
Modeling mechanistic processes from source to outcome to support 
evidence integration and inform risk assessment
David E. Hines1, Rory B. Conolly1, Annie M. Jarabek2
U.S. Environmental Protection Agency, Office of Research and Development; Research Triangle Park, NC;1 National Health and Environmental Effects Research Laboratory; 2 National Center for Environmental Assessment 

David E. Hines l hines.david@epa.gov l 919-541-1469

Introduction
• Evidence integration in current IRIS assessments considers the contributions of human health,

animal, and mechanistic data streams according to PECO criteria in a hierarchical and parallel
approach. (Fig. 1)
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Adapted from NRC (2014)

• The NAS has emphasized the use of mechanistic process models of pathogenesis to evaluate
relationships among biomarkers (exposure/effect/susceptibility) as well as modernizing risk
predictions using exposure science and computational models.

• We propose mechanistic data should serve as a scaffold for the use of process models when
integrating evidence across human health and ecological endpoints. (Fig. 2)
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Fig. 2: Mechanistic workflow for evidence integrationCase Study Example
• We demonstrate how the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP)

frameworks create a source to outcome continuum using a case study of the perchlorate anion (ClO4
-).

Teeguarden et al. (2016), Ankley et al. (2010)

Quantitative AEP A
• Constructed a six compartment
fate-and-transport network for
the hypothetical site. (Fig. 3)

• Considered inputs to site from
surface water, atmospheric
deposition, and groundwater
contamination.

• Literature values were used to
restrict parameter ranges.

• A Monte Carlo approach
(n=10,000) was used to
estimate variability in the
exposure network based on
variability in literature data.

Exposure Scenarios B
• Behavioral assumptions:

Groundwater from well

Media (Surface water) 

Grass (95%) 
Surface water (5%) 

• Contamination input scenarios:

Inputs from literature, similar 
to published concentrations 

10x Mild scenario inputs

100x Mild scenario 
groundwater inputs

Analyses C D E
• Estimated external exposure
and source apportionment using
Network Environ Analysis

Fath and Patten (1999)

• Linked AEP network to
multispecies AOP network
using previously published
PBPK models

• Estimate hazard index (HI)
using EQ. 1
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EQ 1: 𝑖𝑖 is each exposure source, 𝐸𝐸 is the 
exposure level, and 𝐴𝐴𝐴𝐴 is the acceptable 
limit of exposure. 𝐴𝐴𝐴𝐴 was the lowest 
reported LOAEL for each species
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Fig. 3: Joint AEP-AOP construct for the ClO4
- case study. 

Detailed description of AOP network in Hines et al. (2018). 

Quantitative Case Study
Exposure Estimation

1% Med 99% 1% Med 99% 1% Med 99%

<0.1 0.1 0.3 0.4 1.0 2.7 4.0 10.3 25.4

0.1 0.5 1.4 1.2 5.4 14.1 2.1 9.8 28.6

3.1 15.8 34.2 89.5 159.4 395.7 369.5 2990.1 8072.4

Tab. 1: Lower confidence 
interval (1%), median 
(Med), and upper 
confidence interval (99%) 
external toxicant doses 
predicted for human, fish, 
and small mammals in 
each scenario. 

Table units are µg/kg/d.
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Fig. 4: Species-
specific source 
apportionment
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Fig. 5: MIE 
activation. No 
published PBPK 
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Merrill et al. (2003)
Lumen et al. (2013)

Circles show median 
prediction and 
vertical points show 
99% confidence 
interval.
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Fig. 6: Predicted 
internal doses at the 
hypothetical site under 
different contamination 
scenarios compared 
with dose-response 
toxicity data. See KE 
Hines et al. (2018) for 
KE details.

Y-axis shows toxicant 
dose in µg/kg/d on a 
log scale 
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Discussion

• The source to outcome case study demonstrates how a workflow for using a mechanistic
scaffold can facilitate evidence integration. (Fig. 7)

B

B

E

Data  
Organization

• Assembly across
system

• Increased
transparency

• Inform data gaps

Mechanistic 
Understanding

• Clarify context for interpretation
• Use exposures to drive risk assessment
• Characterize key events
• Quantify uncertainties using process models
• Facilitate integration of human health and ecological endpoints

Increased Utility 
& Confidence

• Tailor specific source to
outcome risk
characterization

• Leverage data sources

Sources Fate & 
Transport

Toxicokinetics &
Toxicodynamics

Adverse 
Outcomes

Integrated Risk 
Assessment

Fig. 7: Benefits of using a mechanistic scaffold for evidence integration in risk assessment

• The AEP and AOP frameworks facilitate exposure driven risk assessments in support of
assessments required by the new TSCA

• Mechanistic approaches to data integration can act as an organizing framework to inform
ontologies or evidence maps, leverage data sources, and facilitate quantitative
characterization of key events in pathogenesis.

• Explicit elucidation of key events and parameters supports transparency in risk assessments.

• Risk assessments based on exposure use cases and toxicity pathways involved in
pathogenesis allow for more targeted assessment and increased confidence.

Conclusions

A mechanistic scaffold informs problem formulation, aids evaluation of 
study quality criteria, and facilitates evidence integration to support 
source-to-outcome risk assessments that are:

1) Exposure driven to target specific use-cases

2) Quantitative for key events in relevant AOPs

3) Capable of characterizing human health and
ecological endpoints
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