

Light-Duty Vehicle Greenhouse Gas Program -- Midterm Evaluation

Robin Moran, U.S. EPA, Office of Transportation and Air Quality
 January 10, 2018
 Transportation Research Board 97th Annual Meeting
 Session 742 -- Improving Road Travel Fuel Efficiency and Emissions, Part 2: Effective Policies

• GHG standards & how they work

 Midterm Evaluation of the 2022-2025 standards

• EPA's technical work to assess key issues

Vehicle CO₂ emissions at record low

Standards based on Vehicle Size – "Footprint"

CO₂ Footprint Target Curves for Trucks

(Separate footprint curve for Cars)

Midterm Evaluation -- Process

- When EPA first set the MY2017-2025 standards in the 2012 rulemaking, EPA committed to a midterm evaluation of MY2022-2025 standards
 - EPA must determine whether the 2022-2025 standards remain appropriate
 - Data-driven, holistic, transparent
- <u>Steps Thus Far</u>:
 - January 2017: EPA Administrator McCarthy determined that the MY2022-2025 standards were appropriate and should not change
 - Following public comment on a Draft Technical Assessment Report issued jointly by EPA, NHTSA, and CARB in July 2016, and an EPA Proposed Determination in November 2016
 - March 2017: EPA Administrator Pruitt announced he would reconsider the prior determination
 - August October 2017: Public comment & public hearing
 - EPA Administrator also took comment on appropriateness of MY2021 standards, separate from MTE
 - No later than April 1, 2018: EPA Administrator has said he will make a new Final Determination (per the EPA regs)

Factors to Consider in Determination

	2012 Rulemaking – Factors	August 2017 FR Notice – Additional Factors		
Technology	 Powertrain improvements Light-weighting/safety Costs Feasibility Availability Market penetration 	 Advanced fuels Approaches to technology projections 		
Consumers	Consumer acceptancePaybackFuel costs	 Valuation of fuel savings Distributional effects Consumer purchasing & usage behavior (e.g., rebound) 		
Fleet	Sales & mix	Reference fleet		
Others	EmploymentInfrastructure	Air quality standards		
Any other relevant information				

How is EPA assessing these factors?

EPA continues to evaluate a wide range of information:

Public comments

• More than **280,000 comments** received, mostly from citizens; about 100 comments from organizations

Extensive reviews of the literature

• Hundreds of reports/papers published in the literature since 2012, including major studies such as the 2015 National Academies of Science (NAS) report

Stakeholder outreach & collaboration

- Hundreds of meetings with automakers, suppliers, NGOs, consumer groups, labor, states/local governments, others
- Collaboration with DOE, CARB, Canada

EPA Research: Technology & Modeling

- EPA's National Vehicle and Fuel Emissions Laboratory has been performing state-of-the-art fuel economy and emissions testing since the 1970's
- In-house **benchmarking testing of 30 vehicles** across wide range of powertrains & segments
 - Provides critical up-to-date engine and transmissions inputs for vehicle simulation modeling
 - All data is publicly available
- In-house vehicle simulation modeling (ALPHA)
 - Industry best practice recommended by NAS
- Commissioned cost teardown studies of key technologies
 - NAS-recommended best practice
- In-house technology/cost optimization modeling (OMEGA)
- Published over 30 peer-reviewed technical papers/reports
 - Provides transparency and sparks technical feedback

EPA National Vehicle and Fuel Emissions Laboratory, Ann Arbor, MI

Engine Testing via Tethered Vehicle

EPA Research: Consumer Issues

- Role of fuel economy in purchase decisions
- **Consumer satisfaction** with fuel efficient technologies
- Consumer willingness to pay (WTP) for vehicle attributes
- Potential tradeoffs
- Affordability
- Energy paradox (or "energy efficiency gap")

Consumer Satisfaction

EPA researching in two ways:

1) Professional auto reviews

- RTI coded >1000 auto reviews for each of MY 2014 & 2015 vehicles
 - 21 technologies, 22 operational characteristics (acceleration, handling, braking, etc.)
 - Is any mention of technology or operational characteristic positive, negative or neutral?
- Overall, **69%** of mentions of technologies were **positive**
- Each technology had **majority positive** ratings
- Few correlations between existence of technology and problems with operational characteristics

2) Survey data of new car owners

 Research underway to conduct similar analyses using actual consumer data (Strategic Vision) for MY2014-2016 vehicles

Professional Auto Reviewers' Evaluations of Fuel Efficient Technologies

Technology	% Positive	Technology	% Positive
Active Air Dam	100%	Electric Vehicle	74%
Active Grill Shutters	88%	Fuel Cell	100%
Active Ride Height	67%	Stop-Start	55%
Low Resistance Tires	53%	High Speed Auto. Transmission	65%
Electric Power Steering	65%	CVT	55%
Turbocharged	79%	DCT	69%
GDI	83%	Electric Assist/ Low Drag Brakes	56%
Cylinder Deactivation	80%	LED Lights	91%
Diesel	71%	Mass Reduction	89%
Hybrid	65%	Passive Aerodynamics	78%
Plug-In Hybrid Electric	63%		
Technology Totals			69%

More detail on preliminary MY2014-2015 analysis: https://www.epa.gov/sites/production/files/2017-03/documents/sbca-mtg-hidden-costs-2017-03-16.pdf

MY2014 analysis: Helfand et al. (2016), "Searching for Hidden Costs: A Technology-Based Approach to the 10 Energy Efficiency Gap in Light-Duty Vehicles," <u>Energy Policy</u> 98: 590-606

Consumer Willingness to Pay (WTP)

- EPA commissioned RTI (with subject matter expert, Dr. David Greene) to study consumer WTP for vehicle attributes from academic papers from 1995-2015
- Estimated WTP values for many attributes: fuel economy, performance, range, comfort, size, reliability, etc.
- WTP estimates for all vehicle attributes varied tremendously
 - Wide span of negative to positive values
 - Perhaps due to model specification how well are researchers capturing the vehicle choice decision?
- Any one estimate is likely to be just that – one estimate from a wide distribution
 - Sensitivity analysis using the range is likely to give very uncertain outcomes – which may be all we can say about policy impacts

http://te3conference.com/wp-content/uploads/2017/11/TE3WTPVEhicleAttributes17Oct2017.pdf

Potential for tradeoffs with other attributes?

- In the early years of CAFE, vehicles became smaller and less powerful for a while (mid-1970s to early 1980s)
- As fuel efficiency improves, concern often raised that other vehicle attributes might suffer ("tradeoffs")
- Footprint-based standards were intended to mitigate incentives for downsizing
- How will consumers respond ... will there be impacts on other vehicle characteristics?

Change in Adjusted Fuel Economy, Weight, and Horsepower for MY 1975-2016

EPA 2016. "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Report," p. 7.

Technical relationship between power and fuel economy

- EPA has investigated the relationship between performance and fuel economy for different engine technologies, using our ALPHA model
- New research indicates that technology innovation is flattening the historic tradeoff between fuel economy and acceleration
 - Win-win: better fuel economy <u>and</u> better performance
- Advanced technology engines have a "sweet spot" of high efficiency that is better matched to vehicle speed/loads found on compliance test cycles
 - Improving performance "costs" less fuel because operation remains close to the sweet spot.

CO₂ as a function of 0-60 time for port fuel injection, gasoline direct injection, and turbo-downsized engines

Based on EPA Proposed Determination Technical Support Document, p. 2-247 https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100Q3L4.pdf

• EPA technical staff are continuing to conduct research on technologies, modeling, consumer, and other issues

• EPA will continue assessing the many issues surrounding the MY2022-2025 standards using the best available data

• EPA Administrator plans to make a new Final Determination no later than April 1, 2018

Thank You

To find out more about the EPA Midterm Evaluation:

<u>https://www.epa.gov/regulations-emissions-vehicles-and-engines/midterm-</u> evaluation-light-duty-vehicle-greenhouse-gas-ghg