 1 - Title & Abstract	Included
-	Ø	≔	1619915	Evolution of chronic toxic encephalopathy induced by organic solvents after the cessation of exposure - Report of a case with a 5-year follow-up	Level 1 - Title & Abstract	Excluded
-	Ø	≔	1619914	Metabolic activation of halogenated hydrocarbons in the conjunctival epithelium and excretory ducts of the intraorbital lacrimal gland in mice	Level 1 - Title & Abstract	Not Screened
-	Ø	ы	1619913	Volatile organohalogen compounds in human urine: the effect of environmental exposure	Level 1 - Title & Abstract	Not Screened
-	Ø	≔	1619912	Higher urinary elimination of trichloroethylene in the presence of chloroform results in lower liver injury	Level 1 - Title & Abstract	Included
-	Ø	≔	1619911	Relative hepatotoxicity of seven halogenated hydrocarbons	Level 1 - Title & Abstract	Not Screened
-	Ø	≔	1619910	The occurrence of organohalides in chlorinated drinking waters	Level 1 - Title & Abstract	Not Screened
-	Ø	≔	1619909	A retrospective cohort study of trihalomethane exposure through drinking water and cancer mortality in northern Italy	Level 1 - Title & Abstract	Included
-	Ø	≔	1619908	Teratology studies on orally administered chloroform in the rat and rabbit	Level 1 - Title & Abstract	Included
-	Ø	i≡	1619907	Protective effect of diethyldithiocarbamate and carbon disulfide against liver injury induced by various hepatotoxic agents	Level 1 - Title & Abstract	Excluded
-	Ø	i≡	1619906	Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review	Level 1 - Title & Abstract	Not Screened

€PA

Manage References with Conflict Resolution – Track and Archive Changes

onflicte		Level		Filter	Antes	Title and Author							
Seed	Full Text	History	Abstract	Title	Potocie	THE WAS PEOP				Curr	ent Level		8 References
-	•	۰		Using molecular sign	atures	for identification of teratoger	nic compound	is in the zebraf	<mark>ish embryo</mark> assaj	y Lev	el 1 - Title 8	Abstract	Conflicted
-	9	-		Predictive modeling	of deve	siopmental toxicity				tev	H 1 - Title 8	Abstract	Conflicted
-	0	۰	-	describing the loss	-	nce Screening History				2	+ X	Abstract	Conflicted
-		۰	-	Development of a	Edit	Lavel	Status	Created By	Modified By	Date Mod		Abstract	Conflicted
-		۲		The classification o alternative approact	B	Level 1 - Title & Abstract	Included	ktsaloun	ktsaloun	08/10/20		Abstract	Conflicted
-		۰	-	DarT: The emoryo I	8	Level 1 - Title & Abstract	Excluded	amaertens	amaertens	08/14/20	16 22:54	Abstract	Conflicted
-	0	۲		Implementation of								Abstract	Conflicted
-	0	۰	-	CFC1 as a candidat								Abstract	Conflicted

€PA



SWIFT Active: Data Integration

- Active Screener integrates with systematic review tools already in use:
 - Accepts imports from bibliographic databases and reference curation platforms including SWIFT Review, EndNote, Mendeley, Zotaro, and PubMed
 - Results from screening in Active Screener can be exported in standard data formats compatible with applications including HAWC and Excel, EndNote, Mendeley, and Zotaro

HAW **HEALTH ASSESSMENT** WORKSPACE COLLABORATIVE

111

https://hawcproject.org/

HAWC Capabilities

- Free and open source
- Developed at UNC by Andy Shapiro* with Ivan Rusyn
- Literature search and initial screening
- Animal bioassay, epidemiological, and in vitro structured study methods/data extraction and visualization
- Interactive "click to see more" graphics
- Risk of bias and sensitivity evaluation
- Modular to work with other tools and maximize flexibility for users
- Works best in Google Chrome (preferred), Mozilla Firefox, and Safari

HAWC: Summarizing Animal Bioassays

HAW			Contact About Public Assessments	Your HAWC -		
Home / Uranium UHA (2017) / Dublineau I	et al. 2014 / Create experiment /					
SELECTED ASSESSMENT X	Create new experime	nt				
Uranium UHA (2017)						
	Create a new experiment. Each e experiment may be a 2-year can				Contact About	Public Assessments Your HAWC -
AVAILABLE MODULES	a single study, with different stud	v desig	e-Gueye et al. 2012 / 9-month drinking water bioassay	(Postnatal model, Sprag	ue. Dawley male rate / Cr	este endroint /
Management dashboard		Home / Oranium OriA (2017) / Walk	e-oueye et al. 2012 / 9-month uninking water bioassay	Postilatal model, opragi	ue-Dawley male rats / Ci	
Study list	Name*		Create new endpoint			
Risk of bias		SELECTED AUSE OSMERT				
Endpoint list	Short-text used to describe the e	Uranium UHA (2017) xperime	Create a new endpoint. An endpoint may shou	ld describe one measure-o	f-effect which was measure	ed in the study. It may or may not contain
Visualizations	bioassay, 28-day inhalation, etc.)		quantitative data.			
Executive summary	Chemical name	Literature review Management dashboard	Endpoint name*			
DOWNLOADS		Study list				
Download datasets		Risk of bias	Short-text used to describe the endpoint. Shou	ld include observation-time	e, if multiple endpoints have	the same observation time.
		Endpoint list	System Organ (a	nd tissue)	Effect	Effect subtype
	Chemical purity	ualifie Executive summary				
	available? >	DOWNLOADS	Relevant biological system Relevant	organ; also include	Effect, using common-vo	cabulary Effect subtype, using common-
		Download datasets	tissue if r	elevant		vocabulary
			Additional tags		Diagnostic	
	Diet			+		
			Any additional descriptive-tags used to categor	ize the outcome		a a
			Any additional descriptive-rags used to categor		Diagnostic or method use	ed to measure endpoint (if relevant)
			Observation time	Observation time unit	S*	Observation time text
	Description of animal-feed, if rele	want		not-reported	¥	
	Description and animal husbar	ndrv	Numeric value of the time an observation was			Text for reported observation time (ex: "60-90
	-		reported; optional, should be recorded if the same effect was measured multiple times.			PND")
	Normal 🗘 B I U	5				
			Data reported Dose-response data for endpoint are	 Data extracted Dose-response data for 		Values estimated Response values were estimated using a
	Taxt description of the experimen	tal prot	available in the literature source	extracted from literature		digital ruler or other methods
			Dataset type*	Variance type*		
			Continuous 🔻	SD	•	

Epidemiology: Click to See More Display

Example from Chloroform

Study	Population	Design	Exposure	Outcome	Comments	Exposure Contrast (EWPM)	adjOR*	Relative Risk
Brender et al. 2014	USA (TX 1998-2008) case-control, 으ć (60,613 case-mothers; 244,927 control-mothers)	Case-control	maternal residential proximity (EWPM based on residential distances to industrial sources and TRI data)	anencephaly	3,985 (1.8%) controls and 10 (1.7%) cases in >0 group	0 vs >0	1.09	estimate
				heart defect (conotruncal)	3,985 (1.6%) controls and 60 (1.8%) cases in >0 group	0 vs >0	0.97	esuinate esuinate
				heart defect (obstructive)	3,985 (1.6%) controls and 70 (2.1%) cases in >0 group	0 vs >0	1.13	H
				heart defect (septal)	3,985 (1.6%) controls and 739 (1.7%) cases in >0 group	0 vs >0	1.1	
				limb deficiency (any)	3,985 (1.6%) controls and 37 (1.9%) cases in >0 group	0 vs >0	1.11	
				neural tube defects	3,985 (1.6%) controls and 52 (2.4%) cases in >0 group	0 vs >0	1.4	⊢ −−−−−+
				oral cleft (any)	3,985 (1.6%) controls and 79 (2%) cases in >0 group	0 vs >0	1.05	
				spina bifida	3,985 (1.6%) controls and 37 (2.8%) cases in >0 group	0 vs >0	1.55	·•
					p-trend = 0.027; 9-14 (0.7-1.1%) exposed cases per group	0 vs 0.01-42.27	1.74	•
						0 vs 42.28-1490.26	1.23	
						0 vs >1490.26	1.66	· · · · · · · · · · · · · · · · · · ·
							(0.4 0.8 0.8 1 1.2 1.4 1.8 1.8 2 2.2 2.4 2.8 2.8 3

Visualizing Epidemiology Evidence

Example from Chloroform

Study	Population	Design	Exposure	Outcome		Comments E	xposur	e Contra	ast adjOR*			
Brender et al. 2014	USA (TX 1996-2008) case-control, 오ქ (60,613 case-mothers; 244,927	Case-control	maternal residential proximity (EWPM based on residential	anencephaly	3,985 10 (1.)	Brender et al. 2014 / USA defects (registry)	A (TX 1996	6-2008) cas	se-control,	0,613 case-mothers; 244,9	27 control-mothers) / birth	
	control-mothers)		distances to industrial sources and TRI data)		group	limb deficiency (any) spi	ina bifida	heart defect	(septal)			
				heart defect	3,985	Results		anencepha	aly			stimate 5% Confidence Interval
				(conotruncal)	60 (1.) group	Comparison set Data location		0 vs >0 Table 2				tatistically significant
				heart defect (obstructive)	3,985 70 (2.	Population description			%) controls and 10 (1.7	%) cases in >0 group		
				(obstructive)	group	Metric Description Adjustment factors		adjOR • birth ye				
				heart defect (septal)	3,985 739 (1 group			 geogra materna race/etil 	nal age			
				limb deficiency	3,985	Dose response		not-applical				
				(any)	37 (1.	Statistical power Prevalence incidence			d or calculated %) controls and 10 (1.7	W) cases in 50 group		
					group	Comments			%) controls and 10 (1.7 %) controls and 10 (1.7			
				neural tube defects	3,985 52 (2. group	Results by grou	ıp	3,865 (1.67	s) controls and to (1.)	is) cases in 20 group		
				oral cleft (any)	3,985	Group	N	Es	stimate	95% confidence intervals	p-value	
					79 (29	0		1		-	-	
				spina bifida	3,985 37 (2.	>0 ⁿ ^{III} Main finding as selected by HAWC	3995 assessment a		09 ortiva).	0.57 - 2.09	n.s.	4
					p-tren (0.7-1 per gr	Forest plot			anenceph	aly		
						0- >0-)		
										0.4 0.6 0.8 1 1.	2 1.4 1.6 1.8 2	2.2 2.4 2.6 2.8 3

Visualizing Animal Evidence

Chloroform Fetal Survival

			•			once	Units	Dose (ppm)	statistically significant according to authors
	Study Experiment Anin	nal Group Endpoint							
twetz, Le	Endpoint name	de see file	e fetuses)*			fidence	%	0	
	System		e retuses)" eproductive			-		30	
	Organ	uterus	eproductive					100	
	Effect	fetal surv	ival .			-			
	Effect subtype	live fetus				-		300	
rray et a	Observation time	GD21	-			fidence	%	0	
	Additional tags		nfidence			fidence	64	100 0	
	Data reported?	~				ndencel	70	0	
	Data extracted?	~						100	
	Values estimated?	-				fidence	64	0	
	Location in literature	page 24	(text) and 33 (table)			Indendel	~		
	Expected response adversity direction	decrease	from reference/control group			_		100	
eder and	LOEL	30 ppm				nce	%	0	
	Monotonicity	yes, visu	al appearance of monotonicity but no tren	d				3	
_	Statistical test description	Mantel-H	aenszel chi-square						
	Trend result	not repor	ted					10	
	Results notes	group, ar but they "Pregnai chlorofo	ther implantation, all embryonic primordia d in 8 dams from the 300 ppm group. [N- are not marked as being statistically s noy and intrauterine development of th rm. Thus, two dams from the 30 ppm g group activitied no fatures, but only c	te: Report indicates these findin ignificant on table on page 33. Or e fetuses were influenced by all t roup, three dams from the 100 pp	is as being treatment related page 29, the report states hree concentrations of m group, and 8 dams from th	nce	%	30 0 3 10	
	Dose (ppm)	Number of Animals	Response (%)		is (live fetuses)*	1		30	E
eder and	0	20	100			ncel	%	0	
	30 ^{a,b}	20	90	100 -	Doses in Study	inerel .		30	
_	100 ^a	20	85		LOEL	_			
	300 ⁿ	20	60	- 90- 🔴				100	
			00		•			300	
	* Significantly different from control (^b LOEL (Lowest Observed Effect Lev			80 - 80 - 70 -				_	0 10 20 30 40 50 60 70 80 90 100 110 incidence (%)
Repor				60 -	Č				states "Pregnancy and intrauterine development of the fetuses p exhibited no fetuses, but only empty implantation sites in the
This s				0 I H	Dose (ppm)				exclusively empty implantation sites in our previous contro

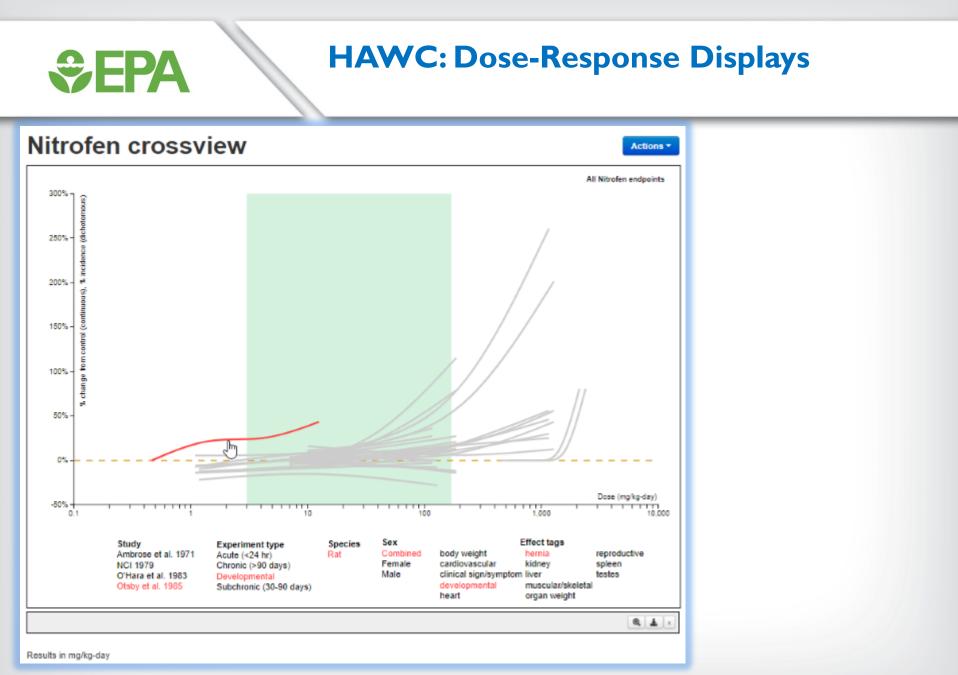
Visualizing Animal Evidence

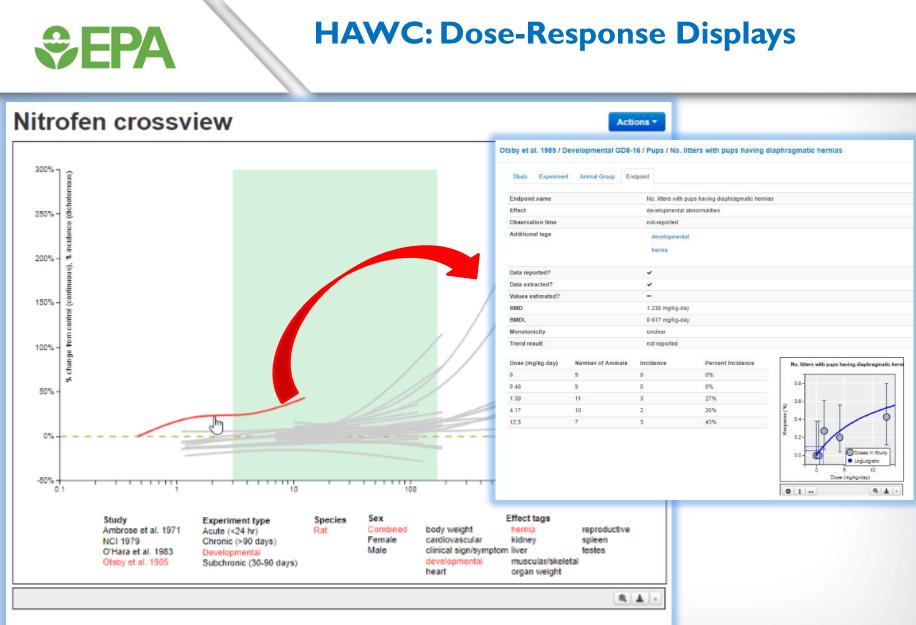
Chloroform Fetal Survival

Study	Study Design	Route	duration exposure	Endpoint		Confidence	Unite	Dose (ppm)		statistically signif	ficant according to author
hwetz, Leong, and Gehring 197	4 P0 Rat, Sprague-Dawley (Spartar	n) (ç, N=20-77) inhalation	GD6-GD15 dam	is (conception rate)		[medium confidence]	%	0			
Baeder and Hofm	ann 1991: Risk of bias	review		Actions -				30			
Reporting Quality Selection/Perform	ance Confounding/Variable Reporting or Control Attrition		comes Measures and Its Display Sensitivity (0	Other Overall Optional) Confidence				100			
	+ ++ ++		+ +	••				300			
Click on any cell above to view details.					01-7)	[medium confidence]	%	0			
								100			
Reporting Quality					06-15)	[medium confidence]	%	0			
Reporting of information neces	Good. The study was performed according to							100	_		
	design and methods, and evaluated outcomes.		o mornation on test animais, t		08-15)	[medium confidence]	%	0			
Good											
								100			
Selection/Performanc	e					high confidence	%	0			
Allocation of animals to experi	mental groups?							3			
	Adequate. Randomization was not reported, h females should be assigned in an unbiased ma							10			
Adequate	Study).							30			
Blinding of investigators, parti	cularly during outcome assessment					high confidence		0			
	Adequate. Study authors did not indicate whet		utcome assessment. However,	the outcome of interest form	_			3	2		
+ Adequate	this study (postimplantation loss) is considered	an objective measure.						10 30	E		
der and Hofmann 1987	P0 Rat, Wistar (Q, N=20)	inhalation	GD7-GD16 dam	e (liun fahrene)*	Г	[high confidence]	84	0			
and and Hollinghit 1207	(o road, written (+, re-zu)	in adduon	Correcto dan	a fire innana)		high companied		30			
								100			
								300			
									0 10 20 30	40 50 60 70 incidence (%)	80 90 100 110

€ ± ×

*Note: Report indicates these findings as being treatment related but they are not marked as being statistically significant on table on page 33. On page 29, the report states "Pregnancy and intrauterine development of the fetuses were influenced by all three concentrations of chloroform. Thus, two dams from the 30 ppm group, three dams from the 100 ppm group, and 8 dams from the 300 ppm group exhibited no fetuses, but only empty implantation sites in the uterus. This shows that the embryos died shortly after implantation. In the control group, all dams carried live fetuses til delivery. Since the number of dams having exclusively empty implantation sites in our previous control studies was only a single dam of a total of 1,275 animals, this condition must be due to the exposure to chloroform."


Multiple Formats to Present Results

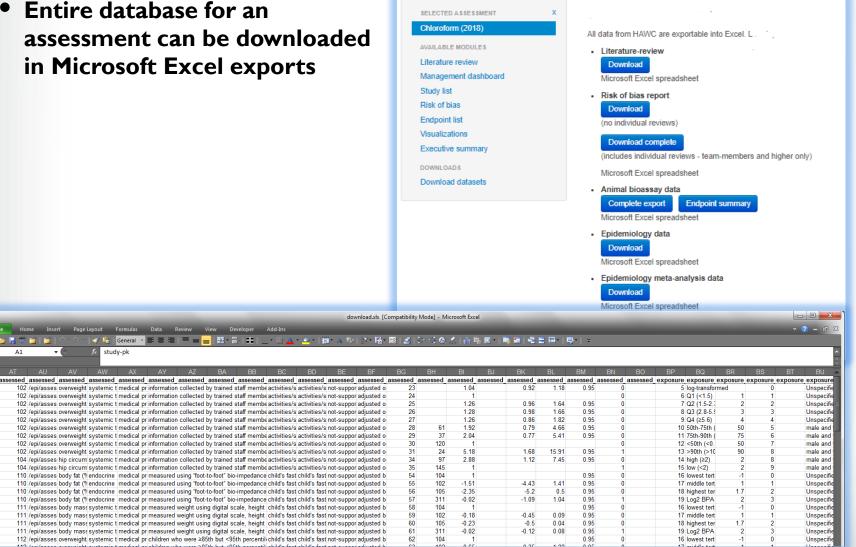

Chloroform Fetal Survival

Study	Study Design	Route	duration exposure	Endpoint	Confidence	Units	Dose (ppm)	statistically significant according to
Schwetz, Leong, and Gehring 1974	P0 Rat, Sprague-Dawley (Spartan) (\cite{q} , N=20-77)	inhalation	GD6-GD15	dams (conception rate)	[medium confidence]	%	0	
							100	
Murray et al. 1979	P0 Mouse, Cf-1 (;, N=34-35)	inhalation	GD1-GD7, 7 hr/day	dams (conception rate, GD1-7)	medium confidence	%	0	
			GD6-GD15, 7 hr/day	dams (conception rate, GD6-15)	[medium confidence]	%	100 0	
	P0 Mouse, Cf-1 (7, N=40)	inhalatic		nal data can	be expr	es	sed	
Baeder and Hofmann 1991				fect size, e.g				
Baeder and Hormann 1991	P0 Rat, Wistar (♀, N=20)	minalau	cont			H.		
						•		
Baeder and Hofmann 1987	P0 Rat, Wistar (♀, N=20)	inhalatic				•	4	
						1	•	
								u 10 20 30 40 50 60 70 80 90 100 incidence (%)

€ ± ×

*Note: Report indicates these findings as being treatment related but they are not marked as being statistically significant on table on page 33. On page 29, the report states "Pregnancy and intrauterine development of the fetuses were influenced by all three concentrations of chloroform. Thus, two dams from the 30 ppm group, three dams from the 100 ppm group, and 8 dams from the 300 ppm group exhibited no fetuses, but only empty implantation sites in the uterus. This shows that the embryos died shortly after implantation. In the control group, all dams carried live fetuses til delivery. Since the number of dams having exclusively empty implantation sites in our previous control studies was only a single dam of a total of 1,275 animals, this condition must be due to the exposure to chloroform."

SEPA


1 📂 🔛 💖 📬 🖬 📬

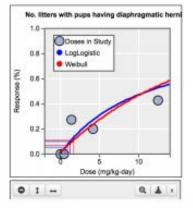
A1

HAWC: Download Reports

Entire database for an assessment can be downloaded in Microsoft Excel exports

للتغ للافتان لتنابع لافتانا التباري

HAWC Benchmark Dose Modeling


Benchmark dose modeling

BMD setup

Results Model recommendation and selection

BMDS output summary

Model	Global p-value	AIC	BMD (10%)	BMDL (10%)	Residual of interest	Output
Logistic	0.1974	42.2346	4.60161	2.81096	0.222	View
LogLogistic	0.4283	37.9348	1.23831	0.617243	1.709	View
Probit	0.1974	42.1248	4.26256	2.62289	0.185	View
LogProbit	0.1432	42.643	4.1219	1.71245	0.103	View
Multistage	0.1648	40.7611	1.70173	0.930926	2.039	Wew
Gamma	0.1648	40.7611	1.70173	0.930926	2.039	View
Weibull	0.1647	40.7611	1.70175	0.930926	2.04	View

Selected model (If any) highlighted in yellow

The <u>USEPA BMDS</u> software is integrated into HAWC for fitting dose-response models to animal bioassay data.

Model recommendations also performed using BMDS technical guidance and automation approaches from Wignall et al. 2014.

Selections must be done manually.

- Structured extraction to promote consistency and completeness
- Free, open source and customizable
- Enhance opportunities for database interpretability
- Integration with automated data-extraction tools
- Web-based to promote team collaboration
- Ability to export data files promotes further analysis of findings and quantification (in assessments or for methods development)
- Creates possibilities for web-based, interactive reports

NAS 2014 Topics	IRIS Process Improvements
Looking Forward	 Specialized software tools for efficiency and more user friendly and transparent formats for evidence display have been adopted
	 Strategic planning on use of text and data-mining tools and automation
	 Specialized tools facilitate transparent documentation, consistency across assessments, and database interoperability

See Demonstrations:

- SWIFT Review and SWIFT Active
- <u>Health Assessment Workspace</u> <u>Collaborative</u>
- <u>Heath Effects Research Online</u>

SESSION 4: STUDY SELECTION FOR DEVELOPING TOXICITY VALUES, AND ADVANCING RESEARCH ON QUANTITATIVE ANALYSES FOR EVIDENCE INTEGRATION AND DOSE-RESPONSE ANALYSES

David Bussard^{*}, Jason Lambert^{*}, Ted Berner, Allen Davis, Jeff Gift, Karen Hogan, Leonid Kopylev, Ravi Subramaniam

[*Speaking]

Office of Research and Development NCEA, IRIS

€PA

NAS 2014: Three High Priority (Box 8-1) Recommendations on Quantification

- <u>TOXICITY VALUES</u>: "EPA should develop criteria for determining when evidence is sufficient to derive toxicity values."
 - Overall hazard conclusions inform decision whether to develop toxicity values.
 - Better documenting considerations on which studies are carried forward to dose-response.
- <u>POINTS OF DEPARTURE (PODs)</u>: "EPA should clearly present two dose-response estimates: a central estimate (such as a maximum likelihood estimate or a posterior mean) and a lower-bound estimate for a POD from which a toxicity value is derived."
 - Central estimates (MLEs) of BMDs provided in IRIS assessments along with BMDLs.
 - Will start to use WHO/IPCS approach to characterize distributions in final values.
 - Model averaging to characterize model uncertainty.
- <u>QUANTITATIVE CAPABILITIES</u>: "EPA should expand its ability to perform quantitative modeling of evidence integration; in particular, it should develop the capacity to do Bayesian modeling of chemical hazards. ...The Committee emphasizes that... IRIS assessments should not be delayed while this capacity is being developed."
 - Meta-analysis of human and animal studies increasing: hazard decisions and dose-response.
 - Bayesian methods are being explored to help characterize uncertainty.
 - New approach methods and assays are increasingly being evaluated quantitatively.

Evidence Integration Conclusions Inform

when to Develop Toxicity Values

Evidence integration conclusion	Quantitative toxicity value provided?
Strongest conclusion for a human health effect (for cancer, a descriptor of <i>Known</i>)	Yes.
Moderately strong conclusion for a human health effect (for cancer, a descriptor of <i>Likely</i>)	Yes.
Weakest conclusion for a human health effect (for cancer, a descriptor of <i>Suggestive</i>)	Determined by situation (e.g., may provide values when useful for decision purpose and the evidence includes a well-conducted study)
Inadequate information	No, although bounding estimate from a study that does not show positive results can be derived where useful for decision purpose.
Strong support for no human health effect	No.

Decision-Making for Advancing Studies to Develop Toxicity Values

IRIS has further clarified the considerations that inform the selection of studies to estimate human dose-response relationships (next slide).

- IRIS continues to find that this decision process is not reducible to a formula.
- Expert judgment is essential for judging the relative merits of individual studies and which studies support more integrative quantitative analyses (e.g., meta-analysis).
- IRIS must often utilize studies with a range of attributes and levels of reporting. For example, the available studies on many mission-critical chemicals do not provide data on an individual subject basis.
- For full transparency, IRIS continues to emphasize documentation of the factors it weighed in emphasizing certain studies, or combinations of studies, over others.

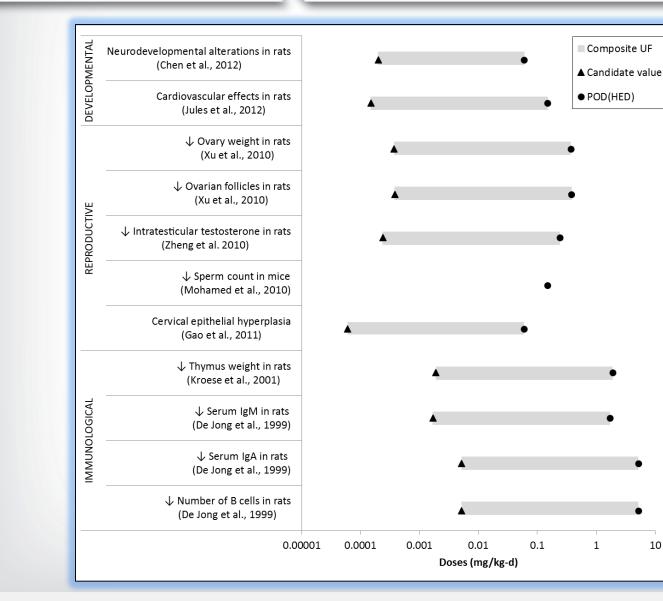
SEPA

More Explicitly Defining the Attributes IRIS Uses to Evaluate Studies for Derivation of Toxicity Values

In addition to qualitative study evaluation judgments (i.e., *medium* or *high* confidence studies are preferred), studies are assessed across several study attributes

Ex	ample Pri	mary Considerations for Selection of Stu	idies for Derivation of Toxicity Values								
Study at	ttribute	Human studies	Animal studies								
Test specie	es	Human data are generally preferred to	Animals that respond most like humans are								
		eliminate interspecies extrapolation	preferred . Outcomes associated with species								
		uncertainties (e.g., in toxicodynamics and	known to show differences in sensitivity can								
		specific health outcomes).	provide support with suitable qualification.								
Human	Exposure	Studies involving typical human environme	ntal exposure routes are preferred (e.g., oral,								
relevance	route	nhalation). A validated toxicokinetic model can be used to extrapolate across exposure routes.									
of the	Exposure	For chronic toxicity values, chronic or subchronic studies are preferred. Exceptions exist									
	duration	(e.g., when a population or lifestage is more sensitive during a particular time window)									
paradigm	Exposure	Exposures near the range of typical environmental human exposures are preferred.									
-	levels	Studies with a broad exposure range and	I multiple exposure levels are preferred to								
		the extent that they can provide information a	bout the shape of the exposure-response								
		relationship* and facilitate extrapolation to mo	ore relevant (generally lower) exposures.								
		Studies that yield risk estimates in the mo s	st susceptible groups are preferred.								
Sussantibil	1:4-7	Inclusion of design features in the analysis (e.g.	, matching procedures, blocking; covariates or								
Susceptibil	iity	other procedures for statistical adjustment) th	nat adequately address the relevant sources								
*110 504 0		of potential critical confounding for a giv	ren outcome are preferred.								

*U.S. EPA Benchmark Dose Technical Guidance (2012)



IRIS Assessments Are Providing Central MLE Estimates of BMDs Along with BMDLs

Table 2-1.	Summar	y of derivatio	on of P(ODs					
Endpoint and reference	Species/ sex	Model*	BMR	BMD mg/kg-d	BMDL mg/kg-d	POD mg/kg-d	PODADI ^b mg/kg-d	PODHED ^C mg/kg-d	
Developmental		_							
Neurobehavioral changes: Open field crossed squares at PND 69 <u>Chen et al. (2012)</u>	Male and Female Sprague- Dawley rats	Exponential 4	1 SD	0.23	0.11				Recent animal study example to the left: Benzo[a]pyrene (EPA, 2017) p. 2-8 <u>Toxicological Review of Benzo[a]pyrene</u> https://cfpub.epa.gov/ncea/iris/iris_documents/docum
Neurobehavioral changes: Elevated plus maze open arm entries at PND 70 <u>Chen et al. (2012)</u>	Female Sprague- Dawley rats	Exponential 4	1 SD	0.21	0.092	0.092 ^d	0.092	0.092	ents/toxreviews/0136tr.pdf
Neurobehavioral changes: Morris water maze hidden platform trial escape latency at PNDs 71–74 <u>Chen et al. (2012)</u>	Male and Female Sprague- Dawley rats	Hill CV Hill CV Hill CV Hill NCV	1 SD (9 sec)	PND71: 0.49 PND72: 0.33 PND73: 0.27 PND74: 0.23	0.16 0.16 0.12 0.13				Recent epidemiology example: Ethylene oxide (EPA, 2016) p. 4-109 <u>Toxicological Review of the Inhalation</u> <u>Carcinogenicity of Ethylene Oxide</u> . (EPA, 2016)
Cardiovascular effects at PND 53 Jules et al. (2012)	Long- Evans rats	(15% 个 in sy	stolic blo	.6 mg/kg-d) ood pressure; 3 ood pressure)	3% 个 in	0.6	0.6	0.15	https://cfpub.epa.gov/ncea/iris/iris_documents/docum ents/toxreviews/1025tr.pdf

IRIS is also Presenting Arrays of

Candidate Toxicity Values

SEPA

Benzo[a]pyrene (EPA, 2017)

10

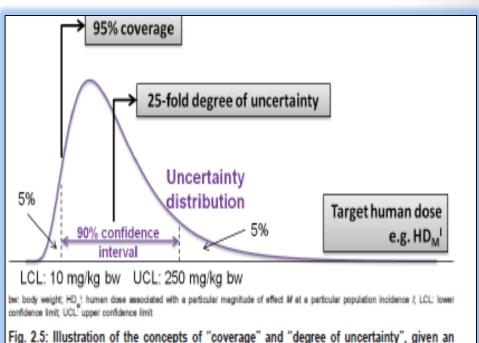
Improvements in Characterizing Uncertainty

I) Model Averaging: characterizing model uncertainty

- Currently evaluating several methods
- Approach for dichotomous data expected to undergo peer review in 2018

$$\Pr(BMD \mid D) = \sum_{i=1}^{9} \pi_i \Pr(BMD \mid M_i, D)$$

Posterior Distribution of the BMD

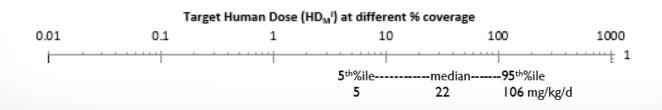

$$\alpha = \int_{-\infty}^{BMD_{\alpha}} \Pr(BMD \mid D) dBMD$$
Calculation of the BMDL

SEPA Improvements in Characterizing Uncertainty

2) Distributions and Central Estimates: characterizing uncertainty in the human toxicity value

uncertainty distribution for the HD.1.

- WHO/IPCS guidance (IPCS, 2014)
- Risk-specific doses in terms of ranges, for explicitly described:
 - Effect magnitudes
 - Confidence levels
 - Human population incidence rates.
- A probabilistic approach to adjustments from animal to human; a framework for refining toxicity values.


Improvements in Characterizing Uncertainty

WHO/IPCS Approach:

IRIS intends to provide such calculations along with traditional Reference Values:

- Confidence intervals on risk-specific doses
- Central estimates
- Estimates of incidence as a function of dose
- Use of appropriate probability math for uncertainty adjustments (instead of UFs) to allow for a more probabilistic and scientific value for use in risk assessment

By characterizing ranges of risk-specific doses, this provides more than a "conservative" estimate (it provides useful context by estimating the full distribution)

Use of Quantitative Modeling to Inform Evidence Integration

Meta-Analysis:

Increasingly Being Used to Interpret Sets of Results across Similar Populations

- Formal tools continue to be used to combine similar human epidemiology studies to improve decisions about hazard and about slope of dose-response.
- These approaches have also been used to better understand animal data that differ between studies of similar species and endpoints.
- As software tools and best practices become more common and easier to apply to environmental health studies, IRIS intends to consider their use more routinely.

Other examples: Libby Amphibole Asbestos (2014) and Trimethylbenzene analysis (Davis and Kraft, 2017) – see poster session; Arsenic assessment (in process)

Use of Quantitative Modeling to Inform Evidence Integration

Bayesian Approaches:

More Frequent Use Across Different Applications, and Research is Ongoing

• Characterizing Uncertainty

- Bayesian approaches were used to characterize uncertainty in PBPK modeling and evaluate inter-related model inputs (Perchlorate peer review, 2018).
- Bayesian Analysis is compatible with the WHO/IPCS Approach for characterizing uncertainty

Model Averaging

 Bayesian approaches are being applied to individual BMD models, and then model averaging is used to characterize uncertainty

• Meta-Analysis

- Bayesian meta-analysis is currently being used to evaluate arsenic epidemiology studies

• Bayesian Networks (exploratory research is currently underway)

- Possess the potential to integrate across evidence streams and bridge data gaps, borrowing strength from diverse data.
- Software and mathematics are currently available.

Future work to better meet Agency needs for "benefits analysis"

Economics benefits analysis would ideally estimate incidence resulting from different decision options.

 We have provided human dose response functions from some analyses based on epidemiology data. (Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide, EPA, 2016).

IRIS is also evaluating analogous predictions from animal data that could inform benefits analysis, including modifications of the IPCS approach.

Advancing Application of New Approach Methods (NAM) and Data in HHRA

- Over the past decade, several reports, books, resource documents, etc. have been published regarding the use of New Approach Methods (NAM) across the human health risk assessment paradigm (i.e., shifting the paradigm)
- Numerous labs, centers, workgroups, and initiatives across federal, private, and academic institutions have been formed to advance NAM

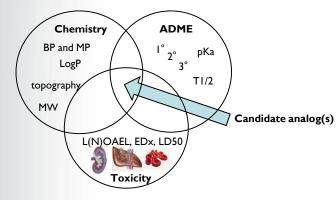
 EPA/ORD/NCEA, in conjunction with partners (e.g., NCCT, NTP) has been actively engaged in the conceptualization and evaluation of NAM across a broad landscape of HHRA applications

NAM Toolbox to Date

• **Data-mining**: ToxRefDB-comprehensive collection and collation of extant hazard and exposure data –(Martin et al. 2009. Env Health Perspect 117: 392-399)

• **Chemoinformatics**: structure-activity/read-across; QSAR –(Wang et al. 2012. Regul Toxicol Pharmacol 63: 10-19; Craig et al. 2014. J Appl Toxicol 34: 787-794)

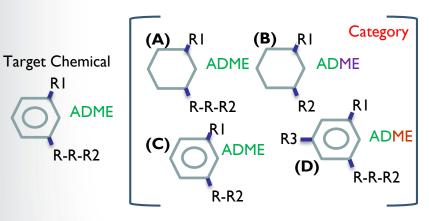
• High-Throughput (HT) Exposure modeling: ExpoCast –(Egeghy et al. 2016. Env Health Perspect. 124(6):697-702)


• **HT Toxicokinetics**: in vitro to in vivo (IVIVE) modeled dosimetry –(Wambaugh et al. 2015. Tox Sci 147: 55-67)

• **Bioactivity**: short-term animal; cell-free and/or cell-based HT assay data – (Judson et al. 2011. Chem Res Toxicol 24: 451-462; Dean et al. 2017. Tox Sci 157(1):85-99)

• Adverse Outcome Pathway (AOP): expert-driven identification of signal transduction pathways along the exposure to outcome continuum. –(Edwards et al. 2016. J Pharmacol Exp Ther. 356(1):170-181)

*⇒***EPA**


Expert-driven Read-Across

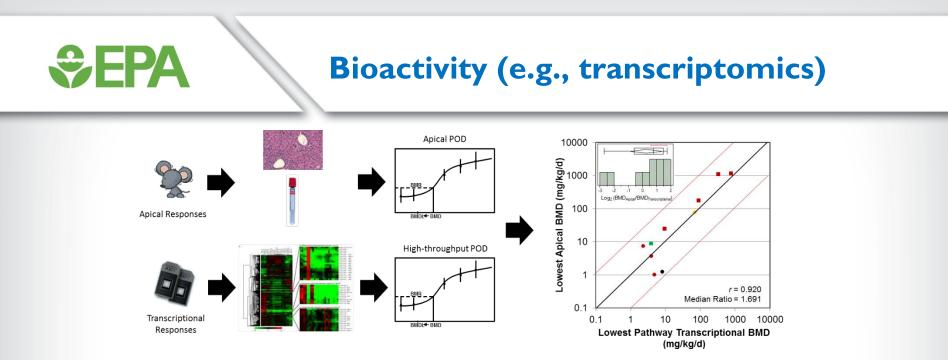
Data-poor chemicals

- Inferred/interpolated hazard
- Surrogate based POD and subsequent derivation of RfVs

IRIS-type chemicals

- Data-gap filling
- Augment WOE
- Potential for reducing uncertainties

ADME = Absorption, Distribution, Metabolism, Elimination

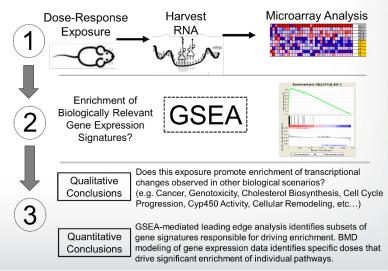

Category approach

Data-poor chemicals

- Data-gap filling
- Extrapolated hazard
- Less applicable for quantitative assessment currently

IRIS-type chemicals

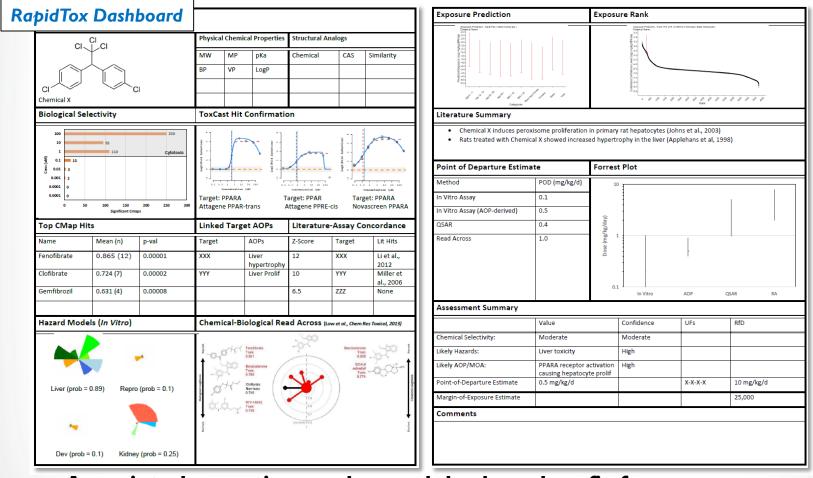
- Data-gap filling
- Augment WOE
- Foundational member of category (i.e., anchor chem)
- Similarity in structure and physicochemical properties between a chem of concern and a population of analogs
- Robustness of approach dependent on density of analogs populating a category
- Highly reliant on WOE supporting toxicity endpoints across category
- Presumes common Adverse Outcome Pathway or Mode of Action across category members


- Close relationship between genotype/phenotype across two different routes of exposure, rodent species, and multiple target tissues
- In vitro?? Will need to optimize metabolism protocols; integrate IVIVE

Data-poor chemicals

- Evidence base for hazard
- Empirical dose-response based on pathway perturbations
- Reduce need for longer-term animal studies

IRIS-type chemicals


- Augment WOE (e.g., MOA/AOP)
- Opportunity to alert off-target effects
- Potential for reducing uncertainties

141

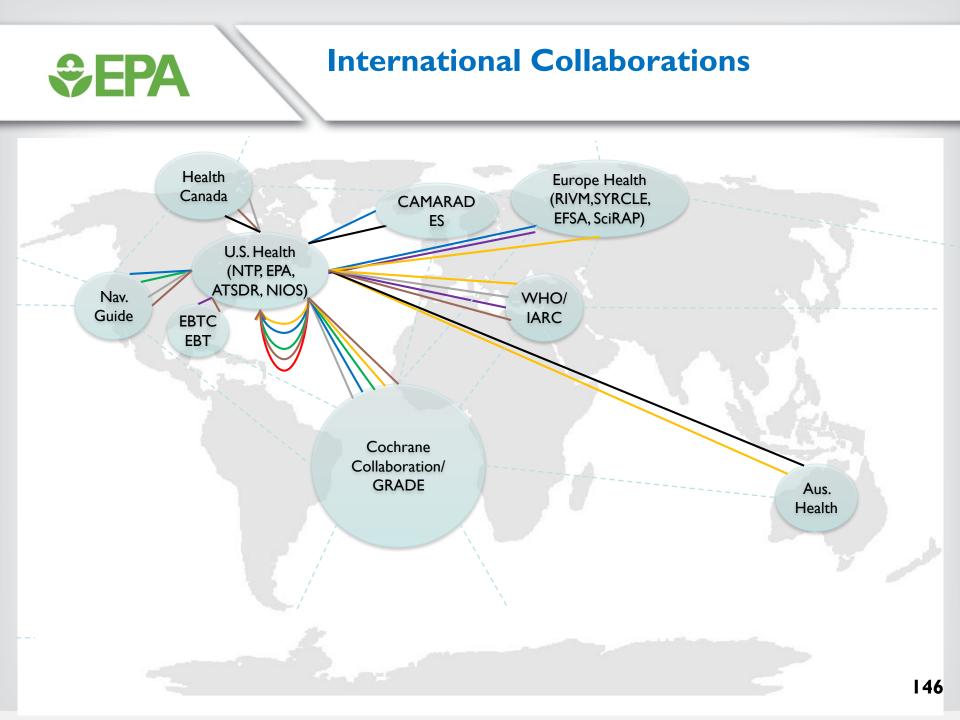
Integrated Application to Risk Assessment

- Associated narrative can be modular based on fit-for-purpose
- Systematic WOE always, but can be graded based on decision context
- Characterization of qualitative and quantitative uncertainties

NAS 2014 Topics	IRIS Process Improvements
Evidence Integration for Hazard	 Developing and applying quantitative tools in support of evidence synthesis and integration, including meta-analytical approaches Expanded development and use of more advanced quantitative methods in software tools, such as BMDS
Derivation of Toxicity Values (Chapter 7)	 Developed more explicit criteria for deriving toxicity values, including the intent to derive quantitative toxicity values when IRIS reaches one of the stronger evidence integration conclusions, as well more specific criteria for the evaluation of individual studies Providing MLE estimates of BMDs, along with BMDLs Applying and exploring quantitative approaches to better characterize uncertainty, including probabilistic and Bayesian approaches
Future Directions (Chapter 8 "Lessons Learned" and "Looking Forward")	 Quantitative assessment methods will be updated in a continuing, strategic fashion, including capacity building (e.g., training; evolving best practices) for current approaches including meta-analysis, probabilistic analyses, and Bayesian methods

COLLABORATION, TRAINING, AND FINAL THOUGHTS

Tina Bahadori* and Kris Thayer


[*Speaking]

Office of Research and Development NCEA, IRIS

Training and Collaboration

- Held multiple training sessions for IRIS Program staff in 2017, ranging from demos, seminars, to retreats. More to come in 2018...
- Developed support teams to provide teaching and assistance for systematic review tasks and use of new software ("train the trainer" model)
- Active engagement in the EPA Systematic Review Communities of Practice
- Engagement with external stakeholders, other Agency offices, state and other Agencies on systematic review methods and software training
 - e.g., MOUs with NTP, NIOSH, ATSDR, WHO
 - Interagency funding agreement with NIEHS/NTP for text-mining and software tool development and evaluation
- Establishing several academic MOUs to promote hands on training on use of systematic review in chemical assessments

NAS 2014 Topics	IRIS Process Improvements
General Process Issues (Chapter 2)	 Quality management pipeline implemented Program and project management processes implemented Frequent opportunities for stakeholder engagement Draft IRIS Handbook of program SOPs is being reviewed within EPA Re-occurring staff training and template IAPs and protocols promote consistency and quality control
Problem Formulation and Protocol Development (Chapter 3)	 IAPs allow early comment on problem formulation More frequent Agency engagement facilitates scope refinement Assessment protocols describe methods and allow for iteration
Evidence Identification (Chapter 4)	 Consultation with information technologists and subject experts Adopts current systematic review best practices, including use of specialized tools Transparent documentation (e.g., literature flow diagrams)

NAS 2014 Topics	IRIS Process Improvements
Evidence Evaluation (Chapter 5)	 Individual studies are evaluated for reporting quality, risk of bias, and sensitivity Decisions and supporting rationale are clearly documented Study evaluations impact subsequent assessment decisions
Evidence Integration for Hazard Identification (Chapter 6)	 Structured frameworks provide transparency in expert judgments across human, animal, and mechanistic studies (based on Hill) Standardized templates documenting key evidence integration decisions have been developed (evidence profile tables) Developing and applying quantitative tools in support of evidence synthesis and integration, including meta-analytical approaches Expanded development and use of more advanced quantitative methods in software tools, such as BMDS

NAS 2014 Topics	IRIS Process Improvements
Derivation of Toxicity Values (Chapter 7)	 Developed more explicit criteria for deriving toxicity values, including the intent to derive quantitative toxicity values when IRIS reaches one of the stronger evidence integration conclusions, as well more specific criteria for the evaluation of individual studies Providing MLE estimates of BMDs, along with BMDLs Applying and exploring quantitative approaches to better characterize uncertainty, including probabilistic and Bayesian approaches

NAS 2014 Topics

- Future Directions
- (Chapter 8
- "Lessons Learned" and "Looking Forward")

IRIS Process Improvements

- Processes being implemented include flexibility to incorporate evolving methods in systematic review and risk assessment
- Increased collaboration with federal partners and international experts prevents duplication of effort and maintains cutting edge approaches
- Current research efforts and training serve to ensure that methods and staff are able to adapt to changing scientific contexts and sources of evidence, including new and emerging data types
- Specialized software tools for efficiency and more user friendly and transparent formats for evidence display have been adopted
- Strategic planning on use of text and data-mining tools and automation
- Specialized tools facilitate transparent documentation, consistency across assessments, and database interoperability
- Quantitative assessment methods will be updated in a continuing, strategic fashion, including capacity building (e.g., training; evolving best practices) for current approaches including meta-analysis, probabilistic analyses, and Bayesian methods