Towards an AIS-based Marine Emissions Inventory Model

Michael Aldridge ${ }^{1}$, Daniel Bizer-Cox ${ }^{1}$, Jarrod Brown ${ }^{1}$, Sarah Roberts ${ }^{1}$, Isabela Brown ${ }^{2,3}$
7/31/2019
International Emissions Inventory Conference
${ }^{1}$ U.S. EPA, Office of Transportation and Air Quality
${ }^{2}$ ORISE participant at U.S. EPA, OTAQ
${ }^{3}$ Eastern Research Group

Outline

- Project goal and scope
- Emissions inventory equation
- Overview of Automatic Identification System (AIS) data
- Model methodology
- AIS data QA
- Model outputs
- Summary

Goal and scope

Goal:

Develop a method for estimating commercial marine vessel emissions at a high spatial/temporal resolution, using AIS data

Scope:

- Use 2017 AIS data to generate inputs for the 2017 National Emissions Inventory
- Initially limit to Category 3 (C3) vessels
- Vessels with engine cylinders > 30 L

General emissions inventory equation

Automatic Identification System (AIS)

- Vessel locating system using radio transponders on ships
- Designed as a safety protocol for collision avoidance, navigational aid, search and rescue
- Messages include Ship ID, position, speed, and ship dimensions
- Internationally mandated on ships greater than 300 GT.

http://www.navcen.uscg.gov

Contents of an AIS message

Static Fields
- MMSI \#
- IMO \#
- Name
- Draft
- Ship Type (limited detail)
- Overall dimension

Dynamic fields

- Timestamp
- Longitude
- Latitude
- Speed Over Ground
- Course Over Ground
- Heading

Ship registry data

Data sources: Lloyds registry, Clarksons

- 503,216 unique vessels (100,991 C3)

Provides ship details not contained in dynamic AIS messages:

- Length, width, maximum draft
- Engine bore and stroke
- Propulsive engine power
- Auxiliary engine power
- Vessel service speed

Modeling main engine power

Holtrop-Mennen model*:

$$
P=\frac{\rho \cdot C(v, D) \cdot S(D) \cdot v^{3}}{2 \eta}
$$

- Models hull resistance at speed using estimated vessel shape and surface area

$$
P=\text { Power }
$$

$$
\mathrm{V}=\text { speed }
$$

$$
\mathrm{D}=\mathrm{draft}
$$

$\rho=$ seawater density
$\mathrm{C}=$ hull resistance coef.
$S=$ hull wetted surface area
η = engine efficiency

C3 emission factors

C3 Emission factors were updated using the following sources:

- Buhaug, O., et al. (2009). Second IMO GHG Study 2009. London: International Maritime Organization.
- Cooper, D., and Gustafsson, T. (2004). Methodology for Calculating Emissions from Ships: 1. Update of Emission Factors. Norrköping: IVL (Swedish Environmental Research Institute).
- ENTEC (2002). Quantification of Emissions from Ships Associated with Ship Movements Between Ports in the European Community, Chapter 2. UK: European Commission.
- IMO (2012). 2012 Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships. MEPC 63/23, annex 8.
- IMO (2015). Third IMO Greenhouse Gas Study 2014: Executive Summary and Final Report. London: International Maritime Organization.
- Kristensen H. O. (2012). Energy Demand and Exhaust Gas Emissions of Marine Engines. Project No. 2010-56, Emissionsbeslutningsstottesystem, Work Package 2, Report No. 05.
- Starcrest Consulting Group, LLC (2015). Port of Long Beach Air Emissions Inventory—2014.
- Wärtsila (2014). Solutions for Marine and Oil and Gas Markets

Model Flow (Category 3 vessels)

AIS Handling Library Ship Power Library Ship Emissions Library

AIS Data Ship Registry Data

AIS Data Formatting
AIS Data Cleaning
Flag for ECA vs. Non-ECA

Vessel Characteristics Assignment

- Ship Category
- Engine Type \& Tier
- Ship Type \& Sub Type

Emissions $=$ Time From Previous Message \times Engine Load (kW) x Emission Factor(g/kWh) x Low Load Adj.

- Remove emissions allocated to transits out of region(s) of interest
- Aggregate emissions by shapefile or raster as a heatmap

AIS data source

- AIS Data requested from US Coast Guard NAIS data set:
https://www.navcen.uscg.gov/?pageName= NAISmain
- 5 minute intervals
- Request broken into regions due to file size constraints
- As received from USCG:
- 480 csv files (158 GB)
- ~1.3×10 ${ }^{9}$ total records

AIS data cleaning

As received, our AIS data has many records that are invalid for emissions estimates:

- Fishing buoys and pleasure craft contribute a huge proportion of vessel IDs and messages
- Messages with duplicate timestamps and different locations
- Transponder errors can make ships appear to be on land
- Reported ship speeds > 1000 mph

Final Dataset:

- 13.2% of original AIS dataset retained
- $\quad 98.9 \%$ of C3 observations with valid IDs retained

Identify and Remove Unusable AIS Data

Vessels without Valid ID

Remove Unreported Speeds

Temporal gap filling

- In the model, emissions are allocated to AIS points (rather than lines)
- Each point should represent a similar time-span, but as received data has time gaps
- Missing points skew the spatial distribution of calculated emissions
- Temporal gap filling corrects these issues

2017 C3 AIS activity data

- 11,248 vessels
- 1.3×10^{8} records
- 1.7×10^{7} hours of activity

Vessel speed distributions

Vessel draft distributions

- Bulk goods (dry and liquid) are often only shipped oneway resulting in bi-modal draft distributions
- Cruise ships stand out
because their draft rarely changes
 draft distributions

Type

- bulk.carrier
- container.ship
- cruise
- offshore
- ro.ro
- tanker

2017 modeled C3 vessel emissions

Ship Type	Activity (kWh)	Hydrocarbons (tons)	CO_{2} (tons)	$\mathrm{NO}_{\mathbf{x}}$ (tons)	SO_{2} (tons)	PM 2.5 (tons)	PM 10 (tons)
Container	$1.43 \mathrm{E}+10$	$1.32 \mathrm{E}+04$	$1.08 \mathrm{E}+07$	$2.51 \mathrm{E}+05$	$8.59 \mathrm{E}+04$	$1.21 \mathrm{E}+04$	$1.31 \mathrm{E}+04$
Tanker	$9.31 \mathrm{E}+09$	$7.44 \mathrm{E}+03$	$7.59 \mathrm{E}+06$	$1.28 \mathrm{E}+05$	$2.73 \mathrm{E}+04$	$4.50 \mathrm{E}+03$	$4.89 \mathrm{E}+03$
Bulk Carrier	$7.49 \mathrm{E}+09$	$6.29 \mathrm{E}+03$	$5.58 \mathrm{E}+06$	$1.23 \mathrm{E}+05$	$4.33 \mathrm{E}+04$	$6.11 \mathrm{E}+03$	$6.65 \mathrm{E}+03$
Passenger	$3.84 \mathrm{E}+09$	$1.78 \mathrm{E}+03$	$2.97 \mathrm{E}+06$	$4.51 \mathrm{E}+04$	$4.84 \mathrm{E}+03$	$1.05 \mathrm{E}+03$	$1.14 \mathrm{E}+03$
RoRo	$3.34 \mathrm{E}+09$	$2.37 \mathrm{E}+03$	$2.58 \mathrm{E}+06$	$5.09 \mathrm{E}+04$	$1.30 \mathrm{E}+04$	$1.93 \mathrm{E}+03$	$2.10 \mathrm{E}+03$
Offshore	$9.62 \mathrm{E}+08$	$1.19 \mathrm{E}+03$	$7.48 \mathrm{E}+05$	$1.77 \mathrm{E}+04$	$2.75 \mathrm{E}+03$	$5.04 \mathrm{E}+02$	$5.48 \mathrm{E}+02$
Miscellaneous	$6.85 \mathrm{E}+08$	$5.79 \mathrm{E}+02$	$5.16 \mathrm{E}+05$	$1.11 \mathrm{E}+04$	$2.84 \mathrm{E}+03$	$4.35 \mathrm{E}+02$	$4.73 \mathrm{E}+02$
Reefers	$4.20 \mathrm{E}+08$	$2.76 \mathrm{E}+02$	$3.17 \mathrm{E}+05$	$6.96 \mathrm{E}+03$	$3.27 \mathrm{E}+03$	$4.35 \mathrm{E}+02$	$4.73 \mathrm{E}+02$
General Cargo	$2.01 \mathrm{E}+08$	$1.78 \mathrm{E}+02$	$1.66 \mathrm{E}+05$	$2.86 \mathrm{E}+03$	$4.01 \mathrm{E}+02$	$7.85 \mathrm{E}+01$	$8.53 \mathrm{E}+01$
Service Vessels	$5.46 \mathrm{E}+06$	$2.41 \mathrm{E}+00$	$4.18 \mathrm{E}+03$	$6.07 \mathrm{E}+01$	$3.06 \mathrm{E}+00$	$1.10 \mathrm{E}+00$	$1.19 \mathrm{E}+00$
Total	$4.05 \mathrm{E}+10$	$3.33 \mathrm{E}+04$	3.12E+07	$6.36 \mathrm{E}+05$	$1.84 \mathrm{E}+05$	$2.71 \mathrm{E}+04$	$2.95 \mathrm{E}+04$
ECA\%	64.95\%	70.95\%	67.77\%	60.69\%	7.04\%	21.82\%	21.82\%

Vessel energy consumption

Vessel energy consumption

National Emissions SO_{2}

The model assumes fuel switching at the ECA boundary defined by the shape in red.

This causes the observed 10X increase in emissions outside of the shapefile boundary

Time-resolved emissions

Animation of 2017 SO2 Emissions from Cruise Ships $\geq 100,000$ GT (1frame/day)

Summary

New emissions model framework using AIS data as an input

- AIS data allows the use of more refined propulsion power modeling
- Geospatial approach allows more precise modeling of ECA emissions
- Maintains high spatial and temporal resolution in output
- Requires significant data processing

Questions?

