

# Introduction

Phthalates have anti-androgenic activity in rodents resulting in reduced circulating testosterone and male reproductive tract abnormalities. Several epidemiologic studies have examined this association in humans. The National Academies of Sciences (NAS) recently published a systematic review of endocrine-related low-dose toxicity that included examination of phthalates and male reproductive tract development, and the Integrated Risk Information System (IRIS) performed a systematic review of all male reproductive effects of phthalate exposure, following recommendations in the 2014 NAS review of the IRIS program. Here, we use the associations between anogenital distance (AGD) in humans and two phthalates, di(2-ethylhexl phthalate (DEHP) and diisobutyl phthalate (DIBP), as a case study of the IRIS systematic review process. We also compare our conclusions to those of the NAS and summarize our overall findings on epidemiology studies of male reproductive effects of phthalates.

## Methods

Epidemiology studies were identified by conducting a single broad literature search on the six phthalates of interest. The following databases were searched: PubMed, Web of Science, and Toxline. The last update was in January 2017. Title/abstract and full text screening was performed by two reviewers. Studies were evaluated by at least two reviewers using the approach in Figure 1.

**Domain judgments** 

|   | maivia   |
|---|----------|
|   |          |
| [ | Exposu   |
|   | Outcon   |
|   | Populat  |
|   | Confou   |
|   | Analysis |
|   | Sensitiv |
|   |          |

|                      |                                                                                                            |                                                                                                                                                                                              |                                                                                                   | Exposu        |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
|                      | judgment                                                                                                   | Interpretation                                                                                                                                                                               |                                                                                                   |               |  |  |  |  |
| 0                    | Good                                                                                                       | Appropriate study conduct relating to the domain & minor                                                                                                                                     |                                                                                                   |               |  |  |  |  |
| •                    | 0000                                                                                                       | deficiencies not expected to influence results. Po                                                                                                                                           |                                                                                                   |               |  |  |  |  |
| 0                    | Adequate                                                                                                   | A study that may have some limitations relating to the domain, but<br>they are not likely to be severe or to have a notable impact on                                                        |                                                                                                   |               |  |  |  |  |
|                      |                                                                                                            | results.                                                                                                                                                                                     |                                                                                                   |               |  |  |  |  |
|                      | P                                                                                                          | Identified biases or deficiencies interpreted as likely to have had a                                                                                                                        |                                                                                                   |               |  |  |  |  |
| •                    | Poor                                                                                                       | notable impact on the results or prevent reliable interpretation of study findings.                                                                                                          |                                                                                                   |               |  |  |  |  |
| •                    | Critically<br>Deficient                                                                                    | A serious flaw identified that is interpreted to be the primary<br>driver of any observed effect or makes the study uninterpretable.<br>Study is not used without exceptional justification. |                                                                                                   |               |  |  |  |  |
| Overall study rating |                                                                                                            |                                                                                                                                                                                              |                                                                                                   |               |  |  |  |  |
|                      |                                                                                                            | Rating                                                                                                                                                                                       | Interpretat                                                                                       | ion           |  |  |  |  |
|                      |                                                                                                            | High                                                                                                                                                                                         | No notable deficiencies or concerns identified; pot sensitive methodology.                        | tential for l |  |  |  |  |
|                      |                                                                                                            | Medium                                                                                                                                                                                       | Possible deficiencies or concerns noted, but resulting bias o unlikely to be of a notable degree. |               |  |  |  |  |
|                      | Deficiencies or concerns were noted, and the pote<br>sensitivity could have a significant impact on the st |                                                                                                                                                                                              |                                                                                                   |               |  |  |  |  |
|                      | Uninformative Serious flaw(s) makes study results unusable for hazard ider                                 |                                                                                                                                                                                              |                                                                                                   |               |  |  |  |  |
|                      |                                                                                                            | Uninformative                                                                                                                                                                                | Serious flaw(s) makes study results unusable for ha                                               | azard ident   |  |  |  |  |

Figure 1. Study evaluation process

After study evaluation, the evidence for each outcome was synthesized for each phthalate, considering aspects of an association that may suggest causation. Based on this, the evidence was assigned within stream confidence judgments of *robust*, moderate, slight, indeterminate, or compelling evidence of no effect. The judgments for individual outcomes were summarized into an overall conclusion for male reproductive effects using a structured framework (see Poster by Yost et al.).

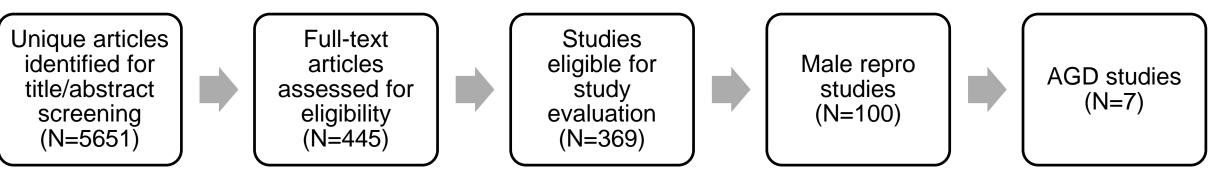



Figure 2. Abbreviated literature flow diagram

**U.S. Environmental Protection Agency** Office of Research and Development

# Male reproductive toxicity in epidemiology studies of phthalates: a case study application of systematic review approaches

# Elizabeth Radke, Glinda Cooper

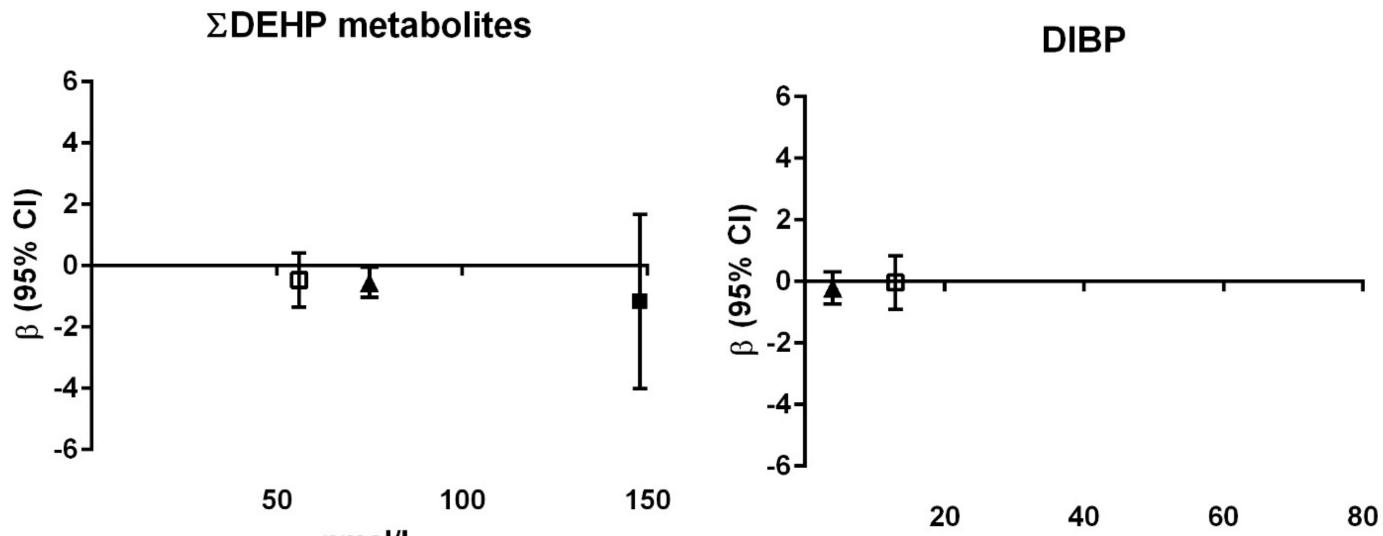
U.S. EPA, Office of Research and Development (ORD), National Center for Environmental Assessment (NCEA), IRIS Division

Individual study level domains Epidemiology re measurement ne ascertainment tion Selection Inding tive reporting

### bias unlikely or minimal;

or lack of sensitivity would be

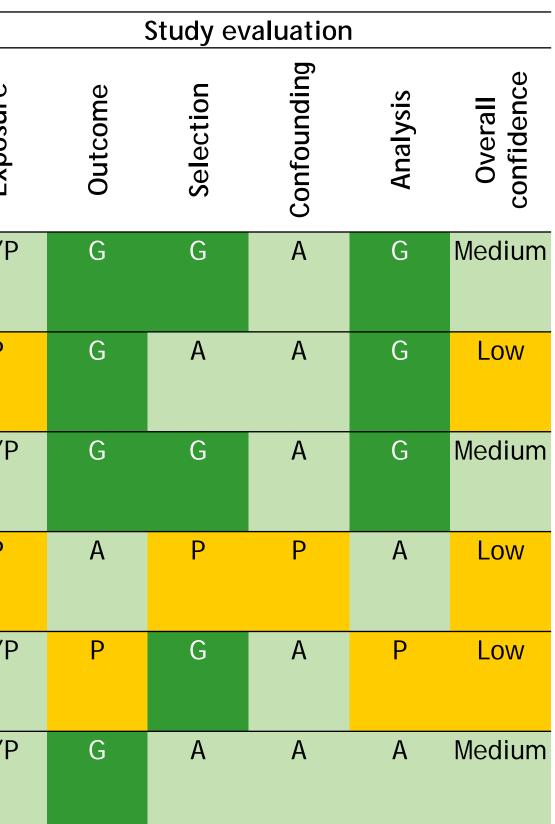
substantive bias or inadequate Its or their interpretation. ntification


> Included AGD studies after study evaluation (N=6)

# Results

### Table 1. Epidemiology studies of AGD and phthalate exposure

|         | •            | 0,                |                         | •         |          |  |  |
|---------|--------------|-------------------|-------------------------|-----------|----------|--|--|
|         | Reference    | Study description |                         |           |          |  |  |
|         |              | Population        | Exposure                | Outcome   | Exposure |  |  |
|         | Bornehag et  | Birth cohort      | Single urine            | AGD at    | A/F      |  |  |
|         | al., 2015    | (N=196 boys) in   | sample (1 <sup>st</sup> | 19-21 mo  |          |  |  |
|         |              | Sweden            | trimester)              |           |          |  |  |
|         | Bustamante-  | Birth cohort      | Single urine            | AGD at    | Р        |  |  |
| ncluded | Montes et    | (N=73 boys) in    | sample (3 <sup>rd</sup> | 1-2 d     |          |  |  |
| luc     | al., 2013    | Mexico            | trimester)              |           |          |  |  |
| lnc     | Jensen et    | Birth cohort      | Single urine            | AGD at    | A/F      |  |  |
|         | al., 2016    | (N=273 boys) in   | sample (26-30           | 3 mo      |          |  |  |
|         |              | Denmark           | wk gestation)           |           |          |  |  |
|         | Suzuki et    | Birth cohort      | Single urine            | AGD at    | Р        |  |  |
|         | al., 2012    | (N=73 boys) in    | sample (3 <sup>rd</sup> | 1-3 d     |          |  |  |
|         |              | Japan             | trimester)              |           |          |  |  |
|         | Swan, 2008   | Birth cohort      | 5                       | AGD at    | A/F      |  |  |
|         |              | (N=106 boys) in   |                         | 3 1-36 mo |          |  |  |
|         |              | U.S.              | wk gestation)           |           |          |  |  |
|         | Swan et al., | Birth cohort      | Single urine            | AGD at    | A/F      |  |  |
|         | 2015         | (N=365 boys) in   | sample(1 <sup>st</sup>  | 1-2 d     |          |  |  |
|         |              | U.S.              | trimester)              | _         |          |  |  |
|         |              |                   |                         |           |          |  |  |


G=good; A=adequate; P=poor; A/P=adequate for short chain phthalates, poor for long chain. Studies with biomarker measures based on samples other than urine (e.g., blood) were considered to be critically deficient for all short chain obthalates and for primary metabolites (e.g., MEHP, MINP) of long-chain phthalates.



nmol/ ng/mi Figure 3. Association between DEHP and DIBP metabolite levels measured in maternal urine samples during pregnancy and AGD in boys in medium confidence studies Regression coefficients on the y-axis are plotted against exposure level on the x-axis (population median for each study).

### Table 2. Evidence profile table for epidemiology studies of AGD and DEHP and DIBP

|      | Studies and interpretation                                                                                                                                                                                                                    | Factors that increase strength                                                                                                                                                       |   | Factors that<br>decrease<br>strength                     | Summary of findings and within stream evidence judgment                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEHF | <ul> <li>Medium confidence</li> <li>Bornehag et al., 2015</li> <li>Jensen et al., 2016</li> <li>Swan et al., 2015</li> <li>Low confidence</li> <li>Bustamante-Montes et al., 2013</li> <li>Suzuki et al., 2012</li> <li>Swan, 2008</li> </ul> | <ul> <li>Among medium<br/>confidence studies:</li> <li>consistency</li> <li>exposure-<br/>response<br/>gradient across<br/>studies</li> <li>minimal concerns<br/>for bias</li> </ul> | • | low precision<br>in study with<br>largest effect<br>size | <ul> <li>⊕⊕○<br/>MODERATE</li> <li>Inverse associations between DEHP<br/>exposure and anogenital distance<br/>reported in 5/6 studies (Jensen et al.,<br/>2016, Swan et al., 2015, Bornehag et<br/>al., 2015, Swan, 2008, Suzuki et al.,<br/>2012), of which 2 were statistically<br/>significant (Swan et al., 2015, Swan,<br/>2008). Among the 3 medium confidence<br/>studies, effect size increased with<br/>increasing exposure levels.</li> </ul> |
| DIBP | Medium confidence<br>Jensen et al., 2016<br>Swan et al., 2015<br>Low confidence<br>Swan, 2008                                                                                                                                                 | <ul> <li>low study<br/>sensitivity may<br/>explain lack of<br/>association</li> </ul>                                                                                                | • |                                                          | ⊕<br>SLIGHT<br>Inverse associations between DIBP<br>exposure and anogenital distance<br>reported in 2/3 studies (Swan, 2008,<br>Swan et al., 2015), though neither were<br>statistically significant. Exposure levels<br>and range were low in all studies.                                                                                                                                                                                             |



Of the seven identified studies on phthalates and AGD (Figure 2), one was excluded due to inadequate exposure measurement. Summary of the evaluations for the six included studies is in Table 1. Results of medium confidence studies were given priority (Figure 3), but all studies were included in the synthesis, which is summarized in the evidence profile table (Table 2). For DEHP, an exposure response gradient was observed across studies, with the study with the highest exposure levels reporting the strongest association. This was not observed for DIBP, but exposure levels were low in all studies. The same methods were used for other phthalate/outcome combinations and the within stream evidence judgments are shown in Figure 4. Table 3 presents a comparison of the within stream judgments from the IRIS and NAS reviews of anogenital distance, testosterone in infants, and hypospadias. Both found that the evidence for the latter two outcomes was not adequate to form a conclusion. For anogenital distance, evidence for DEHP and DBP was considered *moderate* in both reviews. Evidence for DINP, DIBP, and BBP was considered *slight* by IRIS and *inadequate* by NAS. These conclusions were not considered inconsistent, but rather reflect differences in the process for evidence synthesis. Only DEP differed between reviews, classified as *slight* by IRIS and *moderate* by NAS based on the results of a meta-analysis.

| Outcome                    | DEHP    | DINP           | DBP | DIBP   | BBP               | DEP |
|----------------------------|---------|----------------|-----|--------|-------------------|-----|
| Anogenital distance        | М       | S              | М   | S      | S                 | S   |
| Hypospadias/cryptorchidism | n l     | S              | S   | S      | S                 | I   |
| Pubertal development       | S       | S              | S   | S      | S                 | S   |
| Semen parameters           | Μ       | Μ              | R   | S      | Μ                 | S   |
| Time to pregnancy          | S       | I              | М   | S      | М                 | Ι   |
| Testosterone               | Μ       | М              | S   | М      | I                 | T   |
| Male repro overall         | R       | М              | R   | М      | Μ                 | S   |
|                            |         |                |     |        |                   | -   |
| Robust (R) Mode            | rate (M | (M) Slight (S) |     | Indete | Indeterminate (I) |     |

Figure 4. Within stream evidence judgments for human evidence of male reproductive effects associated with phthalates

# developmental toxicity in epidemiology studies by IRIS and NAS

|                                                                                                               | Anogenital distance |            | Testosterone  | e in infants | Hypospadias   |            |  |
|---------------------------------------------------------------------------------------------------------------|---------------------|------------|---------------|--------------|---------------|------------|--|
| Phthalate                                                                                                     | IRIS NAS            |            | IRIS          | NAS          | IRIS          | NAS        |  |
| DEHP                                                                                                          | Moderate            | Moderate   | Indeterminate | Inadequate   | Indeterminate | Inadequate |  |
| DINP                                                                                                          | Slight              | Inadequate | Indeterminate | Inadequate   | Indeterminate | Inadequate |  |
| DBP                                                                                                           | Moderate            | Moderate   | Indeterminate | Inadequate   | Indeterminate | Inadequate |  |
| DIBP                                                                                                          | Slight              | Inadequate | Indeterminate | Inadequate   | Indeterminate | Inadequate |  |
| BBP                                                                                                           | Slight              | Inadequate | Indeterminate | Inadequate   | Indeterminate | Inadequate |  |
| DEP                                                                                                           | Slight              | Moderate   | Indeterminate | Inadequate   | Indeterminate | Inadequate |  |
| Classifying levels: IRIS: Robust, Moderate, Slight, or Indeterminate; NAS: High, Moderate, Low, or Inadequate |                     |            |               |              |               |            |  |

### Discussion

Overall, the results from epidemiology studies of male reproductive effects provide evidence of a hazard from phthalate exposure. Looking specifically at anogenital distance, there is *moderate* evidence of an association with DEHP and DBP exposure, and *slight* evidence for other phthalates. These findings are generally consistent with the NAS report on low-dose toxicity from endocrine active chemicals (2017). In the case of DIBP, the weaker evidence may be largely explained by the smaller number of studies and low exposure levels that decreased study sensitivity.

Disclaimer: The views expressed in this poster are those of the authors and do not necessarily represent the views or the policies of the U.S. **Environmental Protection Agency** 

Table 3. Within stream evidence judgments of systematic reviews of male reproductive



nted on 100% recycled/recyclable paper with a minimum 50% post-consumer