Overview of the 2014 National Air Toxic Assessment (NATA)

2019 International Emissions Inventory Conference Dallas, Texas August 2, 2019

McDonald

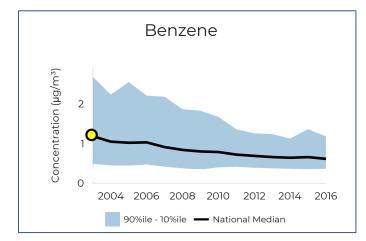
Ted Palma, Madeleine Strum; Darcie Smith, Alison Eyth, Mark Morris, Sharon Phillips,, James Thurman - U.S. EPA Office of Air Quality Planning and Standards Rich Cook - U.S. EPA Office of Transportation and Air Quality Alice Chow - U.S. EPA Region 3 Office Jeff Myers – Wisconsin Department of Natural Resources

2014 NATA

Presentation overview

- Background on NATA
- The 2014 NATA
 - Methods and Limitations
 - Updates
 - Results
- Website and Map App
- 2017 NATA Status
- Questions and Contacts

What is NATA?


McDonald

- EPA's ongoing review of air toxics in the United States
- Uses the best science and emissions data available to estimate health risks from air toxics
- Periodically updated this NATA is the 6th assessment based on the 2014 NEI

14 ΝΑΤΑ

- Screening tool to help determine which pollutants or areas of the country to investigate further
- NATA should <u>not</u> be used:
 - to pinpoint risk or exposure values at a specific place (like a home or school);
 - to characterize or compare risks or exposures at local levels (such as between neighborhoods);
 - as the sole basis for risk reduction plans or regulations; or
 - to control specific sources or pollutants.

National air toxics trends are downward: benzene example

Murr

Eittsburgh


Mt Lebanon

McDonald

Bridge

Our Nation's Air: Status and Trends Through 2017 : Benzene (2003 – 2016)

Benzene Concentration Trend

Portage 2014 NATA

McDonald

- Screening-level estimates of the risk of cancer and other serious health effects from breathing air toxics
- Estimates of annual ambient and exposure concentrations for 180 listed air toxics and diesel particulate matter
 - Diesel particulate matter is only assessed for noncancer effects
- NATA results are reported at the census tract level
- NATA results are provided by pollutant and source
 - Helps show the air toxics and source types that may contribute to health risks in certain places

Limitations

McDonald

- Only outdoor sources via the inhalation route of exposure
- Results are more uncertain at finer geographic scales
 - Surrogates used to allocate mobile and nonpoint source emissions
- Results between different areas are not comparable
 - Underlying emissions data vary in level of detail from state to state
- Results between NATA years are not comparable
 - Emission changes and different modeling/emissions processing techniques lead to changes in results
 - Meteorological data and health values also change over time

14 ΝΑΤΑ

Improvements & Updates

• Inventory (2014 NEI):

McDonald

- Updated spatial allocation for mobile and nonpoint sources
- NEI improvements: oil & gas, onroad, nonroad, commercial marine vessels
- AK, HI, PR, VI better characterized for AERMOD modeling
- New emissions processing tool built for preparing AERMOD emissions
- Photochemical/Dispersion Modeling:
 - In CMAQ: improved boundary conditions and carbon tetrachloride treatment; nine more HAP modeled than for 2011 NATA
 - More spatially refined meteorology using prognostic meteorological modeling

• Exposure Modeling:

- New features of HAPEM 7, including updated population and commuting patterns, activity pattern data, and commuting-related microenvironments
- Risk Characterization: Updated health benchmarks
- Outreach: Updated Map App features and User's Guide

14 ΝΑΤΑ

(Robinson

NATA analytical steps

Murrysville

Eiftsburgh

Mt Lebanon

particulate

matter (DPM).

McDonald

Bridgeville

Compile National Emissions Inventory (2014 NEI)	Estimate ambient concentrations of air toxics across the U.S.	Estimate population exposures	Characterize potential public health risks from inhalation
2014 NEI includes stationary, mobile and natural sources (fires, biogenics). NATA includes 180 air toxics plus diesel	Uses models (CMAQ and AERMOD) to predict census tract ambient concentrations nationwide.	Includes an exposure model (HAPEM7) to account for human activity data, commuting patterns, and near-roadway exposures.	Census tract- level cancer and noncancer risks nationwide.

Source Attribution –Concentrations/Risks by 38 Groups

Blairsville

ONROAD (10)
Light duty gas <mark>on-</mark> network
Light duty diesel <mark>on</mark> -network
Refueling
Light duty gas off-network
Light duty diesel off-network
Heavy duty gas <mark>on</mark> -network
Heavy duty diesel on-network
Heavy duty gas off-network
Heavy duty diesel off-network
Heavy duty diesel hoteling

Murrysville

Pittsburgh

Mt Lebanon

Bridgeville

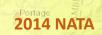
McDonald

NONROAD (13)
-----------	-----

Recreational-inc-pleasure craft
Construction
Commercial Lawn & Garden
Residential Lawn & Garden
Agricultural Equipment
Commercial Equipment
All Other Nonroad Equipment
Commercial Marine Vessels-Ports-c1/c2
Commercial Marine Vessels-Ports-c3
Commercial Marine Vessels-Underway
Locomotives
Airports (point)
Railyards (point)

NONPOINT STATIONARY (10)
Oil & Gas
Residential Wood Combustion
Miscellaneous Nonindustrial
Commercial Cooking
Solvents and Coatings
Storage and Transfer, Bulk Terminals, Stage1
Fuel Combustion except residential wood
Industrial
Waste Disposal
Agricultural livestock

	POINT	(1)


Stationary point

(4)

OTHER Fires -primary* Biogenics - primary * Secondary formation (includes all sources) Background * Only modeled in CMAQ

9

Portage 2014 NATA

NATA General Approach to Spatial Allocation

Murrysville

Eittsburgh

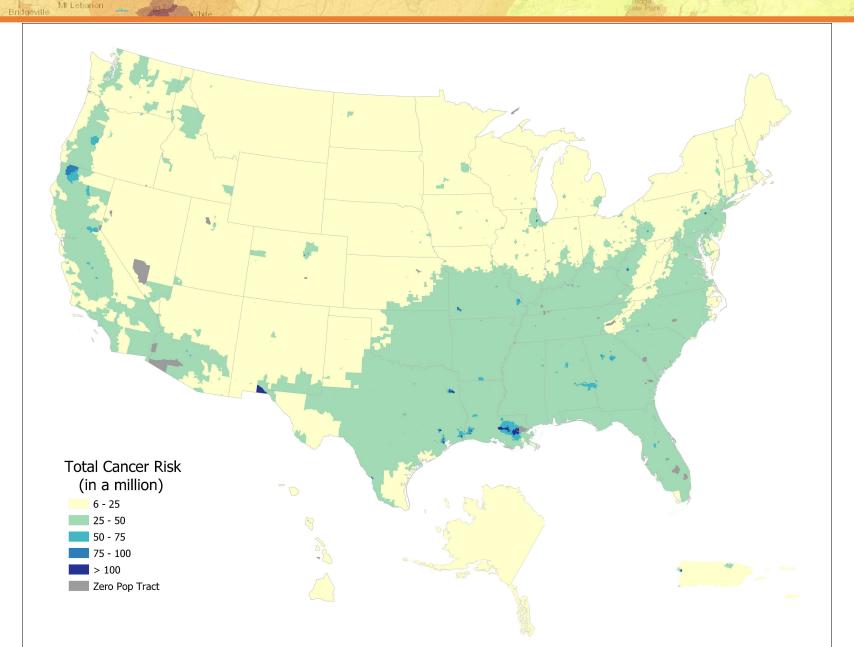
Mt Lebanon

McDonald

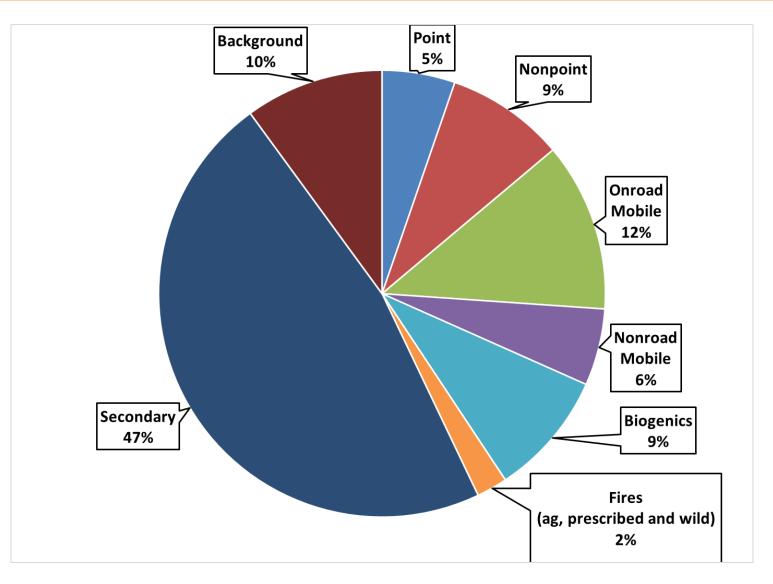
Bridgeville

Category	Inventory Resolution	Spatial Approach for AERMOD	Spatial approach for CMAQ
Point (non Airports)	Point	Point – vertical stack and fugitive	12km by 12 grid cells, Vertical based on plume calculations
Airports	Point	Point – runways & 10mX10m areas	12km by 12 grid cells
Locomotives	Point (railyards) and County/Shape	Nonpoint – 12 km grid cells* Point - Point Fugitives	12km by 12 grid cells
Commercial Marine Vessels	County/Shape	Shapes	12km by 12 grid cells
Onroad, Nonroad Equipment and other nonpoint	County	4 km grid cells for on network and diesel extended idling, oil and gas 12 km grid cells for others	12km by 12 grid cells
Fires (prescribed and wild)	Point	Not Modeled	12km by 12 grid cells, Vertical based on plume calculations

Blairsville

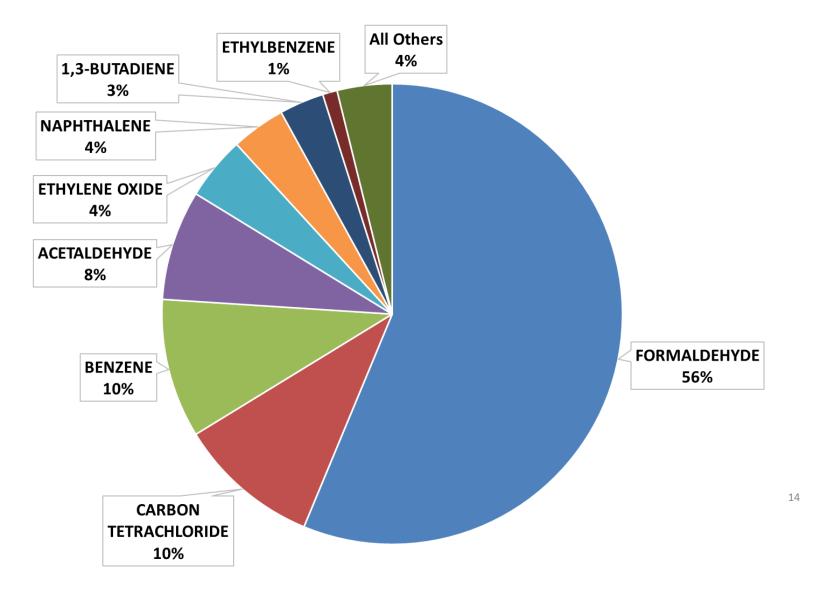

*For AK: 9 km grid cells and for PR/VI: 3 km grid cells

What 2014 NATA tells us


McDonald

- National average cancer risk estimated to be 30-in-1 million
 - Formaldehyde and acetaldehyde contribute about half of the overall national average risk
 - Both can come from manmade and natural sources of emissions
- In some locations, NATA estimates elevated risk levels
 - Fewer than 1% of the census tracts have an estimated cancer risk above 100-in-1 million
 - Cancer risks in these census tracts are are primarily driven by pollution from facilities that release ethylene oxide, chloroprene, and coke oven emissions

2014 NATA Results: National Average Cancer Risk



National Average Cancer Risk (30-in-1 million) -Source Contributions

13

National Average Cancer Risk (30-in-1 million) -Pollutant Contributions

New risk estimates for ethylene oxide

McDonald

- Several areas of the country could have elevated cancer risks from long-term exposure to ethylene oxide
- These elevated risks are largely driven by an EPA risk value that was updated in late 2016
- EPA has begun to gather additional information in identified areas, focusing first on those areas with the largest estimated potential for risk

2014 NATA

binson Fortage 2014 NATA

How can states/locals and tribes use NATA?

- Using NATA as an initial screening tool, air agencies can then study areas in more detail, focusing on where the risks to people may be greatest.
- NATA results can be used to:

McDonald

- -prioritize pollutants and emission source types;
- -identify locations for further, more detailed study;
- -get a starting point for local assessments;
- -focus community efforts;
- inform monitoring programs;
- -prioritize sensitive locations for ambient or emissions monitoring.

2014 NATA

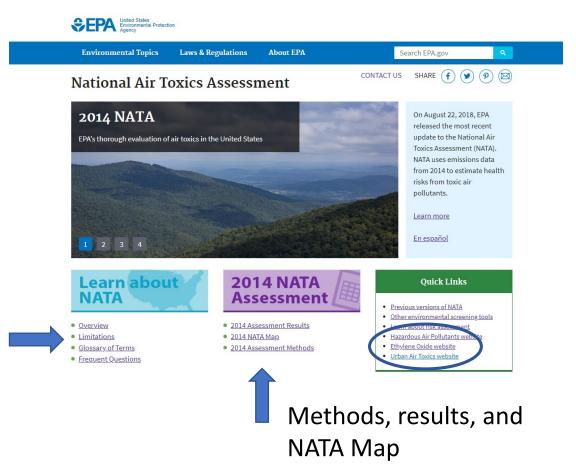
NATA on the Web

Eittsburgh

Mt Lebanon

McDonald

Bridgeville


Murrysville

• 2014 NATA website: https://www.epa.gov/nata

Overview, limitations,

glossary, frequent

questions

To view NATA results for your area:

• The Map App can quickly display risks and other data: <u>https://www.epa.gov/national-air-toxics-assessment/2014-</u> <u>nata-map</u>

14 ΝΑΤΑ

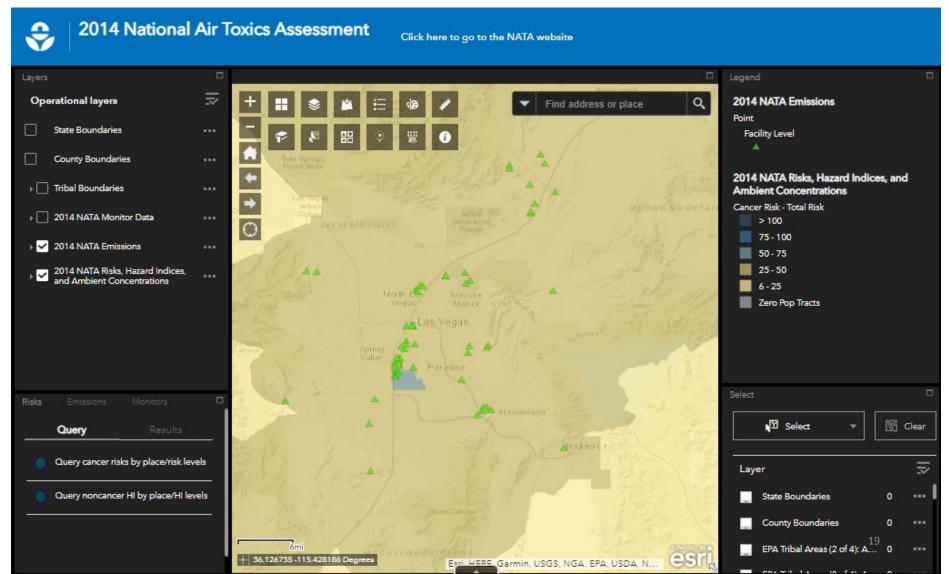
18

- "Zoom" to places of interest anywhere in the country, download NATA data and results, and run queries
- Map layers include:

McDonald

- -cancer risks and respiratory hazard indexes;
- –annual ambient concentrations;
- -all emission sources modeled in NATA; and
- -air toxics monitoring sites with recent-year data.
- The NATA Map App is available for use on a computer or mobile device.

Map App – opening screen


Murrysville

Pittsburgh

Mt Lebanon

McDonald

Bridgeville

Blairsville

2014 NATA


2017 NATA Status

Mt Lebanon

McDonald

- 2017 NATA will be based on 2017 NEI
- 2017 NEI cycle underway
 - NEI plan posted at: at https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-plan
- Targeting NEI completion in early 2020
- 2017 NATA schedule still being developed

2014 NATA

•Questions?

Mt Lebanon

McDonald

Bridge

- Primary NATA Contacts:
 - Darcie Smith <u>smith.darcie@epa.gov</u>
 - Ted Palma palma.ted@epa.gov
 - Madeleine Strum <u>strum.madeleine@epa.gov</u>

