

www.epa.gov/research

Evidence Integration

At the EPA's National Center for Environmental Assessment (NCEA), we work closely with programs throughout the EPA to integrate web-based and desktop computer tools into the assessment process, facilitating evidence integration for science assessment products. By incorporating in-house and third-party tools, both open source and commercial, activities such as the Integrated Risk Information System (IRIS) and the Integrated Science Assessments (ISA) seek to use the best tools for the job, while remaining flexible enough to improve the evidence integration process.

Current Tools

• Health and Environmental Research Online (HERO): Literature search, categorization, acquisition, archiving. Interoperable with HAWC, Distiller, and SWIFT.

• Health Assessment Workplace Collaborative (HAWC): Study evaluation, data extraction, visualization. Interoperable with HERO, BMDS, and Distiller. • Benchmark Dose Software (BMDS): Dose-response modelling. Interoperable with HAWC.

• Evidence Partners DistillerSR: Literature screening, data extraction. Interoperable with HERO and HAWC.

• Sciome SWIFT-Review and SWIFT-Active Screener: Literature screening, prioritization, categorization. Interoperable with HERO and HAWC.

New Tools

Evidence Profile Table

Part of HAWC, the Evidence Profile Table offers a summary explanation of evidence integration in a chemical risk assessment. This view creates greater transparency about the body of evidence by illuminating the rationale behind the assessment findings.

- Adaptation of GRADEPro Evidence Profiles
- Create multiple rows to cover multiple evidence streams
- Select studies and endpoints added to HAWC
- Streams break down into scenarios
- Endpoints are rated within scenarios
- Confidence judgements build from individual to across-stream
- Findings summaries add to confidence judgments

Scenario Outcome		~	Profile Streams		new off cam
Title/Short Explanation	Full Explanation		-		Stream #1
			Туре	Title	otreatmin
Score			Select Stream Type		
Select Score	•				×
Outcome's Summary of Findings Title/Short Summary			Within-Stream Summary of Findings Title/Short Summary		
Full Summary			Full Summary		
			Within-Stream Confidence Judgement		6
cenario Studies (organized	by effect tag)	New Effect Tag	Title/Short Explanation	Full Explanation	
+ [No Tag Yet]					
actors That Increase Confid	lence in The Selected Studies	New Factor	Score		
+ [No Title Yet]	tence in the Selected Stadies		Select Score 🔻		10
			Profile Stream Scenarios		New Scenario
actors That Decrease Confi	dence in The Selected Studies	S New Factor	- Name		
+ [No Title Yet]					*

U.S. Environmental Protection Agency Office of Research and Development

Technological Tools for Evidence Integration

Shane Thacker, Jennifer Nichols, Ryan Jones, Steven J. Dutton National Center for Environmental Assessment; Office of Research and Development; US EPA

New Tools, continued

Evidence Profile Table, pictured

Outcome	Studies	Factors That Increase Confidence	Factors That Decrease Confidence	Confidence Judgement and Summary of Findings for Individual Outcome	Within- Stream Confidence Judgement and Summary of Findings	Inference Across Streams	Across- Stream Confidence Judgement
test animal (An	imal Bioassay)					•test inference	$\Theta \Theta O$
Test scenario	neoplastic •Initial submission: Title of the study (Thacker and Jones 2019)	•Consistency Relatively Low	•High Risk of Bias This is a factor that would decrease confidence.	⊕ ⊕ ○ Moderate test outcome This is another explanation	Slight test judgement This is a full explanation	description	test total This is a test explanation
test outcome	Overall Odds Ratio • Title of another study here (Thacker and Nichols 2019)	•Consistency Relatively Low	•High Risk of Bias This is another factor that would decrease confidence.	Image: Construction of the sector of the	test summary within test summary full		

Evidence Mapping

Integrated with the Health and Environmental Research Online (HERO) database, the Evidence Mapping tool allows researchers to create heat maps to visualize and overlay characteristics (e.g., discipline, exposure, concentration, etc.) of the reviewed literature, making it easy to visualize the available evidence.

é		Health Outcome Category									
Exposu	Location	Mortality	cv	Resp	Repro/ Dev	Metabolic	Nervous System	Cancer	Dermal		
	US	16	36	58	11	2	0	0	0		
۶	Canada	10	14	12	1	1	0	0	3		
đ	Europe	23	36	38	6	2	5	0	1		
Short-	Asia	39	41	70	5	3	8	1	1		
	Other	11	52	59	2	1	1	0	0		
ıg-term	US	15	8	18	44	5	4	5	0		
	Canada	5	1	4	3	1	1	1	0		
	Europe	5	5	11	16	6	0	2	0		
	Asia	10	16	19	25	4	4	4	1		
Lor	Other	3	12	3	15	0	4	1	0		
	US	3	1	3	1	1	1	1	1		
Unclear	Canada	0	0	1	0	0	0	0	0		
	Europe	0	3	4	2	1	0	0	0		
	Asia	0	1	8	2	0	0	0	2		
	Other	0	1	2	2	0	4	0	1		
	Total	140	227	310	135	27	32	15	10		

Example Evidence Map

• In HERO, scientists use tags to categorize literature for possible use in chemical risk assessment projects

• Using the tool, scientists create crosstabs between sets of tags that code literature by characteristics

• The results are color-coded, creating heat maps for easy visualization of the intersection totals

• The result is a map showing the amount of possible evidence between

characteristics, such as location and exposure

• Researchers can layer the characteristics into sets and subsets, adding visual organization

• Interoperable with Distiller

Disclaimer: The views expressed in this poster are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency (EPA). The EPA does not endorse any commercial products, services, or enterprises.

New Tools, continued

Evidence Inventory

The Evidence Inventory tool, hosted within HERO, facilitates data extraction and portrayal by providing researchers a template to collect and categorize data from the relevant literature and then create summary tables of the extracted information. The summary tables are then ready for export into assessment documents, allowing readers to review the evidence behind the chemical risk assessment.

From HERO			L	evel 2 Screeni	ng							
HERO ID Author	Year	Title	ISA Relevant	PECO Relevant	Reliability/St udy Quality	Section	Health Endpoint	Study Design	Cohort or Study Name	Study Population Details	Sample Size	Cour
123456 Thacker, S;	Joi 2016	Chemical pollutants and the	Yes	Yes	High Quality	Infl/Ox Stress/Inju	FeNO	Panel		Adults with type II diabetes mellitus.	69) U.S.
123456 Thacker, S;	Joi 2016	Chemical pollutants and the	Yes	Yes	High Quality	Infl/Ox Stress/Inju	FeNO	Panel		Adults with type II diabetes mellitus.	69) U.S.
123456 Thacker, S;	Joi 2016	Chemical pollutants and the	Yes	Yes	High Quality	Infl/Ox Stress/Inju	FeNO	Panel		Adults with type II diabetes mellitus.	69) U.S.
123456 Thacker, S;	Joi 2016	Chemical pollutants and the	Yes	Yes	High Quality	ED Visit - AsEx		Time-series		All ages	611,970) U.S.
123456 Thacker, S;	Joi 2016	Chemical pollutants and the	Yes	Yes	High Quality	ED Visit - AsEx		Time-series		All ages	611,970) U.S.
123456 Thacker, S;	Joi 2016	Chemical pollutants and the	Yes	Yes	High Quality	ED Visit - AsEx		Time-series		All ages	611,970) U.S.
123456 Thacker, S;	Joi 2016	Chemical pollutants and the	Yes	Yes	High Quality	ED Visit - AsEx		Time-series		All ages	611,970) U.S.
123456 Thacker, S;	Joi 2016	Chemical pollutants and the	Yes	Yes	High Quality	ED Visit - AsEx		Time-series		All ages	611,970) U.S.
123457 Thacker, S;	Joi 2015	Air pollution and quality of I	i Yes	Yes	Adequate	ED Visit - AsEx		Time-series		Ages 5 and older	165,056	ծ U.S.
123457 Thacker, S;	Joi 2015	Air pollution and quality of I	i Yes	Yes	Adequate	ED Visit - AsEx		Time-series		Ages 5 and older	165,056	i U.S.
123457 Thacker, S;	Joi 2015	Air pollution and quality of I	i Yes	Yes	Adequate	ED Visit - AsEx		Time-series		Ages 5 and older	165,056	i U.S.
123457 Thacker, S;	Joi 2015	Air pollution and quality of I	i Yes	Yes	Adequate	ED Visit - AsEx		Time-series		Ages 5 and older	165,056	5 U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx	Asthma/Wheeze	Time-series		All ages	34,086	5 U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx	Asthma/Wheeze	Time-series		All ages	34,086	i U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx	Asthma/Wheeze	Time-series		All ages	34,086	i U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx	Asthma/Wheeze	Time-series		All ages	34,086	ί U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx	Asthma/Wheeze	Time-series		All ages	34,086	5 U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx	Asthma/Wheeze	Time-series		All ages	34,086	5 U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx		Time-series		All ages	10,377	/ U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx	Pneumonia	Time-series		All ages	32,166	i U.S.
123458 Nichols, J;	on 2015	Solar flares and leaded gasol	i Yes	Yes	Adequate	ED Visit - AsEx		Time-series		All ages	186,449) U.S.
123459 Jones, R; D	utt 2014	Transhuman influences on a	Yes	Yes	High Quality	ED Visit - AsEx		Case-crosso	ver	All ages	122,607	/ U.S.
123459 Jones, R; D	utt 2014	Transhuman influences on a	Yes	Yes	High Quality	ED Visit - AsEx		Case-crosso	ver	All ages	122,607	/ U.S.
123459 Jones, R; D	utt 2014	Transhuman influences on a	Yes	Yes	High Quality	ED Visit - AsEx		Case-crosso	ver	All ages	122,607	/ U.S.
123459 Jones, R; D	utt 2014	Transhuman influences on a	Yes	Yes	High Quality	ED Visit - AsEx		Case-crosso	ver	All ages	122,607	/ U.S.

• Producing a chemical risk assessment document requires extracting and reformatting the data in cited studies into tables

• Previously, this was largely a manual task without required standardization • This new tool uses spreadsheets formatted for different disciplines to help

standardize data extraction

• Once the data is extracted, the spreadsheets are transformed into sets of tables useful in the document production process

Future Development

• Store data in HERO for repeated use in assessments

and tagging

• Create tighter integration between HERO and HAWC

integration with third-party software

• Allow web-based data entry for Evidence Inventory Inventory tools

• Integrate Evidence Prime's Pupil automated data extraction software with Distiller, HAWC, and Evidence Inventory tools

• Investigate possible standards for extracted data formats to ease data migrations • Investigate and implement tools for automated table and graph data extraction • Work on ontologies for data extraction to make the data more easily searchable • Employ agile development processes to test and incorporate new and useful tools

into the assessment process

Shane Thacker I thacker.samuel@epa.gov I 919-541-5159

- Develop search and reporting capabilities for extracted data
- Through text and concept mining tools, automate the first pass at categorization
- Visualize the results of automated categorization in Evidence Maps
- Create, improve, and utilize web service APIs for HERO and HAWC to ease
- Integrate Tableau visualization software with HAWC, Distiller, and Evidence