2019 Mystic River Watershed Science Forum

Use of Opti-Tool in the Mystic River Watershed Nutrient Management Analysis

Presented on Behalf of Mystic Watershed Eutrophication Project Team by Mark Voorhees, US EPA Region 1 April 30, 2019

The Opti-Tool Analysis described in this presentation was funded by EPA and conducted by Environmental Research Group (ERG) Project Team including Paradigm Environmental, Horsley Witten Group, and PG Environmental

Topics & Questions to be discussed today

- What is Opti-Tool?
- Why use the Opti-Tool in the Mystic River Watershed?
- Stormwater Runoff Source loadings
- Demonstration of Opti-Tool SW Management Optimization Analysis
- Take-Away Messages

What is Opti-Tool?

- A spreadsheet-based stormwater (SW) management optimization tool
 - Planning Level Analysis (EPA Region 1 SW Control Performance Curves)
 - Implementation Level Analysis (EPA SUSTAIN SW Control Simulation and Optimization Engine)
- Customized with calibrated hydrologic/WQ and SCM models suitable for New England Region
- Suitable for Region 1 MS4 (MA & NH) permit compliance for nutrients

Mystic River Watershed Eutrophication Management Analysis – Why Opti-Tool?

- Excessive nutrient loading is causing cultural eutrophication in numerous locations within the freshwater portion of the Mystic Watershed.
- SW is major source of Phos.(P) & restoration of waterquality/attainment of MA SWQS is estimated to require large reductions in SW runoff P loads (likely >50%)
- Extensive SCM retrofits are needed to control SW from watershed's existing IC; and
- What do these high levels of SCM retrofit management control look like, potentially cost (\$) & what types of SCMs would be most cost effective?

BMP Type	Land Use	Treated Impervious Area (acres)	Runoff Depth (in.)	BMP Storage Capacity (gallon)	BMP Cost (\$)
Infiltration-B	High Density Residential	31.78	0.2	172,602	\$287,952
Infiltration-B	Commercial	20.95	0.4	227,576	\$379,66
Infiltration-B	Industrial	28.17	0.3	229,493	\$382,863
Infiltration-B	Open land	17.26	0.4	187,524	\$312,84
Infiltration-B	Highway High Density Peridential	13.67	0.3	111,346	\$185,75
influence	rign Density Residential	/14.35	0.4	7,760,632	\$12,947,05
Inflitration-C	Commercial	114.01	0.3	928,962	\$1,549,786
inflitration-C	industrial	61.24	0.1	166,323	\$277,476

Total 1,074.01 (0.1 - 0.5) 10,309,898 \$17,330,

Opti-Tool: Mystic River Watershed Nutrient Management Analysis

• Opti Tool used in 2 ways in the Mystic:

- Quantify SW runoff source volumes and pollutant loadings as part of the watershed and water quality modelling to address cultural eutrophication; and
- 2. Perform demonstration SW management optimization analysis with same SW source loadings for a pilot watershed to help inform the development of cost effective and feasible management strategies

SW Source Hydrologic Response Unit (HRU) Modelling using Opti-Tool

- Characterize watershed HRUs by land use, IC, PC, and hydrologic soil group (HSG)
- Apply WQ calibrated SWMM HRU models for continuous simulations using local hourly precipitation data for 2007-2016 period
 - SWMM HRU models include calibrated buildup Washoff processes to regional data; and
 - Consistent with average annual pollutant export rates in EPA R1 MS4 permits

Hydrologic Response Unit (HRU) SW Source Area Modelling in Opti-Tool

Impervious Cover Types

- 1. Commercial/Industrial
- 2. High-Density Residential
- 3. Medium-Density Residential
- 4. Low Density Residential
- 5. Highway
- 6. Open Land
- 7. Forest
- 8. Agriculture

Pervious Cover Types

- 9. Forest Pervious
- 10. Agriculture Pervious
- 11. Developed Land Pervious Hydrologic Soil Group A
- 12. Developed Land Pervious Hydrologic Soil Group B
- 13. Developed Land Pervious Hydrologic Soil Group C
- 14. Developed Land Pervious Hydrologic Soil Group C/D
- 15. Developed Land Pervious Hydrologic Soil Group D

Demo SW Nutrient Management Analysis using Opti-Tool

- Pilot sub-watershed
 - Mystic River (5,151 acres)
 - Exclude CSO drainage (1,010 acres)
- SW Management Categories
 - SCM suitability analysis/watershed characteristics
 - Porous Pavement (impervious)
 - SCM drainage area (impervious)
- Opti-Tool
 - SCM optimization simulation
 - Phosphorus Reduction Cost-effective (CE) curve

Some Key SW Management concepts to keep in mind today

- Focus is on resolving impacts from existing impervious cover and therefore, on retrofitting impervious cover with enhanced and/or new SW control measures (SCMs)
- Opti-Tool analysis results account for runoff volumes & pollutant loads from all rain events (cumulative) instead of single design storms (e.g., 24 hour type II design storm)
- Similarly, Stormwater Control measures (SCMs) reductions are cumulative for all rain events not a single storm event.

Mystic River: SCM Siting Criteria

F

Cover Type	Ground Slope (%)	AUL / 21E	HSG	Management Category	BMP Type(s) in Opti-Tool
Pervious Area		ls a AUL / 21E Site	A/B/C/D or No Data (HSG C assumed)	Shallow filtration	Biofiltration
	<= 15	Not a AUL / 21E Site	A/B/C or No Data (HSG C assumed)	Infiltration	Infiltration Basin, Infiltration Trench
			D	Biofiltration	Biofiltration, Gravel Wetland
	> 15			Less likely for onsite BMP	
Impervious Area	<= 5		A/B/C/D or No Data (HSG C assumed)	Shallow filtration	Porous Pavement
	>5			Less likely for onsite BMP	

Mystic River: SW Management Categories

Opti-Tool: Model Setup

- Set-up two optimization scenarios
 - Optimize SCMs with fixed design capacity = 1 inch IC runoff depth
 - Optimize SCM types and sizes ranging from 0.1 to 1.0 inch IC runoff depth
- Identify stormwater TP load reduction solutions
 - 65% numeric target
 - 50% numeric target
 - 45% numeric target

Opti-Tool: Model Results Scenario 1 – SCMs with fixed design capacity = 1 inch IC runoff depth)

- Identify a solution on the CE-Curve for stormwater load reduction target
- Target solution 1
 - Annual average TP load reduction: 65%
 - Million \$77.91
- Target solution 2
 - Annual average TP load reduction: 50%
 - Million \$39.37 (49% less cost)

Cost (Million \$)

- Target solution 3
 - Annual average TP load reduction: 45%
 - Million \$34.43 (56% less cost)

[%] TP Reduction Annual Average Load

Opti-Tool: Model Results Scenario 2 – SCM design capacities allowed to vary 0.1 to 1 inch IC runoff depth

- Identify a solution on the CE-Curve for stormwater load reduction target
- Target solution 1
 - Annual average TP load reduction 65%
 - Million \$76.45
- Target solution 2
 - Annual average TP load reduction 50%

ost (Million \$)

- Million \$17.33 (77% less cost)
- Target solution 3
 - Annual average TP load reduction 45%
 - Million \$12.62 (83% less cost)

[%] TP Reduction Annual Average Load

Opti-Tool: Scenario Comparison

Scenario ID	Scenario Description	TP Load Reduction Target (%)	Impervious Area Treated (acre)	Runoff Depth (in.)	BMP Storage Capacity (Million gallon)	BMP Cost (Million \$)	
Scenario 1	BMP size (1 in.) and optimize the spatial locations	65%	1,329	1	36.09	\$77.91 -	1
		50%	869	1	23.60	\$39.37 -	Difference: Million
		45%	760	1	20.64	\$34.43	\$1.5 (2%) Difference: Million
Scenario 2	Optimize BMP size (0.1 in. increment and max size 1 in.)	65%	1,353	(0.4 - 1.0)	34.52	\$76.45 -	\$22 (56%) Difference: Million
		50%	1,074	(0.1 - 0.5)	10.31	\$17.33	\$22 (63%)
	and the spatial locations	45%	1,041	(0.1 - 0.3)	7.48	\$12.62	

Take-Away Messages from Mystic Opti-Tool Use

- Provides seamless translation of credible SW source load estimates and reductions into defining watershed SW management needs, strategies and opportunities;
- The CE-curve provides optimal solutions for a range of load reduction targets, so it can also be used to pick solutions for the intermediate milestones that show progress towards meeting the final load reduction target;
 - SW management costs vary widely with optimized low-cost solutions being substantially lower than other alternatives achieving the same reduction targets; and
 - 50%, \$17.33 Highlights the importance of developing wise SW management strategies to use most efficient SCMs to treat IC runoff wherever and whenever opportunities arise

% TP Reduction Annual Average Load 65%. \$76.45

70%

Questions ?

Thank you

Mark Voorhees US EPA – (OEP06-4) 617.918.1537

voorhees.mark@epa.gov

Extra slides follow

Opti-Tool Planning and Implementation Options

Develop SW Management Categories

• GIS SCM suitability analysis:

- Impervious cover;
- Soils data: HSG & Depth to bedrock or groundwater;
- Surface slope; and
- Hazardous waste sites
- Select best SCM for each SW management category
 - Surface infiltration;
 - infiltration trench;
 - Porous pavement;
 - Biofiltration; and
 - Gravel wetland

Surface slope

Opti-Tool: Model Inputs

• Boundary Conditions

Ę

- Sub-watershed land use area distribution (existing condition)
- SCM drainage land use area distribution (treated impervious areas)
- Unit-area HRU hourly runoff timeseries (2007 2016)
- SCM Specifications
 - SCM footprints (range for optimization)
 - SCM parameters (default in Opti-Tool)
- Optimization Criteria
 - Objective Function Minimize cost
 - Evaluation Factor Average annual TP load reduction

Mystic River: Opti-Tool Stormwater Management Categories

- Total SCMs 18
- By Land Use Type
 - Commercial (4)
 - Industrial (3)
 - High Density Residential (4)
 - Highway (3)
 - Open Land (4)
- By SCM Type
 - Infiltration B (5)
 - Infiltration C (5)
 - Biofiltration (4)
 - Porous Pavement (4)

Opti-Tool: Scenario 2 (Target Solution 1 = 65% P Load Reduction)

BMPID	ВМР Туре	Land Use	Treated Impervious Area (acres)	Runoff Depth (in.)	BMP Storage Capacity (gallon)	BMP Cost (\$)
BMP1	Infiltration-B	High Density Residential	31.78	0.6	517,806	\$863,855
BMP2	Infiltration-B	Commercial	20.95	0.6	341,364	\$569,497
BMP3	Infiltration-B	Industrial	28.17	0.7	535,483	\$893,346
BMP4	Infiltration-B	Open land	17.26	0.7	328,168	\$547,482
BMP5	Infiltration-B	Highway	13.67	0.4	148,461	\$247,677
BMP6	Infiltration-C	High Density Residential	714.35	0.8	15,521,265	\$25,894,108
BMP7	Infiltration-C	Commercial	114.01	1.0	3,096,513	\$5,165,908
BMP8	Infiltration-C	Industrial	61.24	0.8	1,330,580	\$2,219,806
BMP9	Infiltration-C	Open land	16.09	0.9	393,340	\$656,208
BMP10	Infiltration-C	Highway	46.76	0.7	889,019	\$1,483,150
BMP11	Biofiltration	High Density Residential	9.74	0.7	185,198	\$765,496
BMP12	Biofiltration	Commercial	167.92	1.0	4,559,847	\$18,847,683
BMP13	Biofiltration	Open land	5.25	1.0	142,555	\$589,236
BMP14	Biofiltration	Highway	86.81	0.8	1,885,773	\$7,794,661
BMP15	Porous Pavement	High Density Residential	-	-	-	-
BMP16	Porous Pavement	Commercial	-	-	-	
BMP17	Porous Pavement	Industrial	18.84	-	4,647,530	\$9,916,595
BMP18	Porous Pavement	Open land	-	-	-	-
		Total	1 352 83	(0.4 - 1.0)	34 522 900	\$76 454 707

Opti-Tool: Scenario 2 (Target Solution 2 = 50% P Load Reduction)

BMPID	BMP Type	Land Use	Treated Impervious Area (acres)	Runoff Depth (in.)	BMP Storage Capacity (gallon)	BMP Cost (\$)
BMP1	Infiltration-B	High Density Residential	31.78	0.2	172,602	\$287,952
BMP2	Infiltration-B	Commercial	20.95	0.4	227,576	\$379,665
BMP3	Infiltration-B	Industrial	28.17	0.3	229,493	\$382,863
BMP4	Infiltration-B	Open land	17.26	0.4	187,524	\$312,847
BMP5	Infiltration-B	Highway	13.67	0.3	111,346	\$185,758
BMP6	Infiltration-C	High Density Residential	714.35	0.4	7,760,632	\$12,947,054
BMP7	Infiltration-C	Commercial	114.01	0.3	928,962	\$1,549,786
BMP8	Infiltration-C	Industrial	61.24	0.1	166,323	\$277,476
BMP9	Infiltration-C	Open land	16.09	0.5	218,522	\$364,560
BMP10	Infiltration-C	Highway	46.76	0.2	254,005	\$423,757
BMP11	Biofiltration	High Density Residential	9.74	0.2	52,914	\$218,713
BMP12	Biofiltration	Commercial	-	-	-	-
BMP13	Biofiltration	Open land	-	-		-
BMP14	Biofiltration	Highway	-	-		-
BMP15	Porous Pavement	High Density Residential	-	-		-
BMP16	Porous Pavement	Commercial	-	-		-
BMP17	Porous Pavement	Industrial	-	-		-
BMP18	Porous Pavement	Open land	-	-	-	-
		Total	1,074.01	(0.1 - 0.5)	10,309,898	\$17,330,429

Opti-Tool: Scenario 2 (Target Solution 3 = 45% P Load Reduction)

BMPID	SCM Type	Land Use	Treated Impervious Area (acres)	Runoff Depth (in.)	SCM Storage Capacity (gallon)	SCM Cost (\$)
BMP1	Infiltration-B	High Density Residential	31.78	0.2	172,602	\$287,952
BMP2	Infiltration-B	Commercial	20.95	0.3	170,682	\$284,749
BMP3	Infiltration-B	Industrial	28.17	0.2	152,995	\$255,242
BMP4	Infiltration-B	Open land	-	-	-	-
BMP5	Infiltration-B	Highway	13.67	0.2	74,230	\$123,838
BMP6	Infiltration-C	High Density Residential	714.35	0.3	5,820,474	\$9,710,290
BMP7	Infiltration-C	Commercial	114.01	0.2	619,308	\$1,033,191
BMP8	Infiltration-C	Industrial	61.24	0.1	166,323	\$277,476
BMP9	Infiltration-C	Open land	-	-	-	-
BMP10	Infiltration-C	Highway	46.76	0.2	254,005	\$423,757
BMP11	Biofiltration	High Density Residential	9.74	0.2	52,914	\$218,713
BMP12	Biofiltration	Commercial	-	-	-	-
BMP13	Biofiltration	Open land	-	-	-	-
BMP14	Biofiltration	Highway	-	-	-	-
BMP15	Porous Pavement	High Density Residential	-	-	-	-
BMP16	Porous Pavement	Commercial	-	-	-	-
BMP17	Porous Pavement	Industrial	-	-	-	-
BMP18	Porous Pavement	Open land	-	-	-	-
		Total	1,040.66	(0.1 - 0.3)	7,483,533	\$12,615,207

