### Consumer Satisfaction with New Vehicles Subject to Greenhouse Gas and Fuel Economy Standards

Hsing-Hsiang Huang<sup>\*</sup>, Gloria Helfand<sup>\*\*</sup>, Kevin Bolon<sup>\*\*</sup> March 15, 2018

\* ORISE Participant at the U.S. Environmental Protection Agency, Ann Arbor, MI \*\* U.S. Environmental Protection Agency, Ann Arbor, MI

# Are there hidden costs as a result of adoption of fuel-saving technologies?

- A variety of fuel-saving technologies have been implemented since model year 2012 under the EPA light-duty vehicle greenhouse gas emissions standards
- Questions have been raised about whether there are hidden costs
  - E.g., Allcott and Greenstone (2012), Gillingham and Palmer (2014)
  - If hidden costs exist, they might contribute to an explanation of the existence of the energy-efficiency gap in the light-duty vehicle market
- Hidden costs are undesirable impacts of vehicle operational characteristics (Helfand et al. 2016), including:
  - Drivability: Acceleration, handling, ride comfort
  - Noise, vibration, fuel economy

Previous work did not find systematic evidence of hidden costs associated with fuel-saving technology

- Empirical challenge: Operational characteristics are not easy to measure and quantify
- Helfand et al. (2016) and Huang et al. (2017):
  - Using content analysis of online professional auto reviews for model years 2014 and 2015 vehicles
  - However, professional auto reviewers may not reflect the true experience of vehicle consumers
- This study aims to fill this gap by using recent consumer survey data for vehicles

# Consumer satisfaction survey data for vehicles from Strategic Version (SV)

- Stratified random sampling by SV
  - On a model (and trim) level to ensure healthy sample sizes for each model
- Consumer satisfaction rating
  - Respondents rate their experience with the vehicle and satisfaction with a comprehensive list of vehicle attributes, including operational characteristics, after they own their vehicle for 90-120 days
- Socio-demographics
  - E.g., household income, education, gender, age, residence
- Vehicle information
  - Vehicle model, engine displacement and type, number of cylinders, drive type, body type, fuel type, and transmission type

# We match SV's data with detailed vehicle technology data

- Vehicle information SV provides is used to match SV survey data with more detailed technology data, which includes a variety of fuel-saving technologies
- These vehicle technology data are collected from several sources, including Edmunds, WardsAuto, fueleconomy.gov
- Currently, about 30 % of observations in the original SV data are not able to be matched with the technology data
  - We are working with SV to improve our matching ability
- So, results presented here are a proof of concept rather than final results

Preliminary Results – Subject to Change

# Matched sample is a subsample of the original sample, but the match is relatively worse for SUVs, pickups and vans



# Both original sample and matched sample do not reflect sales in the population and subpopulation, respectively



- We lost many observations of pickup (e.g., Ram) and SUV (e.g., Jeep) after we matched technology data with the original SV sample
- We apply a weighting scheme to reflect sales in the subpopulation in the following analysis

7

### Simplifying the rating scale of consumer satisfaction

• Rating scale in the survey data for survey years 2015, 2016



- We rescale the seven-scale to an indicator variable equal to:
  - 0 (=Satisfactory) if consumer's rating is 4, 5, 6, or 7
  - 1 (=Unsatisfactory) if consumer's rating is 1, 2, or 3

|                                            |                                           | Original Sample                  |                |     |                | Matched Sample                    |                |     |                |
|--------------------------------------------|-------------------------------------------|----------------------------------|----------------|-----|----------------|-----------------------------------|----------------|-----|----------------|
|                                            |                                           | Survey Year 2015 Survey Year 201 |                |     | 'ear 2016      | Survey Year 2015 Survey Year 2016 |                |     |                |
|                                            | Experience/Operational<br>Characteristics | Car                              | Light<br>Truck | Car | Light<br>Truck | Car                               | Light<br>Truck | Car | Light<br>Truck |
| Preliminary Results –<br>Subject to Change | Overall Experience                        | 2.5                              | 2.2            | 2.2 | 2.8            | 2.5                               | 2.2            | 2.3 | 2.4            |
|                                            | Overall Driving Performance               | 1.4                              | 1.1            | 1.4 | 1.5            | 1.5                               | 1.1            | 1.5 | 1.4            |
|                                            | Ground Clearance                          | 3.5                              | 1.3            | 4   | 1.5            | 3.4                               | 1.2            | 4.3 | 1.3            |
|                                            | Riding Comfort                            | 2.5                              | 1.6            | 2.4 | 1.9            | 2.5                               | 1.8            | 2.4 | 1.8            |
|                                            | Maneuverability                           | 0.9                              | 1              | 1.1 | 1.2            | 0.9                               | 0.9            | 1.2 | 1              |
|                                            | Turning Radius                            | 1.3                              | 1.9            | 1.3 | 2.1            | 1.4                               | 1.5            | 1.2 | 1.5            |
|                                            | Road Holding Ability                      | 1.3                              | 1              | 1.4 | 1.1            | 1.2                               | 1              | 1.5 | 0.9            |
|                                            | Handling                                  | 1.2                              | 0.9            | 1.2 | 1              | 1.1                               | 0.9            | 1.3 | 0.9            |
|                                            | Steering Feedback                         | 1.3                              | 1.3            | 1.4 | 1.3            | 1.3                               | 1.3            | 1.5 | 1.2            |
|                                            | Overall Power and Pickup                  | 3.9                              | 2.7            | 3.6 | 3.3            | 4                                 | 3              | 3.7 | 3.3            |
|                                            | Acceleration from Stop                    | 4.7                              | 3.4            | 4.6 | 4.2            | 4.9                               | 3.6            | 4.8 | 4.2            |
|                                            | Passing Capability                        | 3.2                              | 2.3            | 2.9 | 2.7            | 3.3                               | 2.7            | 3.1 | 2.8            |
|                                            | Engine Performance                        | 2.5                              | 2.1            | 2.5 | 2.6            | 2.5                               | 2.3            | 2.6 | 2.5            |
|                                            | Overall Noise/Vibration/Harshness         | 5                                | 4.5            | 4.8 | 4.4            | 5.1                               | 4.9            | 4.8 | 4.5            |
|                                            | Overall Quietness                         | 5.6                              | 4.8            | 5.3 | 4.8            | 5.6                               | 5.3            | 5.3 | 5              |
|                                            | Freedom from Squeaks/Rattles              | 4.6                              | 4.4            | 4.2 | 4.5            | 4.7                               | 4.3            | 4.3 | 4.3            |
|                                            | Freedom from Wind and Road Noise $<$      | 6.9                              | 5.5            | 7.1 | 6.5            | 6.9                               | 6              | 7.1 | 6.7            |
|                                            | Smothness of Vehicle at Idle              | 2.4                              | 2.1            | 2.2 | 2.2            | 2.5                               | 2.3            | 2.2 | 2              |
|                                            | Smoothness of Transmission                | 4                                | 4.1            | 3.7 | 4.9            | 4.2                               | 3.5            | 3.8 | 4.1            |
|                                            | Fuel Economy/Mileage                      | 4.9                              | 10             | 4.2 | 9.5            | 4.9                               | 9.7            | 4.4 | 8.9            |

#### Percentage of dissatisfaction with overall experience and operational characteristics

9

#### Overall, vehicle owners are highly satisfied with their vehicle

- Unsatisfactory rates using original and matched samples are similar
- Unsatisfactory rates of 2015 and 2016 are similar
- For most of operational characteristics, less than 3% of either car or light truck owners gave an unsatisfactory rating
- Unsatisfactory rates of noise and vibration are higher but below 8%
- Light truck owners have significantly higher unsatisfactory rates regarding fuel economy than car owners
- Using matched sample, this preliminary analysis focuses on overall experience and four operational characteristics:
  - Overall driving performance
  - Overall power and pickup
  - Overall/noise/vibration/harshness
  - Fuel economy/mileage

Preliminary Results – Subject to Change

## Percentage of adoption of fuel-saving technology in the matched sample is roughly similar to actual adoption share

|                                               | М                   | atched Samp         | EPA's Fuel Economy<br>Trends Report |                    |                    |
|-----------------------------------------------|---------------------|---------------------|-------------------------------------|--------------------|--------------------|
| Fuel Saving Technology                        | Survey Year<br>2015 | Survey Year<br>2016 | Combined                            | Model Year<br>2015 | Model Year<br>2016 |
| Continuously Variable Transmission (CVT)      | 24.2                | 23.9                | 24                                  | 23.7               | 22.8               |
| Cooled Exhaust Gas Recirculation (Cooled EGR) | 8.5                 | 7.9                 | 8.3                                 | -                  | -                  |
| Cylinder Deactivation                         | 6                   | 7.5                 | 6.8                                 | 10.6               | 10.5               |
| Dual Clutch Transmission (DCT)                | 2                   | 2.3                 | 2.2                                 | > 1.4              | > 2.6              |
| Diesel                                        | 1.2                 | 0.6                 | 0.9                                 | 0.9                | 0.5                |
| Electric Vehicle (EV)                         | 0.7                 | 0.7                 | 0.7                                 | 0.5                | 0.5                |
| Hybrid Electric Vehicle (HEV)                 | 3.1                 | 2.7                 | 2.9                                 | 2.4                | 1.8                |
| High Gear Transmission (>=7)                  | 17.5                | 20.5                | 19                                  | 16.1               | 18.3               |
| Plug-in Hybrid Electric Vehicle (PHEV)        | 0.4                 | 0.4                 | 0.4                                 | 0.3                | 0.3                |
| Stop-Start                                    | 10.1                | 11.9                | 10.9                                | 5.6                | 10.4               |
| Turbocharged                                  | 14.8                | 20.2                | 17.4                                | 12.6               | 15.2               |
| Variable Valve Lift                           | 21.8                | 19.8                | 20.9                                | -                  | -                  |
| Variable Valve Timing                         | 97.6                | 98.4                | 98                                  | 96.7               | 96.9               |

Preliminary Results – Subject to Change

If there are hidden costs associated with fuel saving technology, vehicle owners would not be satisfied with vehicle operational characteristics



- Even vehicle owners may not know whether some technologies are in their vehicle. For example, we found some owners mistakenly report there is stop-start in their vehicle
- A simple comparison of dissatisfaction with operational characteristics over the presence of stopstart suggests hidden costs associated with stop-start may not exist

## A simple comparison without controlling for any factors related to technology adoption and dissatisfaction with <u>overall experience</u>



Preliminary Results – Subject to Change

- Only very small percentage of vehicle owners is not satisfied
- It appears that percentage of dissatisfaction decreases substantially in the presence of CVT, EV, HEV, and PHEV
  - Dissatisfaction increases for DCT and diesel
- The relationship between dissatisfaction and fuel-saving technology <u>cannot be identified</u> without controlling for confounding factors

Linear probability regression model to explore the relationship between dissatisfaction and fuel-saving technology adopted

$$P(D_{d}ssatisfactid_{i,j,t}) = d\sum_{kd} \beta_{kd} \beta_{$$

- *i*: respondent; *t*: model year; *j*: characteristic; *k*: technology
- *Dissatisfactid* = 1 if the respondent is <u>not</u> satisfied with the operational characteristic *j*, otherwise 0
- FuelSavingTech = 1 if the fuel-saving technology k is adopted in the vehicle, otherwise 0
- *FixedEffects* include vehicle class, drive type, brand, model-year, household income level, gender, education, and residence fixed effects
  - For example, brand fixed effects can account for the variation of dissatisfaction caused by the time-invariant heterogeneity in the quality of technology implementation among brands

Preliminary Results – Subject to Change

Estimated change in the probability of getting unsatisfactory rating of <u>overall experience</u> in the presence of a fuel-saving technology



Preliminary Results – Subject to Change

- Estimated coefficients (with standard errors) are very small
- Negative coefficients suggest the presence of the technologies is associated with <u>less</u> probability of dissatisfaction
- Only the coefficient of PHEV is statistically significant at .05 significance level (with solid marker)

15

Estimated change in the probability of getting unsatisfactory rating of <u>overall power and pickup</u> in the presence of a fuel-saving technology



- Estimated coefficients are all pretty small
- CVT, cylinder deactivation, EV, stopstart, turbochargered are correlated with <u>less</u> probability of dissatisfaction
- Cooled EGR is correlated with <u>higher</u> probability of dissatisfaction

Estimated change in the probability of getting unsatisfactory rating of <u>overall driving performance</u> in the presence of a fuel-saving technology



- Estimated coefficients are all very small
- CVT, EV, and turbocharged are correlated with <u>less</u> probability of dissatisfaction
- High gear transmission and cooled EGR are correlated with <u>higher</u> probability of dissatisfaction

Preliminary Results – Subject to Change

## Estimated change in the probability of getting unsatisfactory rating of <u>overall</u> <u>noise/vibration/harshness</u> in the presence of a fuel-saving technology



 Estimated coefficients are all very small

٠

Comparing to simple graphical comparison, after controlling for the fixed effects and sociodemographics, CVT is actually correlated with <u>less</u> probability of dissatisfaction with overall noise/vibration/ harshness

18

### Estimated change in the probability of getting unsatisfactory rating of <u>overall fuel economy/mileage</u> in the presence of a fuel-saving technology



- Many technologies examined are correlated with <u>less</u> probability of dissatisfaction
- CVT and EV show statistically-significant relationships with <u>less</u> probability of dissatisfaction with all the four operational characteristics

### Limitations

- Current matched sample does not represent the population of vehicles sold in the market
- We do not identify causal relationship
  - Observations selected to our current matched sample may be subject to selection bias
  - We cannot distinguish between technologies causing problems, or technologies being put into vehicles with problems unrelated to fuel-saving technologies
- The analysis will not capture longer-term issues, such as reliability
  - Those issues won't be known for some time, as survey questions are for buyers about their satisfaction with the new vehicles they have recently purchased
- We are working on updating the data to increase the matched sample size

Preliminary Results – Subject to Change

### Summary of preliminary results

- Overall, vehicle consumers are highly satisfied with operational characteristics of their vehicle
- Preliminary results suggest that consumer dissatisfaction appears not correlated with fuel-saving technologies adopted in most cases
  - The coefficients are pretty small, regardless of whether they are statisticallysignificant or not
  - Consistent with the findings of Helfand et al. (2016) and Huang et al. (2017) using data from professional auto reviewers
  - It is important to control for observed and unobserved characteristics, such as socio-demographics and brand fixed effects

### Appendix

Summary statistics of dissatisfaction with operational characteristics over fuel-saving technology and its presence

#### Percent of dissatisfaction with <u>overall power and pickup</u> in the presence or absence of fuel-saving technology



Preliminary Results – Subject to Change

- It appears that vehicle owners are substantially more satisfied with their overall power and pickup in the presence of cylinder deactivation, diesel, EV, high gear transmission, stop-start, and turbocharged
  - Are they more dissatisfied with variable valve timing, which is applied to about 98% of the sample? We will see the importance of controlling for other factors

#### Percent of dissatisfaction with <u>overall driving performance</u> in the presence or absence of fuel-saving technology



 Again, only very small percentage of vehicle buyers is not satisfied with overall driving performance

Preliminary Results – Subject to Change

#### Percent of dissatisfaction with <u>overall noise/vibration/harshness</u> in the presence or absence of fuel-saving technology



 Again, this is a simple comparison without any controls

Preliminary Results – Subject to Change

#### Percent of dissatisfaction with <u>fuel economy/mileage</u> in the presence or absence of fuel-saving technology



Preliminary Results – Subject to Change

- It appears that vehicle owners are more dissatisfied with fuel economy than other operational characteristics
- Also, the differences in dissatisfaction with fuel economy between vehicle owners with and without fuel-saving technology in their vehicle are generally larger than those with other operational characteristics