

EPA Tools and Resources Webinar: Nutrient Management in Coastal Communities

Tim Gleason

National Health and Environmental Effects Research Laboratory US EPA Office of Research and Development

May 22, 2019

Office of Research and Development

Excess nitrogen impairs estuaries and other aquatic systems

Communities struggle to implement nitrogen (N) remediation programs:

- Nitrogen-reduction efficiencies of many interventions remain uncertain
- Costs of the interventions are difficult to identify and compare
- Additional social barriers to acceptance are unrecognized
- Benefits of remediating N are not being highlighted

Coastal nitrogen pollution

- Leads to eutrophication
- Affects ecosystem service delivery & local economies
- Sources are human & natural
- 34 watersheds on Cape Cod have Total Maximum Daily Loads (TMDL) for nitrogen
 - Driven by nonpoint sources (e.g., septic systems)
 - Sewering a prohibitively expensive (\$6-8B) & lagged solution
 - Towns responsible for developing plans (w/state approval) to meet TMDLs
- Other regions face similar problems

Presentation Outline

- Septic Sensor Challenge
- Nitrogen research on Cape Cod

Septic Sensor Challenge 2016

• Goal: To incentivize the development and marketing of a low-cost N sensor for septic systems.

- Suffolk County Long Island
 - 360,000 conventional septic systems and cesspools
 - ->200,000 of these systems are in nitrogen sensitive areas & need replacement
- Current cost of monitoring in MA for permitting
 - \$300 to sample one On-Site Wastewater Treatment System (OWTS) & run lab tests
 - \$4,500 to monitor one OWTS for 4.5 years, for the 50 systems = \$155,250

Benefits of Sensor Development

State & County Regulators

- Assurance of long-term system functionality (improved evidence to recommend them)
- Reduce cost of data collection
- Minimization of human errors & time delays
- Improved standardization of methods & limits of detection

Industry

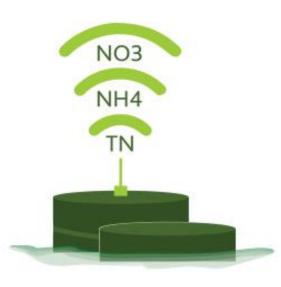
- Brand new market segment for the sensor, sensor maintenance, and data collection/analysis
- Important Innovative and Alternative (I/A) OWTS verification device, which could streamline the permitting process & thereby reduce field testing costs for manufacturers

Homeowners

- Assurance that I/A OWTS investment performs as advertised
- Facilitates routine maintenance to protect system longevity

7

Partners


8

Proposed Sensor Design Specifications

	Attribute Description	Performance Goals		
Attribute		Minimum	Almost Ideal	Ideal
Parameter	What is being measured	NO ₃ ⁻ , NH ₄ +	NO ₃ ⁻ , NH ₄ ⁺ , TOC	Total nitrogen (TN)
Installation Price	Price to the homeowner to install	\$1,500	\$1,250	\$1,000
Data Management	Ability to record and transmit data (i.e., telemetry) for real-time access by practitioners, regulators, and interested stakeholders	Record and automatically transmit data to designated server or cloud	Record and automatically transmit data to designated server or cloud	Record and automatically transmit data to designated server or cloud
Applicability & Accessibility	Applicability of sensor(s) to various innovative/alternative system designs and ease of access to OWTS for installation and maintenance	Located in-situ to provide performance information on the OWTS; must be accessible for maintenance	Located in-situ to provide performance information on the OWTS; must be accessible for maintenance	Located in-situ to provide performance information on the OWTS; must be accessible for maintenance
Frequency of Sensor System Maintenance	How often the sensor(s) need to be maintained	No more than quarterly	No more than semi-annually	No more than annually
Accuracy	Accuracy of sensor measurements to the true measurement	Within 20% of true value	Within 20% of true value	Within 20% of true value
Precision	Repeatability of sensor measurements	≤30% RSD	≤20-30% RSD	≤20% RSD
Range	Range of the detection	2-60 mg N/L	2-60 mg N/L 2-60 mg/L TOC	2-60 mg N/L
Sensor Operating Temperature Range	Temperature range in which the sensor can operate	4° C to 35° C	4° C to 35° C	4° C to 35° C
Deployment	Period of deployment	Continuous	Continuous	Continuous
System Lifetime	Expected life of sensor	5 years	5 to 10 years	10 years

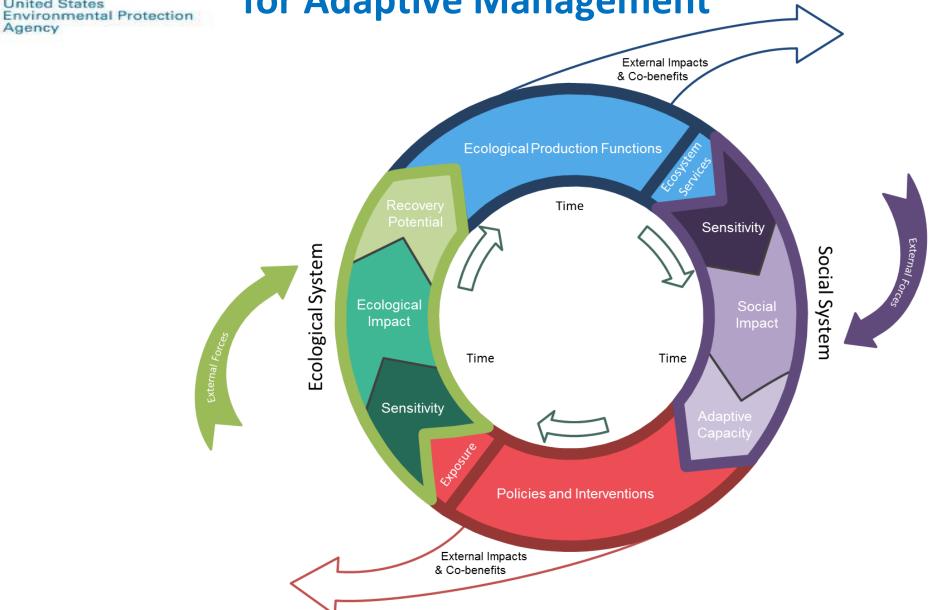
Advanced Septic System Nitrogen Sensor Challenge Phase I: 2017

- Partners: United States Geological Society (USGS) & The Nature Conservancy
- Challenge
 - Submitters encouraged to propose creative solutions toward meeting sensor design specifications
 - Written submissions
- Expert panel selected winners
 - 1st place: \$20K Dr. Baikun Li & Dr. Yu Lei, UConn
 - 2nd place: \$15K Jason Khoo, Stanford University
 - 3rd place: \$10K William Powers, PixController, Inc.
 - 4 honorable mentions: \$2,500 each
- Winners were announced at Sensor Showcase Day on 6/29/17

Phase II, 2019-21 Testing Schedule

- 1 week screening test: 8/21-28/19
- By invitation only, one month test: December 2019
- By invitation only, 6 month field verification test: May 2019 –November 2020*
- Awards: ISO ETV 14034 verification reports, 2/2021**
- Proposed The Nature Conservancy order for 200 sensors: Spring 2021

http://www.verifiglobal.com/en/



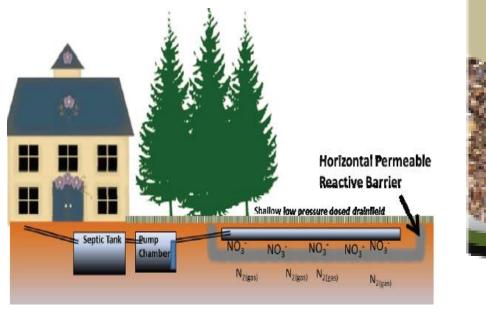
Nitrogen Research on Cape Cod

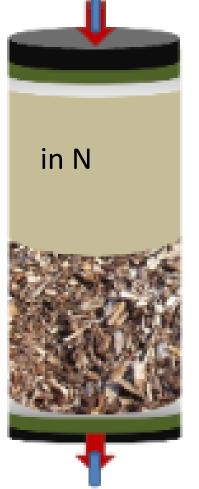
	NOLOGIES MATRI)	X EX	PLORE
Instructions: Select a cate Filter by Scale: Site Drag treatments to comp	Neighborhood Water	to the Compare box to compare technologies. (rshed Cape-Wide	Click on a technology to see details. Clear Filters to View All Compare Reset
Reduction Treatment before disposal to ground	Hydroponic Treatment Tollets: Packaging Provelopment Title 5 Septic System Title 5 Septic System Readeacement (Base Line Condition)	 Tolets: Composting Tolets: Unne Diverting Compact and Open Space Development Innovative/Alternative (VA) Cluster Treatment System - Single-stage 	Tollets: Incinerating Fertilizer Management Fransfer of Development Rights Innovative/Atternative (I/A) Chanced Systems Cluster Treatment System - Two-stage
Remediation Treatment in groundwater	 Conventional Treatment Constructed Wetlands - Surface Flow Phytoirrigation Stormwater B MP - Gravel Wetland Phytore mediation Phytore mediation 	Advanced Treatment Constructed Wetlands- Subsurface Flow Stormwater BMP Phytobuffers Stormwater. Bioretention / Stormwater. Bioretention / Sol Media Floretention / Sol Media Floretention / Permeable Reactive Barriers Method[Auger Thickness - 3 Son Permeable Reactive Barriers Method[Auger Thickness - 3 Son Permeable Reactive Barriers	Stelfie Treatment Satelfie Treatment Enhanced Constructed Wetlands- Constructed Wetlands- Constructed Wetlands- Stormwater SMP - Vegetated Storwater. Constructed Storwater. Constructed Stormwater. Constructed
22	(PRBs) - Injection Well Method Methods - Shelfish Cultivated In Estuary Bed Inlet / Culvert Widening	 (PRBs) - Injection Well Method Street) Aquaculture - Shelfish Gultwated Above Estuary Bed Coastal Habitat Restoration 	Ferig ation Wells - Cranberry Bogs Stormwater BMPs Aquaculture - Mariculture Fissing Constructed Wellands

Evaluating Social-Ecological Systems (SES) for Adaptive Management

States

Agency


Elements of SES Research ORD's Atlantic Ecology Division


- Stakeholder engagement
- Experimentation: Impact of seawater intrusion on performance of alternative septic system designs
- Evaluate living shorelines as mechanism to increase wetlands and remove nitrogen
- Evaluate barriers and opportunities to using alternative technologies for nitrogen removal
- Develop dynamic optimization of alternative technologies
- Conduct structured decision making to evaluate tradeoffs
- Support restoration of wetland systems to improve water quality and coastal resilience
- Explore recreation demand in total maximum daily load (TMDL)-regulated waters

Seawater Intrusion Experiment

- Significant reductions in Nitrogen (N)
- Seawater addition did not appear to greatly impact the N removal efficiency

Living Shorelines

Goals

- Examine the potential for improving water quality and facilitating nitrogen removal
- Stabilize the shoreline- prevent further erosion
- Encourage the regrowth of salt marsh

Co-Benefits

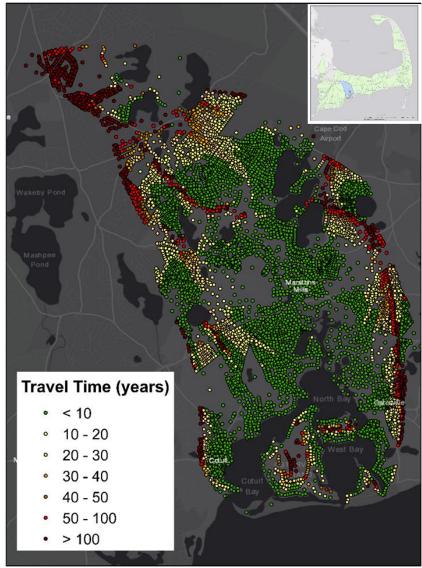
- Promote healthier salt marsh habitat for native plants and wildlife
- Assess the use of biodegradable materials for this particular restoration design

Findings

- Some evidence of N removal (Denitrifying Enzyme Activity)
- Slows marsh erosion
- Coir log restoration would be more successful with oyster castles or oyster reef balls in the foreground

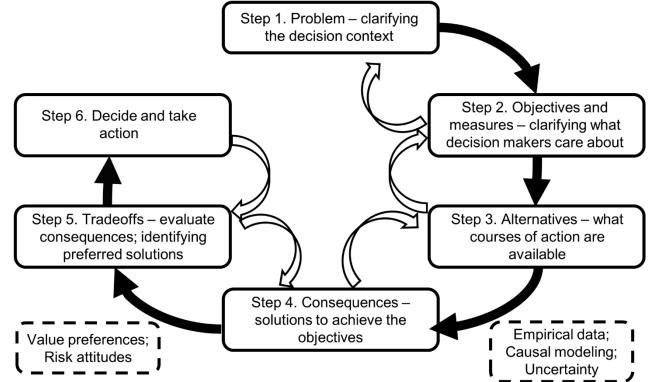


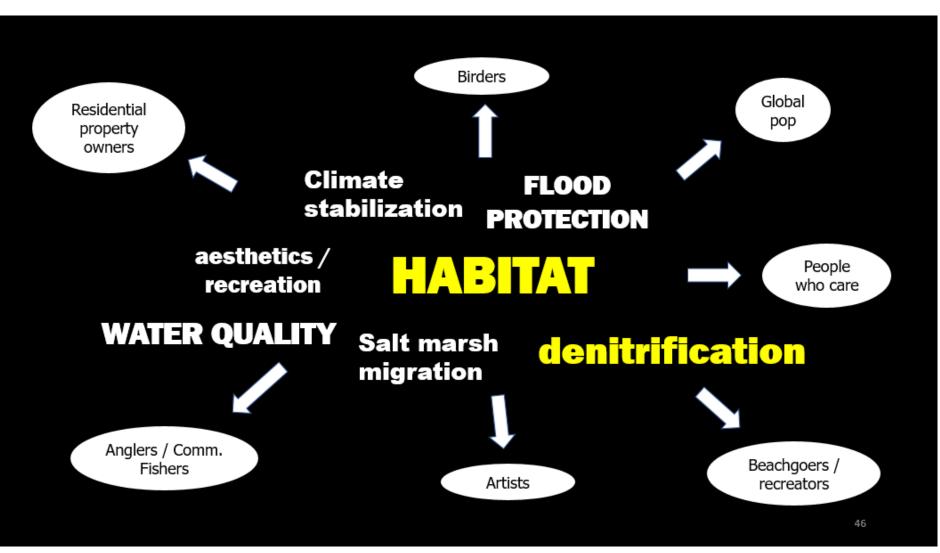
Evaluating barriers and opportunities to use alternative technologies for nitrogen removal


- Semi-structured interviews and focus groups
- Acceptance > nitrogen reduction efficiency + engineering costs
- Big (additional) concerns:
 - Monitoring
 - Permitting
 - Maintenance
 - Siting
- Uncertainty
- Pilots: More trust if on Cape
- Shellfish, permeable reactive barriers (PRBs), and alternative septic systems

Dynamic optimization of alternative technologies

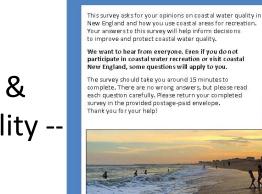
- 6K individual septic systems
- Constrained space for aquaculture, but more immediate impact on the bay
- Use multi-objective optimization to estimate dynamically efficient solutions
 - Min cost, max time meeting TMDL
- Aquaculture saves significant money and/or time when cleanup problem is considered in a dynamic framework




Projects include:

- Structured decision making to meet TMDLs
- Value of information and risk analysis to reduce uncertainty in I/A septic systems
- Adaptive management plan for I/A septic systems
- Monitoring the social benefits of ecological restoration of cranberry bogs

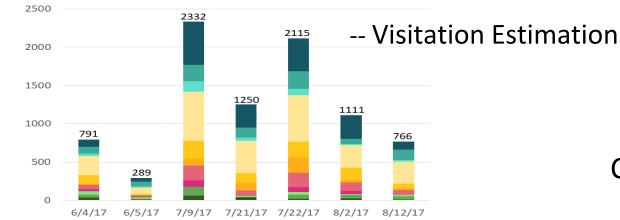
Support for restoration of wetland systems to improve water quality


Exploring recreation demand in TMDL-regulated waters

Recreation & Water Quality --Survey

Cell data --

-- Lost \$ for Beach Closures


SEPA United States Environmental Protection

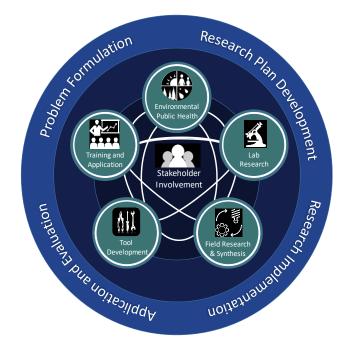

Your response is important!

New England Coastal Water Quality and Recreation Survey

All responses will be kept confidential. Response to this survey is voluntary. Send commerts on any aspect of this survey to Recreation Survey. Atlantic Ecology Division, U.S. Environmential Protection Agency, 27 Tarzwell Drive, Naragansett, Rhode Island, 02882.

How will this information be used?

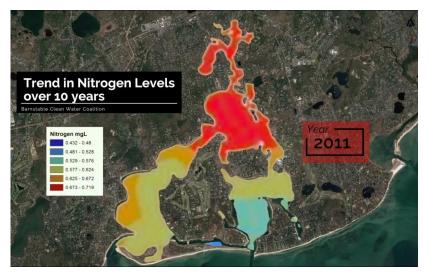
- Enable communities to:
 - Understand water resource vulnerability
 - Identify options that balance social and economic costs with environmental benefits
- Facilitate adaptive management of resources to improve resilience
- Transferability of approach to other locations
- Foundation for ORD Translational Science Pilot


Focusing Research to Develop Science-based Solutions

Translational science

- -Genesis in public health (R&D to clinical outcomes)
- -Study of how to move from bench research to real solutions
- -Necessarily interdisciplinary

Solutions-driven research

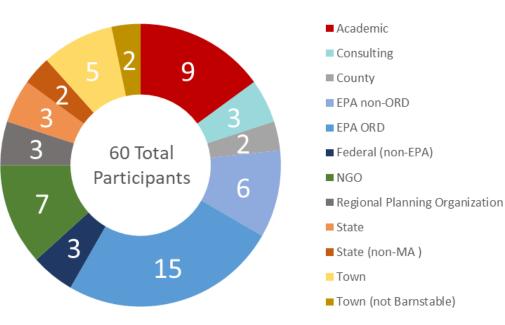

- -Emphasizes stakeholder engagement
- Integrates activities to ensure science-based solutions
- Coordination, communication & collaboration are integral components
- -Applies results of translational science to achieve better outcomes

Solution-Driven Research Translational Science Pilot: Nutrients

- Inform watershed-based solutions for non-point source nutrient loading using nontraditional interventions
- Pilot solution-driven research approaches:
 - Actively engage stakeholders throughout the research cycle
 - Target research outputs that are most important to stakeholders
 - Assist partners' goal to solve their nutrient problem
 - Develop an approach to transfer solutions
- Evaluate effectiveness
 - -Approaches to stakeholder engagement
 - -Effectiveness of problem identification and formulation
 - -Effectiveness of science-based solutions
 - Extent stakeholder needs are met

Specific Case: Three Bays Watershed

- Key stakeholder: Barnstable Clean Water Coalition
 - Promote watershed-based solutions to TMDL
 - Seek non-traditional solutions to N loading reduction
 - Committed to be a national model
 - Need cost-effective science-based solutions
- Multiple federal, state and local partners engaged



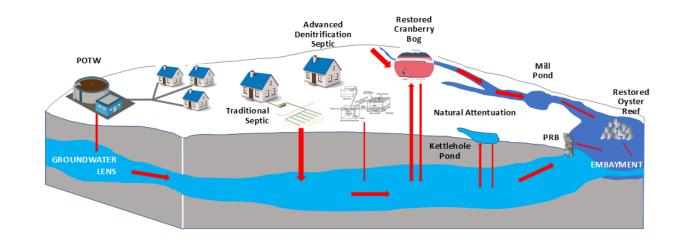
Current Loads: 46,221 kg/year Reduction Target: 46% or 21,261 kg/yr

Problem Formulation Workshop

- Problem Formulation Workshop conducted to identify key needs
 - Conversation among stakeholders & scientists
 - Ensure clear & comprehensively understanding of problem
 - Elicit questions, concerns, interests of stakeholders
 - Inform development of research to address problem
- Outcomes
 - Clarified key knowledge gaps & research needs
 - Identified potential research contributions of partners
 - Build foundation of relationships & trust
 - Identified opportunities for transferability
 - Lessons learned for Translational Science

Moving from Problem Formulation to Research Planning

- Goal: Develop a comprehensive approach to reduce nitrogen loading to meet the TMDL in Three Bays and identify best practices suitable for use across Cape Cod and throughout the country.
- Objectives
 - **Phase 1:** Pilot a suite of Interventions and evaluate their performance and utility at localized scales (effectiveness, cost and cost effectiveness (\$/Kg-N))
 - Actively engage with stakeholders and strategic partners throughout research planning
 - Integrate social science with intervention evaluation
 - Focus of near term research
 - **Phase 2:** Implement an integrated suite of interventions at a scale sufficient to achieve N-reduction goals in a sub-watershed (Marston's Mill)



Phase 1: Baseline Monitoring and Pilot Interventions

- Baseline monitoring
 - Groundwater, surface water, benthic condition
- Pilot Interventions integrate social science
 - Innovative Alternative Septic Systems
 - Permeable Reactive Barriers
 - Shellfish
 - Cranberry bog restoration
 - Mill pond restoration
 - Dredging
- Social Science

27

- Economics of water quality
- Social acceptance of interventions
- Decision support

Summary

Multifaceted approach to addressing coastal nutrient problem

Support the *development of sensors* to lower costs and improve performance data for *innovative septic systems*

Social-Ecological System research

Solutions-Driven Science: *Nutrients Translational Science Pilot*

- Continuous engagement of stakeholders throughout the research process
- Identify research outputs that are most important to stakeholders
- Assist partners' goal to solve their nutrient problems
- Evaluate how effective the translational science process is working
- Transferability

Contact Information

Tim Gleason

Supervisory Biologist

Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory

US EPA Office of Research and Development

401-782-3033

gleason.timothy@epa.gov

Disclaimer: The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the US EPA.