

INTRODUCTION TO LITHIUM ION BATTERIES

JEFF SPANGENBERGER

Senior Engineering Specialist jspangenberger@anl.gov

March 22nd, 2018

THE NATIONAL LAB SYSTEM

KEY FACTS ABOUT ARGONNE

ANL BATTERY PROGRAM: 50 YEARS OF R&D

R&D focus:

1964 - 1998: High/Moderate temperature Li batteries

1998: Room-temperature Li-ion batteries

2012: Li metal, oxygen, sulfur, flow, Mg

ANL BATTERY PROGRAM: ACROSS THE VALUE CHAIN

COMPARISON OF OTHER CHEMISTRIES

Energy density has increased through time with different chemistries

HOW LITHIUM ION BATTERIES WORK

- All batteries use this same basic configuration
 - Anode, cathode and electrolyte
- Lithium batteries and lithium ion batteries are different
 - Lithium batteries use lithium metal anodes (usually non-rechargeable)
 - Lithium ion batteries use graphite or other material

LITHIUM ION CHEMISTRIES

Argonne

CHEMISTRY vs USE

- Different chemistries are used for different applications
- Consumer electronics use the most energy dense
- Vehicles use other chemistries

Chemistry	Nominal (V)	Charge (V) limit	Charge & Discharge C-rates	Energy Density Wh/kg	Applications	Note
Cobalt	3.60V	4.20V	1C limit	110-190	Cell Phone, cameras, laptops	Since 1990s, most commonly used for portable devices, has highest energy density.
Manganese (spiral)	3.7- 3.80∨	4.20∨	10C cont. 40C pulse	110-120	Power tools, medical equipment	Low internal resistance: offers high current rate and fast charging but lower energy density.
NCM (Nickel- Cobalt- Manganese)	3.70V	4.10V*	~5C cont. 30C pulse	140-160	Power tools, medical equipment	Nickel, Cobalt, Manganese mix; provides compromise between high current rate and high capacity.
Phosphate	3.2- 3.30∨	3.60V*	35C cont.	95-140	Power tools, medical equipment	New, high current rate, long cycle life.

www.powerportstore.com/lithium_cell_chemistries.htm

CHEMISTRIES AND VOLTAGE

- Organic electrolytes are needed for higher voltage chemistries
- Organic electrolytes are flammable

STARTER BATTERIES REPLACING LEAD ACID

Considerations are being made to ban lead acid

- It is a difficult decision
 - Lead is a concern
 - But 99% of lead acid batteries are recycled
 - Lithium-ion collection isn't established

MATERIAL RESOURCES AND RECYCLING

Lithium with and without recycle

- Recycling batteries can minimize the use of our natural resources
- Long battery lifetime delays material return

RECYCLING TECHNOLOGY

	Pyrometallurgical	Hydrometallurgical	Direct
Temperature	High	Low	Low
Materials recovered	Co, Ni, Cu (Li and Al to slag)	Metals or salts, Li_2CO_3 or LiOH	Cathode , anode, electrolyte, metals
Feed requirements	None	Separation desirable	Single chemistry required
Comments	New chemistries yield reduced product value	New chemistries yield reduced product value	Recovers high- value materials

MATERIAL VS CATHODE COST

ELECTRONICS AND VEHICLE BATTERIES

- Electronics' batteries have a collection challenge
- Electric vehicle batteries have a cost challenge

ARGONNE'S <u>ReCell</u> CLOSES THE LOOP

Quantitative model evaluates cost and environmental impact

THANK YOU

CONTRIBUTIONS FROM: LINDA GAINES ANDREW JANSEN

https://access.anl.gov/

SUPPORT FROM DAVE HOWELL AND SAMM GILLARD; DOE-VTO

www.anl.gov