

Development of a RapidTox Dashboard to Inform Risk Assessment

Jason C. Lambert, PhD, DABT U.S. EPA, National Center for Computational Toxicology

Computational Toxicology Communities of Practice May 23, 2019

€PA

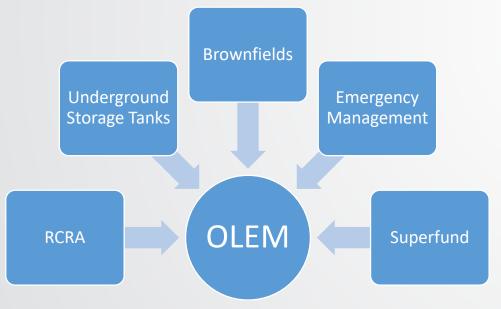
The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency

The author has no conflicts of interest to disclose

Outline of this presentation

- Emergency Response and the U.S. EPA: brief overview
- Traditional Risk Assessment
 - Okay, Houston, we've had a problem here (Swigert, April 1970)
- CompTox Chemicals Dashboard
- RapidTox Prototype Workflow for Emergency Response

Background


Decades of chemical production and use in product formulations

- Pesticides, linear/(poly)cylic organics, complex materials (nano)
- Consumer products, cosmetics, pharmaceuticals, textiles, etc. (e.g., CPSC, FDA)
- Occurrence in soil, water, air (rarely singular chemicals; mixtures)
- TSCA, FIFRA, CERCLA, SARA, RCRA
- Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and Superfund Amendments and Reauthorization Act (1986)
 - Superfund is an EPA program to clean up the most polluted sites in America
 - Sites are evaluated for risks to human health or the environment
 - Currently > 1300 NPL sites

Emergency Response and the U.S. EPA

 Superfund is part of EPA's Office of Land and Emergency Management (OLEM) which responds to a wide variety of environmental risks

EPA

- Emergency response: Quick, reliable data to protect human health and the environment
- Superfund Cleanups: Robust toxicity data that can hold up in court
- RCRA: High quality hazard and physical properties data sufficient for regulations

• All programs:

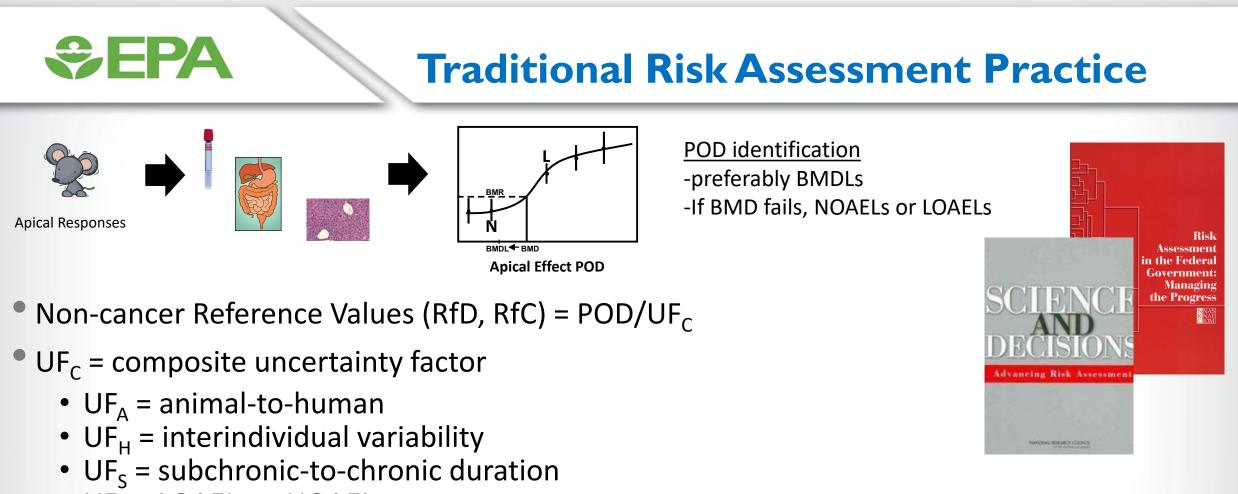
- UVCBs
- Mixtures
- Exposure
- Fate and Transport, PhysChem

Emergency Response and the U.S. EPA

1000's of emergencies annually

EPA

- Oil spills; release of chemical, biological, radiological, or nuclear contamination into the environment
- Scale of emergencies is diverse from localized/limited releases up to large-scale/national events
- Information needs for a given emergency scenario depends on the scope of the problem and the threat(s) involved (e.g., imminent threat to human health; intermediate phase(s); longer-term clean-up)


LEASE DO NOT DISTRIBUTE FURTHER

Emergency Response and the U.S. EPA

- Key reliance on existent health or toxicity values for exposure scenarios of concern (i.e., acute or short-term)
- Identification/use of values varies by response purview or condition (e.g., Regional Screening Level tables; AEGLs, CDC/NIOSH occupational values, NHSRC PALs, State-level values, etc.)
- No time to "come up" with health values for an emergency

EPA

- Values available but for longer exposure duration(s)
- No values at all; broad gradation of available toxicity data
- Option: wait for an assessment??? Can't wait—livelihood depends on rapid decisions
- Option: integrate existent information and new approach methodologies-based data to inform decision-making?
- What is the fit-for-purpose? Priority ranking, screening, and/or assessment

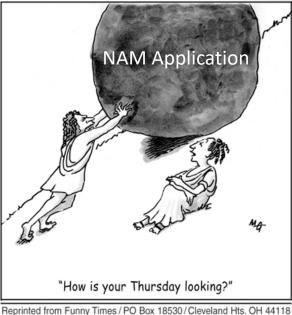
- UF_L = LOAEL-to-NOAEL
- $UF_{D} = database$

 Cancer Values (OSF, IUR) = increased cancer risk from a lifetime oral or inhalation exposure to a chemical. Usually expressed in units of proportion (of a population) affected per mg/kgday (oral) or μg/m³ (inhalation)

Okay Houston, we've "got" a problem

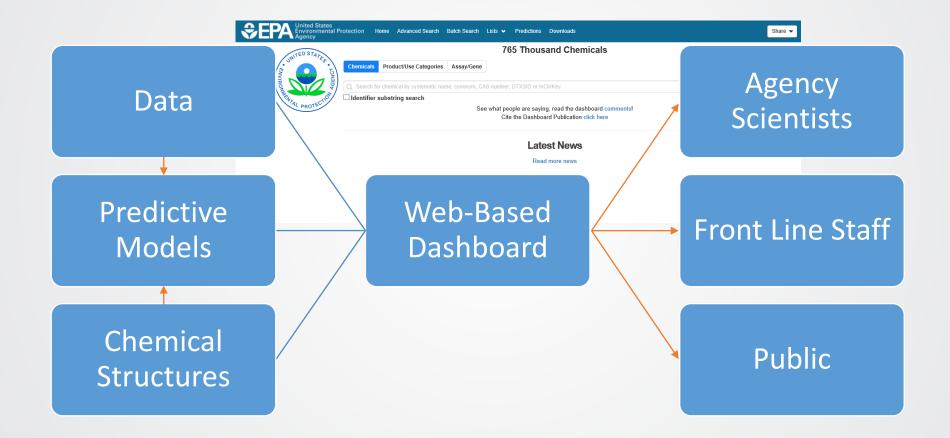
- Assessment timeline: Integrated Risk Information System (years), Provisional Peer-Reviewed Toxicity Values (months up to 2 years), ATSDR MRLs (years)
- Depending on who you talk to, there are anywhere from 20K to >80K chemicals currently in the environment/commerce
- Collectively, across our global community of toxicology and risk assessment practice, only a small fraction of those chemicals have been assessed for toxicity
- *For problem formulations associated with protection of human health, in particular emergency response, higher throughput of qualitative and quantitative information for contaminants is paramount!

- Over the past decade, several reports, books, resource documents, etc. have been published regarding the use of New Approach Methods (NAM) across the human health risk assessment paradigm (i.e., shifting the paradigm)
- Numerous labs, centers, workgroups, and initiatives across federal, private, and academic institutions have been formed
 DISTRIED TANA AND COMPUTATIONAL TOXICOLOGY PLATFORMS



NAM/CompTox Toolbox to Date

- **Data-mining**: comprehensive collection and collation of extant hazard and exposure data –(Martin et al. 2009. Environ Health Perspect 117: 392-399)
- **Chemoinformatics**: structure-activity/read-across; QSAR –(Wang et al. 2012. Regul Toxicol Pharmacol 63: 10-19; Helman et al. 2019. ALTEX Feb 4, epub ahead of print: <u>https://www.altex.org/index.php/altex/article/view/1202</u>)
- **High-Throughput (HT) Exposure modeling**: ExpoCast –(Egeghy et al. 2016. Environ Health Perspect. 124(6):697-702)
- **High-Throughput Toxicokinetics**: *in vitro-to-in vivo* (IVIVE) modeled dosimetry (Wambaugh et al. 2015. Toxicol Sci 147: 55-67)
- **Bioactivity** (in vitro): cell-free and/or cell-based HT assay data –(Judson et al. 2011. Chem Res Toxicol 24: 451-462)


 Adverse Outcome Pathway (AOP): expert-driven identification of signal transduction pathways along the exposure to outcome continuum. –(Edwards et al. 2015. J Pharmacol Exp Ther. epub ahead of print:

http://jpet.aspetjournals.org/content/early/2015/11/04/jpet.115-228239-long)THER

Reprinted from Funny Times / PO Box 18530 / Cleveland Hts. OH 44118 phone: 216.371.8600 / email: ft@funnytimes.com

EPA's CompTox Chemicals Dashboard

For more detailed info see: A.J. Williams et al. (2017). The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. *J. Cheminform* 9(1):61 FURTHER

€PA

SEPA

CompTox Chemicals Dashboard Overview

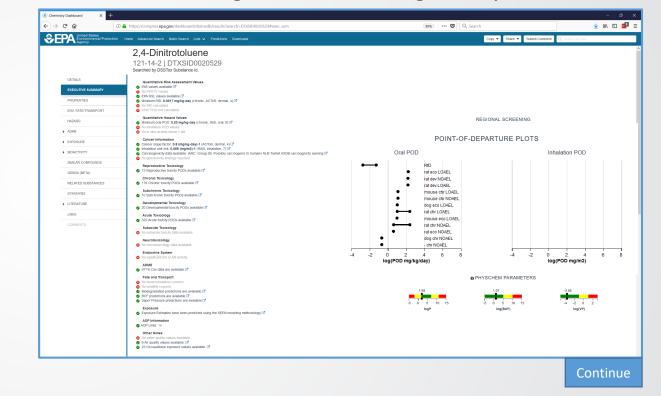
Data Availability

- Chemical Properties
- Environmental Fate and Transport
- Hazard (in vivo, in vitro, in silico)
- ADME
- Exposure
- Bioactivity
- Similar Compounds
- Literature

Data Interpretability/Application

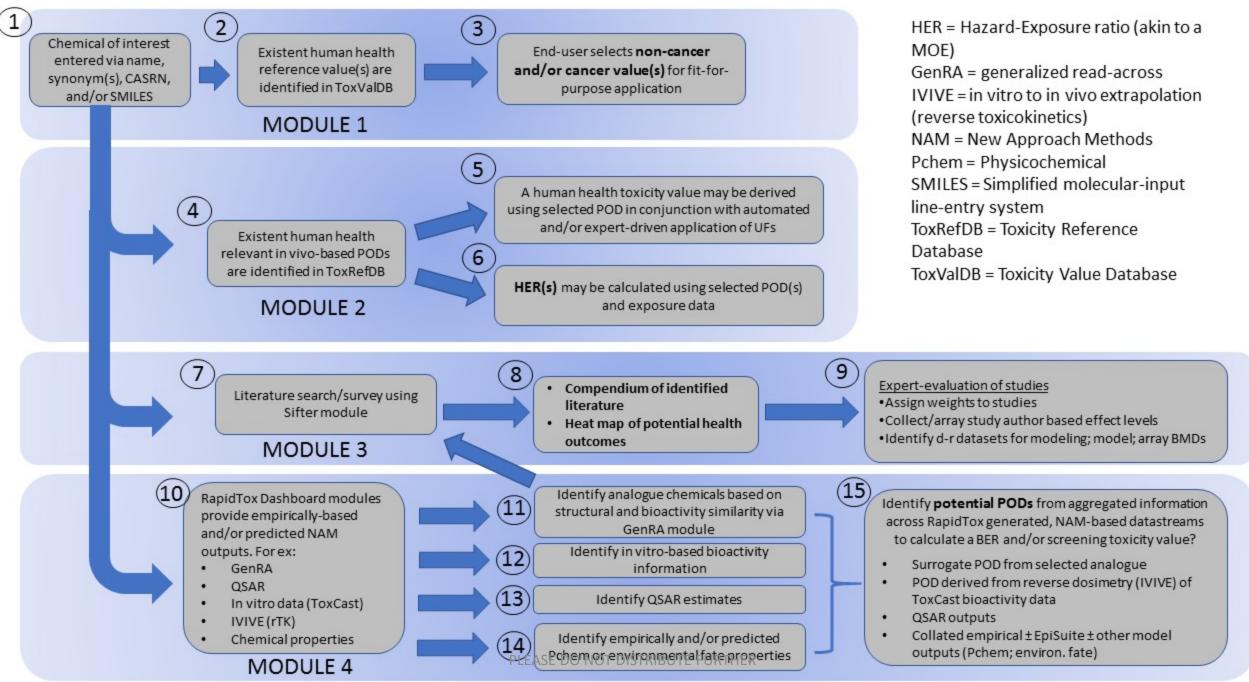
- Key components:
 - Collects known health/tox/exposure values into one place
 - Readily surface hazard/D-R information (e.g., PODs)
 - Facilitates identification of analogue(s)
 - Can inform uncertainty(ies)
 - Fill information gaps
 - Linkable data streams

Current Public Dashboard: https://comptox.epa.gov/dashboard


SEPA

What is RapidTox? An Analogy...

Workflow to Calculate Your Taxes


Pad 🕈	тоб РМ TurboTax. 🔮 Deluxe	1 % 98% ■ \$
Close My Return	Here's an Update on Where Thi	ngs Stand So Far
\$7,097 You Owe Introduction	S Your Federal Tax Due (In Progress)	\$7,097
Personal Info Federal Taxes	Why did my refund change?	Is this number final? No! This amount is a work in
Wages & Income Deductions & Credits Other Tax Situations	 What you told us about yourself (if you're married, have kids, etc.). 	progress. After you enter all your income, we'll check for tax breaks that can put a dent in your tax bill - and hopefully turn your tax due into a refund.
Federal Review	 The tax benefits we got you so far. The numbers you entered from your W-2. 	
State Taxes	- Learn More About How We Calculated This	
▼ File	Back	Continue

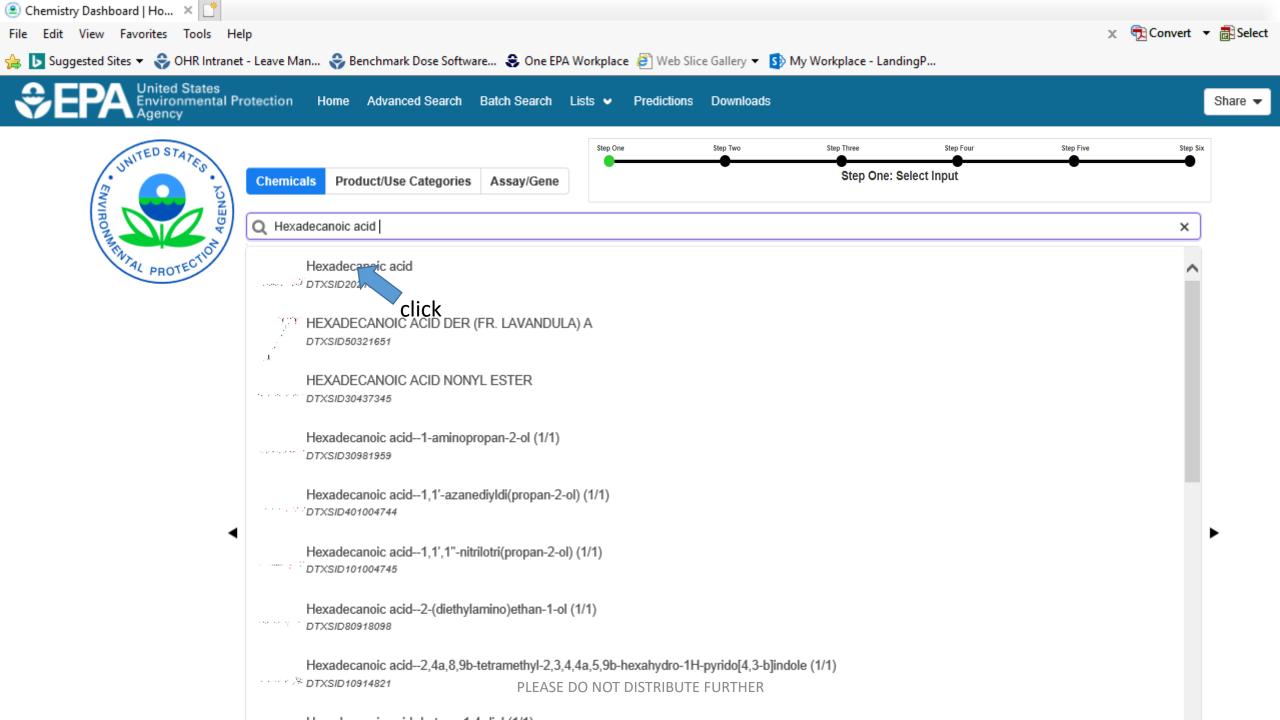
Workflows to Integrate Data for Regulatory Decisions

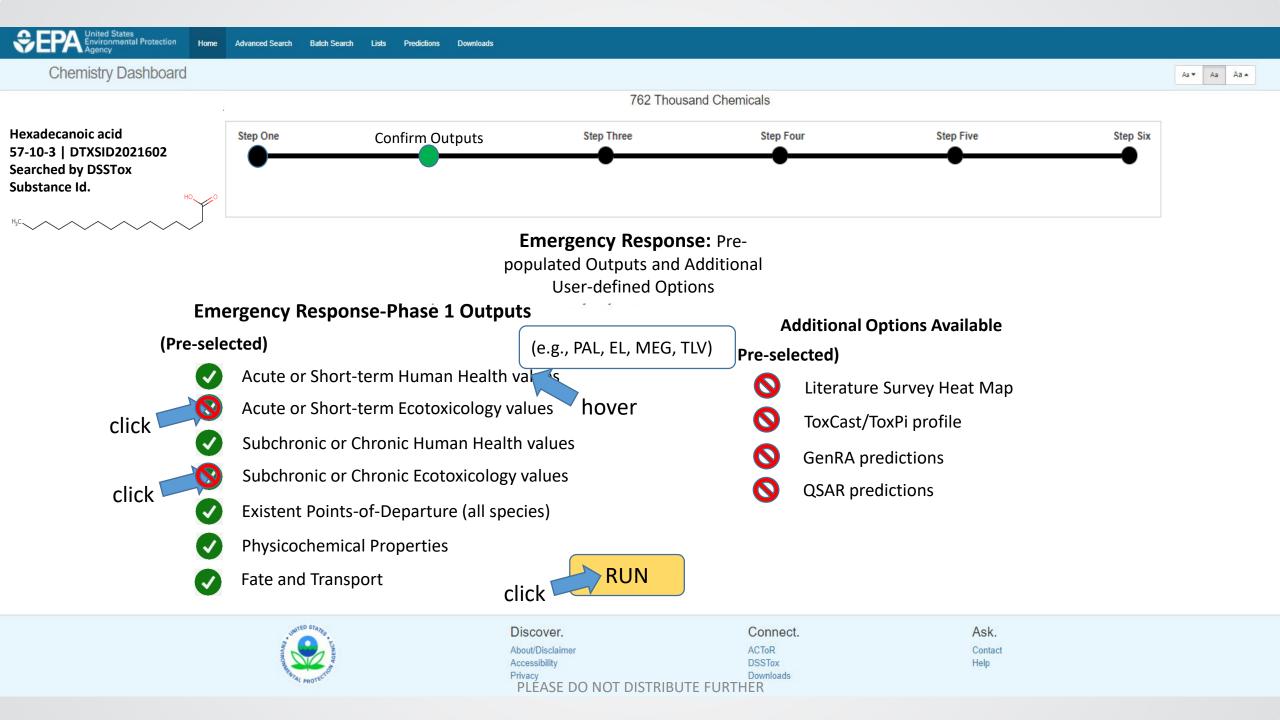
 RapidTox is a suite of workflows that facilitate the application of data surfaced in the CompTox dashboard in diverse assessment decision context

DRAFT-DO NOT CITE OR QUOTE

- Multiple rail cars transporting semi-volatile organic materials involved in accident near major source waterway for local utility
- Seven compromised cars spill over 200,000 gallons of Hexadecanoic acid (CASRN 57-10-3), also known as palmitic acid, down an embankment into the waterway
- No RSL values; no IRIS, PPRTV, CalEPA, ATSDR or other known human health assessment/toxicity value
- Municipal and State governments issue call for support in dealing with the emergency; water utility intake shut down; information on hexadecanoic acid needed within 12 hrs

Chemistry Dashboard





Discover. About/Disclaimer Accessibility Privacy Connect. ACToR DSSTox Downloads Ask. Contact Help

PLEASE DO NOT DISTRIBUTE FURTHER



Chemistry Dashboard

Aa▼ Aa Aa▲

Hexadecanoi 57-10-3		Step One	ToxVal type	Value	Units	Exposure route	Duration Class	Species	Source
DTXSID20216 Searched by Substance Id	DSSTox	•	Air quality standard (background)	10	mg/m ³	Inhalation	Chronic	-	DE AGOF Dust
Hc	~~~~```		Air quality standard (normal)	650	mg/m ³	Inhalation	Chronic	-	DE AGOF Dust
	oxicity Values	Evalua	Air quality standard (attention value)	1500	mg/m ³	Inhalation	Chronic	-	DE AGOF Dust
	Acute Oral Subchronic Ora	Revi Review	Air quality standard (background)	10	mg/m ³	Inhalation	Chronic	-	DE AGOF SVOCs
0 •	Chronic Oral Acute Inhalatio	Review	Air quality standard (normal)	650	mg/m ³	Inhalation	Chronic	-	DE AGOF SVOCs
	Subchronic Inhalat	alation Review	(attention value)	1500	mg/m ³	Inhalation	Chronic	-	DE AGOF SVOCs
	ate Pre-Rep		click	Fate an	d Transport	Review		GenRA	
		Click sta	A AGENCI - ST	Discover. About/Disclai Accessibility Privacy		Connec ACToR DSSTox Downloads		C	sk. ontact elp
				PLEASE	DO NOT DIS	TRIBUTE FURTHER			

Pre-Report Review (Emergency Response)

Acute or Short-term human health values (6

- Subchronic or Chronic Human Health values (7)
- Existent Points-of-Departure (in vivo all species)
- Physicochemical Properties
- Fate and Transport

Acute or Short-term Human Health Values

Hexadecanoic acid 57-10-3 | DTXSID2021602 Searched by DSSTox Substance Id.

Dossier: End-user session R8.11.20.18

Oral Acute Oral Value(s): Rat LD50 = 10,000 mg/kg

Inhalation

clid

Acute Inhalation Value(s): Protective Action Criteria-1 = 2 mg/m³ Protective Action Criteria-2 = 12 mg/m³

Existent Point-of-departure:

Fate and Transport:

Physicochemical Properties: PLEASE DO NOT DISTRIBUTE FURTHER

Air quality

0.15 mg/m³

Inhalation Acute (30

(

-

Canada

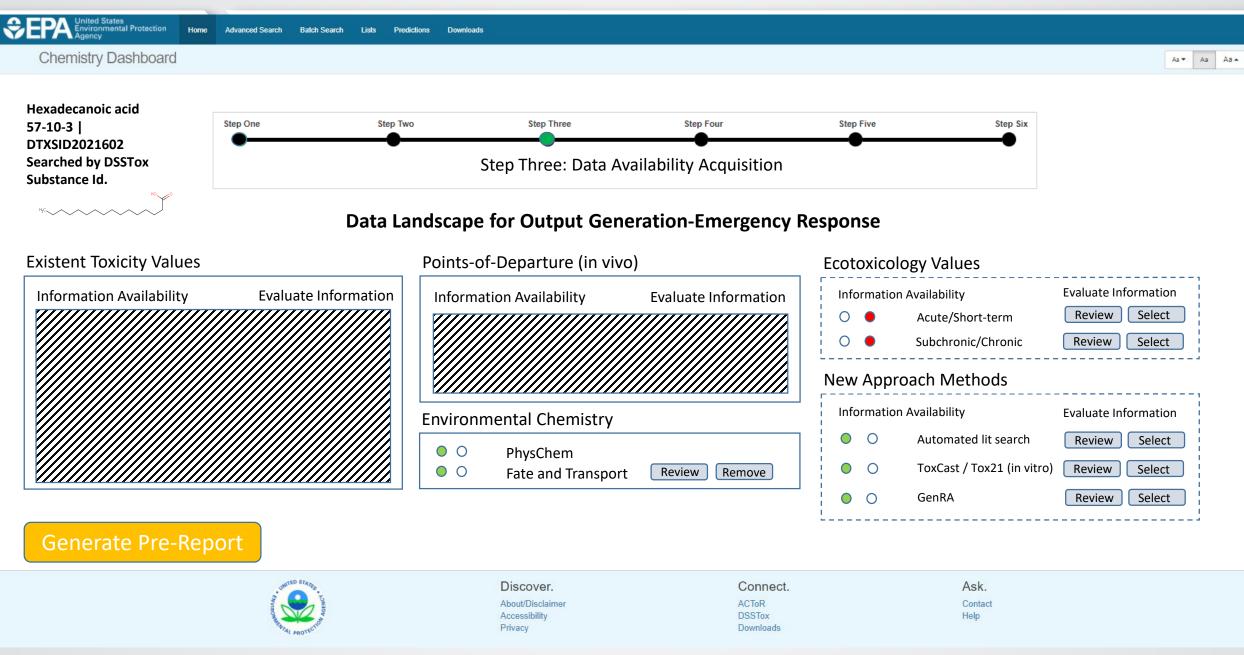
Short-Term

Appendix A – Human Health Values

Oral-Acute/Short-term

	īoxVal :ype	Value	Units	Exposure route	Duration Class	Species	Source
L	.D50	10000	mg/kg	Oral	Acute	Rat	Acute Tox

Oral-Subchronic


• There are no existent oral subchronic human health values for hexadecanoic acid (57-10-3)

Oral-Chronic

• There are no existent oral chronic human health values for hexadecanoic acid (57-10-3)

Inhalation-Acute/Short-term

ToxVal type	Value	Units	Exposure route	Duration Class	Species	Source		
PAC-1	2	mg/m³	Inhalation	Acute -		DOE		
PAC-2	12	mg/m³	Inhalation	Acute	-	DOE		
PAC-3	12	mg/m³	Inhalation	Acute	-	DOE		
Air quality standard	0.15	mg/m ³	Inhalation	Acute (30 mins)	-	Canada Ontario JSL		
Air quality standard	0.15	mg/m ³	Inhalation	Acute (24 hrs)	-	Canada Ontario JSL		
Inhalation-Subchronic								
ToxVal type	Value	Units	Exposure route	Duration Class	Species	Source		
MEG	50	mg/m ³	Inhalation	Subchronic	-	DOD Air-MEGs		

SEPA United States Environmental Protection

Chemistry Dashboard

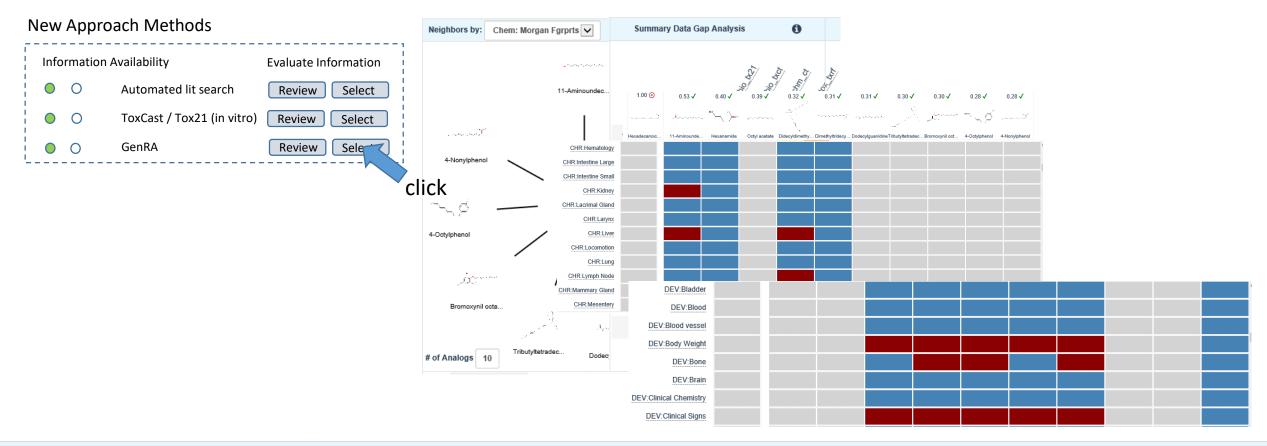
Automated Literature search

New Approach Methods

	Info	ormation Availability O Automated lit search O ToxCast / Tox21 (in vitr O GenRA		Evaluate Information
ł	•	0	Automated lit search	Review Sele
	•	0	ToxCast / Tox21 (in vitro)	Review Select Click
	•	0	GenRA	Review Select
12				

Pre-loaded boolean strings but can be ٠ customized

Abstract	Sifter	Query Publ	Vied			Query run: hexadecanoic acid OR 57-10-3 AND toxicity
v1.1	Your sifter te	rms and frequ	ency counts			Query run. nexuaeconoic dela on 37-10-3 AND toxicity
	acute	toxicity	human	Total	Pub	
PMID 🖵	•	•	-	•	Yr 🖵	Title
30362416		1		1	2018	Lipids as activators of innate immunity in peptide vaccine deliver
<u>30333041</u>	0	6	1	7	2018	Rosiglitazone ameliorates palmitic acid-induced cytotoxicity in TM
<u>30268793</u>	1	1	3	5	2018	Toxicological evaluation of 2-dodecylcyclobutanone, a unique rad
30267964					2018	Differential surface contact killing of pristine and low EPS Pseudo
<u>30255327</u>		3		3	2018	GC-MS metabolomics reveals disturbed metabolic pathways in pr
30218681		5	1	6	2018	Graphene oxide nano-bio interaction induces inhibition of sperma
30208301		4		4	2018	Trigonelline prevents high cholesterol and high fat diet induced h
30202233	1	2		3	2018	Anticandidal activity of the extract and compounds isolated from
<u>30201523</u>		3		3	2018	Development of an in vitro model to study hepatitis C virus effect
30194633		1	2	3	2018	Palmitic acid induces human osteoblast-like Saos-2 cell apoptosi
<u>30130541</u>		1		1	2018	The traditional uses, phytochemistry, and pharmacology of Atract
30103897		5	3	8	2018	HAMSCs/HBMSCs coculture system ameliorates osteogenesis an
29940226		2		2	2018	Design and in vivo evaluation of entecavir-3-palmitate microcryst
29925963		5		5	2018	Repellency, toxicity, and anti-oviposition of essential oil of Garde
29890411		2	1	3	2018	Analysis of proautophagic activities of Citrus flavonoids in liver c
<u>29853377</u>		3	1	4	2018	Thermal degradation of agar: Mechanism and toxicity of products
<u>29730133</u>	2	2		4	2018	Cytotoxic effect of Kalanchoe flammea and induction of intrinsic
<u>29709653</u>		3	1	4	2018	Oleic acid protects saturated fatty acid mediated lipotoxicity in h
<u>29705614</u>		3		3	2018	Proteomic effects of repeated-dose oral exposure to 2-monochlor
<u>29704984</u>		1		1	2018	Antibacterial activity of extracted bioactive molecules of Schinus
<u>29673862</u>		1		1	2018	Chemical profiling of edible seaweed (Ochrophyta) extracts and a
<u>29655752</u>	1	4	1	6	2018	Systematic evaluation of phenolic compounds and protective cap
29606629		1	1	2	2018	Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids.
ver.			Connect			Ask.
sclaimer ility			ACToR DSSTox Downloads			Contact Help

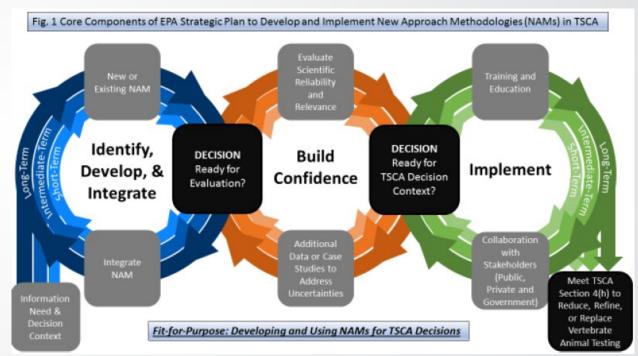


Separate United States Environmental Protection Home Advanced Search Batch Search Lists Predictions Downloa	ıds													
Chemistry Dashboard			6 TOX	CAST DATA					_	6 AS	SSAY I	DETAIL	S	Aa▼ Aa Aa▲
Bioactivity New Approach Methods Information Availability Evaluate Information Automated lit search Review Select Automated lit search Review Select Select GenRA Review Select	32	Assay Endpoint Name: AcEA_T47D_80hr_Positive Assay Description: 2 Gene Symbol: ESR1 Organism: human Tissue: breast Assay Format Type: cell-based Biological Process Target: cell proliferation Detection Technology: RT-CES Analysis Direction: positive Intended Target Family: nuclear receptor Description: Data from the assay compensed ACEA_T47D_90hr worc									eceptor tis assay 🗸			
''click	\$	Modal	Description	SeqaPASS	Gene Name≑	AOP	Event	<u>Hit Call</u> ♦	Тор≑	Scaled Top ≑		logAC50		
	T47D_80hr_Negative		-	-	-	-	-	ACTIVE	54.9	2.55	66.5	1.82	cell cycle	
	T47D_80hr_Positive		2	NP_000116.2 📥	ESR1	200	1181	ACTIVE	29.1	1.19	7.68	0.885	nuclear receptor	
	ERE_CIS_up		75	NP_000116.2 📥	ESR1	200	1181	ACTIVE	0.777	1.58	37.5	1.57	nuclear receptor	
	PPARa_TRANS_up		132	NP_005027.2 📥	PPARA	58	468	ACTIVE	1.80	1.52	20.3	1.31	nuclear receptor	
	RORg_TRANS_up		-	NP_005051.2 📥	RORC	-	-	ACTIVE	1.40	1.18	0.602	-0.220	nuclear receptor	
	XR_FXRSRC1_0480		753	NP_001193922.1	NR1H4	61	479	ACTIVE	52.1	2.09	90.2	1.96	nuclear receptor	
Sunter State	XR_FXRSRC1_1440		754	NP_001193922.1	NR1H4	61	479	ACTIVE	93.4	2.29	99.2	2.00	nuclear receptor	
VIED MUT TO PROTECTO	ERa_LUC_BG1_Agonist		788	NP_000116.2 📥	ESR1	200	1181	ACTIVE	90.2	3.55	0.505	-0.297	nuclear receptor	
	PXRE_CIS_dn		-	-	-	-	-	ACTIVE	1.25	1.86	57.2	1.76	nuclear receptor	23

Chemistry Dashboard

Aa▼ Aa Aa▲

Generalized read-across



Connect. ACToR DSSTox Downloads Ask. Contact Help

EPA A Path Forward: Emergency Response and Beyond

- Early engagement with the end user community: define decision contexts from the beginning
- Iterative re-scoping of content and output structure based on end-user feedback
- Data producers, translators, and users work together
- Endgame: optimize workflow(s) and dashboard outputs

https://www.epa.gov/sites/production/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf **€PA**

Acknowledgements

• EPA Office of Research and Development:

(NCCT) Antony Williams, Amar Singh, Richard Judson, Katie Paul-Friedman, Imran Shah, Chris Grulke, Grace Patlewicz, Ann Richard, Nancy Baker, Jeff Edwards, Jeremy Dunne, Reeder Sams

(NCEA) Scott Wesselkamper, Lucina Lizarraga, Jay Zhao, Jeff Dean

- EPA Office of Land and Emergency Management: Stiven Foster, Kathleen Raffaele, Colette Hodes, Allaa Mageid, Rosalind Ramsey, Linda Gaines, April Luke (OEM)
- EPA Regional Risk Assessors: Wendy O'Brien, Kristen Keteles, Tim Frederick, Martin Gehlhaus
- Questions?
 - Jason Lambert, ORD/NCCT <u>Lambert.Jason@epa.gov</u>
 - Antony Williams, ORD/NCCT <u>Williams.Antony@epa.gov</u>