# HARMFUL ALGAL BLOOM SMART DEVICE APPLICATION AND FIXED CAMERA MONITORING: USING MACHINE LEARNING TECHNIQUES FOR CLASSIFICATION OF HARMFUL ALGAL BLOOMS

MICHAEL WATERS

NORTHERN KENTUCKY UNIVERSITY

DEPARTMENT OF MATHEMATICS AND STATISTICS

JIM LAZORCHAK & JOEL ALLEN, USEPA OFFICE OF RESEARCH AND DEVELOPMENT

OCTOBER 23, 2018

### 600+ Mile Long Ohio River Blue-Green Algae Bloom, Summer 2015

#### Toxic algae on the Ohio River

An algae bloom has been visible on nearly 700 miles of the Ohio River since it was first detected on Aug. 19. The toxin microcystin has been measured at high levels in many parts of the river. The Ohio EPA issues recreational "no contact" advisories when levels reach 20 ppb.



#### OHIO RIVER TOXIC ALGAE LEVELS

| Date        | Location                        | River mile            | Microcystin level (ppb) |
|-------------|---------------------------------|-----------------------|-------------------------|
| Sept.16     | Fish Creek, W.Va.               | 114                   | 150                     |
| Sept.9      | Marietta, Ohio                  | 172                   | 250                     |
| Sept. 3     | Athens Boat & Ski Club          | 200                   | 130                     |
| Sept.9      | Point Pleasant, W.Va.           | 265                   | 250                     |
| Sept.9      | Huntington, W.Va.               | 310                   | 69                      |
| Sept.9      | Portsmouth, Ohio                | 357                   | 590                     |
| Sept. 9     | Cincinnati                      | 470                   | 1,900                   |
| Source: Ohi | o River Valley Water Sanitation | ,<br>Commission; Ohio | EPA STEVE LOPEZ / STAF  |



### Harmful Algal Bloom Smart Device Application (HAB App)



Advantages

- Smart devices are ubiquitous and crowd-sourcing approach is suitable
- Extensive reach over other methods
- Results are immediate
- Low-cost

# GREEN VS. BLUE-GREEN ALGAE CLASSIFIER

- The HAB APP uses a supervised machine learning classifier to distinguish between the hue-saturation-value color histograms of green and blue-green algae using correctly classified training images.
- The smart device is then "trained" to distinguish between these, giving probability estimates for an unclassified test image.
- User then examines algae microscopically and, with assistance from a machine learning algorithm, follows a dichotomous key\* for classification.

\*Dichotomous key developed at NKU (Steinitz-Kannan, M. and Nienaber, M.) included in the application.



Smart Device Microscope

## GREEN VS. BLUE-GREEN ALGAE





## HUE-SATURATION-VALUE COLOR SPACE



### GREEN VS. BLUE-GREEN ALGAE



## GREEN VS. BLUE-GREEN ALGAE







### SMART DEVICE CLASSIFICATION (IPHONE-BETA)



Main Upload to Database Camera Real-Time Album

Save



Upload to Database

Main

Camera Real-Time Album

Save

## PERFORMANCE

| Confusio | on Matrix | Predicted |       |
|----------|-----------|-----------|-------|
| (70/30)  |           | Green     | Blue- |
| n=52     |           |           | Green |
| <u></u>  | Green     | 6         | 0     |
| eto      | Blue-     | 0         | 9     |
|          | Green     |           |       |

95% Confidence Interval: (0.78,1)

Assuming a representative random sample of test images, we can be 95% confident that the accuracy is greater than 78%.



## FIXED CAMERA MONITORING

- High Definition Security Camera with WiFi capability
- Powered by plug-in connection or solar array
- Images sent to server hourly during daylight hours

## FIXED CAMERA SITES

- LAKE HARSHA (EAST FORK) IN CLERMONT COUNTY, OH 22,000 ACRE RESERVOIR SUPPLYING 6 MILLION GALLONS PER DAY OF DRINKING WATER AND SOURCE OF RECREATIONAL ACTIVITIES
- OHIO RIVER IN DAYTON, KY QUEEN CITY RIVERBOATS
- OHIO RIVER IN CALIFORNIA, KY THOMAS MORE COLLEGE FIELD STATION
- KENTUCKY LAKE WESTERN KY (PLANNED)
- OHIO RIVER AT GREENUP & BYRD LOCKS AND DAMN EASTERN KY (PLANNED)
- DISCOVERY LAKE NC (PLANNED)
- CHARLES RIVER MA (PLANNED)
- DELAWARE RIVER KS (PLANNED)
- ATHENS, GREECE (PLANNED)



### PERFORMANCE



DETAILSSensitivity<br/>0.83Specificity<br/>0.978Precision<br/>0.922Recall<br/>0.83F1<br/>0.83Accuracy<br/>0.942Kappa<br/>0.837



**METHODS**: AGENCY AND UNIVERSITY SCIENTISTS WILL ASSIST IN OPTIMIZING THE ALGORITHM BY EXTRACTING SAMPLES FROM SITES FROM WHICH IMAGES HAVE BEEN TAKEN TO VERIFY THE PRESENCE (AND AMOUNT) OF BLUE-GREEN ALGAE IN VITRO AND WITH OTHER DETECTION DEVICES.





# CURRENT MONITORING - WEBSITE

HTTPS://MATHSTAT.NKU.EDU/HAB



# CURRENT MONITORING - WEBSITE

HTTPS://MATHSTAT.NKU.EDU/HAB



#### Satellite Imaging



#### **Estimated Cell Counts**

EFLD/EFLS = 1,023,293 cells/ml BUOY = 676,083 cells/ml EMB = 323,594 cells/ml ENN = 1,258,925 cells/ml BOUY Site Fixed Camera Station



Fixed Camera Prediction of Cyanobacteria

**Camera Prediction:** 10:30 am - 98.3% Probability of Bluegreens 11:30 am 100% Probability of Bluegreens

Comparison of Sentinel-3 satellite imaging estimation and fixed camera algorithm on Lake Harsha, Clermont County, OH.



Hue-Saturation-Value Color Distributions for Lake Harsha – In Bloom 07/18/17 - 08/13/17



Hourly Hue Color Variation for Lake Harsha – In Bloom 07/18/17 – 08/13/17



### BOUY In Vivo Fluorescence vs Blue Green Probability XI0

2017 BUOY *in-vivo* fluorescence BG\_RFU/ChI\_RFU and BG\_Prob x 10



# CURRENT MONITORING – WEBSITE

HTTPS://MATHSTAT.NKU.EDU/HAB



## PLANNED EXTENSIONS

### OVERALL

- PRINCIPAL COMPONENT ANALYSIS TO IMPROVE ACCURACY
- CHANGE BINARY TO TERNARY CLASSIFIER TO CORRESPOND TO WORLD HEALTH ORGANIZATION HAB CELLS/ML RISK LEVELS

### **SMART DEVICE APPLICATION**

- AUTOMATIC CLASSIFICATION AT THE MICROSCOPIC LEVEL\*
- CHANGE INDIVIDUAL IMAGES TO SEVERAL IMAGES – "WAVE THE DEVICE" MODE
- STANDARD OPERATING PROCEDURE FOR TAKING IMAGES TO AVOID GLARE/OCCLUSION

### MONITORING

- ADD FIXED CAMERA STATIONS
- STANDARD SET-UP PROCEDURE TO AVOID GLARE/OCCLUSION

\*96.6% classification accuracy of microalgae by shape and color (Coltelli, et. al., 2013)

Principal Component Analysis





Anabaena bloom Camp Ernst Lake Boone County, KY October, 2014



### Planned Microalgae Extension



Aphanizomenom bloom Big Bone Lake Boone County, KY February, 2017 Aphanizomenom at ~800x magnification Taken with field microscope "Microbescope" at http://www.microbescope.com



82% Aphanizomenom
11% Mycrocystis
4% Oscillatoria
2% Gloeocapsa
1% Rivularia





Anabaena



Anabaenopsis



Aphanizomenom



Dolichospermum



Microcystis



Nostoc



Planktothrix

## AUTOMATED CLASSIFICATION

- A convolutional neural network was created using Tensorflow to classify seven genera of harmful algae.
- Images were squared, changed to grayscale, and randomly rotated, reflected and translated to artificially augment the training set.
- Results included 53.3% accuracy in prediction of correct class.

## VISION

- Artificial neural network using environmental variables (including water color) to provide a water quality index and to predict harmful water quality "events" such as harmful algal blooms
- Smart device application with downloadable models for classification (algae, macroinvertebrates, plankton, fish, other organisms), each using trained neural networks for classification

# COLLABORATORS

- Environmental Protection Agency
- Ecological Stewardship Institute at Northern Kentucky University
- Northern Kentucky University Department of Mathematics and Statistics
- Northern Kentucky University Department of Biological Sciences
- Thomas More College Department of Biological Sciences
- Marshall University Department of Biological Sciences
- Ohio River Valley Sanitation Commission (ORSANCO)
- Foundation for Ohio River Education (FORE)
- Oakland University
- Lake Superior State University
- Wayne State University
- Michigan Department of Environmental Quality
- 4DOptical Microbescope



# THANK YOU!

### FOR QUESTIONS OR INTEREST IN BETA-TESTING, PLEASE CONTACT ME AT:

WATERSM1@NKU.EDU