2018-2019 Air Monitoring Network Plan

City of Philadelphia Department of Public Health Air Management Services

July 1, 2018

Executive Summary

Philadelphia has an air monitoring network of eleven air monitoring stations that house instruments that measure ambient levels of gaseous, solid, and liquid aerosol pollutants. It is operated by the City of Philadelphia's Department of Public Health, Air Management Services (AMS), the local air pollution control agency for the City of Philadelphia. This network is part of a broader network of air monitoring operated by our local states of Pennsylvania, New Jersey, Delaware and Maryland that make up the Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metropolitan Statistical Area (MSA).

The United States Environmental Protection Agency (US EPA) created regulations on how the air monitoring network is to be set up. These regulations can be found in Title 40 – Protection of Environment in the Code of Federal Regulations (CFR) Part 58 – Ambient Air Quality Surveillance, located online at: http://www.ecfr.gov/cgi-bin/text-idx?SID=86f79e0c1262e76604e10118aa3cc0ec&mc=true&node=pt40.6.58&rgn=div5.

Beginning July 1, 2007, and each year thereafter, AMS has submitted to EPA Region III, an Air Monitoring Network Plan (Plan) which assures that the network stations continue to meet the criteria established by federal regulations.

Air monitoring provides critical information on the quality of air in Philadelphia. The objective for much of our network is to measure pollutants in areas that represent high levels of contaminants and high population exposure. Some monitoring is also done to determine the difference in pollutant levels in various parts of the City, provide long term trends, help bring facilities into compliance, provide real-time monitoring and provide the public with information on air quality.

Air monitoring data is submitted to the EPA on a quarterly basis. EPA's AirData website (http://www.epa.gov/airdata/) provides access to air quality data collected at the monitors. On June 1st of the current year, AMS certifies the prior year's data. The annual data certification process is outlined in 40 CFR Part 58.15.

The proper siting of a monitor requires the specification of the monitoring objective, the types of sites necessary to meet the objective, and the desired spatial scale of representativeness. These are discussed in the section entitled "Definitions".

This Plan is composed of fourteen sections plus Appendix A, B, C, D & E:

- 1. Announcement of Future Changes to the Network This section provides information on how the public is made aware of the Plan and where it is available for review.
- 2. **Definitions** This section describes the terms used for air monitoring programs, measurement methods, monitoring objectives, spatial scales, air monitoring areas, pollutants, collection methods, and analysis methods.

- **3.** Current Network at a Glance This section shows the location of the monitoring sites and the pollutants measured at each site.
- **4.** Current Sites Summary This section provides information applicable to our overall network such as population. It also provides a brief overall purpose for each monitoring site.
- **5. Direction of Future Air Monitoring** This section gives a perspective of the major areas and initiatives AMS will be considering during the next few years.
- **6. Proposed Changes to the Network** This section describes changes that may occur within the next 18 months that would modify the network from how it is currently described in the Plan.
- 7. NCore Monitoring Network This section documents the NCore monitoring network codified in 40 CFR Part 58.10(a)(3) and 40 CFR Appendix D section 3.
- **8. Pb Monitoring Network** This section documents the Pb monitoring network codified in 40 CFR Part 58.10(a)(4) and 40 CFR Appendix D section 4.5.
- 9. NO₂ Monitoring Network This section documents the NO₂ monitoring network codified in 40 CFR Part 58.10(a)(5) and 40 CFR Appendix D section 4.3.
- **10. SO₂ Monitoring Network** This section documents the SO₂ monitoring network codified in 40 CFR Part 58.10(a)(6) and 40 CFR Appendix D section 4.4.
- 11. CO Monitoring Network This section documents the CO monitoring network codified in 40 CFR Part 58.10(a)(7) and 40 CFR Appendix D section 4.2.
- **12.** PM_{2.5} Monitoring Network This section documents the PM_{2.5} monitoring network codified in 40 CFR Part 58.10(a)(8) and 40 CFR Appendix D section 4.7.
- **13.** O₃ Monitoring Network This section documents the O₃ monitoring network codified in 40 CFR Appendix D section 4.1.
- **14. Detailed Information on Each Site** This is the largest section of the Plan. Each monitoring site is separately described in a table, complete with pictures and maps. The material is presented as:
 - O A table providing information on the pollutants measured, sampling type, operating schedule, collection method, analysis method, spatial scale, monitoring objective, probe height, and begin date of each monitor;
 - o Pictures taken at ground level of the monitoring station;
 - o A map of the monitoring site complete with major cross streets and major air emission sources within 3000 meters (almost 2 miles); and
 - o An aerial picture providing a north view of the site.

- 15. Appendix A PAMS Monitoring Implementation Plan
- 16. Appendix B Philadelphia Air Quality Survey & Quality Assurance Project Plan
- 17. Appendix C Relocation of SWA
- 18. Appendix D Discontinue PM_{2.5} at LAB
- 19. Appendix E Public notice proof of publication

AMS has provided a copy of the Plan for public inspection on the City's website at: http://www.phila.gov/health/AirManagement/PublicMeetings.html.

Comments or questions concerning the air monitoring network or this Plan can be directed to:

Mr. Ramesh Mahadevan
Engineering Supervisor of Program Services
Air Management Services
321 University Avenue, 2nd Floor
Philadelphia, PA 19104
Phone: 215-685-9439

E-mail: ramesh.mahadevan@phila.gov

Table of Contents

1.	Executive Summary	i
2.	Announcement of Future Changes to the Network	1
3.	Definitions	2
	Air Monitoring Programs	
	Measurement Methods	
	Monitoring Objectives	
	Spatial Scales	
	Air Monitoring Area	
	Pollutants	
	Collection Methods	
	Analysis Methods	
4.	Current Network at a Glance	8
5.	Summary of Current Sites	10
6.	Direction of Future Air Monitoring	12
7.	Proposed Changes to the Network	13
8.	NCore Monitoring	14
9.	Pb Monitoring Network	15
10.	NO ₂ Monitoring Network	16
11.	SO ₂ Monitoring Network	17
12.	CO Monitoring Network	18
13.	PM _{2.5} Monitoring Network	19
14.	O ₃ Monitoring Network	20
15.	Detailed Information on Each Site	21
	LAB	22
	ROX	25
	NEA	28
	NEW	31
	RIT	36
	FAB	39
	SWA	42
	TOR	45
	MON	48
	PHA	52
	VGR	55

Tables

Table 1 – Site Summary Table Table 2 – Detailed LAB Information with Monitoring Station Picture Table 3 – Detailed ROX Information with Monitoring Station Picture Table 4 – Detailed NEA Information with Monitoring Station Picture Table 5 – Detailed NEW Information with Monitoring Station Picture Table 6 – Detailed RIT Information with Monitoring Station Picture Table 7 – Detailed FAB Information with Monitoring Station Picture Table 8 – Detailed SWA Information with Monitoring Station Picture	11 22 25 28 31 36 39 42
Table 9 – Detailed TOR Information with Monitoring Station Picture	45
Table 10 – Detailed MON Information with Monitoring Station Picture	48
Table 11 – Detailed PHA Information with Monitoring Station Picture	52
Table 12 – Detailed VGR Information with Monitoring Station Picture	55
Figures	
Figure 1 – 2018 Philadelphia Air Monitoring Network as of July 1, 2018	9
Figure 2 – LAB Monitoring Site Map with Major Streets and Major Emission Sources	23
Figure 3 – LAB North Aerial View	24
Figure 4 – ROX Monitoring Site Map with Major Streets and Major Emission Sources	26
Figure 5 – ROX North Aerial View	27
Figure 6 – NEA Monitoring Site Map with Major Streets and Major Emission Sources Figure 7 – NEA North Aerial View	29 30
Figure 8 – NEW Monitoring Site Map with Major Streets and Major Emission Sources	34
Figure 9 – NEW North Aerial View	35
Figure 10 – RIT Monitoring Site Map with Major Streets and Major Emission Sources	37
Figure 11 – RIT North Aerial View	38
Figure 12 – FAB Monitoring Site Map with Major Streets and Major Emission Sources	40
Figure 13 – FAB North Aerial View	41
Figure 14 – SWA Monitoring Site Map with Major Streets and Major Emission Sources	43
Figure 15 – SWA North Aerial View	44
Figure 16 – TOR Monitoring Site Map with Major Streets and Major Emission Sources	46
Figure 17 – TOR North Aerial View	47
Figure 18 – MON Monitoring Site Map with Major Streets and Major Emission Sources	50
Figure 19 – MON North Aerial View	51
Figure 20 – PHA Monitoring Site Map with Major Streets and Major Emission Sources	53
Figure 21 – PHA North Aerial View	54
Figure 22 – VGR Monitoring Site Map with Major Streets and Major Emission Sources	56
Figure 23 – VGR North Aerial View	57

Appendices

Appendix A – PAMS Monitoring Implementation Plan draft	58
Appendix B – Philadelphia Air Quality Survey & Quality Assurance Project Plan	63
Appendix C – SWA Relocation	66
Appendix D – Discontinue PM _{2.5} at LAB	69
Appendix E – Public notice proof of publication	71

Announcement of Future Changes to the Network

Beginning July 1, 2007, and each year thereafter, AMS has submitted to EPA Region III, a Plan assuring that the network stations continue to meet the criteria established by federal regulations. At least 30 days prior to July 1 of each year, AMS announces to the public the availability of the Plan through notices published in the *Philadelphia Daily News* and the *Pennsylvania Bulletin*. Copies of the Plan are available for public inspection on the City's website under the Department of Public Health, Air Management Services at:

http://www.phila.gov/health/AirManagement/PublicMeetings.html

and at the AMS office:

Air Management Services
321 University Avenue, 2nd Floor
Philadelphia, PA 19104
Phone – 215-685-7586

Provisions will be made to accommodate comments and questions concerning the air monitoring network or the Plan. If comments are received, they will be considered for incorporation into the Plan.

Definitions

Air Monitoring Programs

EPA has established various air monitoring programs for the measurement of pollutants. Some of these are briefly described below. Later in this Plan, air monitoring sites and monitoring equipment are specifically identified relative to these air monitoring programs:

- o **NATTS** National Air Toxics Trends Stations. This network provides ambient levels of hazardous air pollutants. These sites are established with the intent that they will operate over many years and provide both current and historical information.
- o **NCore** National Core multi-pollutant monitoring stations. Monitors at these sites are required to measure particles (PM_{2.5}, speciated PM_{2.5}, PM_{10-2.5}), O₃, SO₂, CO, nitrogen oxides (NO/NO₂/NO_y), and basic meteorology. They principally support research in air pollution control.
- SLAMS State or Local Air Monitoring Stations. The SLAMS make up the ambient air quality monitoring sites that are primarily needed for NAAQS comparisons, but may serve other data purposes. SLAMS exclude special purpose monitor (SPM) stations and include NCore, PAMS, Near-road NO₂/CO and all other State or locally operated stations that have not been designated as SPM stations.
- o PAMS Photochemical Assessment Monitoring Stations.
- o STN A PM_{2.5} speciation station designated to be part of the Speciation Trends Network. This network provides chemical species data of fine particulate. These sites are established with the intent that they will operate over many years and provide both current and historical information.
- o **State speciation site** − A supplemental PM_{2.5} speciation station that is not part of the speciation trends network.
- o SPM Special Purpose Monitor. As the name implies these monitors are placed for purposes of interest to the city of Philadelphia. Often this monitoring is performed over a limited amount of time. Data is reported to the federal Air Quality System (AQS) and is not counted when showing compliance with the minimum requirements of the air monitoring regulations for the number and siting of monitors of various types. The agency may designate a monitor as an SPM after January 1, 2007 only if it is a new monitor or for a monitor included in the monitoring plan prior to January 1, 2007, if the Regional Administrator has approved the discontinuation of the monitor as a SLAMS site.

Measurement Methods

- o **Approved Regional Method (ARM)** A continuous PM_{2.5} method that has been approved specifically within a State or Local air monitoring network for purposes of comparison to the NAAQS and to meet other monitoring objectives.
- o **Federal Equivalent Method (FEM)** A method for measuring the concentration of an air pollutant in the ambient air that has been designated as an equivalent method in accordance with 40 CFR Part 53; it does not include a method for which an equivalent method designation has been canceled in accordance with 40 CFR Part 53.11 or 40 CFR Part 53.16.

o **Federal Reference Method (FRM)** – A method of sampling and analyzing the ambient air for an air pollutant that is specified as a reference method in an appendix to 40 CFR Part 50, or a method that has been designated as a reference method in accordance with this part; it does not include a method for which a reference method designation has been canceled in accordance with 40 CFR Part 53.11 or 40 CFR Part 53.16.

Monitoring Objectives

The ambient air monitoring networks must be designed to meet three basic monitoring objectives:

- o Provide air pollution data to the general public in a timely manner.
- o Support compliance with ambient air quality standards and emissions strategy development.
- Assist in the evaluation of regional air quality models used in developing emission strategies, and to track trends in air pollution abatement control measures' impact on improving air quality.

In order to support the air quality management work indicated in the three basic air monitoring objectives, a network must be designed with a variety of different monitoring sites. Monitoring sites must be capable of informing managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, and air pollution levels near specific sources.

Spatial Scales

The physical siting of the air monitoring station must be consistent with the objectives, site type and the physical location of a particular monitor.

The goal in locating monitors is to correctly match the spatial scale represented by the sample of monitored air with the spatial scale most appropriate for the monitoring site type, air pollutant to be measured, and the monitoring objective.

The spatial scale results from the physical location of the site with respect to the pollutant sources and categories. It estimates the size of the area surrounding the monitoring site that experiences uniform pollutant concentrations. The categories of spatial scale are:

- o **Microscale** Defines concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- o **Middle scale** Defines concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.
- o **Neighborhood scale** Defines concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range. The neighborhood and urban scales listed below have the potential to overlap in applications that concern secondarily formed or homogeneously distributed air pollutants.
- O **Urban scale** Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in there being no single site that can be said to represent air quality on an urban scale.

- o **Regional scale** Defines usually a rural area of reasonably homogeneous geography without large sources, and extends from tens to hundreds of kilometers.
- o **National and global scales** These measurement scales represent concentrations characterizing the nation and the globe as a whole.

Air Monitoring Area

- O Core-Based Statistical Area (CBSA) Defined by the U.S. Office of Management and Budget, as a statistical geographic entity consisting of the county or counties associated with at least one urbanized area/urban cluster of at least a population of 10,000 people, plus adjacent counties having a high degree of social and economic integration.
- o Metropolitan Statistical Area (MSA) A Core-Based Statistical Area (CBSA) associated with at least one urbanized area of a population of 50,000 people or more. The central county plus adjacent counties with a high degree of integration comprise the area.

Pollutants

Air Management Services monitors for a wide range of air pollutants:

- o **Criteria Pollutants** are measured to assess if and how well we are meeting the National Ambient Air Quality Standards (NAAQS) that have been set for each of these pollutants. These standards are set to protect the public's health and welfare.
 - Ozone (O₃)
 - o Sulfur Dioxide (SO₂)
 - o Carbon Monoxide (CO)
 - o Nitrogen Dioxide (NO₂)
 - NO means nitrogen oxide.
 - NO_X means oxides of nitrogen and is defined as the sum of the concentrations of NO₂ and NO.
 - NO_y means the sum of all total *reactive* nitrogen oxides, including NO, NO₂, and other nitrogen oxides referred to as NO_z.

Particulate

- PM_{2.5} means particulate matter with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers.
- PM₁₀ means particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers.
- PM Coarse means particulate matter with an aerodynamic diameter greater than 2.5 micrometers and less than 10 micrometers.
- Ultrafine Particulate Matter means particulate matter with an aerodynamic diameter less than 0.1 micrometers.
- Lead (Pb)
- o **BaP** means Benzo(a)Pyrene, a polycyclic aromatic hydrocarbon that is a product of incomplete combustion or burning organic (carbon-containing) items.
- o **Black Carbon** Black Carbon is a major component of "soot", a complex and most strongly absorbing component of particulate matter (PM), that is formed by the incomplete combustion of fossil fuels, biofuels, and biomass.
- o **Speciated PM_{2.5}** PM_{2.5} particles are analyzed to identify their makeup (60 components including elements, radicals, elemental carbon, and organic carbon) and help assess the

- level of health risk and identify sources that are contributing to the levels of PM_{2.5} being measured.
- o **Toxics** Approximately 44 compounds, carbonyls 7 compounds, and metals 7 elements are toxic and are measured to assess the risk of cancer and non cancer caused by these pollutants. The VOC compounds are analyzed by GC/MS; carbonyls are analyzed by HPLC, and metals by ICP-MS(WV).
- o **PAMS Volatile Organic Compounds (VOC)** Approximately 57 of these compounds are monitored to assist in understanding the formation of ozone and how to control this pollutant. These compounds are analyzed by GC-FID.

Collection Methods

Particulate samples

o BAM-Beta Attenuation Monitor Met One BAM-1020 – This instrument provides concentration values of particulate each hour. The BAM -1020 uses the principle of beta ray attenuation to provide a simple determination of mass concentration. Beta ray attenuation: A small ¹⁴C element emits a constant source of high-energy electrons, also known as beta particles. These beta particles are efficiently detected by an ultra-sensitive scintillation counter placed nearby. An external pump pulls a measured amount of air through a filter tape. Filter tape, impregnated with ambient dust is placed between the source and the detector thereby causing the attenuation of the measured beta-particle signal. The degree of attenuation of the beta-particle signal may be used to determine the mass concentration of particulate matter on the filter tape and hence the volumetric concentration of particulate matter in ambient air.

The following instruments provide concentration values of particulate over a 24-hour period. Laboratory analysis is required before the concentration of particulate can be determined.

- O Hi-Vol High-Volume Air Samplers (HVAS) are used to determine the concentration of particulate matter in the air. Without a size-selective inlet (SSI), all collected material is defined as total suspended (in the air) particulates (TSP), including lead (Pb) and other metals. A size-selective inlet is added for PM₁₀ measurement. A Hi-Volume sampler consists of two basic components: a motor similar to those used in vacuum cleaners and an air flow control system.
- o **Hi-Vol-SA/GMW-321-B** High Volume Sierra Anderson or General Metal Works (GMW) model 321-B PM₁₀ is a high volume air sampler system which has a selective inlet 203 cm x 254 cm filter.
- o **Met One SASS** Filters used to collect PM measurement of total mass by gravimetry, elements by x-ray fluorescence.
- o **R & P PM**_{2.5} Rupprecht & Potashnick PM_{2.5} monitors an air sample drawn through a Teflon filter for 24 hours.

Gaseous / criteria pollutants

o Instrumental - Data from these instruments is telemetered to a central computer system and values are available in near "real time". An analyzer used to measure pollutants such as: carbon monoxide, sulfur dioxide, nitrogen oxides and ozone.

Toxic and organic (VOC) pollutants

- SS Canister Pressurized Ambient air is collected in stainless-steel canisters, cryogenically concentrated using liquid nitrogen and analyzed for target VOCs and other organic components by GC-FID and GC-MS.
- o **Canister Sub Ambient Pressure** Collection of ambient air into an evacuated canister with a final canister pressure below atmospheric pressure.
- ONPH-Coated Cartridges Cartridges are coated with 2,4-dinitrophenylhydrazine (DNPH). This is used for carbonyl determination in ambient air. High Performance Liquid Chromatography (HPLC) measures the carbonyl.

Analysis Methods

Particulate concentration

- O **Gravimetric** The determination of the quantities of the constituents of a compound, describes a set of methods for the quantitative determination of an analyte based on the weight of a solid. Laboratory analysis is needed.
- o **BAM-Beta Attenuation** The principle of beta ray attenuation to provide a simple determination of mass concentration. Instrumental data is available in near real time.

Composition/make-up of particulates

- o **Atomic Absorption** This analysis measures the intensity of radiation of a specific wavelength that is absorbed by an atomic vapor.
- o **Energy Dispersive XRF** Energy dispersive x-Ray Fluorescence Spectrometer for the determination of metals including Lead concentration in ambient particulate matter. The method is collected on PM_{2.5} filter samples.

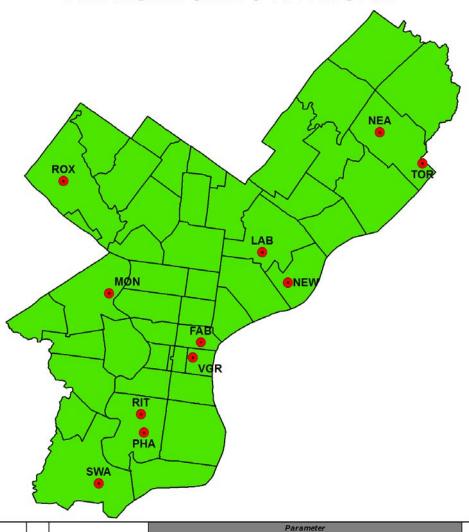
Gaseous / criteria pollutants

- o **Nitrogen Oxides Chemiluminescence** Emission of light as a result of a chemical reaction at environmental temperatures. This analysis is used for NO, NO_x, and NO_y. NO₂ is calculated as NO_x- NO.
- o Carbon Monoxide Nondispersive infrared A nondispersive infrared (NDIR) gas analyzer is an instrument that measures air samples for CO content.
- o **Sulfur Dioxide Pulsed Fluorescent** Pulsed fluorescence sulfur dioxide monitor where air is drawn from the outside and passes through the analysis cell, and a high intensity burst of UV light is emitted. The sulfur dioxide responds to the specific UV wavelength generated by absorbing the energy. When the flash lamp shuts off (in a fraction of a second) the SO₂ fluoresces giving off an amount of photons directly proportional to the concentration of sulfur dioxide in the air.
- Ozone Ultra Violet A light, which supplies energy to a molecule being analyzed. Ozone is analyzed with UV.

Toxic and volatile organic pollutants

O Cryogenic Preconcentration GC/FID – Cryogenic Preconcentration Gas Chromatograph/Flame Ionization Detector - air injection volume for capillary GC combined with low concentrations of analyte require that samples be preconcentrated prior to GC analysis. Sample preconcentration is accomplished by passing a known volume of the air sample through a trap filled with fine glass beads that is cooled to -180°C. With this technique, the volatile hydrocarbons of interest are quantitatively retained in the trap, whereas the bulk constituents of air (nitrogen, oxygen, etc.) are not. The air sample is collected in a vessel of known volume. A portion of this volume is analyzed and used to calculate concentration of each compound in the original air sample

after Gas Chromatographic (Flame Ionization Detector, GC-FID) analysis. The sample trapped cryogenically on the glass beads is thermally desorbed into a stream of ultra-pure helium and re-trapped on the surface of a fine stainless steel capillary cooled to -180 °C. This second cryogenic trapping stage "focuses" the sample into a small linear section of tubing. The cold stainless steel capillary is ballistically heated (by electrical resistance) and the focused sample quickly desorbs into the helium stream and is transferred to the chromatographic column. Cryogen (liquid nitrogen, LN₂) is used to obtain sub ambient temperatures in the VOC concentration and GC. This analysis is used to determine the concentration of Benzene and other organic compounds and VOC in the atmosphere.


- o GC/MS Gas Chromatograph/Mass Spectrometer. Analysis of organic or VOC are conducted using a gas chromatograph (GC) with a mass spectrometer (MS) attached as the detector. Cryogenic preconcentration with liquid nitrogen (LN₂) is also used to trap and concentrate sample components.
- o **High Pressure Liquid Chromatography (HPLC)** The analytical method used to analyze carbonyl compounds such as acetaldehyde and formaldehyde. Carbonyl compounds are collected on the sampling media as their 2,4-dinitrohydrazine derivatives. The derivatives are separated by liquid chromatography (LC) on a packed column by means of a solvent mixture under high pressure (HPLC) followed by UV detection of each carbonyl derivative.

Current Network at a Glance

The City of Philadelphia is served by a network of eleven air monitoring sites located throughout the City that measure the criteria pollutants: ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter (PM₁₀ and PM_{2.5}), and lead (Pb). Four of the sites also measure toxics, such as benzene, acetaldehyde, and formaldehyde. The map below shows the location of air monitors and the pollutants measured at each monitor location.

Figure 1 - 2018 Philadelphia Air Monitoring Network as of July 1, 2018

2018 PHILADELPHIA AIR MONITORING NETWORK

											P	aramet	er							
Site Code 421010004	AMS Site	Address	00	so ₂	Ozone	NO2	NOYNO	PM ₁₀	PM _{2.5}	Speciated PM _{2.5}	PM Coarse	Black Carbon / Ultrafine PM	Carbonyls	PAMS VOC	BaP	TSP Metals (Be, Cr, Mn, Ni, As, Cd, Pb)	Toxics TO15	MET	Comm. Air Toxics OPEN PATH	AMS
421010004	LAB	1501 E. Lycoming St			Х															LAB
421010014	ROX	Eva & Dearnley Sts					Ì						X				Х			ROX
421010024	NEA	Grant Ave & Ashton Rd			Х															NEA
421010048	NEW	2861 Lew is St	X	х	Х	х	х	Х	х	Х	х		Х	Х			х	Х		NEW
421010055	RIT	24th & Ritner Sts		X					X	Х			X			×	х			RIT
421010057	FAB	3rd & Spring Garden Sts		П					Х								П			FAB
421010063	SWA	8200 Enterprise Ave					ĵ						Х				Х			SWA
421010075	TOR	4901 Grant Ave & James St	X			х			X									х		TOR
421010076	MON	I-76 & Montgomery Drive	X			х			х			Х			х	х		Х		MON
	PHA	3100 Penrose Ferry Rd																	×	PHA
	VGR	6th & Arch Sts			X				×									X		VGR

Summary of Current Sites

All of our eleven monitoring sites are located in Philadelphia, PA:

State: Pennsylvania City: Philadelphia County: Philadelphia

Metropolitan Statistical Area (MSA): Philadelphia – Camden - Wilmington, PA-NJ-DE-MD

MSA number: 37980

Population: 6,096,120 (2017annual estimate)¹

EPA Region: III, Philadelphia

Class I area: Brigantine Natural Wildlife Preserve near Atlantic City, NJ

City population: 1,580,863 (2017 annual estimate)²

Time zone: EST UTM zone: 18

¹ MSA population estimates from:

https://www.census.gov/data/tables/2017/demo/popest/total-metro-and-micro-statistical-areas.html ² Philadelphia County population estimates from:

https://www.census.gov/data/datasets/2017/demo/popest/counties-total.html

 $Table \ 1-Site \ Summary \ Table$

AQS Site Code	AMS Site	Address	Statement of Purpose							
421010004	LAB	1501 E. Lycoming St.	Built in 1964, is a good site to test new or complex monitoring methods as laboratory staff are readily available.							
421010014	ROX	Eva & Dearnley Sts.	Periphery site.							
421010024	NEA	Grant Ave & Ashton Rd.	Periphery site. High Ozone.							
421010048	NEW	2861 Lewis St.	Originally sited to measure the impact of Franklin Smelting and Refining (now closed), MDC (now closed), and the waste water treatment plant. In 2013, the NCore site was re-located here and in 2017 is a designated PAMS site.							
421010055	RIT	24 th & Ritner Sts.	This site was selected to help assess the impact of the petroleum refinery on the local community. The area was identified by air quality modeling.							
421010057	FAB	3 rd & Spring Garden Sts.	This site was established to represent the highest levels of PM _{2.5} in the City based on EPA Region III's air quality modeling of air toxics in Philadelphia. It shows high levels of PM _{2.5} created by vehicle traffic.							
421010063	SWA	8200 Enterprise Ave.	This site was established to measure toxics, carbonyls, and metals. EPA Region III modeling analysis showed areas near the airport to have high levels of aldehydes.							
421010075	TOR	4901 Grant Ave & James St.	This site was established as the 1 st near-road NO ₂ monitor in the Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metropolitan Statistical Area.							
421010076	MON	I-76 & Montgomery Drive	This site was established as the 2nd near-road NO ₂ monitor in the Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metropolitan Statistical Area.							
	РНА	3100 Penrose Ferry Road	This site was selected as a Community Scale Air Toxics Monitoring to continuously monitor air toxics pollutants such as benzene and hydrogen fluoride (HF) in the South Philadelphia community, used to evaluate new monitoring technology.							
	VGR	6 th & Arch Sts.	EPA's Village Green Air Monitoring Station. Utilizes							

Direction of Future Air Monitoring

The agency will study and assess the overall monitoring program within the City to determine the course of future changes to the air monitoring network.

The agency will focus on the following:

- Maximize the monitoring network to be more efficient (i.e., utilizing continuous equipment to replace filter based equipment, downsize monitoring to reduce overlapping, etc)
 - The agency will re-evaluate the number and monitoring locations for toxics due to decreased EPA funding.
- Improve the understanding of particulate and air toxic pollutants in Philadelphia.
 - o The agency plans to pursue negotiations with the port entities in order to implement monitoring and emission inventory efforts in this location.
- Philadelphia Air Quality Survey
 - O Set up street-level, neighborhood-oriented air sampling sites throughout the city to sample the air for about two years, and capture the seasonal changes and neighborhood-to-neighborhood spatial variances in air quality.
 - o Measure PM_{2.5}, NO₂ (as vehicle emission indicator and ozone precursor), diesel vehicle emissions (using black carbon as indicator), and residual oil burning (using indicators such as SO₂, nickel and vanadium). Ozone will be measured during the Ozone season.
 - Obtain quality assured and reliable data results that can serve as basis for future work; provide policy recommendations for reducing pollution from congested city traffic, diesel vehicles and winter time fuel burning.

Proposed Changes to the Network

Below are changes that are anticipated to occur over the next 18 months to the existing air monitoring network:

- March 2018 December 2019
 - o Philadelphia Air Quality Survey (see Appendix B).
 - Set up street-level, neighborhood-oriented air sampling sites throughout the city to sample the air for about two years, and capture the seasonal changes and neighborhood-to-neighborhood spatial variances in air quality.
 - Measure PM_{2.5}, NO₂ (as vehicle emission indicator and ozone precursor), diesel vehicle emissions (using black carbon as indicator), and residual oil burning (using indicators such as SO₂, nickel and vanadium). Ozone will be measured during the ozone season.
 - o SWA
 - Relocation of SWA site on Southwest Philadelphia Water Department within boundary of property (see Appendix C).
 - o LAB
 - PM_{2.5} monitor to be shutdown as of 7/1/18 (see Appendix D).
 - o AMS plans to establish a monitoring site (PAC) near the Port of Philadelphia.
 - A monitor to measure PM_{2.5}, toxics, carbonyls, and metals will be placed to assess the river port.

NCore Monitoring Network

The requirements for the NCore air monitoring network are codified in 40 CFR Part 58.10(a)(3) and 40 CFR Part 58 Appendix D section 3.

The NCore station is located at NEW.

The recently revised monitoring rule (80 FR 65292) requires PAMS measurements June 1 through August 31 at NCore sites that are located in Core-Based Statistical Areas (CBSAs) with populations of 1,000,000 or more as codified in 40 CFR 58 Appendix D section 5(a).

PAMS Monitoring Implementation Network Plan is included in Appendix A.

Pb Monitoring Network

The requirements for the Pb air monitoring network are codified in 40 CFR Part 58.10(a)(4) and 40 CFR Part 58 Appendix D section 4.5.

Philadelphia County has no source oriented Pb sources that emit 0.50 or more tons per year.

NO₂ Monitoring Network

The requirements for the NO₂ air monitoring network are codified in 40 CFR Part 58.10(a)(5) and 40 CFR Part 58 Appendix D section 4.3.

AMS currently operates an NO₂ monitor that meets the area-wide monitoring requirements. The first near-road NO₂ monitor was established at TOR and started operation on January 1, 2014. The second near-road NO₂ monitor is located at MON and started operation on July 20, 2015.

SO₂ Monitoring Network

The requirements for the SO_2 air monitoring network are codified in 40 CFR Part 58.10(a)(6) and 40 CFR Part 58 Appendix D section 4.4.

CO Monitoring Network

The requirements for the CO air monitoring network are codified in 40 CFR Part 58.10(a)(7) and 40 CFR Part 58 Appendix D section 4.2.

The Philadelphia-Camden-Wilmington, PA-NJ-DE-MD CBSA has a CO monitor collocated with the near-road NO₂ monitor at TOR and has been operational since January 1, 2014.

PM_{2.5} Monitoring Network

The requirements for the PM_{2.5} air monitoring network are codified in 40 CFR Part 58.10(a)(8) and 40 CFR Part 58 Appendix D section 4.7.

The requirement for at least one PM_{2.5} monitor to be collocated at a near-road NO₂ station for CBSAs with a population of 1,000,000 or more persons is met at the TOR monitoring site.

AMS proposes to discontinue PM_{2.5} at LAB as of 7/1/18. (See Appendix D).

O₃ Monitoring Network

The requirements for the O₃ air monitoring network are codified in 40 CFR Part 58 Appendix D section 4.1.

AMS currently operates three O₃ monitors.

Enhanced Monitoring Plan

40 CFR Part 58 Appendix D. 5(h) requires: "States with Moderate and above 8-hour O3 nonattainment areas and states in the Ozone Transport Region as defined in 40 CFR 51.900 shall develop and implement an Enhanced Monitoring Plan (EMP) detailing enhanced O3 and O3 precursor monitoring activities to be performed. The EMP shall be submitted to the EPA Regional Administrator no later than October 1, 2019 or two years following the effective date of a designation to a classification of Moderate or above O3 nonattainment, whichever is later. At a minimum, the EMP shall be reassessed and approved as part of the 5-year network assessments required under 40 CFR 58.10(d). The EMP will include monitoring activities deemed important to understanding the O3 problems in the state. Such activities may include, but are not limited to, the following:

- (1) Additional O₃ monitors beyond the minimally required under paragraph 4.1 of this appendix,
- (2) Additional NO_x or NO_y monitors beyond those required under 4.3 of this appendix,
- (3) Additional speciated VOC measurements including data gathered during different periods other than required under paragraph 5(g) of this appendix, or locations other than those required under paragraph 5(a) of this appendix, and
- (4) Enhanced upper air measurements of meteorology or pollution concentrations."

Draft EMPs should be submitted to the EPA Regional office by May 1, 2018.

Please note only States, not local counties, are required to submit an EMP to the EPA. AMS will work with PADEP for enhanced O₃ and O₃ precursor monitoring.

Currently, AMS monitors the following beyond the minimal requirements:

(1) Year round ozone monitoring at all sites

PAMS Monitoring Implementation Network Plan is included in Appendix A.

Pending funding for EMPs, AMS cannot guarantee that year round monitoring will continue.

Detailed Information on Each Site

The tables that follow provide detailed information for each of the 11 monitoring stations in Philadelphia County. As per 40 CFR § 58.10(a)(1), the siting and operation of each monitor in the 2018-2019 Plan meets the requirements of 40 CFR 58 and Appendices A, C, D, and E of this part where applicable.

Table 2 – Detailed LAB Information with Monitoring Station Picture

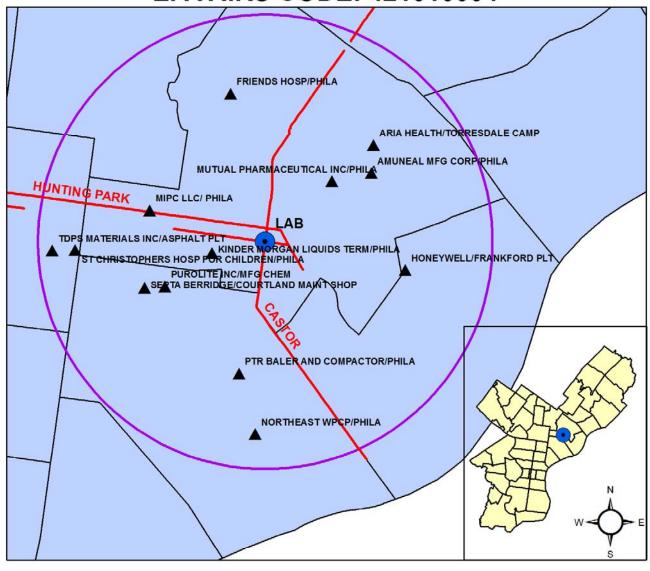
AMS SITE ID: LAB

AQS Site ID: 421010004

Street Address: 1501 E. Lycoming Street, 19124

Geographical Coordinates
Latitude: 40.008889

Longitude: -75.09778



PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
Ozone	SLAMS		Continuous	Instrumental	Ultraviolet Absorption	Year-round operation	44201	2*	087	Neighborhood	Population Exposure	7	1/1/1974

^{*}Changes in ozone monitoring at the LAB have occurred. The instrument sampling from the manifold that came in through the roof of the building is no longer in use as of March 2017. A new shelter has been sited in the parking lot effective 1/1/2018.

Figure 2 – LAB Monitoring Site Map with Major Streets and Major Emission Sources

AMS LABORATORY - 1501 E. LYCOMING ST. EPA AIRS CODE: 421010004

			2016 Emissions (tons)									
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	502	VOC			
4210101416	TDPS MATERIALS INC/ASPHALT PLT	3870 N 2ND ST	0.0000	9.26	1.83	1.80	0.27	0.24	2.25			
4210101551	HONEYWELL/FRANKFORD PLT	4700 BERMUDA ST	0.0000	66.83	241.96	67.94	54.28	45.86	113.21			
4210101617	PUROLITE INC/MFG CHEM	3620 GST	0.0000	2.12	2.52	0.19	0.19	0.02	2.37			
4210102258	MUTUAL PHARMACEUTICAL INC/PHILA	1100 ORTHODOX ST	0.0000	1.34	1.60	0.12	0.05	0.01	0.09			
4210103506	PTR BALER AND COMPACTOR/PHILA	2207 E ONTARIO ST	0.0000	0.11	0.13	0.01	0.01	0.01	15.76			
4210104172	SEPTA BERRIDGE/COURTLAND MAINT SHOP	200 W WYOMING AVE	0.0000	1.37	3.80	4.58	4.58	0.01	4.69			
4210105003	KINDER MORGAN LIQUIDS TERM/PHILA	3300 N DELAWARE AVE	0.0000	4.83	5.33	0.38	0.38	0.10	38.14			
4210105004	MIPC LLC/ PHILA	4210 G S T	0.0000	0.00	0.00	0.00	0.00	0.00	12.53			
4210108031	FRIENDS HOSP/PHILA	4641 ROOSEVELT BLVD	0.0000	1.98	2.40	0.18	0.18	0.02	0.13			
4210108076	ARIA HEALTH/TORRESDALE CAMP	RED LION & KNIGHTS RD	0.0000	2.27	4.16	0.30	0.00	0.14	0.28			
4210108576	ST CHRISTOPHERS HOSP FOR CHILDREN/PHILA	ERIE AVE & FRONT ST	0.0000	3.20	4.87	0.36	0.36	0.12	0.31			
4210109513	NORTHEAST WPCP/PHILA	3899 RICHMOND ST	0.0000	1.99	5.59	3.65	3.65	0.70	11.07			
42101T0034	AMUNEAL MFG CORP/PHILA	4737 DARRAH ST	0.0000	0.00	0.00	0.00	0.00	0.00	0.04			

Figure 3 – LAB North Aerial View

Table 3 – Detailed ROX Information with Monitoring Station Picture

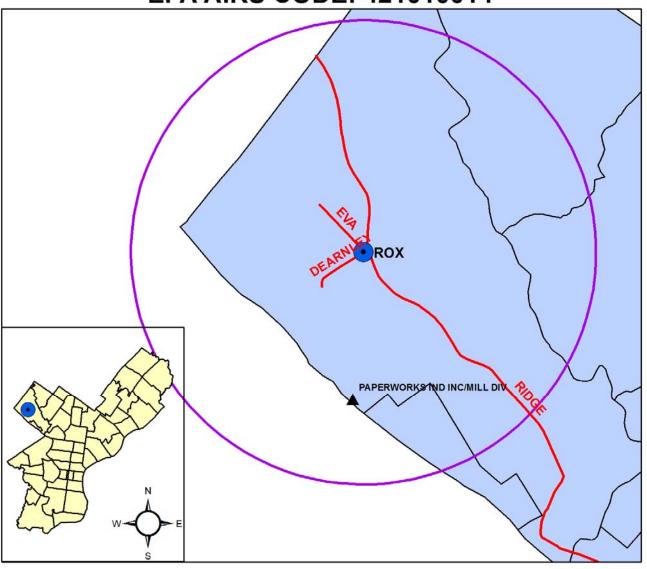
AMS SITE ID: ROX

AQS Site ID: 421010014

Street Address: EVA & Dearnley Streets

Geographical Coordinates

Latitude: 40.049604


Longitude: -75.241209

PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
Carbonyls	Other	Urban Air Toxics	1/6 days	DNPH-Coated Cartridges	HPLC		Vary	2	102	Neighborhood	Population Exposure	7	5/7/2003
Toxics	Other	Urban Air Toxics	1/6 days	Canister Subambient Pressure	Multi- Detector GC		Vary	4,5	150	Neighborhood	Population Exposure	7	1/1/2004

Figure 4 – ROX Monitoring Site Map with Major Streets and Major Emission Sources

ROXBOROUGH - EVA & DEARNLEY STS. EPA AIRS CODE: 421010014

				1.111	2016	Emissions	tons)	e	
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	502	VOC
4210101566	PAPERWORKS IND INC/MILL DIV	5000 FLAT ROCK RD	0.0002	45.56	119.55	4.12	4.12	0.45	13.25

Figure 5 – ROX North Aerial View

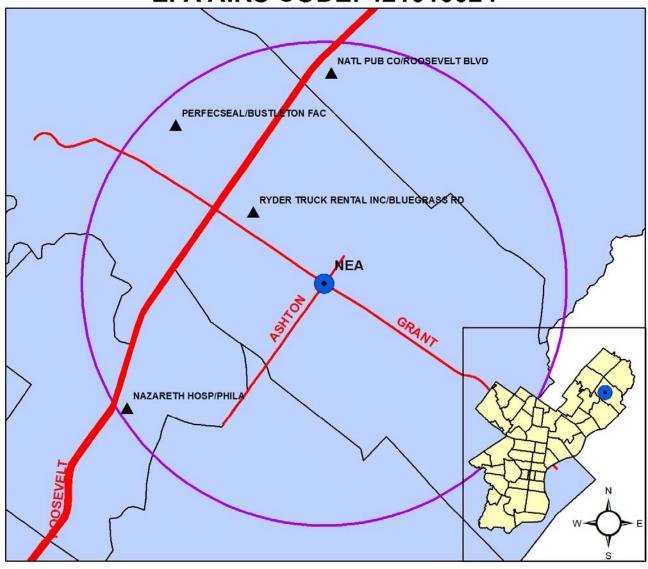
Table 4 – Detailed NEA Information with Monitoring Station Picture

AMS SITE ID: NEA

AQS Site ID: 421010024

Street Address: Grant Ave & Ashton Rd

Geographical Coordinates
Latitude: 40.076389


Longitude: -75.011944

PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
Ozone	SLAMS		Continuous	Instrumental	Ultraviolet Absorption	Year-round operation	44201	1	087	Neighborhood	Highest concentration	6	1/1/1974
Ozone- Collocated			Continuous	Instrumental	Ultraviolet Absorption	Temporarily Operating to compare high values at the site; has started since May 2017	44201		087	Neighborhood			

Figure 6 – NEA Monitoring Site Map with Major Streets and Major Emission Sources

NORTHEAST AIRPORT - GRANT AVE & ASHTON RD. EPA AIRS CODE: 421010024

				2016 Emissions (tons)							
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	502	VOC		
4210101591	PERFECSEAL/BUSTLETON FAC	9800 BUSTLETON AVE	0.0000	0.37	0.44	0.03	0.00	0.00	0.03		
4210102030	RYDER TRUCK RENTAL INC/BLUEGRASS RD	9751 BLUE GRASS RD	0.0000	0.02	0.09	0.00	0.00	0.00	0.26		
4210103846	NATL PUB CO/ROOSEVELT BLVD	11311 ROOSEVELT BLVD	0.0000	0.61	0.72	0.06	0.05	0.00	2.99		
4210108008	NAZARETH HOSP/PHILA	2601 HOLME AVE	0.0000	1.79	2.48	0.18	0.18	0.04	0.13		

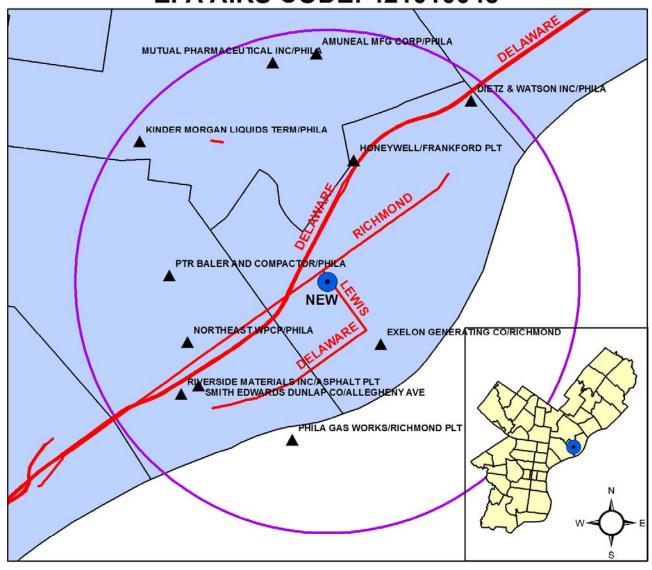
Figure 7 – NEA North Aerial View

Table 5 – Detailed NEW information with Monitoring Station Picture

AMS SITE ID: NEW

Street Address: 2861 Lewis Street

Geographical Coordinates
Latitude: 39.991389


PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
CO (trace)	SLAMS	NCORE	Continuous	Instrumental	Gas Filter Correlation CO Analyzer	High sensitivity	42101	1	093	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
SO2 (trace)	SLAMS	NCORE	Continuous	Instrumental	Ultraviolet Fluorescence	High sensitivity	42401	2	100	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
Ozone	SLAMS	NCORE	Continuous	Instrumental	Ultraviolet Absorption	Year-round operation (O3 Season 2016: April - October; O3 Season 2017: March - October)	44201	1	087	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
NO	SLAMS	NCORE	Continuous	Instrumental	Chemiluminescence Teledyne	High sensitivity external converter mounted at 10m	42601	1	099	Neighborhood	Population Exposure	10	1/1/2011, moved 10/2/13
NOy	SLAMS	NCORE	Continuous	Instrumental	Chemiluminescence Teledyne	High sensitivity external converter mounted at 10m	42600	1	699	Neighborhood	Population Exposure	10	1/1/2011, moved 10/2/13
PM10 Continuous	SLAMS	NCORE	Continuous	Instrumental	BAM =Beta Attenuation Monitor Met One BAM - 1020		81102	1	122	Neighborhood	Population Exposure	2	2/20/2007
PM2.5 Continuous	SLAMS	NCORE	Continuous	Instrumental	BAM =Beta Attenuation Monitor Met One BAM - 1020		88101	3	170	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13

PM2.5 Speciated	SLAMS	NCORE, CSN	1/3 days	URG and Met One SASS	Energy Dispersive XRF	Analysis by EPA	Vary	5	811	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
PM2.5 FRM	SLAMS	NCORE	1/3 days	R&P PM2.5	Gravimetric	NEW-D	88101	1	145	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
*PM10 - PM2.5 (PM Coarse)	SLAMS	NCORE	Continuous	Instrumental	Paired Beta Difference	PM10c minus PM2.5c is PM Coarse	86101	1	185	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
Meteorological	SLAMS	NCORE	Continuous		Air quality measurements approved instrumentation for wind speed, wind direction, humidity, barometric pressure,rainfall and solar radiation		Vary	1	Vary	Neighborhood	Population Exposure	Vary	6/1/1993
Carbonyls	Other	Urban Air Toxics	1/6 days	DNPH-Coated Cartridges	HPLC	Sampled for four 3-hour periods every 3rd day during PAMS season	Vary	1,3	102	Neighborhood	Population Exposure	7	10/14/2016
Toxics	Other	Urban Air Toxics	1/6 days	Canister Subambient Pressure	Multi-Detector GC		Vary	1,2	150	Neighborhood	Population Exposure	7	10/14/2016
PAMS VOC	SLAMS	PAMS	1/6 days (March-Oct) - 24-Hr Collocated	SS Canister Pressurized. Replaced by Auto GC when it arrives in 2019.	Cryogenic Preconcentration GC/FID. Replaced by Auto GC when it arrives in 2019.		Vary	1,2	101	Neighborhood	Population Exposure	7	4/1/2017
			1/6 days (March-Oct) - 24-Hr Real Time	SS Canister Pressurized; Replaced by Auto GC when it arrives in 2019.	Cryogenic Preconcentration GC/FID. Replaced by Auto GC when it arrives in 2019.								
			Daily from June-Aug, with sample every 3 hrs - 3-Hr Real Time (Continuous)	SS Canister Pressurized; Replaced by Auto GC when it arrives in 2019.	Cryogenic Preconcentration GC/FID. Replaced by Auto GC when it arrives in 2019.								
			1/6 days (Jun -Aug) - 3-Hr Collocated	SS Canister Pressurized; Replaced by Auto GC when it arrives in 2019.	Cryogenic Preconcentration GC/FID. Replaced by Auto GC when it arrives in 2019.								
Ceilometer	SLAMS	PAMS											1/1/2018

True NO2	SLAMS	PAMS						1/1/2018

Figure 8 – NEW Monitoring Site Map with Major Streets and Major Emission Sources

NORTHEAST WASTE - 2861 LEWIS ST. EPA AIRS CODE: 421010048

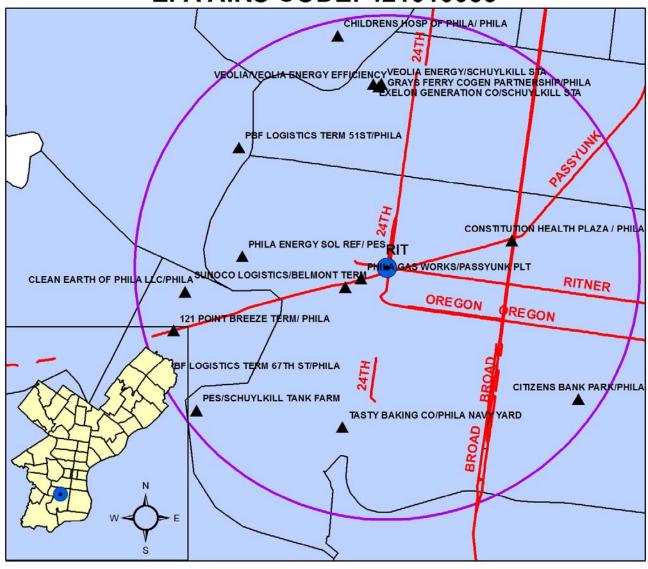
				2016	Emissions	(tons)			
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	SO2	VOC
4210101421	RIVERSIDE MATERIALS INC/ASPHALT PLT	2870 E ALLEGHENY AVE	0.0000	19.84	4.20	4.98	3.78	0.50	7.15
4210101551	HONEYWELL/FRANKFORD PLT	4700 BERMUDA ST	0.0000	66.83	241.96	67.94	54.28	45.86	113.21
4210102094	DIETZ & WATSON INC/PHILA	5701 TACONY ST	0.0000	5.80	3.59	0.54	0.53	0.11	0.39
4210102255	SMITH EDWARDS DUNLAP CO/ALLEGHENY AVE	2867 E ALLEGHENY AVE	0.0000	0.10	0.12	0.01	0.01	0.02	3.65
4210102258	MUTUAL PHARMACEUTICAL INC/PHILA	1100 ORTHODOX ST	0.0000	1.34	1.60	0.12	0.05	0.01	0.09
4210103506	PTR BALER AND COMPACTOR/PHILA	2207 E ONTARIO ST	0.0000	0.11	0.13	0.01	0.01	0.01	15.76
4210104903	EXELON GENERATING CO/RICHMOND	3901 N DELAWARE AVE	0.0000	0.01	2.85	0.08	0.02	0.40	0.00
4210104922	PHILA GAS WORKS/RICHMOND PLT	3100 E VENANGO ST	0.0000	2.33	5.23	0.26	0.23	0.02	0.19
4210105003	KINDER MORGAN LIQUIDS TERM/PHILA	3300 N DELAWARE AVE	0.0000	4.83	5.33	0.38	0.38	0.10	38.14
4210109513	NORTHEAST WPCP/PHILA	3899 RICHMOND ST	0.0000	1.99	5.59	3.65	3.65	0.70	11.07
42101T0034	AMUNEAL MFG CORP/PHILA	4737 DARRAH ST	0.0000	0.00	0.00	0.00	0.00	0.00	0.04

Figure 9 – NEW North Aerial View

Table 6 – Detailed RIT Information with Monitoring Station Picture

AMS SITE ID: RIT

Street Address: 24th & Ritner Streets


Geographical Coordinates
Latitude: 39.922867

PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
SO ₂	SLAMS		Continuous	Instrumental	Ultraviolet Fluorescence		42401	1	100	Neighborhood	Population Exposure	4	11/9/2004
PM2.5 Speciated	SLAMS	CSN	1/3 days	URG and Met One SASS Teflon	Energy Dispersive XRF	Analysis by EPA	88502	5	811	Neighborhood	Population Exposure	N/A	9/1/2005
Metals	Other		1/6 days	Hi-Vol	ICP-MS	Analysis by WV (TSP sampler with quartz)	Vary	1	089	Neighborhood	Population Exposure	7	8/31/2004
Carbonyls	Other	Urban Air Toxics	1/6 days	DNPH-Coated Cartridges	HPLC		Vary	2	102	Neighborhood	Population Exposure	7	Vary
Toxics	Other	Urban Air Toxics	1/6 days	Canister Subambient Pressure	Multi-Detector GC		Vary	4,5	150	Neighborhood	Population Exposure	7	11/1/2004
PM2.5 Continuous	SLAMS		Continuous	Instrumental	BAM =Beta Attenuation Monitor Met One BAM -1020		88101	3	170	Neighborhood	Population Exposure	4	6/1/2011

Figure 10 - RIT Monitoring Site Map with Major Streets and Major Emission Sources

RITNER - 24TH & RITNER STS. EPA AIRS CODE: 421010055

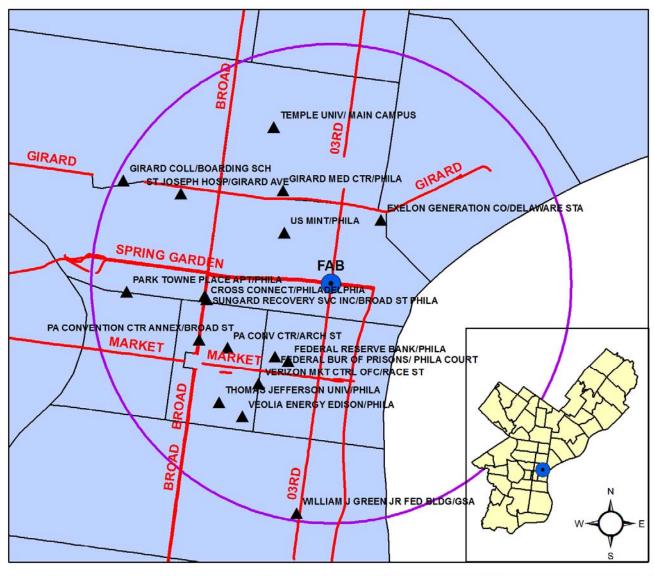
					2016	Emissions (tons)		
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	SO2	VOC
4210101501	PHILA ENERGY SOL REF/ PES	3144 W PASSYUNK AVE	0.0174	1116.09	1351.91	519.96	519.96	184.89	809.19
4210101507	SUNOCO LOGISTICS/BELMONT TERM	2700 W PASSYUNK AVE	0.0000	23.93	9.59	0.29	0.00	0.10	31.61
4210101517	PES/SCHUYLKILL TANK FARM	3144 W PASSYUNK AVE	0.0000	0.91	0.25	0.00	0.00	0.00	80.27
4210102148	CLEAN EARTH OF PHILA LLC/PHILA	3201 S 61ST ST	0.0000	0.04	0.13	0.29	0.06	0.03	3.16
4210104904	EXELON GENERATION CO/SCHUYLKILL STA	2800 CHRISTIAN ST	0.0000	0.05	0.39	0.02	0.00	0.00	0.00
4210104921	PHILA GAS WORKS/PASSYUNK PLT	3100 W PASSYUNK AVE	0.0000	2.03	3.60	0.22	0.22	0.10	0.27
4210104942	VEOLIA ENERGY/SCHUYLKILL STA	2600 CHRISTIAN ST	0.0003	4.68	66.70	3.17	3.17	0.53	0.47
4210104944	GRAYS FERRY COGEN PARTNERSHIP/PHILA	2600 CHRISTIAN ST	0.0009	3.73	225.50	21.73	21.73	3.70	6.80
4210105009	PBF LOGISTICS TERM 51ST/PHILA	1630 S 51ST ST	0.0000	0.00	0.00	0.00	0.00	0.00	1.67
4210105013	PBF LOGISTICS TERM 67TH ST/PHILA	6850 ESSINGTON AVE	0.0000	9.65	11.78	0.90	0.68	0.07	60.05
4210108016	CONSTITUTION HEALTH PLAZA / PHILA	1930 S BROAD ST	0.0000	1.32	1.74	0.13	0.13	0.02	0.09
4210108069	CHILDRENS HOSP OF PHILA/ PHILA	34TH & CIVIC CENTER BLVD	0.0000	10.39	27.99	2.87	2.87	1.00	2.52
4210110029	121 POINT BREEZE TERM/ PHILA	6310 PASSYUNK AVE	0.0000	0.42	0.51	0.04	0.04	0.01	18.32
4210110236	TASTY BAKING CO/PHILA NAVY YARD	4300 S 26TH ST	0.0000	2.74	3.28	0.32	0.29	0.00	0.43
4210110357	VEOLIA/VEOLIA ENERGY EFFICIENCY	2600 CHRISTIAN ST	0.0002	0.02	3.20	0.26	0.26	0.15	1.19
42101T0147	CITIZENS BANK PARK/PHILA	1001 PATTISON AVE	0.0000	5.20	3.66	0.21	0.21	0.05	1.03

Figure 11 – RIT North Aerial View

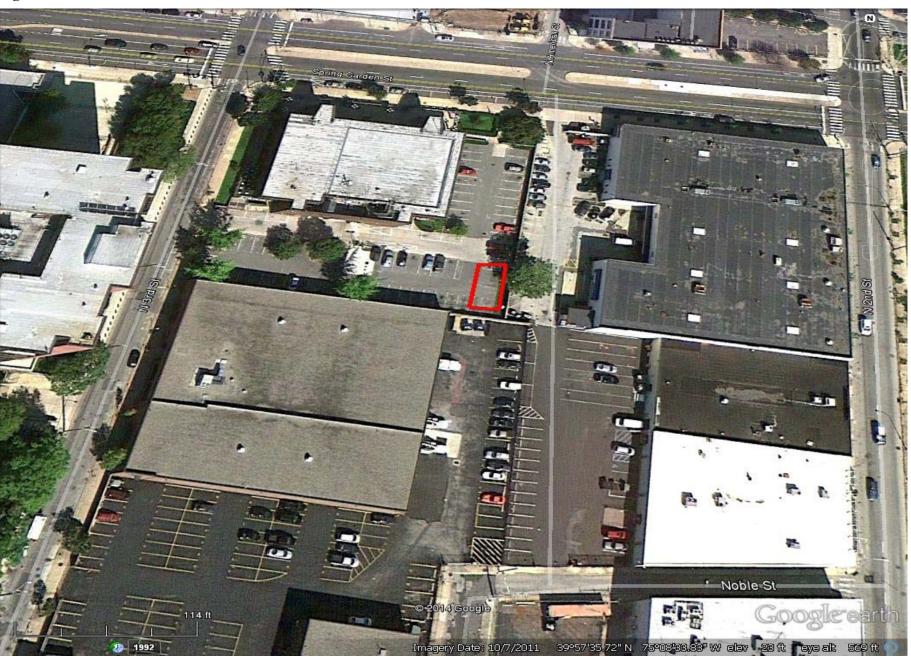
$Table\ 7-Detailed\ FAB\ Information\ with\ Monitoring\ Station\ Picture$

AMS SITE ID: FAB

Street Address: 3rd and Spring Garden Sts.


Geographical Coordinates
Latitude: 39.960048
Longitude: -75.142614

PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
PM2.5 Continuous	SLAMS		Continuous	Instrumental	BAM =Beta Attenuation Monitor Met One BAM -1020		88101	3	170	Neighborhood	Highest Concentration	2	10/1/2012


Figure 12 – FAB Monitoring Site Map with Major Streets and Major Emission Sources

FIRE ADMINSTRATION BUILDING - 3RD & SPRING GARDEN STS. EPA AIRS CODE: 421010057

			2016 Emissions (tons)							
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	502	VOC	
4210101014	VERIZON MKT CTRL OFC/RACE ST	900 RACE ST	0.0000	0.41	3.52	0.31	0.31	0.29	0.23	
4210103321	SUNGARD RECOVERY SVC INC/BROAD ST PHILA	401 N BROAD ST STE 600	0.0000	0.02	0.04	0.00	0.00	0.11	0.01	
421010354	CROSS CONNECT/PHILADELPHIA	401 N BROAD ST	0.0000	0.23	1.18	0.05	0.00	0.03	0.06	
4210104901	EXELON GENERATION CO/DELAWARE STA	1325 N BEACH ST	0.0000	0.25	1.68	0.12	0.01	0.13	0.01	
4210104902	VEOLIA ENERGY EDISON/PHILA	908 SANSOMST	0.0000	2.03	19.01	3.31	1.79	32.72	0.22	
4210106020	FEDERAL RESERVE BANK/PHILA	100 N 6TH ST	0.0000	3.76	8.54	0.62	0.00	0.30	0.46	
4210106526	PARK TOWNE PLACE APT/PHILA	2200 BENJAMIN FRANKLIN PKWY	0.0005	3.91	23.27	0.23	0.23	0.01	0.96	
4210108027	ST JOSEPH HOSP/GIRARD AVE	16TH & GIRARD	0.0000	0.22	0.26	0.02	0.02	0.00	0.01	
4210108044	GIRARD MED CTR/PHILA	8TH & GIRARD	0.0000	0.51	1.09	0.10	0.10	0.80	0.04	
4210108901	THOMAS JEFFERSON UNIV/PHILA	11 & WALNUT ST	0.0000	0.40	1.87	0.13	0.13	0.12	0.10	
4210108905	TEMPLE UNIV/ MAIN CAMPUS	1009 W MONTGOMERY AVE	0.0000	18.73	26.34	1.06	1.06	0.37	2.95	
4210108918	GIRARD COLL/BOARDING SCH	GIRARD & CORINTHIAN AVE	0.0000	2.20	2.62	0.20	0.20	0.02	0.14	
4210109703	US MINT/PHILA	151 N INDEPENDENCE MALL E	0.0000	3.82	2.41	0.07	0.00	0.02	1.31	
4210109723	WILLIAM J GREEN JR FED BLDG/GSA	600 ARCH ST	0.0000	2.21	2.86	0.20	0.20	0.04	0.15	
4210109726	FEDERAL BUR OF PRISONS/ PHILA COURT	700 ARCH ST	0.0000	1.55	1.92	0.06	0.00	0.02	0.11	
4210110092	PA CONV CTR/ARCHST	1101 ARCH ST	0.0000	2.25	3.94	0.22	0.22	0.16	0.23	
4210110353	PA CONVENTION CTR ANNEX/BROAD ST	111 N BROAD ST	0.0000	0.74	1.54	0.08	0.08	0.06	0.08	

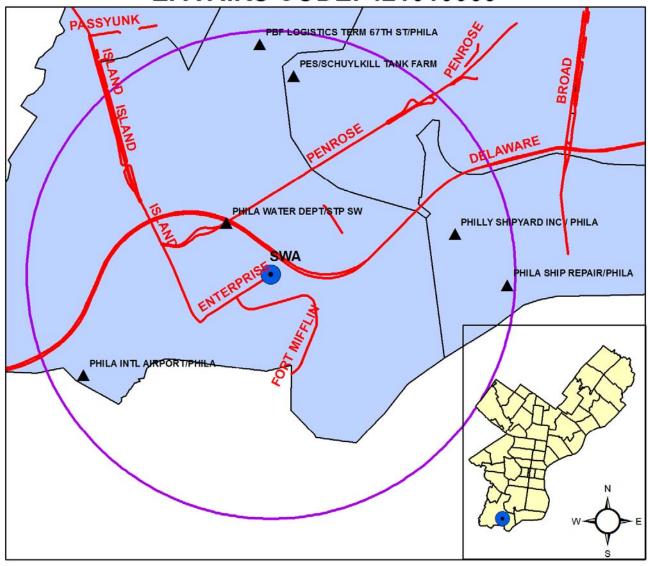
Figure 13 – FAB North Aerial View

Table 8 – Detailed SWA Information with Monitoring Station Picture

AMS SITE ID: SWA

Street Address: 8200 Enterprise Avenue, 19153

Geographical Coordinates


Latitude: 39.88294

PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
Carbonyls	Other	Urban Air Toxics	1/6 days	DNPH-Coated Cartridges	HPLC		Vary	2	102	Neighborhood	Source- Oriented	N/A	9/10/2009
Toxics	Other	Urban Air Toxics	1/6 days	Canister Subambient Pressure	Multi-Detector GC		Vary	3,5	150	Neighborhood	Source- Oriented	N/A	9/10/2009

Figure 14 – SWA Monitoring Site Map with Major Streets and Major Emission Sources

PHILADELPHIA AIRPORT - 8200 ENTERPRISE AVE. EPA AIRS CODE: 421010063

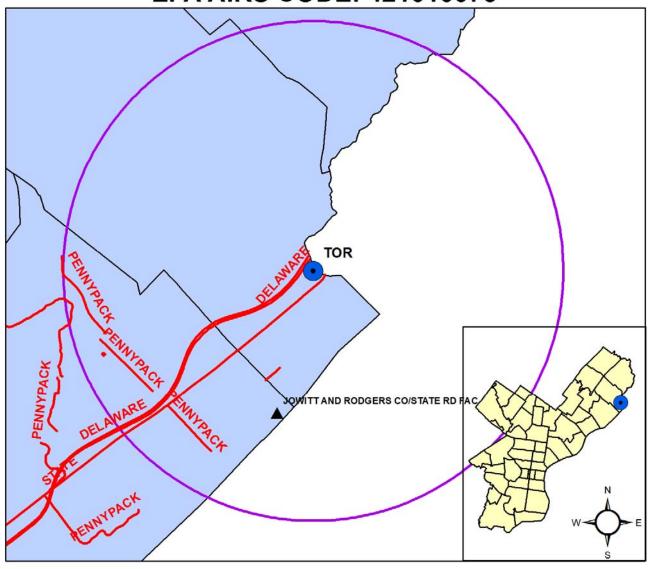
			2016 Emissions (tons)								
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	SO2	VOC		
4210101517	PES/SCHUYLKILL TANK FARM	3144 W PASSYUNK AVE	0.0000	0.91	0.25	0.00	0.00	0.00	80.27		
4210101569	PHILLY SHIPYARD INC / PHILA	PHILA NAVAL BUS CTR	0.0000	0.12	0.07	37.60	37.53	0.00	160.14		
4210105013	PBF LOGISTICS TERM 67TH ST/PHILA	6850 ESSINGTON AVE	0.0000	9.65	11.78	0.90	0.68	0.07	60.05		
4210109502	PHILA INTL AIRPORT/PHILA	INDUSTRIAL HWY	0.0000	6.15	13.62	1.33	1.33	0.10	0.85		
4210109515	PHILA WATER DEPT/STP SW	8200 ENTERPRISE AVE	0.0000	8.39	3.69	0.92	0.92	2.74	5.34		
4210110355	PHILA SHIP REPAIR/PHILA	5195 S 19TH ST	0.0000	2.40	11.08	4.07	0.00	0.00	16.30		

Figure 15 – SWA North Aerial View

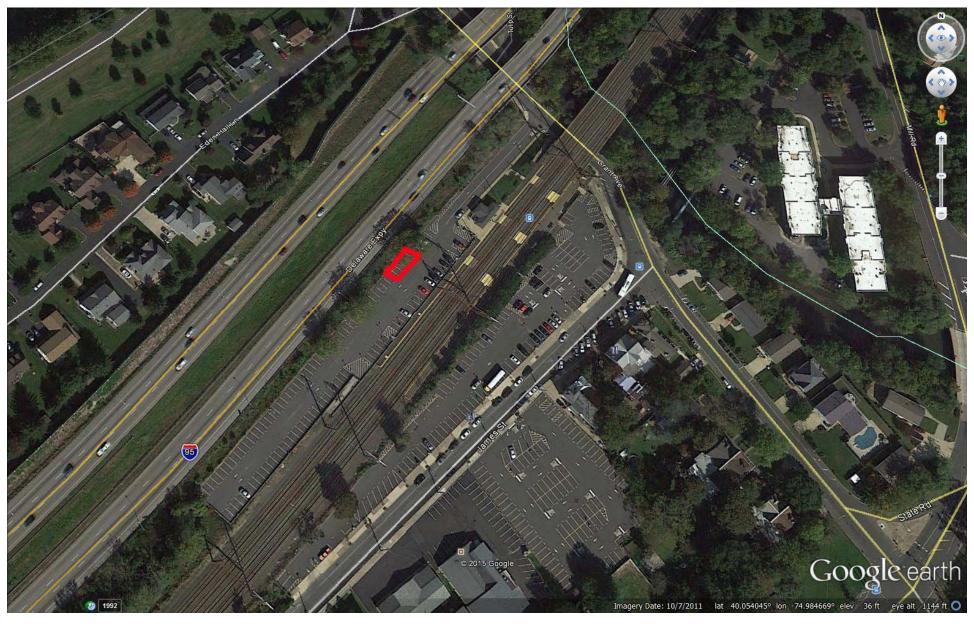
$Table \ 9-Detailed \ TOR \ Information \ with \ Station \ Monitoring \ Picture$

AMS SITE ID: TOR

Street Address: 4901 Grant Ave. & James St., 19114


Geographical Coordinates
Latitude: 40.054171
Longitude: -74.985166

PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
СО	SLAMS	Near Road	Continuous	Instrumental	Gas Filter Correlation CO Analyzer		42101	1	093	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
NO2	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemiluminescence		42602	1	099	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
NO	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemiluminescence		42601	1	099	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
NOx	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemiluminescence		42603	1	099	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
PM2.5 Continuous	SLAMS	Near Road	Continuous	Instrumental	BAM =Beta Attenuation Monitor Met One BAM -1020		88101	1	170	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
Meteorological	SLAMS	Near Road	Continuous		Vaisala 435C RH/AT Sensor		Vary	1	Vary	Microscale	Highest Concentration, Source Oriented	5	1/1/2014


Figure 16 – TOR Monitoring Site Map with Major Streets and Major Emission Sources

TORRESDALE - 4901 GRANT AVE. & JAMES ST. EPA AIRS CODE: 421010075

			2016 Emissions (tons)							
Site	Facility Site	Address	PB CO NOX PM10 PM2.5 SO2 \							
4210103154	JOWITT AND RODGERS CO/STATE RD FAC	9400 STATE RD	0.0000	0.03	0.17	0.02	0.01	0.00	7.59	

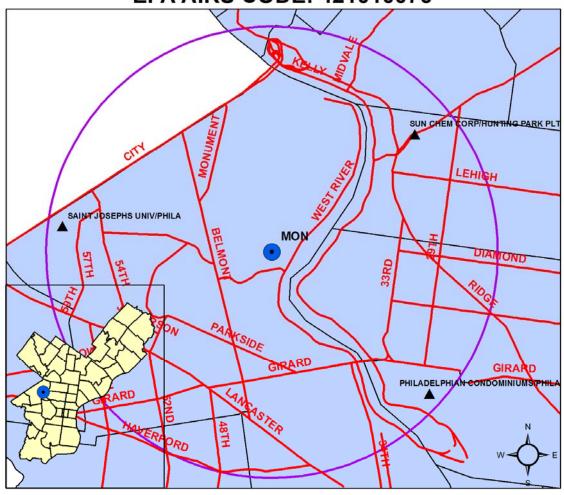
Figure 17 – TOR North Aerial View

Table 10 Detailed MON Information with Monitoring Station Picture

AMS SITE ID: MON

Street Address: I-76 & Montgomery Drive, Car Barn OFM Shop 282

Geographical Coordinates
Latitude: 39.988842



PARAMETE R	MONITORIN G TYPE	MONITOR NETWORK AFFILIATIO N	OPERATIN G SCHEDULE	COLLECTIO N METHOD	ANALYSIS METHOD	COMMENT S	PARAMETE R CODE	PO C	AQS METHO D	SPATIAL SCALE	MONITORIN G OBJECTIVE	PROBE HEIGH T (m)	BEGIN DATE
СО	SLAMS	Near Road	Continuous	Instrumental	Gas Filter Correlation CO Analyzer		42101	1	093	Microscale	Highest Concentratio n, Source Oriented	5	1/1/201 4
NO2	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemiluminescenc e		42602	1	099	Microscale	Highest Concentratio n, Source Oriented	5	7/1/201 5
NO	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemiluminescenc e		42601	1	099	Microscale	Highest Concentratio n, Source Oriented	5	7/1/201 5
NOx	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemiluminescenc e		42603	1	099	Microscale	Highest Concentratio n, Source Oriented	5	7/1/201 5
PM2.5 Continuous	SLAMS	Near Road	Continuous	Instrumental	BAM =Beta Attenuation Monitor Met One BAM -1020		88101	1	170	Microscale	Highest Concentratio n, Source Oriented	5	7/1/201 5
Meteorologic al	SLAMS	Near Road	Continuous		Vaisala 435C RH/AT Sensor		Vary	1	Vary	Microscale	Highest Concentratio n, Source Oriented	5	7/1/15
Black Carbon	SLAMS	Near Road	Continuous	Instrumental	Teledyne Model 633			1		Microscale	Highest Concentratio n, Source Oriented	5	7/1/201 5

Ultrafine Particulate	SLAMS	Near Road	Continuous	Instrumental	Teledyne Model 651			1		Microscale	Highest Concentratio n, Source Oriented	5	7/1/201 5
ВаР	SLAMS	Near Road	1/6 days	Hi-Vol- SA/GMW- 321-B	Gravimetric	Integrated samplers. Weighed by AMS. Analysis by Allegheny County, PA	11101	1	091	Microscale	Highest Concentratio n, Source Oriented	5	7/1/201 5
Metals	Other	Near Road	1/6 days	Hi-Vol	ICP-MS	Analysis by WV (TSP sampler with quartz)	Vary	1	089	Neighborhoo d	Population Exposure	7	7/1/201 5

Figure 18 – MON Monitoring Site Map with Major Streets and Major Emission Sources

MONTGOMERY - INTERSTATE 76 & MONTGOMERY DR EPA AIRS CODE: 421010076

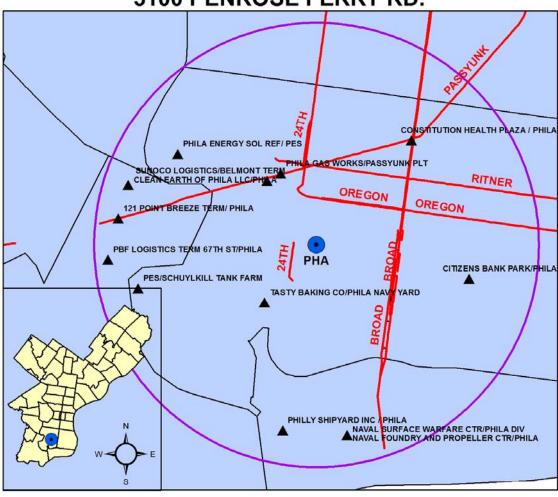
					2016	Emissions (tons)		
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	502	voc
4210102052	SUN CHEM CORP/HUNTING PARK PLT	3301 W HUNTING PARK AVE	0.0000	0.26	0.31	0.10	0.10	0.00	11.50
4210106512	PHILADELPHIAN CONDOMINIUMS/PHILA	2401 PENNSYLVANIA AVE	0.0000	1.81	2.15	0.16	0.16	0.01	0.12
4210108904	SAINT JOSEPHS UNIV/PHILA	54TH & CITY AVE	0.0000	1.93	4.78	0.38	0.34	0.05	0.29

Figure 19 – MON North Aerial View

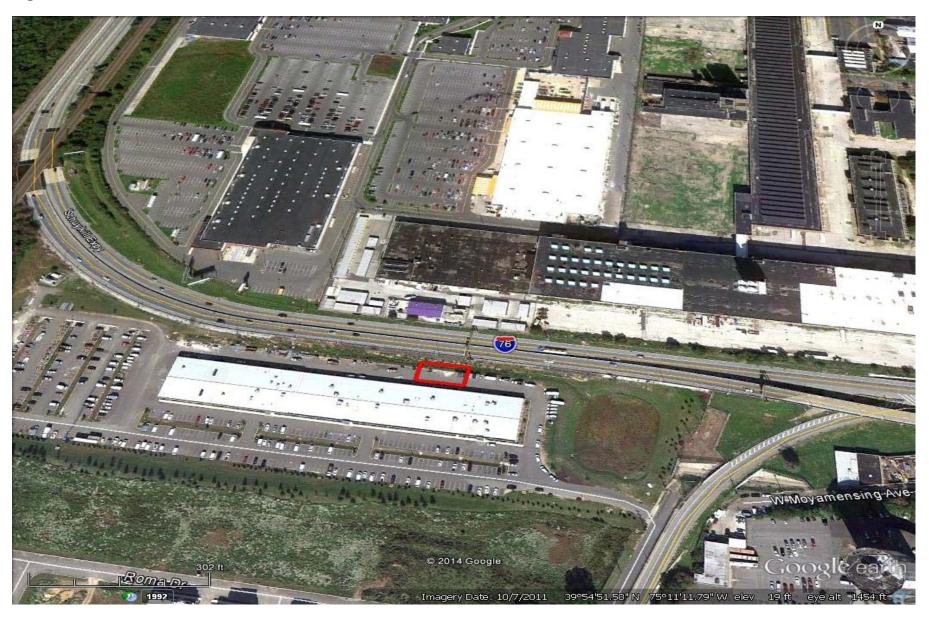
$Table\ 11-Detailed\ PHA\ Information\ with\ Monitoring\ Station\ Picture$

AMS SITE ID: PHA

Street Address: 3100 Penrose Ferry Road, 19145


Geographical Coordinates
Latitude: 39.913176

PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
Toxics	Continuous Open Path		Continuous	UV-DOAS	Infrared				Vary	Neighborhood	Population Exposure	2	2/1/2014
Toxics	Other		1/6 days	Canister Subambient Pressure	Multi- Detector GC				Vary	N/A	Source- Oriented	N/A	1/1/2015


Figure 20 – PHA Monitoring Site Map with Major Streets and Major Emission Sources

PHILADELPHIA HOUSING AUTHORITY 3100 PENROSE FERRY RD.

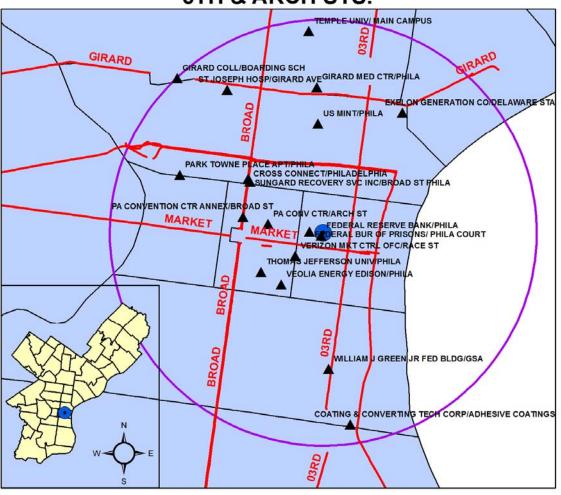
			2016 Emissions (tons)						
Site	Facility Site	Address	PB	co	NOX	PM10	PM2.5	502	VOC
4210101501	PHILA ENERGY SOL REF/ PES	3144 W PASSYUNK AVE	0.0174	1116.09	1351.91	519.96	519.96	184.89	809.19
4210101507	SUNOCO LOGISTICS/BELMONT TERM	2700 W PASSYUNK AVE	0.0000	23.93	9.59	0.29	0.00	0.10	31.61
4210101517	PES/SCHUYLKILL TANK FARM	3144 W PASSYUNK AVE	0.0000	0.91	0.25	0.00	0.00	0.00	80.27
4210101569	PHILLY SHIPYARD INC / PHILA	PHILA NAVAL BUS CTR	0.0000	0.12	0.07	37.60	37.53	0.00	160.14
4210102148	CLEAN EARTH OF PHILA LLC/PHILA	3201 S 61ST ST	0.0000	0.04	0.13	0.29	0.06	0.03	3.16
4210104921	PHILA GAS WORKS/PASSYUNK PLT	3100 W PASSYUNK AVE	0.0000	2.03	3.60	0.22	0.22	0.10	0.27
4210105013	PBF LOGISTICS TERM 67TH ST/PHILA	6850 ESSINGTON AVE	0.0000	9.65	11.78	0.90	0.68	0.07	60.05
4210108016	CONSTITUTION HEALTH PLAZA / PHILA	1930 S BROAD ST	0.0000	1.32	1.74	0.13	0.13	0.02	0.09
4210109702	NAVAL FOUNDRY AND PROPELLER CTR/PHILA	1701 KITTY HAWK AVE	0.0232	1.98	1.67	12.10	0.00	0.05	1.21
4210109724	NAVAL SURFACE WARFARE CTR/PHILA DIV	5001 S BROAD ST	0.0003	1.85	16.67	0.36	0.36	3.18	0.39
4210110029	121 POINT BREEZE TERM/ PHILA	6310 PASSYUNK AVE	0.0000	0.42	0.51	0.04	0.04	0.01	18.32
4210110236	TASTY BAKING CO/PHILA NAVY YARD	4300 S 26TH ST	0.0000	2.74	3.28	0.32	0.29	0.00	0.43
42101T0147	CITIZENS BANK PARK/PHILA	1001 PATTISON AVE	0.0000	5.20	3.66	0.21	0.21	0.05	1.03

Figure 21 – PHA North Aerial View

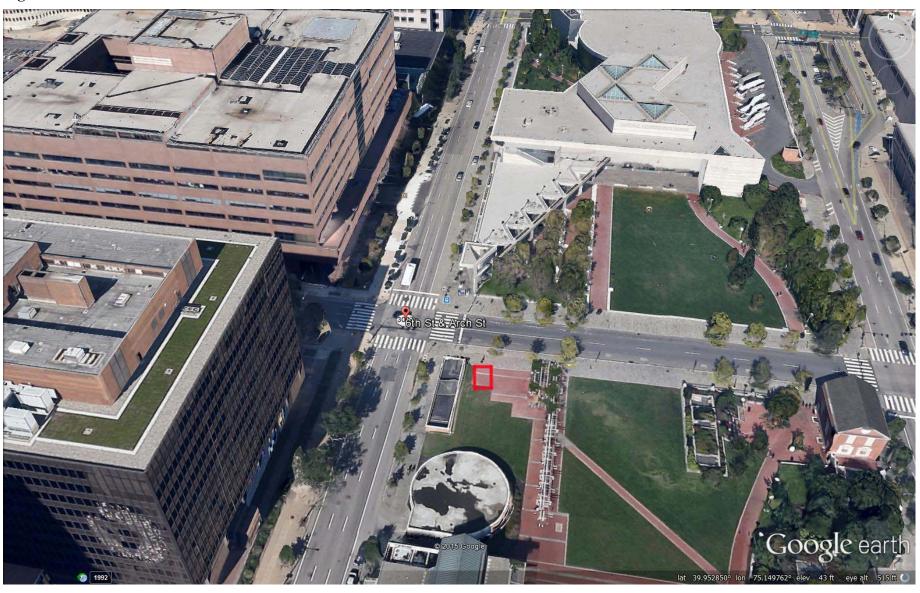
$Table\ 12-Detailed\ VGR\ Information\ with\ Monitoring\ Station\ Picture$

AMS SITE ID: VGR

Street Address: 6th & Arch Streets


Geographical Coordinates
Latitude: 39.952608

PARAMETER	MONITORING TYPE	MONITOR NETWORK AFFILIATION	OPERATING SCHEDULE	COLLECTION METHOD	ANALYSIS METHOD	COMMENTS	PARAMETER CODE	POC	AQS METHOD	SPATIAL SCALE	MONITORING OBJECTIVE	PROBE HEIGHT (m)	BEGIN DATE
Ozone			Continuous	2B Technologies		Not in AQS							3/15/2015
PM2.5 Continuous			Continuous	Thermo		Not in AQS							3/15/2015
Meteorological			Continuous		Wind speed, wind direction, humidity, temperature	Not in AQS							3/15/2015


Figure 22 – VGR Monitoring Site Map with Major Streets and Major Emission Sources

VILLAGE GREEN 6TH & ARCH STS.

			2016 Emissions (tons)						
Site	Facility Site	Address	PB	со	NOX	PM10	PM2.5	502	VOC
4210101014	VERIZON MKT CTRL OFC/RACE ST	900 RACE ST	0.0000	0.41	3.52	0.31	0.31	0.29	0.23
4210103321	SUNGARD RECOVERY SVC INC/BROAD ST PHILA	401 N BROAD ST STE 600	0.0000	0.02	0.04	0.00	0.00	0.11	0.01
421010354	CROSS CONNECT/PHILADELPHIA	401 N BROAD ST	0.0000	0.23	1.18	0.05	0.00	0.03	0.06
4210104901	EXELON GENERATION CO/DELAWARE STA	1325 N BEACH ST	0.0000	0.25	1.68	0.12	0.01	0.13	0.01
4210104902	VEOLIA ENERGY EDISON/PHILA	908 SANSOM ST	0.0000	2.03	19.01	3.31	1.79	32.72	0.22
4210106020	FEDERAL RESERVE BANK/PHILA	100 N 6TH ST	0.0000	3.76	8.54	0.62	0.00	0.30	0.46
4210106526	PARK TOWNE PLACE APT/PHILA	2200 BENJAMIN FRANKLIN PKWY	0.0005	3.91	23.27	0.23	0.23	0.01	0.96
4210108027	ST JOSEPH HOSP/GIRARD AVE	16TH & GIRARD	0.0000	0.22	0.26	0.02	0.02	0.00	0.01
4210108044	GIRARD MED CTR/PHILA	8TH & GIRARD	0.0000	0.51	1.09	0.10	0.10	0.80	0.04
4210108901	THOMAS JEFFERSON UNIV/PHILA	11 & WALNUT ST	0.0000	0.40	1.87	0.13	0.13	0.12	0.10
4210108905	TEMPLE UNIV/ MAIN CAMPUS	1009 W MONTGOMERY AVE	0.0000	18.73	26.34	1.06	1.06	0.37	2.95
4210108918	GIRARD COLL/BOARDING SCH	GIRARD & CORINTHIAN AVE	0.0000	2.20	2.62	0.20	0.20	0.02	0.14
4210109703	US MINT/PHILA	151 N INDEPENDENCE MALL E	0.0000	3.82	2.41	0.07	0.00	0.02	1.31
4210109723	WILLIAM J GREEN JR FED BLDG/GSA	600 ARCH ST	0.0000	2.21	2.86	0.20	0.20	0.04	0.15
4210109726	FEDERAL BUR OF PRISONS/ PHILA COURT	700 ARCH ST	0.0000	1.55	1.92	0.06	0.00	0.02	0.11
4210110092	PA CONV CTR/ARCH ST	1101 ARCH ST	0.0000	2.25	3.94	0.22	0.22	0.16	0.23
4210110353	PA CONVENTION CTR ANNEX/BROAD ST	111 N BROAD ST	0.0000	0.74	1.54	0.08	0.08	0.06	0.08
42101T0114	COATING & CONVERTING TECH CORP/ADHESIVE COATINGS	80 E MORRIS ST	0.0000	0.30	0.36	0.03	0.03	0.00	4.37

Figure 23 – VGR North Aerial View

Appendix A PAMS Implementation Network Plan

Appendix A

PAMS Monitoring Implementation Network Plan

Monitoring Organizations Required To Operate At NCore Sites

Philadelphia Air Management Services formerly operated one Photochemical Assessment Monitoring Stations (PAMS) site in the air monitoring network in 2016, at the LAB site. However, the recently revised monitoring rule (80 FR 65292; October 26, 2015) requires PAMS measurements June 1 through August 31 at NCore sites that are located in Core-Based Statistical Areas (CBSAs) with populations of 1,000,000 or more.

Network Decision

The NCore site located at NEW will serve as the location of the required PAMS site and will measure the following parameters described below. An Inventory of equipment used at the site(s) is provided in Attachment 2.

Auto GC Decision

Volatile organic compounds (VOCs) – A complete list of the targeted compounds are found in Table 1.

We will measure hourly speciated VOC measurements with an auto-gas chromatograph (GC) using tentatively the Consolidated Analytical Systems (CAS). Prior to the acquisition, and operation of this system, we will analyze 24 hours canisters collected on a sixth day basis from March through October at the NCore site by traditional PAMS Cryo-GC.

Meteorology Measurements Decision

We have elected to use the following instrumentation to measure mixing height: Vaisala CL51 Ceilometer.

Other Required Measurements

Carbonyls - Carbonyl sampling at a frequency of three 8-hour samples on a one-in-three day basis (~90 samples per PAMS sampling season) using ATEC Sampler and Waters HPLC equipment for analysis. A complete list of the target carbonyl compounds may be found in Table 1. The TO-11A test method, as used in the National Air Toxics Trends (NATTS) program³ will be used.

Nitrogen Oxides - Will monitor for NO and NO $_y$ (total oxides of nitrogen) in addition to true NO $_2$. The true NO $_2$ is required to be measured with a direct reading NO $_2$ analyzer, cavity attenuated phase shift (CAPS) spectroscopy or photolytic-converter NO $_x$ analyzer. We have elected to use Teledyne T500U for the true NO2 measurement. NO and NO $_y$ will be measured using Teledyne

2018 - 2019 AMNP

³ See NATTS Technical Assistance Document for TO-11A method.

Table 1 PAMS Target Compound List

	Priority Comp	oounc	ls		Optional Co	mpou	nds
1	1,2,3-trimethylbenzene ^a	19	n-hexane b	1	1,3,5-trimethylbenzene	19	m-diethlybenzene
2	1,2,4-trimethylbenzene ^a	20	n-pentane	2	2 1-pentene		methylcyclohexane
3	1-butene	21	o-ethyltoluene a	3	2,2-dimethylbutane	21	methylcyclopentane
4	2,2,4-trimethylpentane ^b	22	o-xylene a,b	4	2,3,4-trimethylpentane	22	n-decane
5	acetaldehyde b,c	23	p-ethyltoluene a	5	2,3-dimethylbutane	23	n-heptane
6	acetone c,d	24	Propane	6	2,3-dimethylpentane	24	n-nonane
7	benzene a,b	25	propylene	7	2,4-dimethylpentane	25	n-octane
8	c-2-butene	26	styrene ^{a,b}	8	2-methylheptane	26	n-propylbenzene ^a
9	ethane ^d	27	toluene a,b	9	2-methylhexane	27	n-undecane
10	ethylbenzene a,b	28	t-2-butene	10	2-methylpentane	28	p-diethylbenzene
11	Ethylene			11	3-methylheptane	29	t-2-pentene
12	formaldehyde b,c			12	3-methylhexane	30	α/β-pinene
13	Isobutane			13	3-methylpentane	31	1,3 butadiene ^b
14	Isopentane			14	Acetylene	32	benzaldehyde ^c
15	Isoprene			15	c-2-pentene	33	carbon tetrachloride b
16	m&p-xylenes a,b			16	cyclohexane	34	Ethanol
17	m-ethyltoluene a			17	cyclopentane	35	Tetrachloroethylene b
18	n-butane			18	isopropylbenzene b		

Source: Revisions to the Photochemical Assessment Monitoring Stations Compound Target List. U.S. EPA, November 20, 2013

^a Important SOAP (Secondary Organic Aerosols Precursor) Compounds ^b HAP (Hazardous Air Pollutant) Compounds

^c Carbonyl compounds

^d Non-reactive compounds, not considered to be VOC for regulatory purposes

Attachment 2 Equipment Inventory

Region	3
State	PA
Local	Philadelphia
AQS ID	42-101-0024
	Philadelphia- Camden- Wilmington, PA-NJ-DE-
MSA	MD

Parameter	Category	Detail
	Is the AQS site ID listed above the expected	
Site	PAMS Core site location?	Yes
	What is the status of the decision for the	
	expected PAMS Core site location (not started,	
	draft, or final)?	Final
	Is there an alternate PAMS Core site location	
	selected?	No
	Identify type of alternative site (existing PAMS,	
	NATTS, etc)	N/A
	Alternate site AQS ID (if known)	N/A
	Is there an existing functional ceilometer or	
Mixing Height	other similar instrument available for use?	Yes
	current location (at future PAMS Core site, at	
	other site, not applicable)	Final
	instrument type (ceilometer, radar profiler,	
	etc)	Ceilometer
	Manufacturer	Vaisala
	Model	CL51
	date purchased	December 2017
	Comments	
Auto GC	Is there an existing Auto GC available for use?	No
	current location (at future PAMS Core site, at	
	other site, not applicable)	
	Manufacturer	
	Model	
	date purchased	
	Does it have a service contract?	
	Comments	
	Is there an existing true NO2 instrument	
True NO2	available for use?	Yes
	current location (at future PAMS Core site, at	
	other site, not applicable)	Final

instrument type (photolytic conversion, cavity	Photolytic
ringdown, CAPS, etc)	Conversion
Manufacturer	Teledyne
Model	T500U
date purchased	December 2017
Comments	NO, NOy at site

		1
	Is there an existing sequential carbonyls	
Carbonyls	sampling unit or similar instrument available	
Sampling	for use?	Yes
	current location (at future PAMS Core site, at	
	other site, not applicable)	PAMS Core site
	Manufacturer	ATEC
	Model	8000
	date purchased	2016
	Comments	
	Does the site currently have a support	
	laboratory for carbonyls or plans to use a	
Carbonyl Analysis	support laboratory?	Yes
		Philadelphia Air
		Management
	laboratory name	Services Laboratory
	Comments	Waters HPLC
Barometric		
Pressure	instrument type (aneroid barometer, etc)	Yes - Electronic
	Manufacturer	Vaisala
	Model	WXT520
	date purchased	2013
	Comments	
UV Radiation	instrument type (UV radiometer, etc)	No
	Manufacturer	
	Model	
	date purchased	
	Comments	
Solar Radiation	instrument type (pyranometer, etc)	No
	Manufacturer	
	Model	
	date purchased	
	Comments	
Duo simit ati au	inches and the a /time in a level of the control of	No
Precipitation	instrument type (tipping bucket, weighing, etc)	No
	Manufacturer	
	Model	
	date purchased	
	Comments	
		2018 - 2019 AMN

Appendix B Philadelphia Air Quality Survey

Appendix B

Philadelphia Air Quality Survey Project Overview

Objectives

Although the City of Philadelphia has operated a network of EPA sponsored regulatory air monitoring stations for many years, the number of these stations is usually small, and the locations of the stations cannot reflect the neighborhood-to-neighborhood variances of air quality across the city. This project aims to fill the gap in air quality monitoring as mentioned above, and achieve the following objectives:

- 1) Set up street-level, neighborhood-oriented air sampling sites throughout the city to sample the air for about two years, and capture the seasonal changes and neighborhood-to-neighborhood spatial variances in air quality.
- 2) Measure the types of air pollution with major concerns, including PM_{2.5}, NO₂ (as vehicle emission indicator and ozone precursor), diesel vehicle emissions (using black carbon as indicator), and residual oil burning (using indicators such as SO₂, nickel, and vanadium).
- 3) Obtain quality assured and reliable data results that can serve as the basis for future work, including: provide policy recommendations for reducing pollution from congested city traffic, diesel vehicles and winter time fuel burning; analyze the relations between air quality and land use characters at neighborhood level and build a Land Use Regression model to predict air pollution levels and spatial variances in different neighborhoods; provide a basis for studying public health impact of air pollution in the city.

Outputs

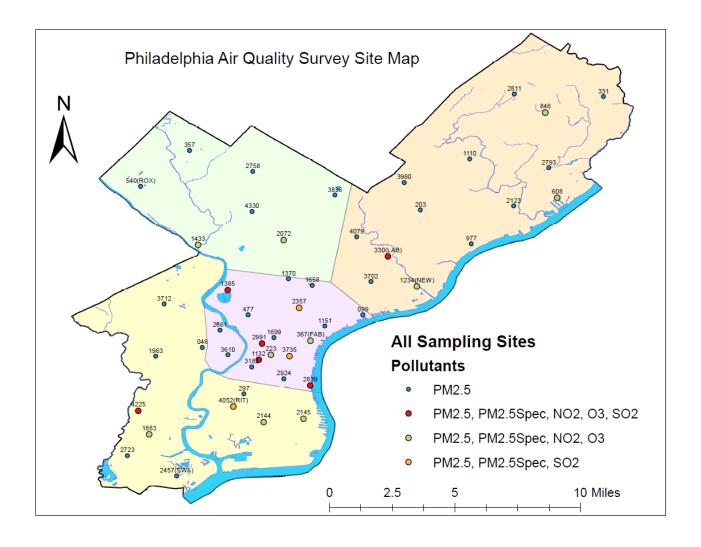
The project outputs will include data from the first ever city-wide street level air monitoring, which will indicate spatial variances of pollutant (PM_{2.5}, NO₂, SO₂, O₃) concentrations across different areas of the city.

Project Time Frame

The research and preparation work for the project have been ongoing since July 2016. The city-wide air sampling operation is expected to start in Spring 2018, and will last about 24 months.

Project Design

Monitoring Sites


A grid of 300m x 300m cells are created over the city map using ArcGIS for the purposes of site selection, data processing, and air quality modeling in the future. A sampling site falls in one of these cells. 50 monitoring sites have been selected across the city (see the attached map). The entire city is divided into four quadrants (areas): Central, Northeast, Northwest, and South/Southwest. The Central Area is given larger number of sites and higher site density, considering the high density of population, traffic and buildings, and potentially larger gradients of pollutant concentration variances. Within each area, about 70% of the sites are randomly selected using GIS mapping techniques to make the data statistically representative. About 30% of the sites are determined as "purposeful" sites. Their locations are determined to serve one or more particular purposes. At each monitoring site, a portable sampling unit will be mounted on a utility pole about 10 - 12 feet above the ground.

Sampling Unit

The sampling unit contains a filter based PM_{2.5} sample collector. At some of the sites, the sampling unit will also include NO₂, SO₂, and/or O₃. passive samplers. The unit contains meteorological sensors as well.

Sampling Operation

The sampling unit operates on 2-week sampling cycles. Four sites, called "reference sites", will operate with consecutive 2-week sampling periods throughout the year. For the rest of the monitoring sites, sampling units will be rotated to cover the 46 sites in four operational sessions (batches) during a season, a three-month period. In each session of a season, 11 to 12 sites will be monitored at a time for a two-week sampling period. Then the sampling units will be moved to the next session of 11 to 12 sites. To avoid spatio-temporal confounding associated with different sites being monitored during different time windows, the sites in each operational session will be randomly selected.

Appendix C Relocation of SWA

CITY OF PHILADELPHIA

DEPARTMENT OF PUBLIC HEALTH

Thomas A. Farley, MD MPH Health Commissioner

Caroline C. Johnson, MD
Deputy Health Commissioner

Air Management Services Kassahun Sellassie, PhD, PE Director

321 University Avenue, 2nd floor Philadelphia, PA 19104

Telephone (215) 685-7584 Fax (215) 685-9451

Eloise Gibby Greeley and Hansen 1700 Market Street, Suite 2130 Philadelphia, PA 19103

March 19, 2018

Dear Ms. Gibby,

Regarding the Air Monitoring Station located at the PWD Southwest Plant, Air Management Services (AMS) approves the relocation proposed by PWD and Greeley and Hanson. See the enclosed relocation of the station and concurrence by EPA. PWD and Greeley and Hanson will provide electrical service to the proposed location of the station, a concrete pad will be placed under the station a few inches above grade and gravel will surround the pad and be sloped to grade, and the station will be at least 10 meters away from idling trucks and the drip line of trees.

So far, construction is expected to begin 7/13/2018 and demolition is proposed to begin 2/18/2019. PWD and Greeley and Hanson will let AMS know when AMS needs to take equipment out of the shelter for the move, to then set it up in the new location.

The Philadelphia International Airport monitoring site (SWA) was established at the Southwest Water Treatment Plant at 8200 Enterprise Ave, 19153 to monitor toxics, carbonyls, and metals. EPA Region III modeling analysis showed areas near the airport to have high levels of aldehydes.

If you have any questions, please contact Hallie Weiss of my staff at 215-685-1085.

Sincerely, Lanaha sellaru

Kassahun Sellassie, Ph.D., P.E.

Director, Air Management Services

From: Chow, Alice
To: Hallie Weiss

Cc: schmidt, howard; Hyden, Loretta; Joerger, Verena; Long, Kia

Subject: FW: Philadelphia AMS toxics site relocation Date: Friday, March 16, 2018 6:54:59 AM

Hallie: I concur with my staff's suggestion to move the toxics monitor to a new location.

Alice

Alice H. Chow

Associate Director (3AP40)

Office of Air Monitoring and Analysis

USEPA, Region 3

Phone: 215-814-2144

Email: chow.alice@epa.gov

From: Hyden, Loretta

Sent: Thursday, March 15, 2018 5:30 PM **To:** Chow, Alice <chow.alice@epa.gov>

Cc: schmidt, howard <schmidt.howard@epa.gov>; Joerger, Verena <joerger.verena@epa.gov>;

Long, Kia <Long.Kia@epa.gov>

Subject: Philadelphia AMS toxics site relocation

Hi Alice,

Hallie Weiss of Air Management Services emailed Howard, Kia, Verena and myself on 2/20/2018 about a relocation of a toxics monitoring station (SWA) located at 8200 Enterprise Ave Philadelphia, PA. Included in this email was a description of the new site location and how the new site location would meet siting criteria for trees and obstructions. The email also provided an overhead picture of the current monitoring station location and the new monitoring station location.

The site relocation will consist of moving the existing SWA site less than 400 ft. from its current position. Based on the information provided Hallie Weiss, we concur that the SWA site relocation should be approved.

Lori

Appendix D Discontinue PM_{2.5} at LAB

In accordance with 40 CFR 58.14(c) where the local agency requests for SLAMS monitor station discontinuation, subject to the review of the Regional Administrator, will be approved if any of the following criteria are met and if the requirements of appendix D to this part, if any, continue to be met. Other requests for discontinuation may also be approved on a case-by-case basis if discontinuance does not compromise data collection needed for implementation of a NAAQS and if the requirements of appendix D to this part, if any, continue to be met.

Per 40 CFR 58.14(c)(1), any PM2.5 SLAMS monitor which has shown attainment during the previous five years, that has a probability of less than 10 percent of exceeding 80 percent of the applicable NAAQS during the next three years based on the levels, trends, and variability observed in the past, and which is not specifically required by an attainment plan or maintenance plan. In a nonattainment or maintenance area, if the most recent attainment or maintenance plan adopted by the State and approved by EPA contains a contingency measure to be triggered by an air quality concentration and the monitor to be discontinued is the only SLAMS monitor operating in the nonattainment or maintenance area, the monitor may not be discontinued.

In 2006, EPA revised the primary 24-hour PM2.5 standard to 35 μg/m3, based on a 3-year average of the 98th percentile of 24-hour concentrations. In 2012, EPA revised the annual PM2.5 standard to 12.0 μg/m3 and retained the 24-hour PM2.5 standard at 35 μg/m3.

The City of Philadelphia, Air Management Services (AMS), currently measures PM2.5 at six sites: LAB, NEW, RIT, FAB, TOR, and MON. In the past five years other sites have included CHS and BAX.

Philadelphia AMS is requesting discontinuation of two LAB PM2.5 FRM, primary and collocated monitors, AQS site 421010004. The probability is less than 10 percent of exceeding 80 percent of the applicable NAAQS during the next three years based on the levels, trends, and variability observed in the past as indicated here:

Annual DV		% from Standard	24-Hour DV	% from Standard	
2013	9.3	78	27	77	
2014	9.6	80	27	77	
2015	9.7	81	29	83	
2016	9.3	78	25	71	
2017	8.8	73	23	66	

In addition, AMS maintains and meets the minimum requirements of the rest of the PM2.5 network in the City. Comparison to other PM2.5 monitors from 2013-2017 shows the LAB is the lowest site in concentration in the City as indicated here:

Annual DV									
	LAB - 421010004	CHS - 421010047	NEW - 421010048	RIT - 421010055	FAB - 421010057	BAX - 421011002	TOR - 421010075	MON - 421010076	Average of other Network Sites
2013	9.3	10.4	10.9	11	10.8	9.5			10.5
2014	9.6	10.3	11	11.3	11	9.8	10.7		10.7
2015	9.7	10.7	10.7	11.6	11.3	9.4	10.7	9	10.5
2016	9.3	11.2	10.3	11.4	10.9		10.3	8.6	10.5
2017	8.8	11.3	9.6	10.6	10.2		9.5	8.6	10
24-Hour DV									
	LAB - 421010004	CHS - 421010047	NEW - 421010048	RIT - 421010055	FAB - 421010057	BAX - 421011002	TOR - 421010075	MON - 421010076	Average of other Network Sites
2013	27	28	35	27	27	22			28
2014	27	26	32	27	27	24	21		26
2015	29	26	30	29	28	24	24	30	27
2016	25	25	26	27	27		23	25	26
2017	23	24	23	24	23		24	24	24

The most recent analytical information from this site indicates that there is no concern relative to any NAAQS compliance issues, the maximum value for this site is well below the regulatory threshold of less than 80 percent of the ambient air standard, and is the lowest site in concentration in the City.

Appendix E Public Notice Proof of Publication

Proof of Publication in The Philadelphia Daily News Under Act. No 587, Approved May 16, 1929

STATE OF PENNSYLVANIA **COUNTY OF PHILADELPHIA**

Helene Sweeney being duly sworn, deposes and says that The Philadelphia Daily News is a newspaper published daily, except Sunday, at Philadelphia, Pennsylvania, and was established in said city in 1925, since which date said newspaper has been regularly issued in said County, and that a copy of the printed notice of publication is attached hereto exactly as the same was printed and published in the regular editions and issues of the said newspaper on the following dates:

May 4, 2018

Affiant further deposes and says that she is an employee of the publisher of said newspaper and has been authorized to verify the foregoing statement and that she is not interested in the subject matter of the aforesaid notice of publication, and that all allegations in the foregoing statement as to time, place and character of publication are true.

Helene Severen

Sworn to and subscribed before me this 4th day of May 2018.

My Commission Expires:

COMMONWEALTH OF PENNSYLVANIA

NOTARIAL SEAL CINDY JAKUBOWSKI, Notary Public City of Philadelphia, Phila. County Commission Expires November 30, 2020 Copy of Notice of Publication

PROPOSED ANNUAL MONITORING NETWORK PLAN FOR PHILADELPHIA The Code of Federal Regulations (CFR) Title 40: Protection of Environment, Part 58: Ambient Air Protection of Environment, Part 58: Ambient Air Quality Surveillance requires state and local air pollution control agencies to adopt and submit to the Environmental Protection Agency (EPA) Regional Administrator an Annual Monitoring Network Plan (AMNP) by July 1, 2018. The AMNP provides for the establishment and maintenance of an air quality surveillance system that consists of a network of monitoring stations. A proposed AMNP must be made available for public inspection and comment for at least 30 days prior to submission to EPA. Air Management Services (AMS) is the local air pollution control agency for the City of Philadelphia under the Department of Public Health Philadelphia has an air monitoring network of 11 air monitoring stations that house instruments that measure ambient levels of air pollutants. The proposed AMNP is available for public inspection on the City's website at http://www.phila.gov/health/airmanagement/PublicMeetings.html and at the office of Air Managament Services, 321 University Avenue, 2nd Floor, Philadelphia, PA 19104, during normal business hours, For further information, contact Mr. Hamesh, Mahadevan, Engineering Supervisor of Program Services at (215) 638-9436.

Written comments on the proposed AMNP should be sent to Mr. Hamesh Mahadevan, Engineering Should Berger Should Berger Should Berger Should Berger Should Berger

(215) 685-9436.
Written comments on the proposed AMNP should be sent to Mr. Ramesh Mahadevan, Engineering Supervisor of Program Services, Air Management Services, 321 University Avenue, 2nd Floor, Philadelphia, PA 19104 or via email at ramesh mahadevan@phila.gov. Use "2018 Air Monitoring Network Plan" as the subject line in written communication. Only written comments will be accepted. Comments received by facsimile will not be accepted. Persons wishing to file comments on the proposed AMNP must submit comments by June 4, 2018.