

Renewable Natural Gas

October 23, 2018

Brian Jones Senior Vice President M.J. Bradley & Associates bjones@mjbradley.com

MJB & A

About Us

M.J. Bradley & Associates ("MJB&A") is a multi-disciplinary team of experts with a longtrack record of advising industry, NGOs, and government agencies on energy and environmental policy, technology, and implementation. Our staff have backgrounds in law, engineering, finance, policy, and environmental science.

Key areas of focus and expertise:

- Power Sector
- Natural Gas Sector
- Transportation and Electric Vehicle
 Technology and Policy
- Engineering and Technical Services

MJB & A

M.J. Bradley & Associates, LLC

We help our clients:

- Evaluate the market implications of emerging laws and regulations
- Execute on strategic policy initiatives
- Manage sustainability programs
- Develop market entry strategies for emerging technologies
- Evaluate investment opportunities
- Track state, regional, and federal energy and environmental initiatives
- Engage with stakeholders and communities

Sampling of Clients

Our clients are multi-national in scope and include energy and clean technology firms, environmental groups, transportation companies, and government agencies.

The Downstream Natural Gas Initiative (DSI) is a group of leading natural gas utilities collaborating to address the role of natural gas in a low-carbon future. The Initiative is focused on opportunities for expanding natural gas end-use markets and leveraging existing infrastructure to support near-term and long-term environmental and economic goals.

Key Issues

M|B & A

- Best practices to reduce methane emissions from natural gas distribution infrastructure and operations
- Ongoing leak detection technology research, development, and deployment
- Methane Challenge Program
- Decarbonization pathway analysis and discussions
- Policy, regulatory, and market barriers to development of the growth of renewable natural gas (RNG)

Member Companies Consolidated Edison Énergir National Grid NiSource Pacific Gas & Electric Vermont Gas Xcel Energy

Drivers for a Low-Carbon Future

Non-federal U.S. climate pledges to achieve Paris climate goals¹:

- U.S. Climate Alliance. 14 states and Puerto Rico representing 36 percent of U.S. population.
- We Are Still In. 2,320 states, cities, businesses, and universities representing 40 percent of U.S. population.
- U.S. Climate Mayors. Mayors of 383 mayors representing 23 percent of U.S. population.

Investor Action:

- Task Force on Climate-related Financial Disclosures
- Climate Action 100+

¹ there is overlap of population percentages across each group

GDP and GHG emissions of states and cities supporting the Paris Agreement

Emissions Sources and Goals

GHG reduction goals require near elimination of fossil fuel emissions

Sources: EIA historic CO₂ emissions from fossil fuel consumption; EPA GHG Inventory; MJB&A analysis

Notes:

- 2. "Other" includes emissions from HFCs, PFCs, SF₆, NF₃
- 3. "Other GHGs" estimated using EPA GHG Inventory historic 2015 non-CO2 emissions' share of total GHG emissions

Pathways Analyses Illustrate Impact on Fossil Fuels

LDC Impact-Related Findings

- Energy demand decreases primarily through improvements in appliance, heating, and facility efficiency
- Residential/commercial energy demand is almost completely electrified by 2050
- Industrial process limitations require decarbonized fuel sources and feedstock
- Industrial CHP capacity increases substantially

Renewable Natural Gas LDC Actions...Picking Up

RNG Barriers

Regulatory

LDCs are subject to least-cost requirements. Costs for RNG investments can be challenging to approve. The vast majority of regulators currently do not consider state climate targets in their least cost analyses.

Financial

A biogas collection system, RNG processing facility, and gas pipeline interconnection and lateral can cost tens of millions of dollars. Projects are not economically viable if developers must cover all of these costs.

Market

Current primary demand drivers are the transportation (RFS, LCFS) and electric power (state RPS) sectors. LDCs need RNG customers who are willing to pay higher prices to justify investments.

Technical

Uniform gas quality and interconnection standards are key to providing certainty to both RNG producers and the LDCs accepting RNG into their systems.

GHG Benefits of Renewable Natural Gas

¹Based on California LCFS. Error bars show range of approved pathways for commercial fuels. EPA values for North American natural gas based on EPA GHG Inventory.

Other RNG Benefits

- Generates local economic activity and job creation
- Local gas supply enhances fuel diversity
- Local air quality improvements (elimination of flaring and onsite combustion of biogas)
- Uses existing infrastructure to deliver renewable energy
- Beneficial use of a waste stream
- More efficient use of energy (compared to onsite electric generation)

GHG Emissions Quantification: Corporate GHG Inventories (MT CO₂e)

- Emission inventory guidance is based on fuel combustion GHG emission factors only
- Does not include lifecycle
 emissions
- CO₂ emissions from LFG combustion are considered biogenic and can be removed from Scope 1 emission estimate
- Emission Factors for LFG are comparatively similar to North American Natural Gas

*Includes The Climate Registry, EPA Climate Leaders and EPA GHG Reporting Program

Note: Illustrative example using 10 million therms of natural gas/LFG

Corporate GHG Emission Quantification Boundaries

GHG Emissions Quantification: Lifecycle Emissions (MT CO₂e)

Note: Illustrative example using 10 million therms of natural gas/LFG

- Includes lifecycle (Well-to-pump) emissions from production & use
 - Exploration/development
 - Processing
 - Transport
 - End use
- Carbon Intensity (CI), of "pathway" from production to end use calculated using GREET model
 - Cl's differ by project location and activity
 - LFG has net GHG reduction due to "credit" for avoided CO₂ from flaring at landfill
- Cl's range from 32 to 85 kg CO₂ per MMBtu for LFG
- Natural gas CI approximately 72 kg CO₂ per MMBtu

RNG Infographic

This infographic by CenterPoint illustrates the lifecycle GHG benefits of RNG.

CenterPoint literature states:

"Using RNG, instead of conventional natural gas, results in a 40 to 100 percent or more decrease in GHG emissions, depending on the source of the RNG."

Policies are Key

California and Connecticut proposed legislation setting RNG procurement requirements for gas companies.

Connecticut SB 337

- Proposes an RPS requiring gas companies to have RNG comprise at least 5 percent of output by 2033
- Sets RNG quality standards
- Requires electric distribution companies to procure additional electricity from biomass power plants

California SB 1440

- As initially intended, would authorize the PUC to adopt a biomethane procurement program
- In its current form, requires the PUC to consider adopting specific biomethane procurement targets
- Signed by Governor Brown

Concord, MA

Headquarters

47 Junction Square Drive Concord, MA 02145 USA T: +1 978 369 5533

F: +1 978 369 5533 F: +1 978 369 7712

Washington, DC

1225 Eye Street, NW, Suite 200 Washington, DC 20005 USA T: +1 202 525 5770

For more information, visit www.mjbradley.com