

Development of the 2016 Nationwide Oil and Gas Emissions Inventory: Data Collection, Emissions Estimation, and Spatial, Speciation, and Temporal Modeling Surrogates

Regi Oommen Eastern Research Group, Inc. (ERG)

July 31, 2019
2019 Emission Inventory Conference
Dallas, TX

Acknowledgments

- EPA
 - Alison Eyth
 - Jennifer Snyder
 - Madeleine Strum
 - Jeff Vukovich
- ERG
 - Lindsay Dayton
 - Bebhinn Do
 - Heather Perez
 - Mike Pring
- EPA Contract No. EP-D-14-030, Delivery Order 00-57

Overview of the Presentation

- Introduction/Background Information
- Project Goals
- Data Sources
- Project Tasks
- Notes

Introduction/ Background Information

- Oil and gas exploration and production sources can vary significantly by year
- Typically, oil and gas emissions are annual county-level estimates (some states provide point source emissions)
 - For air quality modeling, these county-level estimates need to be allocated to grid cells that are often smaller than a county
 - Additionally, annual emissions need to be temporally allocated to hourly values for air quality modeling

Project Goals

- Develop a special year 2016 nationwide oil and gas emissions inventory
- Develop year 2016 gridded spatial allocation factors for oil and gas sources
 - Develop 2-km and 4-km shapefiles
 - Develop 4-km spatial surrogate files for 23 surrogates
 - Update hierarchy for gap-filling of spatial surrogates
- Develop monthly temporal profiles for year 2016
- Develop hazardous air pollutant (HAP) Augmentation profiles for year 2016
- Update Speciation Cross References for year 2016

Data Sources

- Drilling Info (DI) Desktop
 - 3rd-party vendor compiling oil and gas data from state databases
 - ➤ In accordance with the EPA's licensing agreement, welllevel data is proprietary, but derived products, such as aggregation at the county level, are acceptable for public dissemination and use in the Tool.
 - Provides data in a standardized format for individual well locations, production information, drilling information, and well completion information
 - Most states were updated through 2016

Data Sources

States

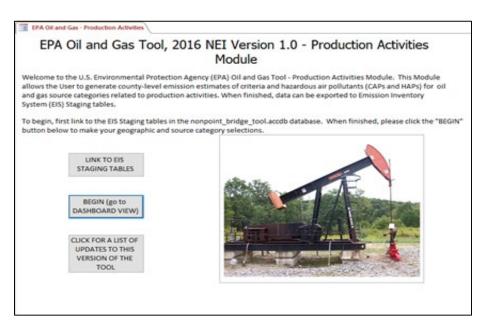
- Illinois, Kansas, Pennsylvania, Texas, and West Virginia
- Mostly production data, some exploration data and basin factor updates
- Oil and Gas Commission Websites
 - Alaska, Arizona, Idaho, Illinois, Indiana, Kansas, Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri, Nevada, New York, Oregon, Pennsylvania, and Tennessee
 - Information retrieved varied, but included well locations, production data, and exploration data

Data Sources

- RigData Used by permission
 - State-level feet drilled allocated to the county-level using county proportion of spuds to the state totals of spuds
- Energy Information Agency (EIA)
 - State-level production for: Illinois and Tennessee
 - Allocated to counties using county proportion of active wells to state totals.

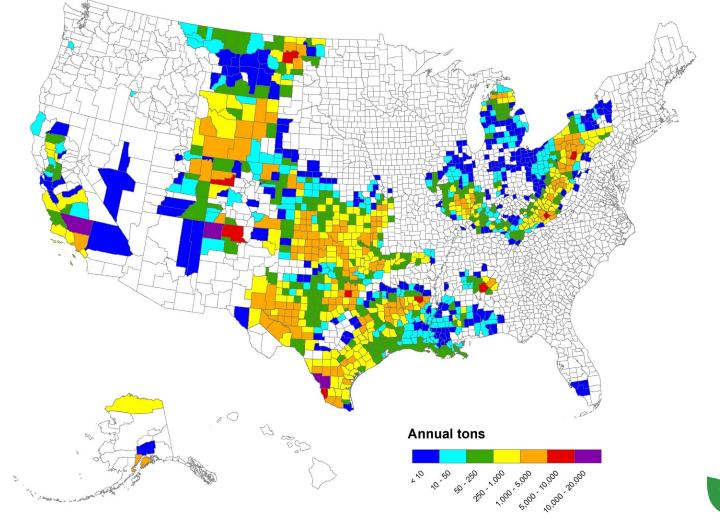
Data Attributes Compiled

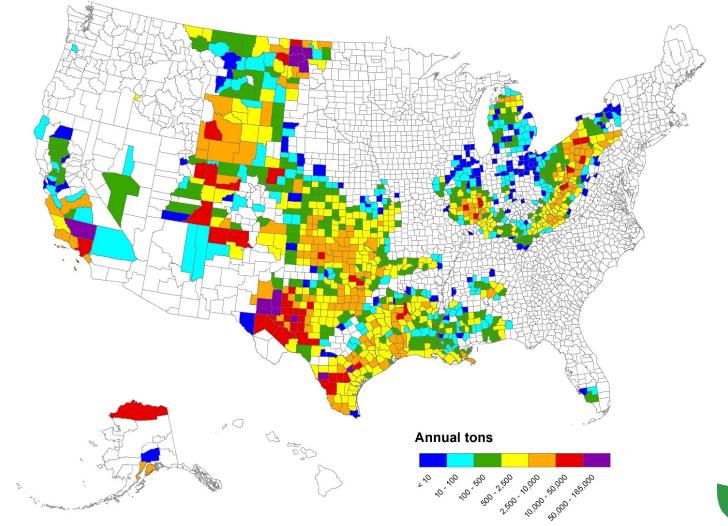
Associated Gas Production	Condensate Production – Gas Wells	Spud Counts – CBM Wells*
Coalbed Methane (CBM) Production*	Feet Drilled	Spud Counts – Gas Wells
CBM Well Counts*	Natural Gas Production	Spud Counts – Oil Wells
Completions – All Wells	Natural Gas Well Counts	Total Exploratory Wells
Completions – CBM Wells*	Oil Production	Total Production Wells
Completions – Gas Wells	Oil Well Counts	Total Wells
Completions – Oil Wells	Produced Water – All Wells	Unconventional Well Completions*
Condensate Production – CBM Wells*	Spud Counts – All Wells	


^{* =} No CBM wells or hydraulically-fractured wells in Alaska

Estimating 2016 Emissions

- Summed data attributes to the county level and entered into the 2014 Oil and Gas Estimation (O&G) Tool:
 - Production and Exploration Modules modified to 2016




Year 2016 Oil and Natural Gas Emissions - NO_x

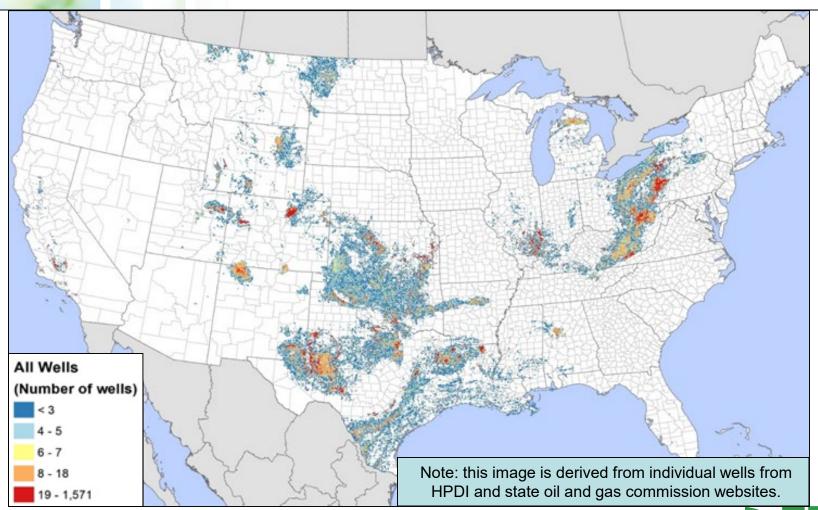
Year 2016 Oil and Natural Gas Emissions - VOC

Data Summary

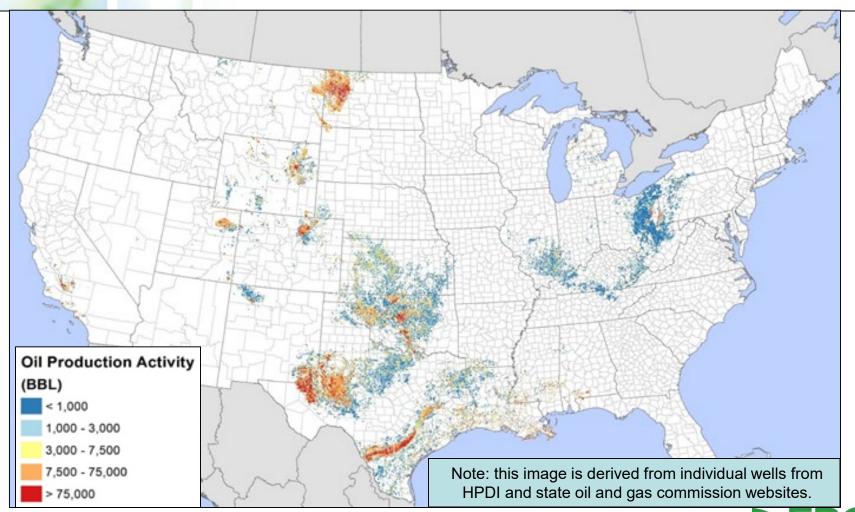
• For the 2016 Oil and Gas Tool, over one million oil, gas, and CBM wells compiled into an Access ® database.

Coverage:

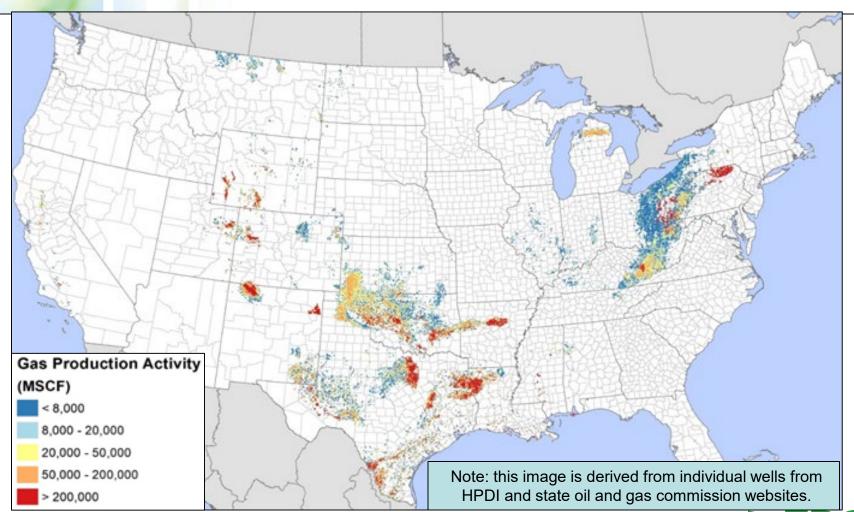
- 34 states (same as 2014 Tool)
- 1,150 counties
 - > 2014 NEI: 1,158 counties


Developing Spatial Surrogates

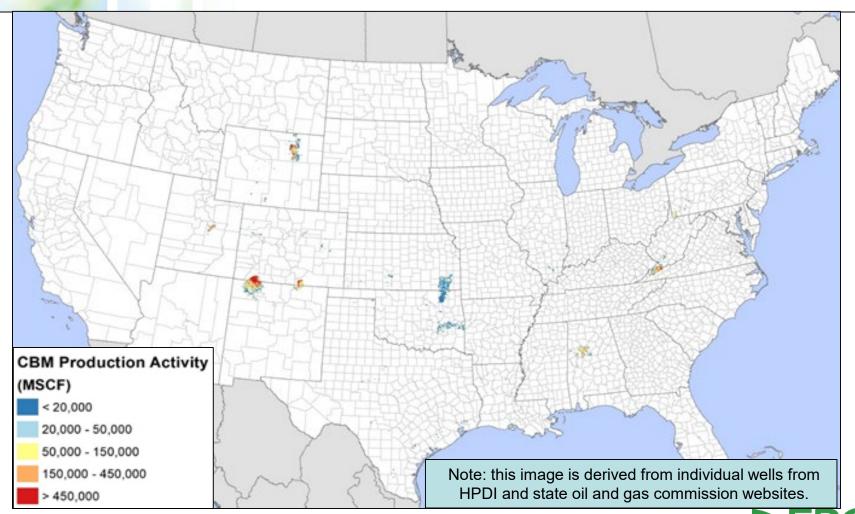
- Assigned each well and corresponding data attribute to both 2-km and 4-km grid cells
- By default, each well and attribute summed to the 2-km grid cell.
 - If less than 3 wells were in the 2-km grid cell, then the wells were summed to a 4-km grid cell to preserve the proprietary data resolution.
- Merged together data using 2-km cells with the coarser on 4-km grid cells



Oil, Gas, and CBM Wells - 2016



Oil Production, 2016

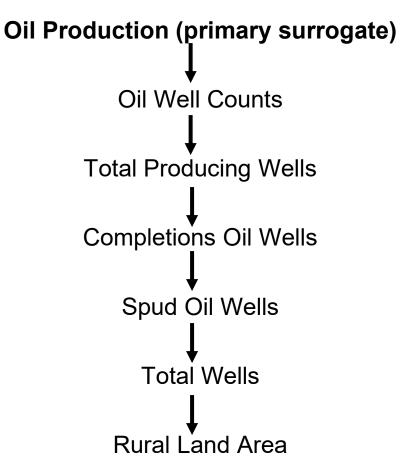


Gas Production, 2016

CBM Production, 2016

Surrogate Development – 4-km files

- Using GIS software, assign wells to 4-km grid cell
- Sum attribute activity data to the 4-km grid cell level
- Used Spatial Allocator¹ to develop federal information processing system (FIPS)-grid cell fractions for each surrogate


¹ Latest Spatial Allocator is posted at: https://www.cmascenter.org/sa-tools/

Each Spatial Surrogate has a Hierarchy for Gap-filling

Gap-filling is used when an attribute is not available in a county – this keeps emissions from being dropped

Monthly Temporal Profile Development

- Developed monthly temporal profiles for 53 O&G source classification codes (SCCs) for all O&G counties.
- The majority of the attribute data is at the monthly level
 - Sum attribute activity data to the monthly timeframe
 - Divide summed monthly activity data by the summed annual activity to calculate monthly temporal factors

FIPS	SCC	J	F	M	Α	M	J	J	Α	S	0	N	D
48113	2310000550	0.13	0.12	0.12	0.10	0.12	0.11	0.09	0.05	0.04	0.04	0.04	0.04

HAP Augmentation

 Using the emissions from the O&G Tool, develop HAP augmentation factors (HAP/VOC) and (HAP/PM10-PRI) based tool emissions ratios*

 Ratios are source and county-specific

Profile Name (200 Chars)	EIS Input Pollutant Code	EIS Output Pollutant Code	Multiplication Factor
ONG_TOOL_01003_2310000550	voc	100414	0.000483217
ONG_TOOL_01003_2310000550	voc	108883	0.000682004
ONG_TOOL_01003_2310000550	voc	1330207	0.000538298
ONG_TOOL_01003_2310000550	voc	71432	0.001850922
ONG_TOOL_01003_2310021010	VOC	100414	0.000608641
ONG_TOOL_01003_2310021010	voc	108883	0.003888618
ONG_TOOL_01003_2310021010	voc	1330207	0.002320454
ONG_TOOL_01003_2310021010	voc	50000	0
ONG_TOOL_01003_2310021010	VOC	71432	0.003091868
ONG_TOOL_01003_2310021400	voc	100414	0.05949311
ONG_TOOL_01003_2310021400	voc	107028	2.82011E-05
ONG_TOOL_01003_2310021400	voc	108883	0.3371329
ONG_TOOL_01003_2310021400	voc	110543	0.002764812
ONG_TOOL_01003_2310021400	voc	1330207	0.3470432
ONG_TOOL_01003_2310021400	VOC	50000	0.000115201
ONG_TOOL_01003_2310021400	voc	71432	0.3371309
ONG_TOOL_01003_2310021400	voc	75070	2.4911E-05
ONG_TOOL_01003_2310021400	voc	91203	9.36964E-07
ONG_TOOL_01003_2310021603	voc	100414	0.000583465
ONG_TOOL_01003_2310021603	voc	108883	3.21691E-05
ONG TOOL 01003 2310021603	VOC	1330207	0.000493859

Update Speciation Cross Reference

- Oil and gas SCCs don't distinguish flared portion of process. For example, SCC 2310021400 (gas well dehydrators) consists of process, reboiler, and/or flaring emissions
 - This SCC may use a combination of three different speciation profiles
 - Reboiler Profile= 0003
 - Flaring Profile = FLR99
 - Venting Profile = 8949 (default), but region-specific profiles are available (e.g., Piceance Basin, Uinta Basin, etc.)
 - O&G Tool generates information on how much VOC is from process, flare and reboiler, by basin.
 - From that output, compute weight fractions by county and SCC profile for speciation assignment file (used for emissions modeling)

Update Speciation Cross Reference (cont.)

- Region-specific profiles (county or basin; 599 records)
 - California
 - > Colorado
 - Montana
 - New Mexico
 - > Texas
 - > Utah
 - > Wyoming

Notes

- For the U.S. National Emissions Inventory, state-submitted emissions are included rather than O&G Tool emissions
- Additional Support: Oklahoma (OK)
 - Provided a list of wells by American Petroleum Institute (API) number that were to be submitted in their point sources submittal
 - Wells were matched, and the corresponding activity data were removed using the point sources subtraction step.
 - OK DEQ submitted point source O&G emissions along with nonpoint emissions from which point source activity had been subtracted

Notes

- Additional Support: Pennsylvania (PA)
 - Provided year 2016 unconventional wells and emissions inventory for select sources
 - Wells were matched by API number, and the corresponding activity data were removed using the point sources subtraction step.
 - EPA prepared county-level emissions for unconventional wells (from PA data) and for conventional wells (from O&G Tool data)

Contacts

Regi Oommen

regi.oommen@erg.com

919-468-7829

Alison Eyth

Eyth.Alison@epa.gov

919-541-2478

Madeleine Strum

Strum.Madeleine@epa.gov

919-541-2383

