

Introduction

Often, human health risk assessments have relied on qualitative approaches for hazard identification, which involves weight of evidence determinations that integrate evidence across multiple studies. In 2014, the National Research Council recommended that IRIS develop and apply quantitative approaches for evidence integration, including the application of meta-analyses to animal and human data, to help summarize and evaluate the results of a systematic review. In the meta-analytic approach, a pooled effect size is calculated after consideration of multiple potential confounding factors in order to determine whether the entire database under consideration indicates a chemical is a hazard. Two examples demonstrate approaches used in IRIS assessments: TMB (trimethylbenzene) neurotoxic hazard and pleural plaques effect on lung function.

Trimethylbenzene and pain sensitivity: methods

- A publically available, comprehensive literature search was performed in support of the IRIS Toxicological Review of trimethylbenzenes (TMBs)
- Six neurotoxicity studies were found that investigated decreased pain sensitivity following exposure in individual TMB isomers or a mixture thereof (i.e., C-9 fraction) studies differed in testing time, test agent, and application of foot shock
- Qualitative hazard identification concluded the pain sensitivity was a hazard and that testing time mainly influenced observation of effect
- Methods outlined in Vesterinen et al. (2014) and Viechtbauer (2010) were applied using the Metafor R package
- Random and mixedeffects models were run
- Effect sizes were calculated as standardized mean differences
- Hedge's G was used to account for bias due to small sample sizes
- Restricted maximum likelihood was used to calculate total heterogeneity to prevent underestimated/biased estimates of variance
- Publication bias, normality of residuals and sensitivity analyses were investigated

Author(s), Year	Dose Level	# Animals in Dose Group	
1,2,4-TMB Gralewicz and Wiaderna (2001) Gralewicz et al. (1997)	492 123 492	11 15 15	
Korsak and Rydzynski (1996)	1230 123 492 1230	15 10 9 10	
RE Model for Subgroup			
1,2,3-TMB Wiaderna et al. (1998)	123 492	13 ⊧ 14	
Gralewicz and Wiaderna (2001) Korsak and Rydzynski (1996)	1230 492 123 492 123 1230	13 11 20 10 10	
RE Model for Subgroup			
1,3,5-TMB Wiaderna et al. (2002)	123 492	12 12	
Gralewicz and Wiaderna (2001) RE Model for Subgroup	1230 492	12 11	
C9 Fraction Douglas et al. (1993)	274 1170 3575	20 20 20	
RE Model for Subgroup			-
RE Model for All Studies			•
		Г	i
		-2.50	0.00 2.00
			Standardized Mean Diffe

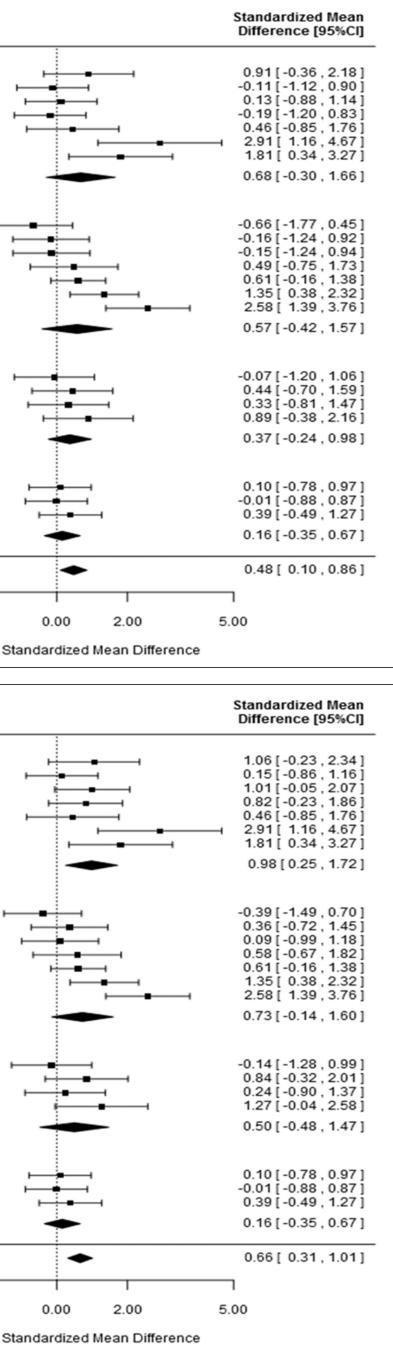

Author(s), Year	Dose Level	# Animals in Dose Group	
1,2,4-TMB			
Gralewicz and Wiaderna (2001)	492	11	⊢
Gralewicz et al. (1997)	123	15	⊢
	492	15	⊨
	1230	15	⊢
Korsak and Rydzynski (1996)	123	10	⊢
	492	9	· · · · · · · · · · · · · · · · · · ·
	1230	10	► -
RE Model for Subgroup			-
1,2,3-TMB			
Wiaderna et al. (1998)	123	13	
- *	492	14	→
	1230	13	
Gralewicz and Wiaderna (2001)	492	11	
Korsak and Rydzynski (1996)	123	20	HH
	492	10	· · · · · · · · · · · · · · · · · · ·
	1230	10	
RE Model for Subgroup			
1,3,5-TMB			
Wiaderna et al. (2002)	123	12	
	492	12	
0	1230	12	⊢
Gralewicz and Wiaderna (2001)	492	11	· · · · · · · · · · · · · · · · · · ·
RE Model for Subgroup			
C9 Fraction			
Douglas et al. (1993)	274	20	
	1170	20	⊢
	3575	20	⊢ ∔∎I
RE Model for Subgroup			-
RE Model for All Studies			•
		-2.50	0.00 2.00

Figure 1. Forest plots for pain sensitivity studies. (A) Pre-foot shock; (B) post-foot shock

Combining data within species: Meta-analysis in IRIS

J. Allen Davis¹ and Leonid Kopylev²

¹ US EPA, Office of Research and Development, National Center for Environmental Assessment - Cincinnati ² US EPA, Office of Research and Development, National Center for Environmental Assessment - Washington

Trimethylbenzene and pain sensitivity: results

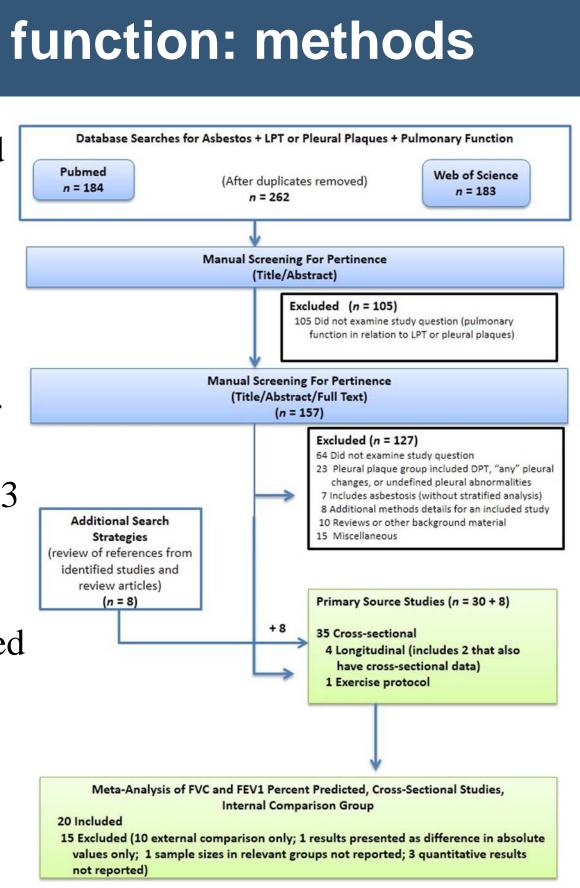
Moderating Variable	Effect Size (95% CI)		Number of	Number of	Adjusted R ²	Q _F	Q _M
	Model 1	Model 2	 Animals	Groups		p-value ^a	p-value ^b
		Pre-Foot Shock Res	ults				
Pooled Estimate	0.479 (0.103-0.855)		283	21			
ab							
Nofer	0.550 (0.129-0.971)*	Ref	223	18	0.0%	0.006	0.423
Douglas	0.159 (-0.751-1.069)	-0.392 (-1.394-0.610)	60	3			
Testing Time							
0 days	1.331 (0.813-1.849)***	Ref	69	6	93.9%	0.333	0.002
1 day	0.158 (-0.424-0.740)	-1.173 (-1.95.20.394)**	60	3			
50 days	0.106 (-0.258-0.470)	-1.225 (-1.8580.591)***	154	12			
somer							
1,2,4-TMB	0.647 (-0.099-1.393)	Ref	85	7	0.0%	0.003	0.845
1,2,3-TMB	0.573 (-0.121-1.266)	-0.074 (-1.093-0.944)	91	7			
1,3,5-TMB	0.386 (-0.575-1.346)	-0.261 (-1.477-0.955)	47	4			
C9 fraction	0.159 (-0.828-1.145)	-0.488 (-1.725-0.749	60	3			
Dose	0.0001 (-0.0004-0.0006) for	each 10 mg/m³ increase			0.0%	0.004	0.718
		Post-foot Shock Res	ults				
Pooled Estimate	0.663 (0.314-1.012)		283	21			
ab							
Nofer	0.772 (0.397-1.146)***	Ref	223	18	22.02%	0.041	0.153
Douglas	0.159 (-0.619-0.936)	-0.613 (-1.476-0.250)	60	3			
oot-shock							
Yes	0.911 (0.395-1.426)**	Ref			0.00%	0.024	0.196
No	0.467 (0.004-0.929)*	-0.444 (-1.137-0.249)					
Testing Time							
0 days	1.361 (0.812-1.909)***	Ref	69	6	72.65%	0.238	0.013
1 day	0.158 (-0.467-0.784)	-1.203 (-2.0340.371)**	60	3			
51 days	0.459 (0.074-0.844)*	-0.902 (-1.5720.232)*	154	12			
somer							
1,2,4-TMB	1.004 (0.346-1.662)**	Ref	85	7	0.0%	0.030	0.410
1,2,3-TMB	0.722 (0.128-1.316)*	-0.282 (-1.168-0.604)	91	7			
1,3,5-TMB	0.5.5 (-0.330-1.361)	-0.489 (-1.560-0.582)	47	4			
C9 fraction	0.159 (-0.665-0.982)	-0.846 (-1.900-0.209)	60	3			
Dose	0.0001 (-0.0004-0.0005) for		0.0%		0.807		

- Quantitative meta-analyses and meta-regressions supported original qualitative hazard identification determination – *decreased pain sensitivity is a hazard in humans* following exposure to trimethylbenzene isomers
- Time of testing appeared to be the study-level variable that most strongly affected differing study results and explained the majority of inter-study heterogeneity

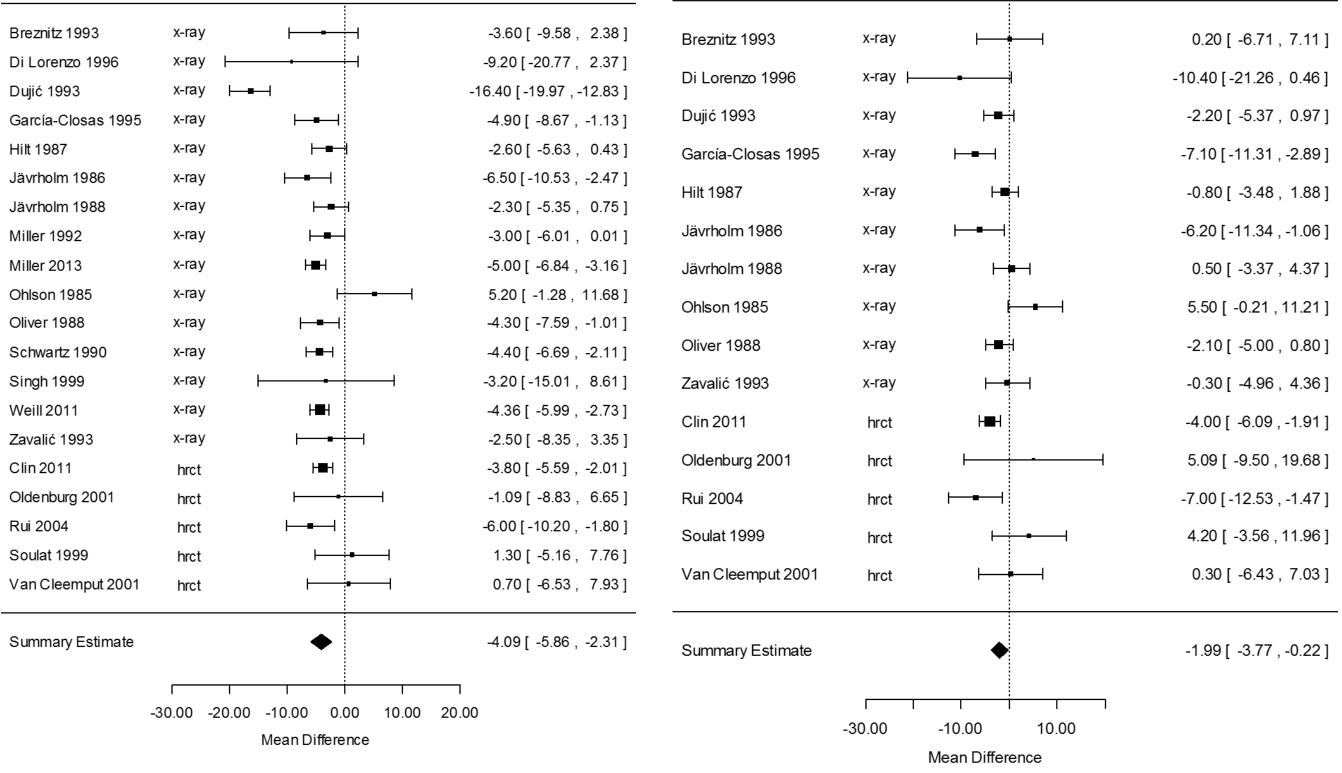
Pleural plaques effect on lung function: methods

A literature search was conducted using the PubMed and Web of Science databases with no publication date limitations. Studies were excluded if

- the plaques group included individuals with diffuse pleural thickening (DPT)
- undefined pleural or parenchymal abnormalities.


Each paper was reviewed independently by 2 of the 3 reviewers. In cases of disagreements, the 3rd reviewer reviewed the paper and participated in the consensus- building discussions. Reviewers evaluated potential limitations in 5 aspects of study design:

- selection of participants
- protocols for x ray or HRCT readings
- protocols for spirometry measurements;
- analytic approach
- considerations of smoking.


The Metaphor R package was used for the meta-analyses

- A random effects model was used for both FVC and FEV1
- To assess possible publication bias, funnel plots were evaluated. Additional sensitivity analyses were conducted to evaluate the potential effect of identified limitations on the meta-analyses results.

ne omnibus test of moderators; p-values < 0.05 indicate that the moderators included in the model have a significant influence on the measured outcome, specific to Model

Pleural plaques effects on lung function: results

Figure 1 (FVC)

- -3.77, -0.22), respectively (See Fig. 1 and Fig. 2)
- in the results (see Fig. 2).
- to moderate disease).

Discussion

- difference as effect metric)
- Use of free R software allows conducting meta-analysis
- Use of meta-analytic methods for hazard identification are in line with National Research Council (2014) recommendations for the development of quantitative hazard identification and evidence integration methods
- Applying meta-analysis and meta-regression methods will help to improve future risk assessments and ensure the use of the best available science **References:**

Environmental Research. 158: 598-609. 606-14.

Disclaimer: The views expressed in this poster are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Figure 2 (FEV1)

• The summary effect estimates for both FVC and FEV1 are statistically significant, showing a change of -4.09 % pred (95% CI: -5.86, -2.31) and -1.99 % pred (95% CI:

• The results of larger studies are very consistent in showing a decrease in FVC (see Fig. 1). In contrast, fewer large studies are available for FEV1, and there is less consistency

• At the individual level, the decrement in FVC or FEV1 may or may not be noticeable for a given patient; while many with pleural plaques could have well-preserved lung function, there are some at the lower end of 'normal' lung function, for whom even a small additional decrement would result in an increased in disease severity (e.g., mild

• At the population level, even small changes in the average of a distribution of lung function can result in a proportion of the exposed population shifted down into the lower "tail" of the distribution, into clinically significant lung function deficit region

• Both human and animal data are amenable to quantitative synthesis via meta-analysis • Studies need not be exactly the same, as long as results are reported in a consistent way or can be converted into a comparable format (e.g., use of standardized mean

- Davis JA, Kraft A. Quantitative meta-analytic approaches for the systematic synthesis of data and hazard identification: a case study of decreased pain sensitivity due to trimethylbenzene exposure. 2017.
- Kopylev L, Christensen KY, Brown JS, Cooper GS. A systematic review of the association between pleural plaques and changes in lung function. 2015. *Occupational and Environmental Medicine*. 72(8):

Printed on 100% recycled/recycl with a minimum 50% post-consu fiber using vegetable-based ink. Printed on 100% recycled/recyclable paper with a minimum 50% post-consumer