Portable Air Cleaners, Cardiovascular Health, and Fetal Growth: Results from Randomized Studies in Canada and Mongolia

Ryan Allen, PhD

Faculty of Health Sciences Simon Fraser University

EPA Web Summit on Indoor Air Filtration June 13, 2019

Collaborators

SIMON FRASER UNIVERSITY

Prabjit Barn Bruce Lanphear Lawrence McCandless Tim Takaro Scott Venners Glenys Webster MNUMS

Mongolian National University of Medical Sciences

1942

Enkhjargal Gombojav Chimedsuren Ochir Buyantushig Boldbaatar Bolor Beejin Gerel Naidan Jargalsaikhan Galsuren Bayarkhuu Legtseg

THE UNIVERSITY OF BRITISH COLUMBIA

Michael Brauer Chris Carlsten Jennifer Hutcheon Patricia Janssen Barbara Karlen Sara Leckie Stephan van Eeden Imelda Wong

Tsogtbaatar Byambaa

Sverre Vedal

Craig Janes

Presentation Overview

- Two randomized studies of portable HEPA filter air cleaners and health:
 - Rural Canadian community
 - Moderate concentrations from wood stoves
 - 7-day intervention, healthy adults
 - Cardiovascular outcomes
 - City in a developing country (Mongolia)
 - High concentrations from **coal stoves**
 - 7-month intervention, pregnant women
 - Fetal growth indicators

Portable Air Cleaners and Wood Smoke

- Smithers, British Columbia
 - Population ~5,300
 - At the time, 63% of homes in the region used wood as primary heating fuel.

Study Design

Single-blind randomized crossover study design:

- 43 healthy adults (mean age: 43 years)
- Honeywell 50300 in living room; 18150 in bedroom
- Two consecutive 7-day monitoring periods
- Measures of oxidative stress, systemic inflammation, and endothelial (blood vessel) function

Results

- Air pollution concentrations:
 - $PM_{2.5}$ infiltration efficiency: $\downarrow 41\% (0.34 \rightarrow 0.20)$
 - Indoor $PM_{2.5}$ concentration: $\oint 59\% (11.2 \rightarrow 4.6 \, \mu g/m^3)$
 - Indoor levoglucosan concentration: ↓ 74% (127 → 33 ng/m³)
- Health effects:
 - total blood vessel function (reactive hyperemia index)
 - J systemic inflammation (C-reactive protein)
 - No changes in oxidative stress markers

Brook et al., *Circulation*, 2010 BC Lung Association

established effects

possible effects

Rationale

 Meta-analyses of observational studies report ~10-20 gram decreases in mean birth weight per 10 μg/m³ PM_{2.5}

Estimated decrease in mean birth weight (g) per 10 μ g/m³ increase in PM_{2.5}

Rationale

More than 90% of people worldwide live in areas exceeding the WHO Guideline for healthy air. More than half live in areas that do not even meet WHO's least-stringent air quality target.

Trends in population-weighted annual average PM_{2.5} concentrations in China and globally compared with the WHO Air Quality Guideline and interim targets.

https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdf

- Emissions reductions should be the goal, but...
- Household-level interventions may mitigate risks in the near term
- Pregnancy represents a well-defined time period for intervention, with potential benefits over the life course

Ulaanbaatar, Mongolia

- Population ~ 1.3 million
- Air pollution:
 - Rapid population growth
 - Cold winters
 - Topography
 - Coal combustion

https://www.nationalgeographic.com/environment/2019/03/mongolia-air-pollution/

In Ulan Bator, winter stoves fuel a smog responsible for one in 10 deaths

= TIME

Life in the Most Polluted Capital in the World

By Joseph Hincks | Photographs by Zhang Chi for TIME | Video by Zhang Chi, Aria Chen

and Arpita Aneja March 23, 2018

ULAN BATOR JOURNAL

Burning Coal for Survival in the World's Coldest Capital

Study Design

Randomized controlled trial

- Intervention group received 1-2 HEPA filter air cleaners for use in homes, and control group received no air cleaners (single blind; participants were aware of intervention status)
- Coway AP-1009CH air cleaner, CADR (smoke) = 150

Study sample:

- Non-smoking, ≥ 18 years, ≤ 18 weeks pregnancy, single gestation pregnancy, residing in apartments
- Sample size: 540 participants recruited
- Data collection period: January 2014 to December 2015

Data Collection

(intervention homes)

Air Cleaner Impact on PM_{2.5} 7-day average PM_{2.5} concentrations

Barn et al., Sci Total Environ, 2018

Air Cleaner Impact on PM_{2.5} 7-day average PM_{2.5} concentrations

Intervention homes

Barn et al., Sci Total Environ, 2018

Air Cleaner Impact on PM_{2.5} 7-day average PM_{2.5} concentrations

Barn et al., Sci Total Environ, 2018

Trial Profile

Barn et al., Environ Int, 2018

Select Cohort Characteristics

	Control (n = 223)	Intervention (n = 240)
	Median (25%-75%) or N (%)	Median (25%-75%) or N (%)
Mother's age at enrollment, yr	28 (25 – 33)	30 (25 – 33)
Gestational age at enrollment, weeks	11 (9 – 12)	11 (9 – 13)
Mother completed university	179 (80%)	191 (80%)
Married / common-law	184 (83%)	191 (80%)
Pre-pregnancy BMI, kg/m ²	21.7 (19.6 – 23.9)	21.4 (19.8 – 24.0)
Smoked at any time during pregnancy	19 (9%)	20 (8%)
Lived w/ smoker at any time during pregnancy	112 (50%)	115 (48%)
Caesarean delivery	88 (39%)	86 (36%)
Female child	108 (48%)	109 (45%)
Birth weight, grams	3450 (3150 – 3800)	3550 (3200 – 3800)

Unexpected Intervention Effects

- The intervention was associated with:
 - A *lower* risk of spontaneous abortion:
 OR = 0.38 (95% CI: 0.18, 0.82)
 - A higher risk of preterm birth:
 OR = 2.37 (95% CI: 1.11, 5.07)
- The intervention may have enabled fetuses to survive long enough to be born preterm

Intervention Effects on Fetal Growth

- The intervention was not significantly associated with average birth weight among all births: **18 g (95% CI: -84, 120 g)**
 - After adjusting for differences in pre-term birth, the intervention was associated with an increase in mean birth weight: 84 g (95% CI: -1, 170 g)
- Among full-term births, the intervention was associated with an increase in mean weight: 85 g (95% CI: 3, 167 g)

Summary

- Short-term use of portable HEPA filter air cleaners may improve cardiovascular health indicators
 - Supported by several more recent studies
 - Implications for effects in other systems in the body
- Long-term use reduced concentrations in a highpollution setting, but efficacy decreased over time

 "Air cleaner fatigue" – noise, concerns about electricity costs
- Some evidence of improved fetal growth among women who used air cleaners during pregnancy
- When possible, our goal should be to reduce emissions
 - Household interventions may mitigate risks
 - Pregnancy is a well-defined time to intervene

Thank You

- Study participants
- Research staff
- Dr. Prabjit Barn
- Funding agencies

BRITISH COLUMBIA LUNG ASSOCIATION

