Demonstration of LMOP Tools to Evaluate RNG Project Feasibility

Amanda Singleton
ERG, contractor for LMOP

Tools Covered Today

- LFGcost-Web (version 3.2)
 - Created in 2002 to help stakeholders estimate the costs of an LFG energy project
 - o Peer reviewed in 2015-2016
 - Last updated May 2017: included addition of economic and job creation benefits for two project types
 - Download includes Excel-based tool & User's Manual
- RNG Flow Rate Estimation Tool
 - NEW: released November 2018

Renewable Natural Gas Flow Rate Estimation Tool (RNG Flow Tool)

RNG Flow Tool Overview

Step 1

- Enter current LFG flow rate (scfm)
- Enter gas composition (nitrogen, methane, carbon dioxide and oxygen) or use default composition

Step 2

- Review RNG processing technology matrix
- Assess upper bound nitrogen content allowable for each technology

Step 3

- Review and rate the current condition of your wellfield in the field condition ranking matrix on a scale of 1 to 5
- Most optimal "best" is 1 to least optimal "worst" is 5

Step 4

 Select the basis of the heating value to convert the adjusted flow rate into heat rates (MMBtu/hr)

RNG Flow Tool – Step 1 Inputs

Landfill Name:		SWANAPalooza Demo
LFG collected flow rate in standard cubic feet per minute (scfm): Typical flow rates for different technologies are presented in the Technology Matrix worksheet.	2,710	Direction related to nitrogen values and air intrusion will appear here if warranted:
Nitrogen (N_2) concentration ¹ : Use default of 10% if actual concentration unknown.	8.0%	
Methane (CH_4) concentration: Use default of 50% if actual concentration unknown.	48.0%	See the 'Technology Matrix' worksheet for more information on LFG-to-RNG
Carbon Dioxide (CO ₂) concentration ² : Use default of 39% if actual concentration unknown.	43.5%	treatment technologies that may be suitable for your project. After reviewing the matrix, proceed to Step 2.
Oxygen (O_2) concentration ¹ : Use default of 1% if actual concentration unknown.	0.5%	Constituent 100.0% N ₂ to O ₂ Ratio:

RNG Flow Tool – Steps 2 & 3 Inputs

Nitrogen (N₂) concentration for LFG
entering the treatment skid¹:

Value must be less than or equal to the Nitrogen content in Step 1.

CO₂ concentration²:

42.5%

Go to TECHNOLOGY MATRIX for nitrogen ranges for various
LFG-to-RNG treatment technologies.

O₂ concentration¹:

O₄

Review 'Field Condition Ranking Matrix' worksheet and select a corresponding field condition compensation factor. From this step, an adjusted flow rate is calculated to represent the inlet flow rate to the RNG processing plant.

Go to FIELD CONDITION RANKING MATRIX Calculated inlet flow rate (scfm) to 2,000 RNG processing plant: Select field condition compensation factor: 2 Ranking of field conditions range from most optimal "best" (1) to at estimated methane content of: 53.1% least optimal "worst" (5) conditions which could affect air infiltration/intrusion in the collection system. Ranking is subjective Note: If you are using LFGcost-Web to estimate the cost of an RNG or onsite CNG and varies from site to site, and can only be designated by personnel project, you should select Defined by User as the LFG energy project size in cell D26 of familiar with the site. the LFGcost-Web 'INP-OUT' worksheet and enter this inlet flow rate into the project design size in cell D28 of the 'INP-OUT' worksheet. You should also enter the inlet Calculated LFG flow rate reduction factor: 1.2

methane content in cell D32 of the 'INP-OUT' worksheet.

LMOP Renewable Natural Gas (RNG) Flow Rate Estimation Tool

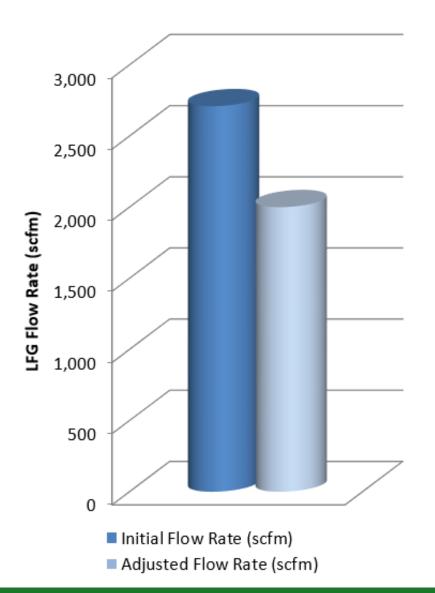
Summary Report

SWANAPalooza Demo

February 6, 2019

	Initial	Adjusted
LFG Constituents		
Nitrogen (N ₂)	8.0%	4.0%
Methane (CH ₄)	48.0%	53.1%
Carbon Dioxide (CO ₂)	43.5%	42.5%
Oxygen (O ₂)	0.5%	0.4%
Flow Rate (scfm)	2,710	2000
Heat Rate (MMBtu/hr) (LHV basis)	71	58

CH₄
53.1%


CO₂
42.5%

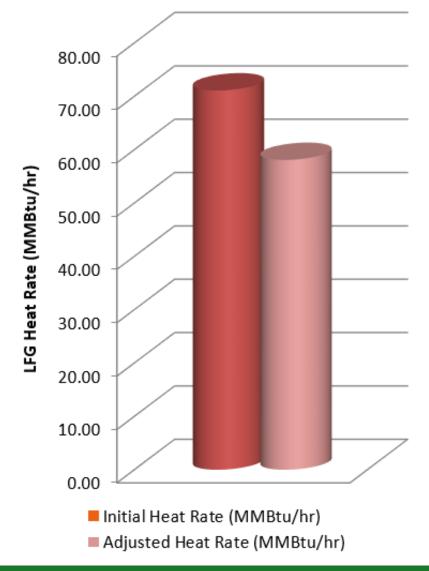
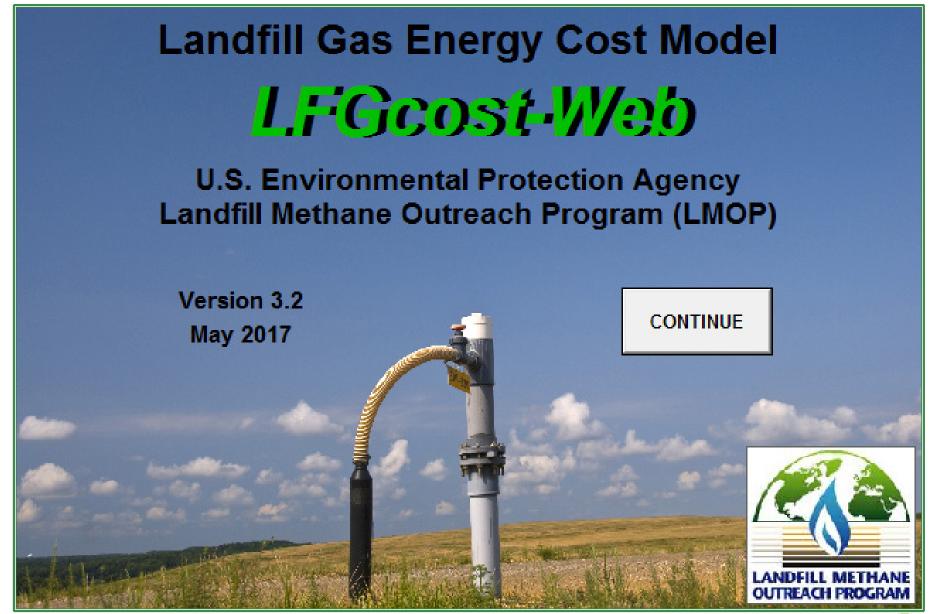

A2.5%

Figure 1: Adjusted Gas Quality

Figure 2: Comparison of Initial and Adjusted LFG Flow Rate


Figure 3: Comparison of Initial and Adjusted LFG Heat Rate (LHV basis)

Landfill Gas Energy Cost Model (LFGcost-Web)

LFGcost-Web: Available Project Types

Non-Electricity Project Types	Tab in Model	Model's Recommended Sizes
Collection and Flare – no energy recovery	C&F	10 acres or more
Large-scale RNG (High-Btu)	HBTU	1,000 to 10,000 ft ³ /min LFG
Onsite CNG fueling stations	CNG	50 to 600 ft ³ /min LFG
Direct LFG utilization (direct-use)	DIR	400 to 3,000 ft ³ /min LFG
Boiler retrofit	BLR	3,000 ft ³ /min LFG or less
Leachate Evaporators	LCH	5,000 gallons leachate per day and greater

LFGcost-Web: Available Project Types

Electricity Project Types	Tab in Model	Model's Recommended Sizes
Standard turbine-generator sets	TUR	Greater than 3 MW
Standard reciprocating engine-generator sets	ENG	800 kW and greater
Microturbine-generator sets	MTUR	30 to 750 kW
Small reciprocating engine- generator sets	SENG	100 kW to 1 MW
CHP reciprocating engine- generator sets	СНРЕ	800 kW and greater
CHP turbine-generator sets	CHPT	Greater than 3 MW
CHP microturbine-generator sets	СНРМ	30 to 300 kW

Model Inputs: Known LFG Target Flow Rate

Required Inputs

- Project Start Year and Project Type
- Include collection and flaring costs? (Yes or No)
- o Pipeline distances for Direct-use, High-Btu, and CHP projects
- Project-specific inputs for Leachate Evaporator and Boiler Retrofit
- Select Defined by User for LFG Energy Project Size
- Enter Design flow rate (ft³/min LFG)

Optional Inputs

- Project lifetime, operating schedule
- Financial parameters (i.e., interest rate, incentives, commodity prices)
- Electricity region

LFGcost-Web: Model Outputs

- Initial Economic Feasibility Screening for Project
 - Project size
 - Installed capital cost
 - Annual costs (O&M)
 - Internal rate of return
 - Net present value (NPV) at year of construction
 - Years to payback
- Regional Economic Impacts (Direct-use and Standard Reciprocating Engine-Generators only)
 - Jobs created within the state
 - Earnings impact within the state (\$000)
 - State-wide economic output (\$000)

Example Inputs: RNG Project – Large Scale High-Btu with Known Flow Rate (2,000 scfm)

	Α	В	С
5	Type of Input Required		Required Input Data
6	Year landfill opened		
7	Year of landfill closure		
8	Area of LFG wellfield to supply pro	pject (acres) [assumes 1 well/acre]	
_	Method for entering waste	Average annual waste acceptance rate (tons/yr)	
	acceptance data [CHOOSE ONLY ONE	Waste acceptance rate calculator (in WASTE worksheet)	Go to WASTE
11	METHOD]:	Annual waste disposal history (in WASTE worksheet)	Go to WASTE
12	LFG energy project type [refer to	High Btu	
13	Will LFG energy project cost inclu	N	
14	For Leachate Evaporator project		
15	For Boiler Retrofits: Will boiler	retrofit costs be combined with direct-use project costs? (Y)es or (N)o	
16	For Boiler Retrofits: Distance b		
17	For Direct-use, High Btu, and C	0.5	
18	Distance between landfill and end	0.5	
19	For CHP projects: Distance bet		
20	Year LFG energy project begins o	2022	
21	Will model calculate avoided CO2 from energy generation at electricity projects? (Y)es or (N)o. If (Y)es, go to the Avoided CO2- Elec worksheet to select the appropriate value.		N

Example Inputs: RNG Project – Large Scale High-Btu with Known Flow Rate (2,000 scfm)

		_	
	Will model calculate avoided CC Warning: User-defined size		×
21 22	go to the Avoided CO2- Elec W The user-defined project size exceeds the maximum calculated LFG flowrate in cell AG28 of the FLOW worksheet. If you enough gas available for this project.	are using waste data to estimate flowrat	e, the landfill may not have
23	Optional User Inputs (curre		
24	Yes No Cancel Help		
	Type of Optional Input	Suggested Default Data	Optional User Input Data
25		Delault Data	Oser Input Data
26	LFG energy project size: Gas rate = Minimum, Average, Maximum, or Defined by user (must enter	Minimum	Defined by user
27	design flow rate below)?		-
28	For user-defined project size only: Design flow rate (ft3/min)		2000
29	Methane generation rate constant, k (1/yr)	0.04	0.04
30	[0.04 for typical climates, 0.02 for arid climates, 0.1 for bioreactors or wet landfills]	0.04	0.04
31	Potential methane generation capacity of waste, Lo (ft3/ton)	3,204	3,204
32	Methane content of landfill gas (%)	50%	53.1%
33	Average depth of landfill waste (ft)	65	65
34	Landfill gas collection efficiency (%)	85%	85%
35	Utilization of CHP hot water/steam potential (%)	100%	100%
36	Expected LFG energy project lifetime (years)	15	15
4	INP-OUT WASTE REGIONAL PRICING REPORT RPT-CASHFLOW CURVE AVOIDED CO2- ELEC ENV FLOW C&F DIR	BLR HBTU CNG LCH	TUR ENG MTUR SENG

Example Outputs: RNG Project – Large Scale High-Btu with Known Flow Rate (2,000 scfm)

Type of Output		Output Data
Economic Analysis:		
Design project size (ft3/min LFG)		2,000
Generating capacity for projects generating electricity (kW)	
Average project size for projects NOT generating electricity:	(million ft ³ /yr LFG)	977.62
[based on actual LFG use]	(ft ³ /min LFG)	1,860.00
Average project size for projects generating electricity (kWh/yr)		
Average project size for CHP projects producing hot water/steam (million Btu/yr)		
Total installed capital cost for year of construction (\$)		\$11,079,741
Annual costs for initial year of operation (\$)		\$1,048,097
Internal rate of return (%)		-5%
Net present value at year of construction (\$)		(\$6,078,541)
Years to Breakeven*		None

Example Inputs: RNG Project – Large Scale High-Btu with Known Flow Rate (2,000 scfm) & Fuel Credits

Adjusting the Optional Inputs for Fuel Credits:

51		Greenhouse gas reduction credit (\$/MTCO ₂ E)	\$0.000	\$0.000
52		Are direct methane reductions included in GHG credit?	Y	Υ
53	Direct credite:	Renewable electricity credit (\$/kWh)	\$0.000	\$0.000
54	<u>Direct credits:</u>	Renewable fuel credit (\$/gal)	\$0.000	\$0.000
55		Avoided leachate disposal (\$/gal) **	\$0.000	\$0.000
56		Construction grant (\$)	\$0	\$0
57	Royalty payment for landfill gas utilization (\$/million Btu)		\$0.000	\$0.000
58		Landfill gas production (\$/million Btu)	\$2.25	\$2.25
59		Electricity generation (\$/kWh). Default is national avg. Go to Regional Pricing worksheet for more specific pricing.	\$0.060	\$0.060
60	Initial year product price: **	CHP hot water/steam production (\$/million Btu)	\$4.00	\$4.00
31		High Btu gas production (\$/million Btu)	\$2.25	\$10.00
62		CNG production (\$/gasoline gallon equivalent (GGE))	\$2.00	\$2.00

Ex. Outputs: RNG Project – Large Scale High-Btu with Known Flow Rate (2,000 scfm) & Fuel Credits

Type of Output		Output Data
Economic Analysis:		
Design project size (ft3/min LFG)		2,000
Generating capacity for projects generating electricity (k)	<u>//)</u>	
Average project size for projects NOT generating	(Million π /Vr LFG)	
electricity: [based on actual LFG use]	(ft ³ /min LFG)	1,860.00
Average project size for projects generating electricity (kWh/yr)		
Average project size for CHP projects producing hot water/steam (million Btu/yr)		
Total installed capital cost for year of construction (\$)		\$11,079,741
Annual costs for initial year of operation (\$)		\$1,048,097
Internal rate of return (%)		60%
Net present value at year of construction (\$)		\$25,297,003
Years to Breakeven*		3

Example Outputs: Onsite CNG Fueling Station with Known Flow Rate (500 scfm) and \$1.50 RIN

	E	F	G	Н
5		Type of Output		Output Data
6		Economic Analysis:		
7		Design project size (ft3/min LFG)		500
8		Generating capacity for projects generating electricity (kW	<u>'</u>	
9		Average project size for projects NOT generating electricity:	(million ft ³ /yr LFG)	244.40
10		[based on actual LFG use]	(ft ³ /min LFG)	465.00
11		Average project size for projects generating electricity (kWh/yr)		
12		Average project size for CHP projects producing hot water/steam (million Btu/yr)		
13		Total installed capital cost for year of construction (\$)		\$4,633,477
14		Annual costs for initial year of operation (\$)		\$839,586
15	Internal rate of return (%)		53%	
16		Net present value at year of construction (\$)		\$5,365,336
17	Years to Breakeven*		3	

Model Inputs: Have LFGcost-Web Estimate LFG Collection Flow Rates

Required Inputs

- Landfill open and closure years and area of wellfield
- Waste acceptance rates (historical or calculated average values)
- Project Start Year and Project Type
- Include collection and flaring costs? (Yes or No)
- o Pipeline distances for Direct-use, High-Btu, and CHP projects
- Project-specific inputs for Leachate Evaporator and Boiler Retrofit

Optional Inputs

- Landfill modeling parameters
- Project lifetime, operating schedule
- Financial parameters (i.e., interest rate, incentives, commodity prices)

LFGcost-Web: Other Model Outputs

Environmental Impacts of Project

- Amount of methane collected and destroyed
- CO₂ equivalents of methane utilized in project
- Amount of CO₂ from avoided energy generation

Printable Outputs

- Inputs / Outputs (INP-OUT)
- Summary report (REPORT)
- Economic benefits (ECON-BEN SUMMARY)
- Detailed annual cash flow analysis (RPT-CASHFLOW)

Want to Learn More?

Tools are available for download at:

epa.gov/lmop/list-publications-tools-and-resources

CONTACT LMOP

- Suggestions for new LMOP tools?
- Have data updates for large scale RNG project costs in LFGcost-Web?
- Need assistance running LFGcost-Web or other LMOP tools?

