

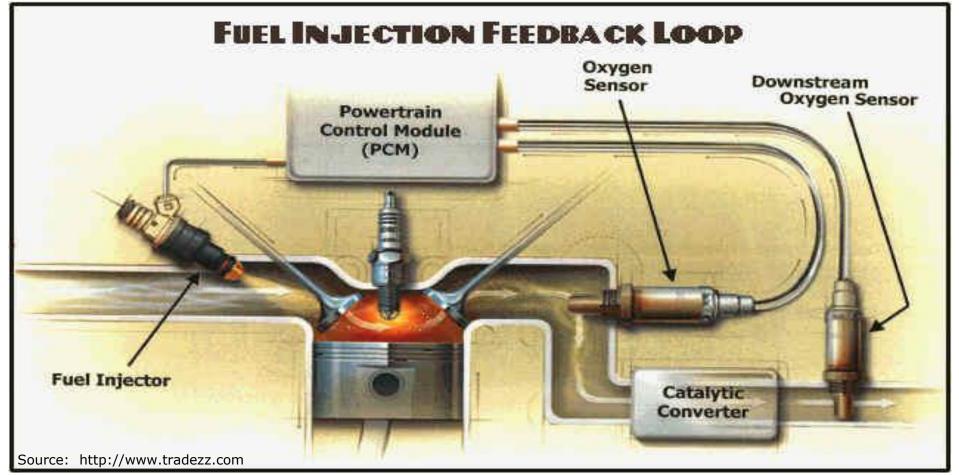
Emissions Impacts of Electrifying Passenger Cars in Texas

Chris Kite Air Quality Division

U.S. Environmental Protection Agency 2019 International Emissions Inventory Conference Dallas, Texas July 31, 2019

Key Points About NO_x Benefits of Gasoline versus Electric Vehicles

- Modern gasoline-powered passenger vehicles emit roughly 1-2% of the nitrogen oxides (NO_X) that were emitted by unregulated vehicles from the 1960s:
 - stringent Tier 2 standards applied to the 2004-2016 model years; and
 - even more stringent Tier 3 standards apply to the 2017-and-later model years.
- The very low $NO_{\rm X}$ emission rates from modern gasoline-powered passenger vehicles are due primarily to:
 - on-board computer control with electronic fuel injection;
 - robust exhaust after-treatment from catalytic converters; and
 - gasoline with very low sulfur content that prolongs the operating life of emission controls.
- Since modern gasoline-powered passenger vehicles have very low NO_X emission rates, there is no significant increase or decrease in total NO_X emissions between:
 - operating a Tier 2 or Tier 3 gasoline-powered vehicle; and
 - an electric vehicle powered by a battery charged from local electrical generating units (EGUs).
- Wind power accounted for 15% of Texas electricity generated in 2017 and its growth continues, but can't be relied upon for vehicle charging on high ozone days:
 - wind power is at its lowest levels during ozone season when overall demand for electricity is high; and
 - the ozone season days with the lowest average wind speeds typically have the highest ozone levels.


Key Points About Tailpipe Emission Standards and Fuel Economy

- Tailpipe exhaust emission standards for NO_X , volatile organic compounds (VOC), and carbon monoxide (CO) are not directly correlated with fuel economy standards in units of miles per gallon (mpg).
- <u>Common Question</u>: But don't bigger vehicles with larger engines consume more fuel and therefore emit more NO_X , VOC, and CO on a per mile basis?
 - "Engine-out" emissions for NO_x, VOC, and CO from larger vehicles/engines are typically greater than for smaller engines/vehicles.
 - However, "tailpipe-out" emissions are based on the capacity of the catalytic converter(s) located in the exhaust stream.
- EPA has not announced any changes to the Tier 3 exhaust emission standards for light-duty vehicles and trucks that phase-in from the 2017 through 2025 model years.
- If increasing overall energy efficiency is a primary goal, then increased use of electric vehicles versus gasoline ones can be beneficial, but it depends on the primary fuel source used to generate electricity.
- In order to match the operational energy efficiency of electric vehicles on a per mile basis, gasoline-powered vehicles would need to achieve:
 - roughly 50 mpg if natural gas is the sole source of electrical power; or
 - roughly 24 mpg if coal is the sole source of electrical power.

Schematic of Basic On-Road Emission Controls for Modern Gasoline Vehicles

- Reducing NO_X , VOC, and CO from modern engines:
 - on-board computer (e.g., powertrain control module) connected to various sensors;
 - electronic fuel injection instead of mechanical carburetion used on older vehicles; and
 - exhaust after-treatment (e.g., catalytic converter).

Comparison of Emission Rates from Modern Vehicles to Unregulated Vehicles

NO _X	NMOG*		
(grams per mile)			
4.28	16.00		
0.07	0.09		
98.4%	99.4%		
0.02	0.01		
99.5%	99.9%		
0.00	0.00		
	(grams p 4.28 0.07 98.4% 0.02 99.5%		

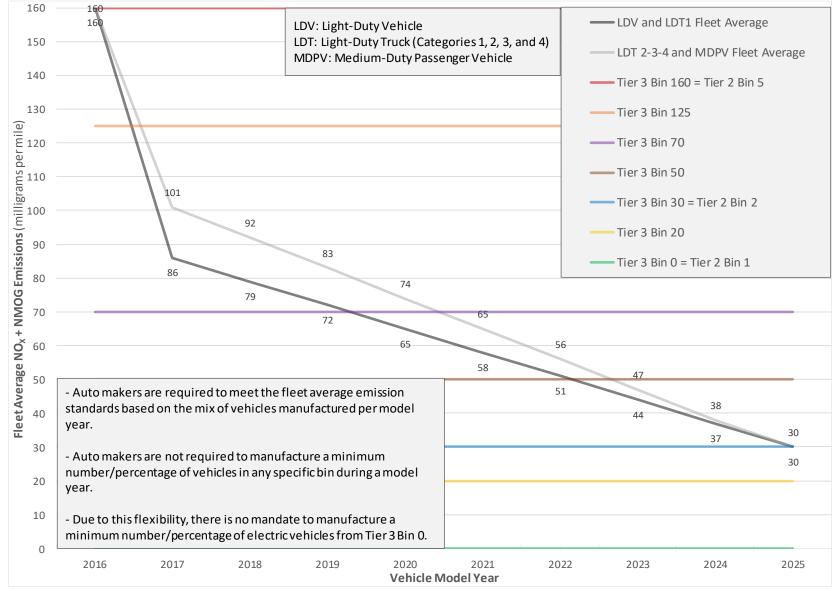
Federal Light-Duty Vehicle Certification Summary: Tier 2 (2004-2016) and Tier 3 (2017-and-Later)

Federal	NO _X	NMOG*	NO _x + NMOG*	Federal	
Tier 2 Bin	(grams p	ber mile)	(milligrams per mile)	Tier 3 Bin	
Bin 1	0.00	0.000	0	Bin 0	
				Bin 20	
Bin 2	0.02	0.010	30	Bin 30 (Tier 3 Average)	
				Bin 50	
				Bin 70	
Bin 3	0.03	0.055	85		
Bin 4	0.04	0.070	110		
				Bin 125	
Bin 5 (Tier 2 Average)	0.07	0.090	160	Bin 160 (Tier 3 Maximum)	
Bin 6	0.10	0.090	190		
Bin 7	0.15	0.090	240		
Bin 8 (Tier 2 Maximum)	0.20	0.125	325		

* NMOG: Non-methane organic gases, which are VOC plus ethane (or total hydrocarbons minus methane).

Federal Light-Duty Certification Summary: 2015 Model Year by Vehicle Fuel Type

Tier 2 Bin	Gasoline	Gasoline/ Electricity	Electricity	Diesel	Ethanol/ Gasoline	Natural Gas	Natural Gas/ Gasoline	Hydrogen	Total
Bin 1			15					1	16
Bin 2	24					1			25
Bin 3	72	5							77
Bin 4	26	1				_	1		28
Bin 5	847	5		14	34				900
Bin 6									
Bin 7		-			•		' Tier 2 pa .07 grams	-	
Bin 8									
Total	969	11	15	14	34	1	1	1	1,046
	Source: EPA Green Vehicle Guide, which is available at http://www.fueleconomy.gov/feg/download.shtml								
Δir Οι	ality Division	Emissions	Impacts of Fla	ctrifying Dasse	ngor Care in T	Tavac 🖕 Chric	: Kito 🖌 lulv 🤅	1 2010 D	2007



Federal Light-Duty Certification Summary: 2015 Model Year by Vehicle Use Type

			-						-	
Tier 2 Bin	Small Car	Midsize Car	Large Car	Station Wagon	Small SUV	Standard SUV	Pickup	Minivan	Special Purpose	Total
Bin 1	6	2	5	1	2					16
Bin 2	15	8		2						25
Bin 3	27	29	4	1	11	5				77
Bin 4	5	3	1	4	9		6			28
Bin 5	399	133	86	33	134	74	23	8	10	900
Bin 6										
Bin 7									enger flee er mile of	
Bin 8										X
Total	452	175	96	41	156	79	29	8	10	1,046
			hich is availa						2010 - Do	

Tier 3 Phase-In of Fleet Average Emission Standards through the 2025 Model Year

Federal Light-Duty Certification Summary: 2019 Model Year by Vehicle Fuel Type

Tier 3 Bin	Tier 2 Equivalent	Gasoline	Gasoline/ Electricity	Electricity	Diesel	Ethanol/ Gasoline	Hydrogen	Total
Bin 0	Bin 1			28			3	31
Bin 20			1		For the current 2019 model year, Tier 3 Bin 160			
Bin 30	Bin 2	206	18	Many ve	ual to Tier 2 E hicles meet m s of "lower" bi	ore the more s	stringent	224
Bin 50		77	1	requirements of "lower" bins with 224 make/models certified to the 2025 fleet average of Tier 3 Bin 30.				78
Bin 70		383	4			10		397
Bin 85	Bin 3	2						2
Bin 110	Bin 4	34				7		41
Bin 125		397	7		11	25		440
Bin 160	Bin 5	95			13	1		109
То	tal	1,194	31	28	24	43	3	1,323

Source: EPA Green Vehicle Guide, which is available at http://www.fueleconomy.gov/feg/download.shtml

Federal Light-Duty Certification Summary: 2019 Model Year by Vehicle Use Type

Tier 3 Bin	Small Car	Midsize Car	Large Car	Station Wagon	Small SUV	Standard SUV	Pickup	Minivan	Van	Special Purpose	Total
Bin 0	7	10	3	3	5	3					31
Bin 20		1									1
Bin 30	69	64	21	18	40	9		3			224
Bin 50	20	9	3	4	17	6	13			6	78
Bin 70	69	51	37	17	120	24	60	3		16	397
Bin 85					2						2
Bin 110	4	5	10		11	3	4	2		2	41
Bin 125	159	58	48	8	39	81	41	2		4	440
Bin 160	73	13	5		2	9	4		3		109
Total	401	211	127	50	236	135	122	10	3	28	1,323

Source: EPA Green Vehicle Guide, which is available at http://www.fueleconomy.gov/feg/download.shtml

TEquivalence Rates for NO_x from Gasoline Passenger **Cars versus Electric Generating Units (EGUs)**

Parameter Description	10-County DFW	Eight-County HGB	Eight-County San Antonio	Five-County Austin	Remaining 223 Counties	254-County Texas
Summer EGU NO _x Generation Rate for 2018 (pounds per Megawatt-Hour)	0.2138	0.3237	0.8484	0.4999	0.7236	0.6171
EGU NO _x Generated for 377 Megawatt-Hours to Travel One Million Miles (pounds)	80.56	121.96	319.66	188.35	272.64	232.51
EGU NO _x Generated for 377 Megawatt-Hours to Travel One Million Miles (grams)	36,539	55,322	144,995	85,435	123,666	105,465
NO_x Equivalence Rate for Electric Cars versus EGUs (grams per mile)	0.04	0.06	0.14	0.09	0.12	0.11
Federal Tier 2 Certification Bin(s) Closest to NO _x Equivalence Rate	Bin 4	Bins 4-5	Bins 6-7	Bins 5-6	Bins 6-7	Bins 6-7

- Federal Tier 2 Bin 5 has a NO_x certification rate of 0.07 grams per mile, which is the fleet average standard that vehicle manufacturers must meet.
- The majority of passenger vehicles sold from 2004 through 2016 were certified to Bin 5 under Tier 2.
- Tier 3 standards phase in from 2017 through 2025 by reducing the fleet NO_x average from 0.07 to 0.02 grams per mile.
- The 2018 Summer EGU NO_X generation rates shown were obtained for June through August from gueries of the U.S. Environmental Protection Agency Air Markets Program Data (AMPD) Web page, <u>https://ampd.epa.gov/ampd/</u>.

Energy Efficiency Equivalence for Gasoline Passenger Cars versus Coal and Natural Gas EGUs

Electric Generating	Number of Texas Facilities Reporting to	2018 Carbon Dioxide (CO ₂) Emission Rate (pounds per Megawatt-Hour)			
Unit Fuel Type	AMPD in 2018	Minimum	Maximum	Average	
Natural Gas	106	752	1,868	992	
Coal	20	1,844	2,686	2,104	

Parameter	Electrical Generation Source Mix					
Description	100% Natural Gas	100% Coal	50% - Gas, 25% - Coal, 25% - Wind and Nuclear			
2018 CO ₂ Emission Rate (pounds per Megawatt-Hour)	992	2,104	1,022			
CO ₂ Emitted for 377 Megawatt-Hours for 1 Million Miles of Electric Car Travel (pounds)	373,766	792,745	385,069			
CO ₂ Emitted for 377 Megawatt-Hours for 1 Million Miles of Electric Car Travel (grams)	169,536,411	359,581,259	174,663,520			
CO ₂ Rate for 1 Million Miles of Electric Car Travel (grams per mile)	169.54	359.58	174.66			
CO ₂ Emitted per Gallon of Gasoline with 10% Ethanol (grams per gallon)		8,521				
Fuel Consumption Equivalence Rate for Electric Cars (miles per gallon)	50.3	23.7	48.8			

Modern Electric Vehicle Battery Sizes, Operating Ranges, and Energy Consumption

Vehicle	Model	Model	Battery	Range	Energy Consu	Imption (Watt-H	lours per mile)
Make	Name	Year	Size	(miles)	City	Highway	Combined
Audi	e-tron	2019	95.0	204	455	462	455
BMW	i3	2019	42.2	153	272	330	298
BMW	i3s	2019	42.2	153	272	330	298
Chevrolet	Bolt EV	2019	60.0	238	263	306	283
Fiat	500e	2019	24.0	84	279	327	301
Honda	Clarity Electric	2019	25.5	89	267	327	296
Hyundai	IONIQ Electric	2019	28.0	124	225	276	248
Hyundai	Kona Electric	2019	64.0	258	255	312	281
Jaguar	I-PACE	2019	90.0	234	421	468	443
Kia	Niro EV	2019	64.0	239	274	330	301
Kia	Soul EV	2019	30.0	111	272	362	312
Kia	e-Soul	2020	64.0	243	265	334	296
Nissan	LEAF	2019	40.0	150	272	340	301
Nissan	LEAF e+ S	2019	62.0	226	286	347	312
Nissan	LEAF e+ SV/SL	2019	62.0	215	296	359	324
smart	EQ fortwo Coupe	2019	17.6	58	272	359	312
smart	EQ fortwo Cabrio	2019	17.6	57	301	370	330
Tesla	Model 3 Standard Range	2019	59.5	220	244	272	257
Tesla	Model 3 Standard Range Plus	2019	59.5	240	241	272	253
Tesla	Model 3 Long Range RWD	2019	80.5	325	248	274	259
Tesla	Model 3 Long Range AWD	2019	80.5	310	281	301	291
Tesla	Model 3 Performance LR AWD	2019	80.5	310	281	301	291
Tesla	Model S Long Range	2019	100.0	370	293	315	304
Volkswagen	e-Golf	2019	35.8	125	267	304	283
	24-Vehicle Average		55.2	197.3	283	332	305

Electric Vehicle Charging Efficiency from Outlet to Battery

Charging Scenario	Level 1 (120 Volts)	Level 2 (240 Volts)
Low-Energy (< 2 Kilowatt-Hours Charge)	70.7%	83.5%
High-Energy (> 2 Kilowatt-Hours Charge)	84.2%	86.5%
Combined	83.7%	86.4%

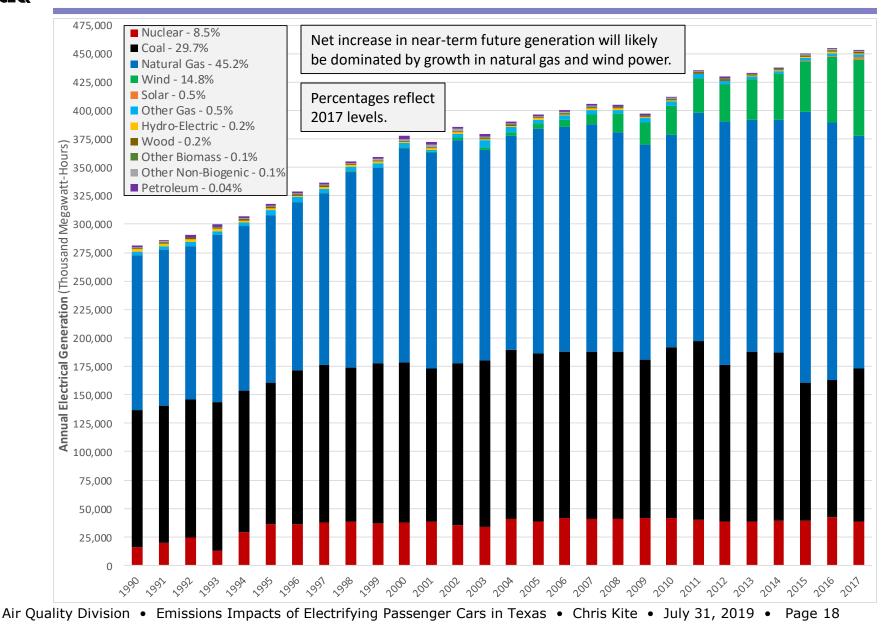
High-Energy Charging Scenario	Level 1 (120 Volts)	Level 2 (240 Volts)
Below 53 Degrees Fahrenheit	84.0%	87.3%
53 – 70 Degrees Fahrenheit	85.8%	87.8%
Above 70 Degrees Fahrenheit	82.2%	85.3%

- "Outlet-to-battery" charging efficiency is likely to improve over time.
- An 85.3% overall charging efficiency was assumed for this analysis.

Electricity Transmission and Distribution Losses in Texas

Electric Generation Category (Megawatt-Hours)	1990	1995	2000	2005	2010	2015	2017
Direct Use	28,031,066	37,852,016	42,458,738	45,497,429	33,873,361	36,116,457	35,220,381
Total Disposition	281,560,757	317,636,244	377,744,751	396,746,819	417,967,232	454,276,885	467,236,606
Total Disposition – Direct Use	253,529,691	279,784,228	335,286,013	351,249,390	384,093,871	418,160,428	432,016,225
Estimated Losses	18,024,745	20,094,800	24,755,499	22,340,398	22,146,761	19,567,214	21,861,661
Loss Portion	7.1%	7.2%	7.4%	6.4%	5.8%	4.7%	5.1%

- In general, relative transmission and distribution losses in Texas have declined over time.
- 2018 figures are not yet available from the U.S. Energy Information Administration (EIA).
- The 5.1% transmission and distribution loss figure for 2017 was assumed for this analysis.



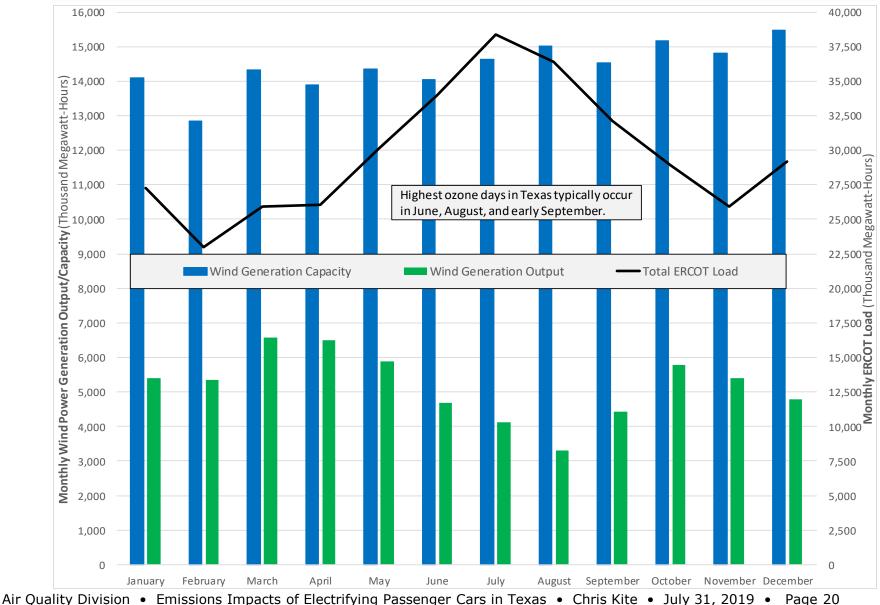
Electrical Power Generation Requirements for One Million Miles of Passenger Car Travel

Parameter Description	Value
Vehicle Miles Traveled by Electric Cars	1,000,000
Average Energy Consumption per Mile (Watt-Hours)	305
Kilowatt-Hours Consumed by Batteries	305,000
Megawatt-Hours Consumed by Batteries	305
Charging Efficiency (14.7% Loss)	85.3%
Transmission/Distribution Efficiency (5.1% Loss)	94.9%
Megawatt-Hours Generated by EGUs	377

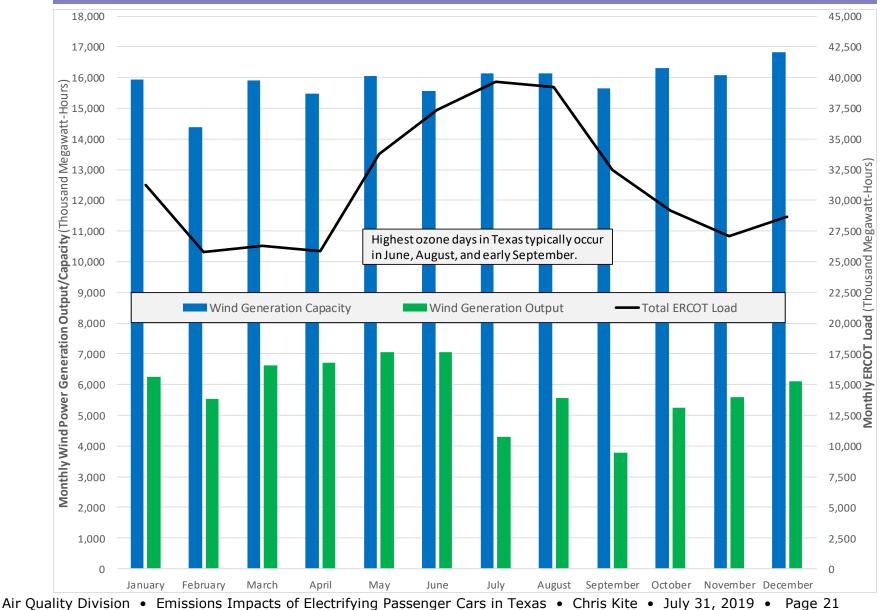
- For every one million miles traveled by electric cars, 377 Megawatt-Hours of power must be generated by an EGU or other source.
- Power generated from wind turbines is at its lowest levels during the ozone season months when overall demand for electricity is highest.
- High ozone days occur when average wind speeds are at their lowest levels, which is also when wind power generation is low.
- The majority of additional power needed for electric cars during high ozone periods is likely to be generated by natural gas and/or coal plants.

Texas Annual Electrical Power Generation by Energy Source from 1990 through 2017

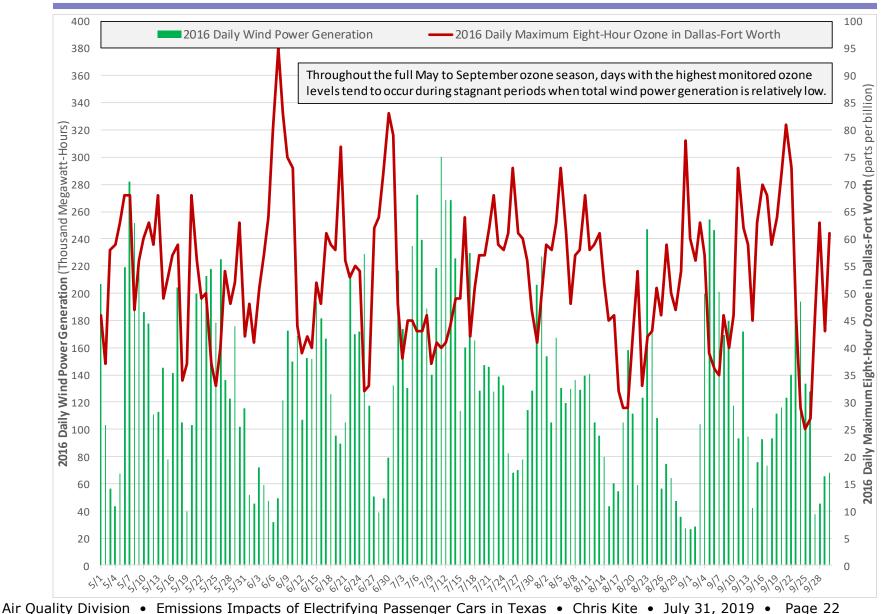
TCEQ



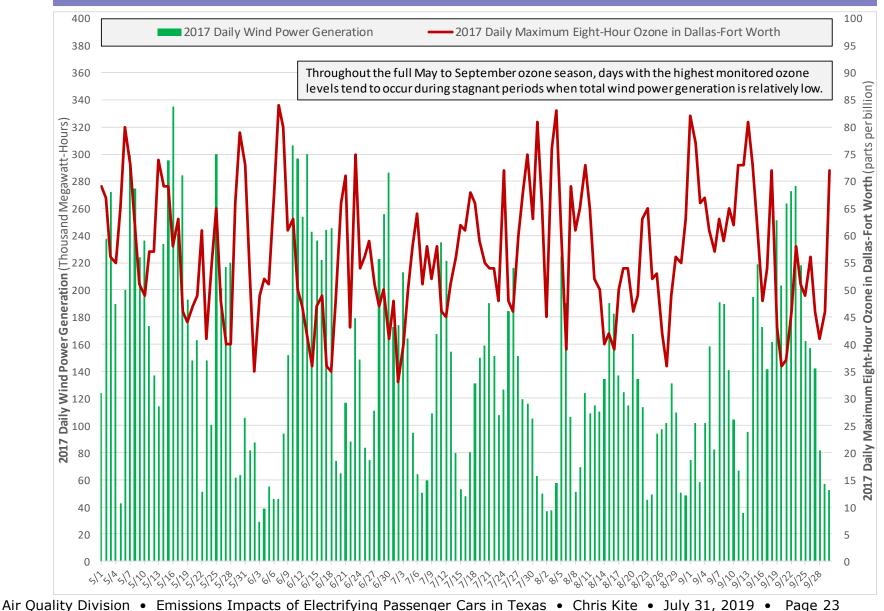
Monthly Electric Power from Wind Energy Sources in Texas During 2016



Monthly Electric Power from Wind Energy Sources in Texas During 2017

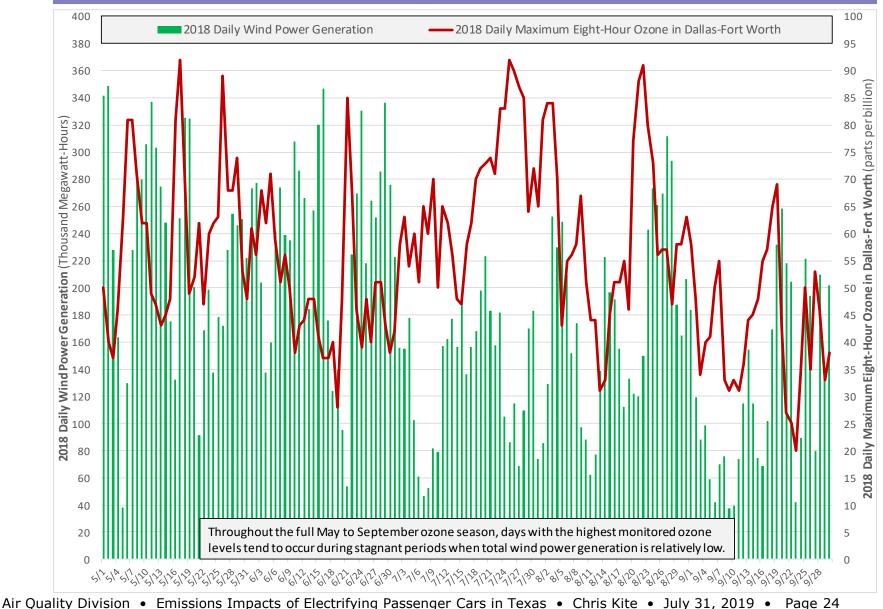


Monthly Electric Power from Wind Energy Sources in Texas During 2018


2016 Daily Wind Power Generated from May through September with Maximum DFW Area Ozone Levels

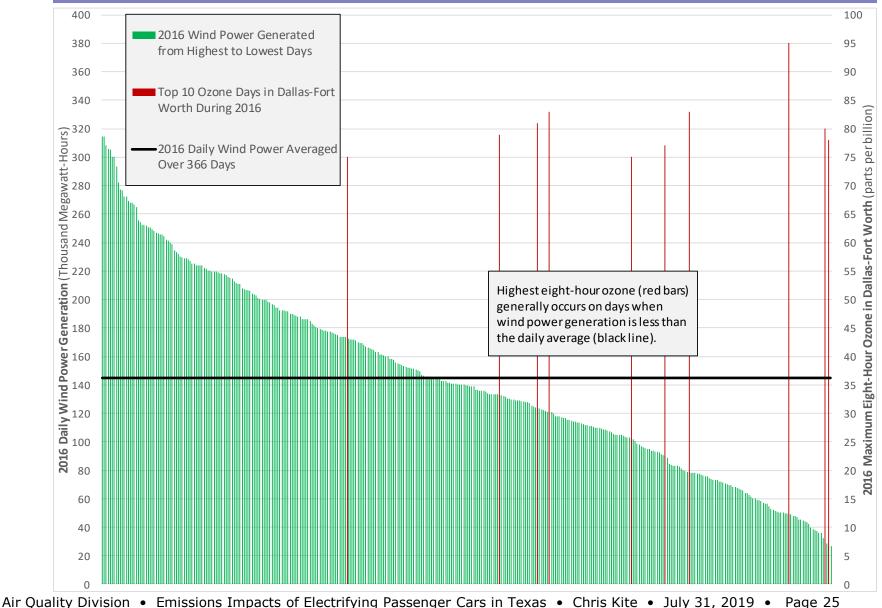
Output Tables for 2017,

2017 Daily Wind Power Generated from May through September with Maximum DFW Area Ozone Levels

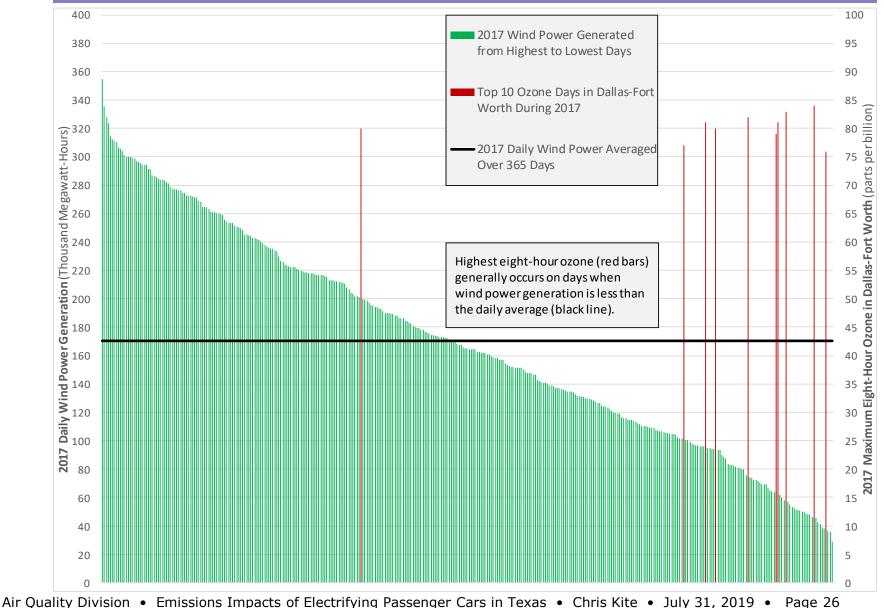

Aggregated Wind Hourly TAMIS, Texas (ERCOT) and TCEQ of Council Reliability Electric Source:

2018,

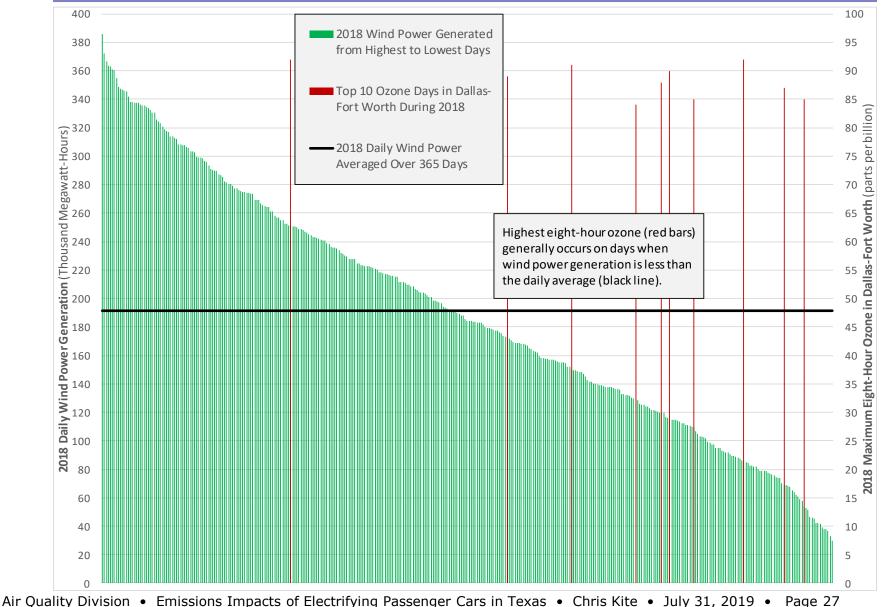
for


2018 Daily Wind Power Generated from May through September with Maximum DFW Area Ozone Levels

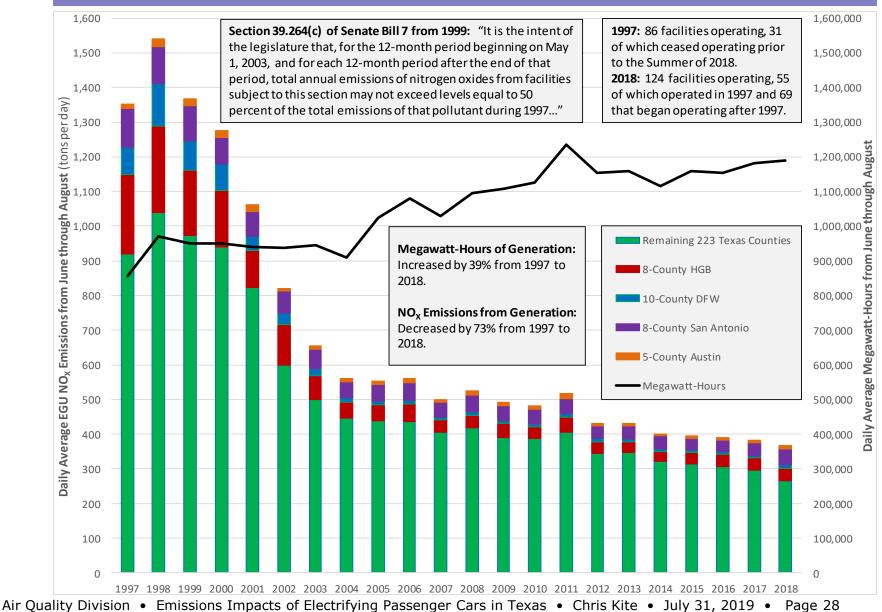
Tables Output Aggregated Wind Hourly TAMIS, Texas (ERCOT) and TCEQ of Council Reliability Electric Source:



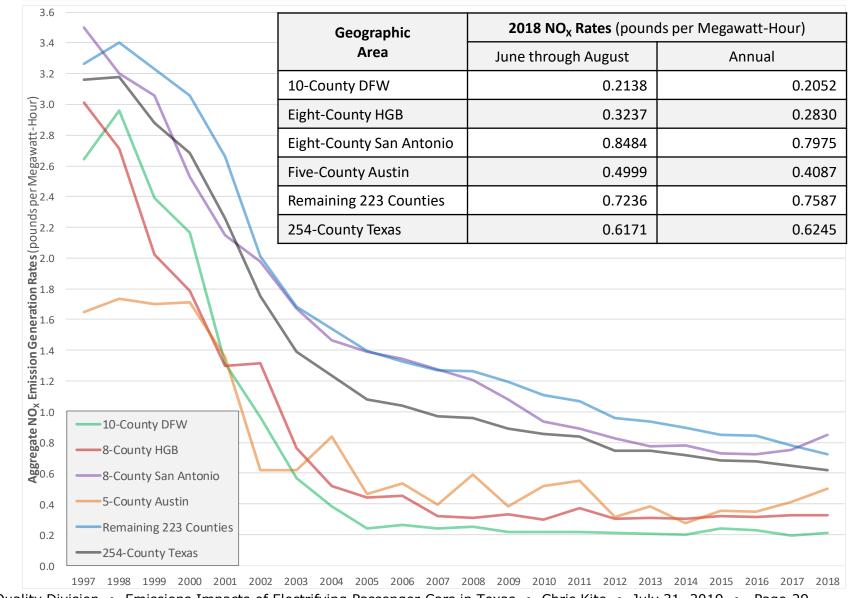
2016 Highest to Lowest Texas Wind Power Days Correlated with Top 10 Ozone Days in DFW


2017 Highest to Lowest Texas Wind Power Days Correlated with Top 10 Ozone Days in DFW

Aggregated Wind Output Tables for 2017, /qoto/ta d H H Hourly , TAMIS, Texas (ERCOT) and TCEQ com/gridinfo/generation, of Electric Reliability Council ≷ Source: http://


2018 Highest to Lowest Texas Wind Power Days Correlated with Top 10 Ozone Days in DFW

for 2018, goto **Output Tables** Aggregated Wind Hourly TAMIS, Texas (ERCOT) and TCEQ eration, of Council õ com/gridinfo/ Reliability Electric Source:



Texas Summer EGU NO_x Emission Trends from Fossil Fuel Plants from 1997 through 2018

Texas Summer EGU NO_x Emission Rates from Fossil Fuel Plants from 1997 through 2018

Comparison of EPA and TCEQ Modeled Ozone Benefits for Tier 3 and Low Sulfur Gasoline

- EPA performed nationwide air quality modeling in support of the rule for Tier 3 standards and 10 parts per million (ppm) sulfur gasoline.
 - Air Quality Modeling Technical Support Document: Tier 3 Motor Vehicle Emission and Standards, February 2014, EPA-454/R-14-002, is available at <u>https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100HX23.TXT</u>.
 - Appendix B includes benefits for select U.S. counties.
- EPA's modeled ozone benefits for 2018 in DFW area counties range from 0.46 0.92 parts per billion (ppb).
- The TCEQ modeled ozone benefits for 2018 at DFW area monitors range from 0.39
 0.80 ppb based on the following on-road emission reductions:

Geographic	2018 Summer Weekday On-Road Emission Reductions (tons per day) Use of Proposed 10 ppm Sulfur Gasoline for In-Use Fleet					
Area	NO _X	voc	со			
10-County DFW	9.98	2.39	13.25			
Eight-County Houston-Galveston-Brazoria (HGB)	9.21	2.25	12.66			
236 Remaining Texas Counties	26.97	5.52	27.74			
Texas Total (254 Counties)	46.16	10.16	53.65			
Non-Texas Continental U.S. (2,856 Counties)	698.57	126.58	873.91			
Grand Total	744.73	136.74	927.56			

Scenario: Electrifying Newest to Oldest DFW Area Gasoline Passenger Cars in 2023

Model Year Range	Number of Vehicles Electrified	On-Road NO_x Reduced (tons per day)	Megawatt- Hours Needed	EGU NO _x Generated (tons per day)	Gasoline Fuel Saved (gallons)	Tanker Truck Trips Avoided	Tanker Truck Miles Saved	Tanker Truck NO _x Reduced (tons per day)
2023 to 2020	891,988	1.00	16,329	1.75	1,194,575	133	5,309	0.0111
2023 to 2014	2,391,299	5.00	40,643	4.34	3,403,679	378	15,127	0.0317
2023 to 2007	3,547,573	10.00	55,995	5.99	5,173,710	575	22,994	0.0482
2023 to 1994	3,931,672	15.00	59,821	6.39	5,646,345	627	25,095	0.0526
All Vehicles	3,969,897	17.33	60,098	6.42	5,679,633	631	25,243	0.0529

- This scenario is premised on a program that focuses priority for electrification on the newest passenger cars in the fleet.
- Since the newest passenger cars have the lowest NO_X emission rates, many of them (e.g., 891,988) need to be electrified by 2023 to achieve 1 ton per day (tpd) of NO_X reduction.
- Since the new car emission rates are so low, more EGU NO_{χ} (1.75 tpd) would be generated than reduced from the roadway network.
- Other scenarios are shown to see the number of passenger cars that would require electrification (from newest to oldest) to achieve 5, 10, and 15 tpd of NO_X reduction; corresponding EGU NO_X generation totals are shown.
- If all 4 million passenger cars projected to be operating in DFW during 2023 are electrified, then a total of 17.33 tpd of NO_X reduction would be achieved with a 6.42 NO_X tpd increase from EGUs.
- Under this "newest to oldest" electrification scenario, the newer vehicles will remain in the fleet for many years, so the overall electrification benefit has a long duration.

Scenario: Electrifying Oldest to Newest DFW Area Gasoline Passenger Cars in 2023

Model Year Range	Number of Vehicles Electrified	On-Road NO_x Reduced (tons per day)	Megawatt- Hours Needed	EGU NO _x Generated (tons per day)	Gasoline Fuel Saved (gallons)	Tanker Truck Trips Avoided	Tanker Truck Miles Saved	Tanker Truck NO _x Reduced (tons per day)
1993-and- Older	16,371	1.00	119	0.01	14,248	2	63	0.0001
1993 to 2002	115,698	5.00	910	0.10	110,789	12	492	0.0010
1993 to 2011	1,025,449	10.00	11,639	1.24	1,418,149	158	6,303	0.0132
1993 to 2017	2,373,766	15.00	31,814	3.40	3,481,562	387	15,474	0.0324
All Vehicles	3,969,897	17.33	60,098	6.42	5,679,633	631	25,243	0.0529

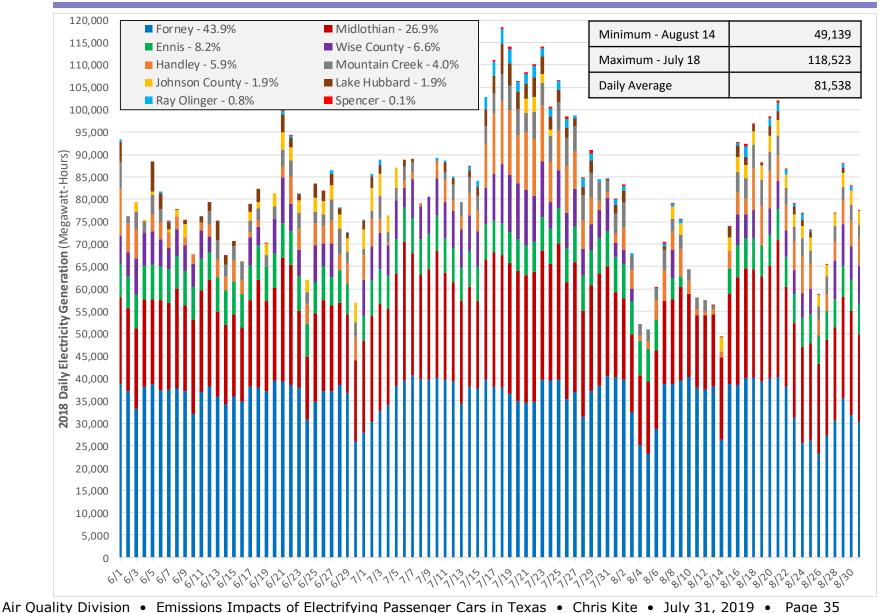
- This scenario is premised on a program that focuses priority for electrification on the oldest passenger cars in the fleet.
- Since the oldest passenger cars have the highest NO_x emission rates, fewer of them (e.g., 16,371) need to be electrified by 2023 to achieve 1 tpd of NO_x reduction.
- Since a smaller number of cars need electrification under this scenario, only 0.01 NO_x tpd is generated from EGUs to power these vehicles for the 1 NO_x tpd scenario of on-road reduction.
- Other scenarios are shown to see the number of passenger cars that would require electrification (from oldest to newest) to achieve 5, 10, and 15 tpd of NO_X reduction; corresponding EGU NO_X generation totals are shown.
- If all 4 million passenger cars projected to be operating in DFW during 2023 are electrified, then a total of 17.33 tpd of NO_X reduction would be achieved with a 6.42 NO_X tpd increase from EGUs.
- Under this "oldest to newest" electrification scenario, the older vehicles would soon be retiring from the fleet through attrition, so the overall electrification benefit has a short duration.

Scenario: Electrifying Weighted Average DFW Area Gasoline Passenger Cars in 2023

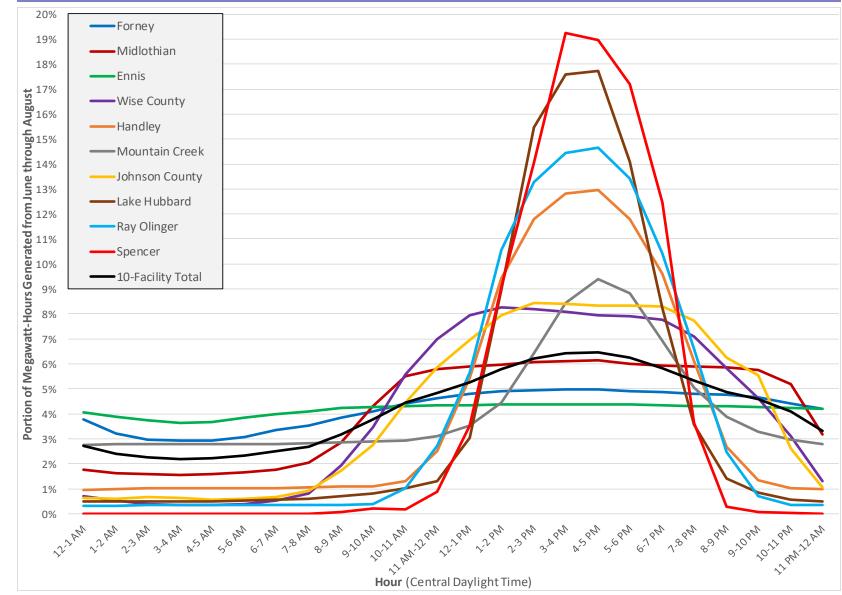
Model Year Range	Number of Vehicles Electrified	On-Road NO_x Reduced (tons per day)	Megawatt- Hours Needed	EGU NO _x Generated (tons per day)	Gasoline Fuel Saved (gallons)	Tanker Truck Trips Avoided	Tanker Truck Miles Saved	Tanker Truck NO _x Reduced (tons per day)
Fleet Average	229,064	1.00	3,468	0.37	327,716	36	1,457	0.0031
Across 1993 to 2023	1,145,318	5.00	17,338	1.85	1,638,578	182	7,283	0.0153
Model Years	2,290,636	10.00	34,677	3.71	3,277,156	364	14,565	0.0305
- No	3,435,954	15.00	52,015	5.56	4,915,733	546	21,848	0.0458
Specific Age Preference	3,969,897	17.33	60,098	6.42	5,679,633	631	25,243	0.0529

• This scenario is premised on a program that does not focus priority for electrification on either the newest or the oldest passenger cars in the fleet.

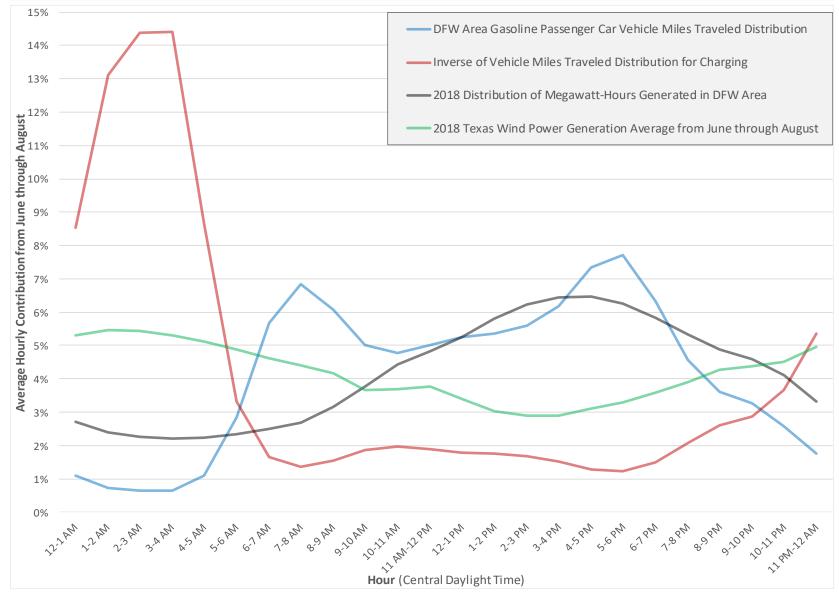
- For a weighted average passenger car (across all operating model years) in 2023, 229,064 need to be electrified by 2023 to achieve 1 tpd of NO_X reduction.
- 0.37 NO_X tpd is generated from EGUs to power these 229,064 vehicles for the 1 NO_X tpd scenario of on-road reduction.
- Other scenarios are shown to see the number of passenger cars that would require electrification to achieve 5, 10, and 15 tpd of NO_x reduction; corresponding EGU NO_x generation totals are shown.
- If all 4 million passenger cars projected to be operating in DFW during 2023 are electrified, then a total of 17.33 tpd of NO_X reduction would be achieved with a 6.42 NO_X tpd increase from EGUs.


Modeling Ozone Reduction Scenarios for Vehicle Electrification

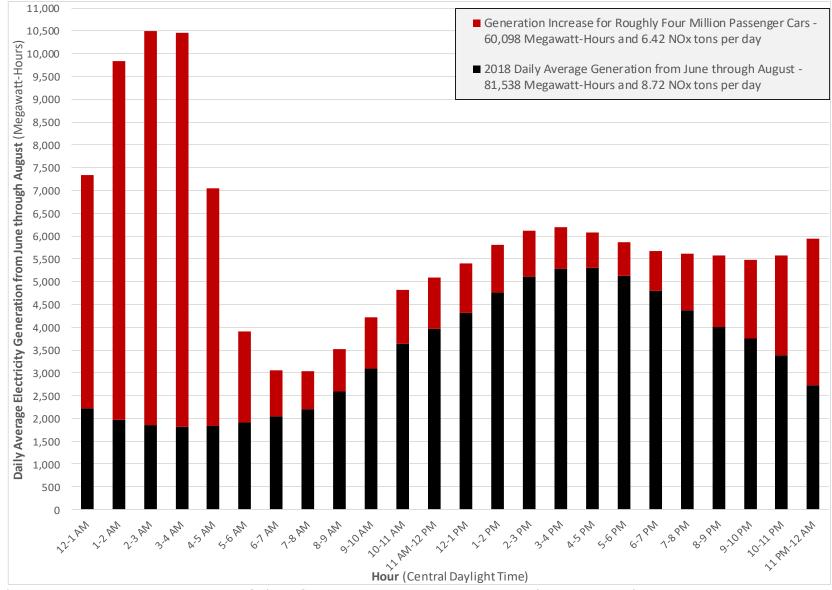
- Select a future year for which ozone modeling files are (or will be) available:
 - 2020 currently under development for DFW and HGB ozone attainment modeling;
 - 2023 currently available at 12 kilometer (km) resolution for ozone transport modeling; and
 - 2028 currently under development for regional haze modeling.
- Select a Texas metropolitan area for focus (e.g, DFW, HGB) or the entire state?
- Vehicle questions/issues to consider for modeling:
 - Vehicle category(ies) for electrification such as passenger cars, school buses, local transit buses, etc.
 - Portion of the fleet for electrification, such as 25%, 50%, 75%, 100%, etc.?
 - Targeting of candidate vehicles by age, such as oldest high-emitters, newest low-emitters, etc.?
- Modeling a completely unrealistic 100% penetration rate allows an answer along the lines of "Here is the maximum benefit you could achieve if..."
- Electrical generation questions/issues to consider for modeling:
 - Unless and until zero-NO_x electricity sources (e.g., wind, solar, nuclear) dominate the Texas grid, most of the *increased* generation needed to charge electric vehicles *during high ozone periods* is likely to come from natural gas and/or coal plants.
 - Should the increased power generated to charge the electric vehicles come from the metropolitan area?
 So DFW cars are powered by DFW EGUs, HGB cars are powered by HGB EGUs, etc.?
 - Should the increased power generated be allocated proportionally based on current EGU operation? So
 the Forney plant that provides 44% of current DFW power is allocated 44% of the increase?
 - Transmission/distribution losses increase with distance between the electricity source and vehicle being charged.
 - Should the temporal profile of increased power generation be the inverse of hourly vehicle miles traveled? This approach allocates most of the increased generation to occur overnight.


at

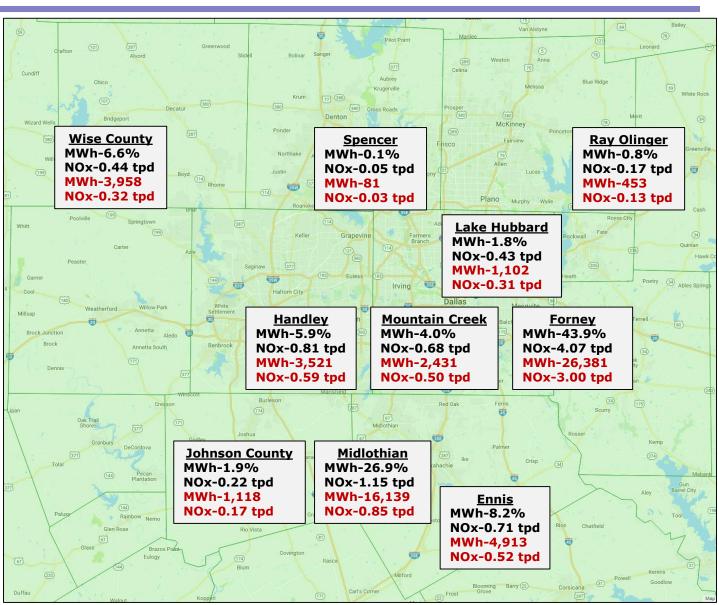
Daily Electricity Generated by DFW Area EGU Facilities from June through August 2018



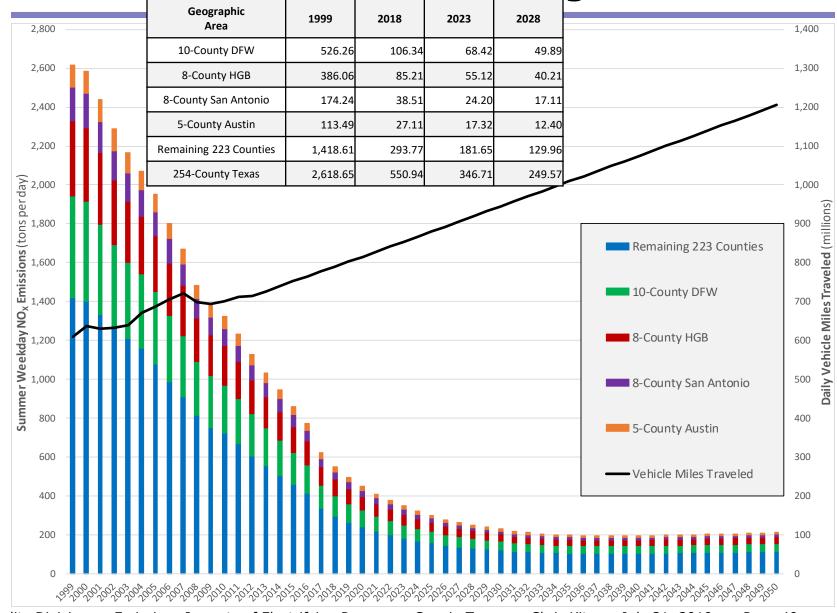
Hourly Electrical Generation Profiles by DFW Area EGU Facilities from June through August 2018



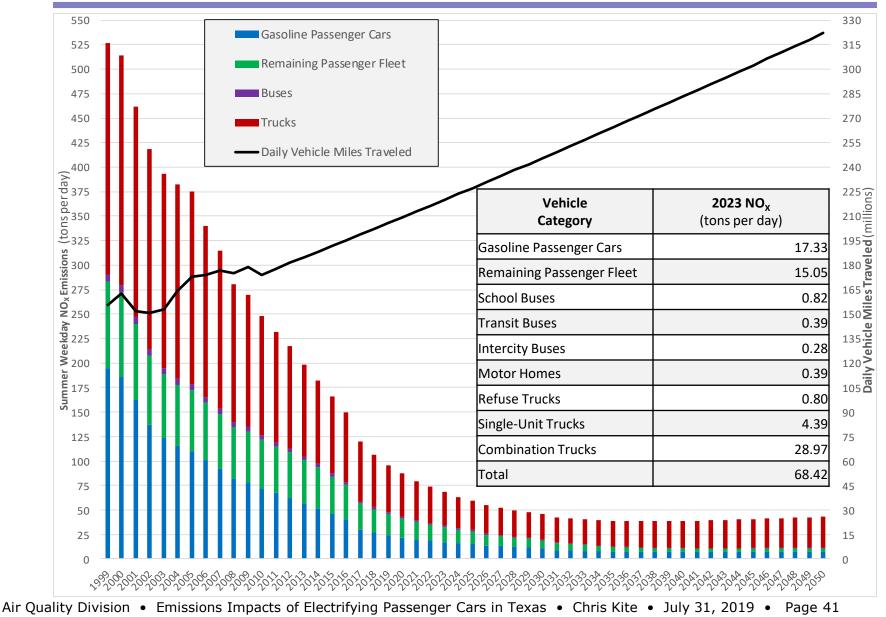
Hourly Profiles for Passenger Car Activity and Electricity Generation

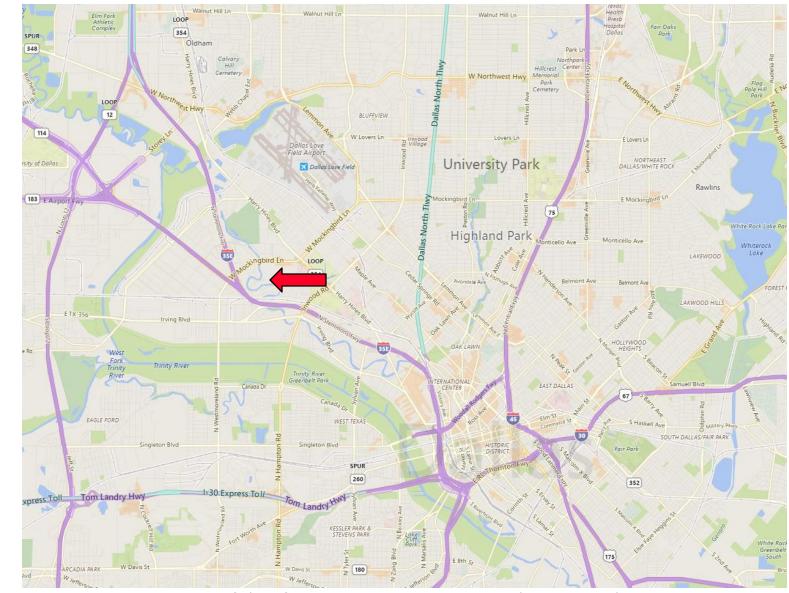

Temporal Distribution of Increased Electricity Generation for Passenger Cars

DFW Spatial Distribution of EGU NO_X from Electricity Generation for Passenger Cars

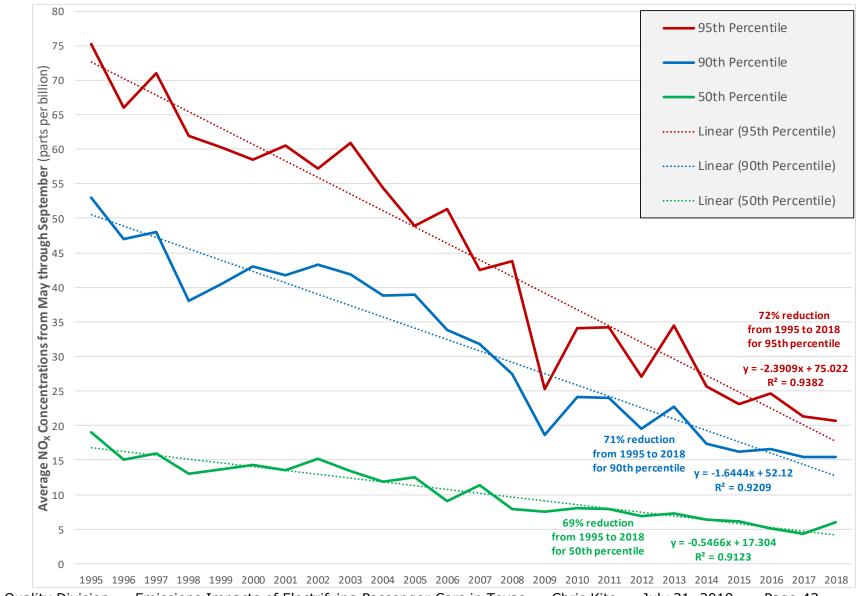

- MWh percentages in black reflect distribution of DFW power generated in June through August of 2018.
- NO_x emissions in black are daily average values from June through August of 2018.
- MWh values in red are the 60,098 MWh needed to power electric cars allocated based on generation distribution from June through August of 2018.
- NO_x emissions in red are the additional amounts needed per EGU to generate power for electric cars totaling 6.42 NO_x tpd.

ഹ്


Texas On-Road NO_x Emission Trends from 1999 through 2050

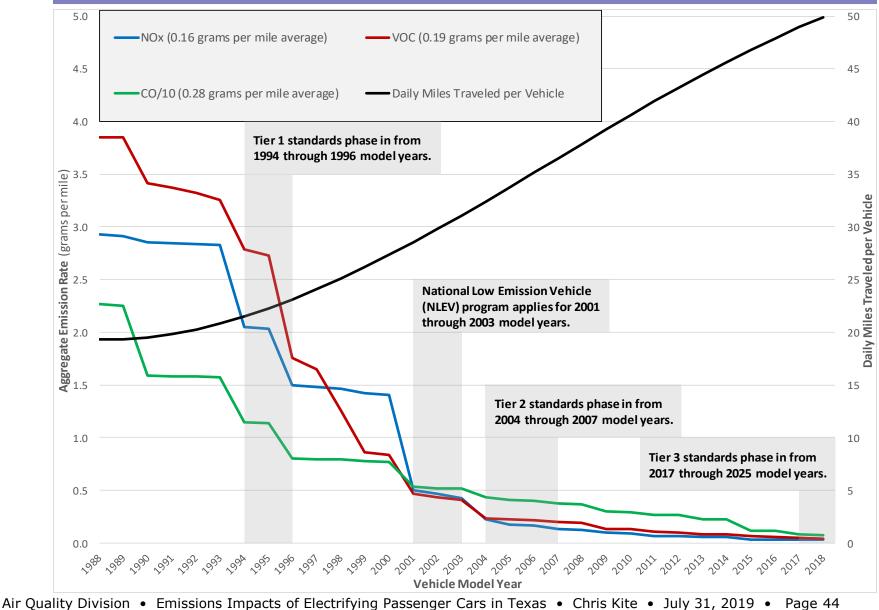

Ъ,

10-County DFW On-Road NO_x Emissions by Vehicle Category from 1999 to 2050


Geographic Location of Dallas Hinton Street Monitor

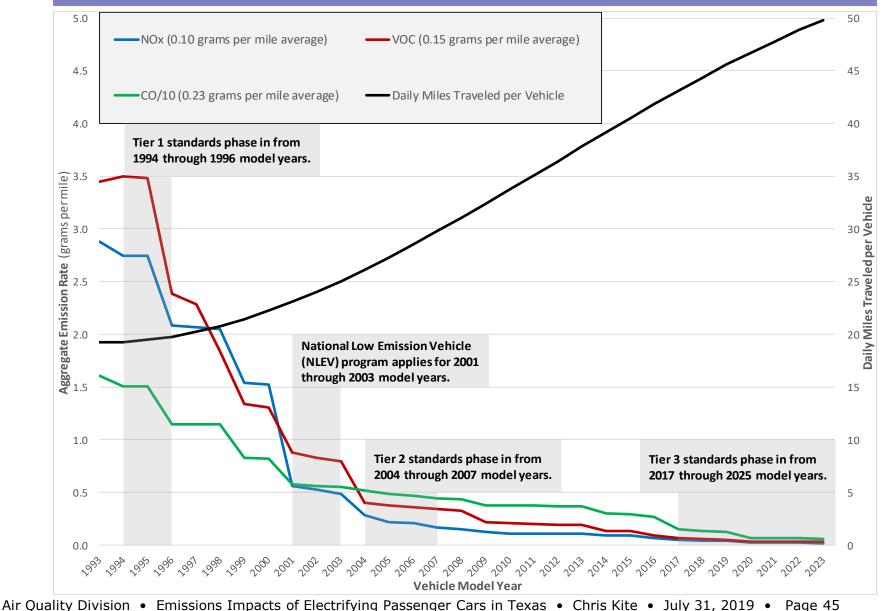
at

Average Monitored NO_X Concentrations at Dallas Hinton Street from 1995 through 2018

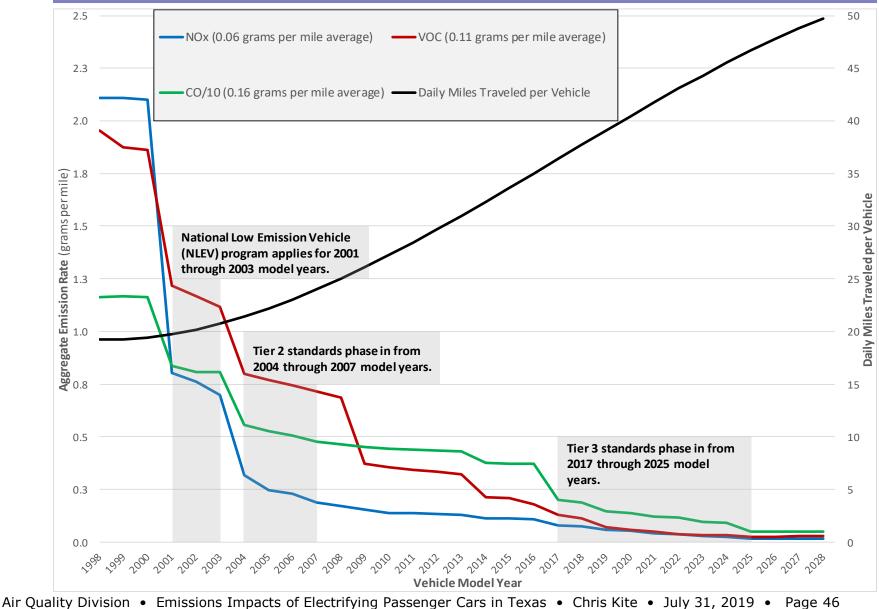


Air Quality Division • Emissions Impacts of Electrifying Passenger Cars in Texas • Chris Kite • July 31, 2019 • Page 43

at



MOVES2014 Emission Rates by Model Year for DFW Gasoline Passenger Cars Operating in 2018


MOVES2014 Emission Rates by Model Year for DFW Gasoline Passenger Cars Operating in 2023

ഹ്

MOVES2014 Emission Rates by Model Year for DFW Gasoline Passenger Cars Operating in 2028

Questions?

Chris Kite Chris.Kite@tceq.texas.gov 512-239-1959

