Number: P-18-0118 and P-18-0119

TSCA Section 5(a)(3) Determination: The chemical substances are not likely to present an unreasonable risk (5(a)(3)(C))

Chemical Name:

Generic (P-18-0118): Oxirane, 2-methyl-, polymer with methoxirane homopolymer, 1,1'-methylenebis[4-isocyanatobenzene], and glycerol-propylene oxide polymer.

Generic (P-18-0119): Oxirane, 2-methyl-, polymer with methoxirane homopolymer, 1,1'-methylenebis[isocyanatobenzene], and glycerol-propylene oxide polymer.

Conditions of Use (intended, known, or reasonably foreseen)¹:

Intended conditions of use (generic): Manufacture and/or import an annual production volume of 30,000 kilograms for use at 53.7% as an industrial adhesive, consistent with the manufacturing and use, distribution, and disposal information described in the PMNs.

Known conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are known conditions of use and found none.

Reasonably foreseen conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are reasonably foreseen conditions of use and found none.

Summary: The chemical substances are not likely to present an unreasonable risk of injury to health or the environment, without consideration of costs or other nonrisk factors, including an unreasonable risk to a potentially exposed or susceptible subpopulation identified as relevant by the Administrator under the conditions of use, based on the risk assessment presented below. Although EPA estimated that the new chemical substances' hydrolysis products could be very persistent, they are estimated to have low potential for bioaccumulation, such that repeated exposures are not expected to be cumulative. Based on test data on analogous chemical

¹ Under TSCA § 3(4), the term "conditions of use" means "the circumstances, as determined by the Administrator, under which a chemical substance is intended, known, or reasonably foreseen to be manufactured, processed, distributed in commerce, used, or disposed of." In general, EPA considers the intended conditions of use of a new chemical substance to be those identified in the section 5(a) notification. Known conditions of use include activities within the United States that result from manufacture that is exempt from PMN submission requirements. Reasonably foreseen conditions of use are future circumstances, distinct from known or intended conditions of use, under which the Administrator expects the chemical substance to be manufactured, processed, distributed, used, or disposed of. The identification of "reasonably foreseen" conditions of use will necessarily be a case-by-case determination and will be highly fact-specific. Reasonably foreseen conditions of use will not be based on hypotheticals or conjecture. EPA's identification of conditions of use includes the expectation of compliance with federal and state laws, such as worker protection standards or disposal restrictions, unless case-specific facts indicate otherwise. Accordingly, EPA will apply its professional judgment, experience, and discretion when considering such factors as evidence of current use of the new chemical substance outside the United States, evidence that the PMN substance is sufficiently likely to be used for the same purposes as existing chemical substances that are structurally analogous to the new chemical substance, and conditions of use identified in an initial PMN submission that the submitter omits in a revised PMN. The sources EPA uses to identify reasonably foreseen conditions of use include searches of internal confidential EPA PMN databases (containing use information on analogue chemicals), other U.S. government public sources, the National Library of Medicine's Hazardous Substances Data Bank (HSDB), the Chemical Abstract Service STN Platform, REACH Dossiers, technical encyclopedias (e.g., Kirk-Othmer and Ullmann), and Internet searches.

substances, EPA estimates that the chemical substances have low environmental hazard and potential for the following human health hazards: irritation, sensitization and lung effects. EPA concludes that the new chemical substances are not likely to present an unreasonable risk under the conditions of use.

Fate: Environmental fate is the determination of which environmental compartment(s) a chemical moves to, the expected residence time in the environmental compartment(s) and removal and degradation processes. Environmental fate is an important factor in determining exposure and thus in determining whether a chemical may present an unreasonable risk. EPA estimated physical/chemical and fate properties of these new chemical substances using data for analogous polymers. The chemical substances are estimated to be removed during wastewater treatment with an efficiency of 90 to 99% via hydrolysis. The hydrolysis half-lives of the new chemical substances are expected to be minutes to hours. The hydrolysis products are also estimated to be removed during wastewater treatment with an efficiency of 90% via sorption. For the hydrolysis products, removal by biodegradation in wastewater treatment is estimated to be negligible based on large molecular volume. Sorption to sludge is estimated to be strong, and sorption to soil and sediment is estimated to be very strong, resulting in negligible migration to groundwater. Volatilization to air is estimated to be negligible because of the large molecular volume. Overall, these estimates are indicative of low potential for these chemical substances and their hydrolysis products to volatilize into the air and a low potential for these chemical substances and their hydrolysis products to migrate into groundwater.

Persistence²: Persistence is relevant to whether a new chemical substance is likely to present an unreasonable risk because chemicals that are not degraded in the environment at rates that prevent substantial buildup in the environment, and thus increase potential for exposure, may present a risk if the substance presents a hazard to human health or the environment. Based on data for analogous polymers, EPA estimated the hydrolysis half-life of the new chemical substances to be minutes to hours. The hydrolysis products' anaerobic and aerobic biodegradation half-lives are estimated to be greater than six months. These estimates for biodegradation indicate that the new chemical substance will not be persistent in aerobic environments (e.g., surface water) or anaerobic environments (e.g., sediment) and that the hydrolysis products may be very persistent in aerobic and anaerobic environments.

Bioaccumulation³: Bioaccumulation is relevant to whether a new chemical substance is likely to present an unreasonable risk because substances that bioaccumulate in aquatic and/or

² Persistence: A chemical substance is considered to have limited persistence if it has a half-life in water, soil or sediment of less than 2 months or there are equivalent or analogous data. A chemical substance is considered to be persistent if it has a half-life in water, soil or sediments of greater than 2 months but less than or equal to 6 months or if there are equivalent or analogous data. A chemical substance is considered to be very persistent if it has a half-life in water, soil or sediments of greater than 6 months or there are equivalent or analogous data. (64 FR 60194; November 4, 1999)

³ Bioaccumulation: A chemical substance is considered to have a low potential for bioaccumulation if there are bioconcentration factors (BCF) or bioaccumulation factors (BAF) of less than 1,000 or there are equivalent or analogous data. A chemical substance is considered to be bioaccumulative if there are BCFs or BAFs of 1,000 or greater and less than or equal to 5,000 or there are equivalent or analogous data. A chemical substance is considered to be very bioaccumulative if there are BCFs or BAFs of 5,000 or greater or there are equivalent or analogous data. (64 FR 60194; November 4 1999)

terrestrial species pose the potential for elevated exposures to humans and other organisms via food chains. The new chemical substances and their hydrolysis products have low bioaccumulation potential based on the rapid hydrolysis half-life of the new chemical substances and the large predicted molecular volume of the both the new chemical substances and their hydrolysis products, which limit bioavailability and bioaccumulation. Although EPA estimated that the hydrolysis products could be very persistent, the hydrolysis products have low potential for bioaccumulation, such that repeated exposures are not expected to cause food chain effects via accumulation in exposed organisms.

Human Health Hazard⁴: Human health hazard is relevant to whether a new chemical substance is likely to present an unreasonable risk because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA estimated the human health hazard of these chemical substances based on their estimated physical/chemical properties and data on analogous chemicals. Absorption of the parent polymer is nil all routes and poor all routes for the low molecular weight fractions, based on physical/chemical properties. EPA identified hazard for lung surfactancy due to the [claimed CBI] repeats units only if these are present in the low MW fractions. EPA identified irritation and sensitization hazards due to the isocyanate groups.

Environmental Hazard⁵: Environmental hazard is relevant to whether a new chemical substance is likely to present unreasonable risk because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the

⁴ A chemical substance is considered to have low human health hazard if effects are observed in animal studies with a No Observed Adverse Effect Level (NOAEL) equal to or greater than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have moderate human health hazard if effects are observed in animal studies with a NOAEL less than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have high human health hazard if there is evidence of adverse effects in humans or conclusive evidence of severe effects in animal studies with a NOAEL of less than or equal to 10 mg/kg/day or if there are equivalent data on analogous chemical substances. EPA may also use Benchmark Dose Levels (BMDL) derived from benchmark dose (BMD) modeling as points of departure for toxic effects. See https://www.epa.gov/bmds/what-benchmark-dose-software-bmds. Using this approach, a BMDL is associated with a benchmark response, for example a 5 or 10 % incidence of effect. The aforementioned characterizations of hazard (low, medium, high) would also apply to BMDLs. In the absence of animal data on a chemical or analogous chemical substance, EPA may use other data or information such as from in vitro assays, chemical categories (e.g., Organization for Economic Co-operation and Development, 2014 Guidance on Grouping of Chemicals, Second Edition. ENV/JM/MONO(2014)4. Series on Testing & Assessment No. 194. Environment Directorate, Organization for Economic Co-operation and Development, Paris, France.

 $(\underline{http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2014)4\&doclanguage=en)}), structure-activity relationships, and/or structural alerts to support characterizing human health hazards.$

⁵ A chemical substance is considered to have low ecotoxicity hazard if the Fish, Daphnid and Algae LC50 values are greater than 100 mg/L, or if the Fish and Daphnid chronic values (ChVs) are greater than 10.0 mg/L, or there are not effects at saturation (occurs when water solubility of a chemical substance is lower than an effect concentration), or the log Kow value exceeds QSAR cut-offs. A chemical substance is considered to have moderate ecotoxicity hazard if the lowest of the Fish, Daphnid or Algae LC50s is greater than 1 mg/L and less than 100 mg/L, or where the Fish or Daphnid ChVs are greater than 0.1 mg/L and less than 10.0 mg/L. A chemical substance is considered to have high ecotoxicity hazard, or if either the Fish, Daphnid or Algae LC50s are less than 1 mg/L, or any Fish or Daphnid ChVs is less than 0.1 mg/L (Sustainable Futures https://www.epa.gov/sustainable-futures/sustainable-futures-p2-framework-manual).

substance. EPA estimated environmental hazard of these new chemical substances using hazard data on analogous chemicals. Based on SARs for nonionic polymers and test data on analogous chemical substances, EPA concludes that these hazards from acute and chronic exposures are not expected at concentrations up to the water solubility limit of the new chemical substances (i.e., no effects at saturation). These toxicity values indicate that the new chemical substances are expected to have low environmental hazard. Because hazards are not expected up to the water solubility limit, acute and chronic concentrations of concern are not identified.

Exposure and Risk Characterization: The exposure to a new chemical substance is potentially relevant to whether a new chemical substance is likely to present unreasonable risks because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance.

EPA estimates occupational exposure and environmental release of the new chemical substances under the intended conditions of use described in the PMNs using ChemSTEER (Chemical Screening Tool for Exposures and Environmental Releases https://www.epa.gov/tsca-screening-tools/chemsteer-chemical-screening-tool-exposures-and-environmental-releases). EPA uses EFAST (the Exposure and Fate Assessment Screening Tool; https://www.epa.gov/tsca-screening-tools/e-fast-exposure-and-fate-assessment-screening-tool-version-2014) to estimate general population, consumer, and environmental exposures.

EPA considers workers to be a potentially exposed or susceptible subpopulation (PESS) on the basis of greater exposure potential compared to the general population. EPA also considers PESS in conducting general population drinking water exposures by evaluating risks associated with water intake rates for multiple age groups, ranging from infants to adults. EPA considers consumers of specific products to be a potentially exposed or susceptible subpopulation on the basis of greater exposure potential compared to the general population who do not use specific products.

For the assessment of the new chemical substances, EPA assessed environmental releases to water. EPA assessed exposure to workers via the dermal route, and inhalation exposure to workers is not expected. Exposure to the general population was assessed via drinking water. Exposure to the general population via inhalation was not assessed because releases to air were not expected. Exposures to consumers were not assessed because consumer uses were not identified as conditions of use.

EPA assesses risks to workers considering engineering controls described in the PMNs but in the absence of personal protective equipment (PPE) such as gloves and respirators. If risks are preliminarily identified, EPA then considers whether the risks would be mitigated by the use of PPE (e.g., impervious gloves, respirator).

Risks to human health for the new chemical substances were evaluated qualitatively. Irritation and sensitization hazards to workers via dermal exposures were identified but cannot be quantified due to a lack of dose-response for these hazards. Risks will be mitigated if exposures are controlled by the use of appropriate PPE, including impervious gloves. EPA expects that workers will use appropriate personal protective equipment (i.e., impervious gloves), consistent

with the Safety Data Sheet prepared by the PMNs submitter, in a manner adequate to protect them.

Risks were not identified for general population for irritation and sensitization via drinking water since isocyanates are reactive in water thereby reducing the potential for sensitization. Risks to the general population via inhalation from stack air and fugitive air are unlikely since exposures through these media are not expected.

Due to low environmental hazard, EPA believes that these chemical substances are not likely to present an unreasonable risk to the environment even if potential exposures were high.

Because worker exposures can be controlled by PPE, no unreasonable risks to the general population or environment were identified, and there are no expected consumer exposures, EPA has determined that the new chemical substances are not likely to present unreasonable risk to human health or the environment under the conditions of use.

02/28/19	/s/
Date:	Jeffery T. Morris, Director
	Office of Pollution Prevention and Toxics