Number: P-17-0362 **TSCA Section 5(a)(3) Determination**: The chemical substance is not likely to present an unreasonable risk (5(a)(3)(C)) ### **Chemical Name:** Generic: Aliphatic phosphoric amide ester # Conditions of Use (intended, known, or reasonably foreseen)¹: Intended conditions of use (generic): Import for process and use as an industrial flame retardant, consistent with the manufacturing, processing, use, distribution, and disposal information described in the PMN. Known conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are known conditions of use and found none. Reasonably foreseen conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are reasonably foreseen conditions of use, and, based on patent references, identified the following reasonably foreseen uses: use as a flame retardant and additive in other applications. **Summary:** The chemical substance is not likely to present an unreasonable risk of injury to health or the environment, without consideration of costs or other nonrisk factors, including an unreasonable risk to a potentially exposed or susceptible subpopulation identified as relevant by the Administrator under the conditions of use, based on the risk assessment presented below. Although EPA estimated that the new chemical substance could be very persistent, the substance has a low potential for bioaccumulation, such that repeated exposures are not expected to cause food-chain effects via accumulation in exposed organisms. Based on EPA's TSCA New Chemicals Program Chemical Category for Esters² and test data on the chemical substance, EPA ¹ Under TSCA § 3(4), the term "conditions of use" means "the circumstances, as determined by the Administrator, under which a chemical substance is intended, known, or reasonably foreseen to be manufactured, processed, distributed in commerce, used, or disposed of." In general, EPA considers the intended conditions of use of a new chemical substance to be those identified in the section 5(a) notification. Known conditions of use include activities within the United States that result from manufacture that is exempt from PMN submission requirements. Reasonably foreseen conditions of use are future circumstances, distinct from known or intended conditions of use, under which the Administrator expects the chemical substance to be manufactured, processed, distributed, used, or disposed of. The identification of "reasonably foreseen" conditions of use will necessarily be a case-by-case determination and will be highly fact-specific. Reasonably foreseen conditions of use will not be based on hypotheticals or conjecture. EPA's identification of conditions of use includes the expectation of compliance with federal and state laws, such as worker protection standards or disposal restrictions, unless case-specific facts indicate otherwise. Accordingly, EPA will apply its professional judgment, experience, and discretion when considering such factors as evidence of current use of the new chemical substance outside the United States, evidence that the PMN substance is sufficiently likely to be used for the same purposes as existing chemical substances that are structurally analogous to the new chemical substance, and conditions of use identified in an initial PMN submission that the submitter omits in a revised PMN. The sources EPA uses to identify reasonably foreseen conditions of use include searches of internal confidential EPA PMN databases (containing use information on analogue chemicals), other U.S. government public sources, the National Library of Medicine's Hazardous Substances Data Bank (HSDB), the Chemical Abstract Service STN Platform, REACH Dossiers, technical encyclopedias (e.g., Kirk-Othmer and Ullmann), and Internet searches. estimates that the chemical substance has low environmental hazard and low human health hazard. EPA concludes that the new chemical substance is not likely to present an unreasonable risk under the conditions of use. Fate: Environmental fate is the determination of which environmental compartment(s) a chemical moves to, the expected residence time in the environmental compartment(s) and removal and degradation processes. Environmental fate is an important factor in determining exposure and thus in determining whether a chemical may present an unreasonable risk. EPA estimated physical/chemical and fate properties of the new chemical substance using data submitted for the new chemical substance and EPI (Estimation Program Interface) Suite™ (http://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface). In wastewater treatment, the new chemical substance is expected to be removed with an efficiency of 0% to 5% due to low biodegradation is negligible. Sorption, and low stripping. Removal of the new chemical substance by biodegradation is negligible. Sorption of the new chemical substance to sludge, soil, and sediment is expected to be low. Migration of the new chemical substance to groundwater is expected to be rapid due to low sorption to soil and sediment. Due to low estimated vapor pressure and Henry's law constant, the new chemical substance is expected to undergo negligible volatilization to air. Overall, these estimates indicate that the new chemical substance has low potential to volatilize to air and has high potential to migrate to groundwater. **Persistence**³: Persistence is relevant to whether a new chemical substance is likely to present an unreasonable risk because chemicals that are not degraded in the environment at rates that prevent substantial buildup in the environment, and thus increase potential for exposure, may present a risk if the substance presents a hazard to human health or the environment. EPA estimated degradation half-lives of the new chemical substance using data submitted for the new chemical substance and EPI SuiteTM. EPA estimated that the new chemical substance's aerobic and anaerobic biodegradation half-lives are > 6 months and hydrolysis half-life is > months. These estimates indicate that the new chemical substance may be very persistent in aerobic environments (e.g., surface water) and anaerobic environments (e.g., sediment). **Bioaccumulation⁴:** Bioaccumulation is relevant to whether a new chemical substance is likely to present an unreasonable risk because substances that bioaccumulate in aquatic and/or terrestrial species pose the potential for elevated exposures to humans and other organisms via food chains. EPA estimated the potential for the new chemical substance to bioaccumulate using data submitted for the new chemical substance. EPA estimated that the new chemical substance ³ Persistence: A chemical substance is considered to have limited persistence if it has a half-life in water, soil or sediment of less than 2 months or there are equivalent or analogous data. A chemical substance is considered to be persistent if it has a half-life in water, soil or sediments of greater than 2 months but less than or equal to 6 months or if there are equivalent or analogous data. A chemical substance is considered to be very persistent if it has a half-life in water, soil or sediments of greater than 6 months or there are equivalent or analogous data. (64 FR 60194; November 4, 1999) ⁴ Bioaccumulation: A chemical substance is considered to have a low potential for bioaccumulation if there are bioconcentration factors (BCF) or bioaccumulation factors (BAF) of less than 1,000 or there are equivalent or analogous data. A chemical substance is considered to be bioaccumulative if there are BCFs or BAFs of 1,000 or greater and less than or equal to 5,000 or there are equivalent or analogous data. A chemical substance is considered to be very bioaccumulative if there are BCFs or BAFs of 5,000 or greater or there are equivalent or analogous data. (64 FR 60194; November 4 1999) has low bioaccumulation potential based on submitted data (bioconcentration factor = 0.98 [measured]). Although EPA estimated that the new chemical substance could be very persistent, the substance has a low potential for bioaccumulation, such that repeated exposures are not expected to cause food-chain effects via accumulation in exposed organisms. **Human Health Hazard**⁵: Human health hazard is relevant to whether a new chemical substance is likely to present an unreasonable risk because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA estimated the human health hazard of this chemical substance based on its estimated physical/chemical properties, available data on the new chemical substance, and other structural information. Absorption of the new chemical substance is expected to be nil to poor through the skin (neat), poor to moderate through the skin when in solution, and moderate through the GI tract and lungs based on physical/chemical properties. For the new chemical substance, EPA did not identify any hazards based on submitted data on the new chemical substance. Submitted tests reported that the new chemical substance has low toxicity by the oral, dermal, and inhalation routes and that the new chemical substance is not a skin or eye irritant and is not a dermal sensitizer. Submitted genotoxicity and mutagenicity data included a negative Ames assay, mouse lymphoma assay, chromosomal aberration assay, and mouse micronucleus assay. In the submitted 28-day oral toxicity, 90-day oral toxicity, and reproductive/developmental toxicity studies with the new chemical substance, the NOAELs were 1000 mg/kg/day since there were no treatment-related adverse effects up to the highest dose tested. Based on the expected low hazard, the EPA did not identify points of departure for quantitative risk assessment. **Environmental Hazard**⁶: Environmental Hazard: Environmental hazard is relevant to whether a new chemical substance is likely to present unreasonable risk because the significance of the risk ⁵ A chemical substance is considered to have low human health hazard if effects are observed in animal studies with a No Observed Adverse Effect Level (NOAEL) equal to or greater than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have moderate human health hazard if effects are observed in animal studies with a NOAEL less than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have high human health hazard if there is evidence of adverse effects in humans or conclusive evidence of severe effects in animal studies with a NOAEL of less than or equal to 10 mg/kg/day or if there are equivalent data on analogous chemical substances. EPA may also use Benchmark Dose Levels (BMDL) derived from benchmark dose (BMD) modeling as points of departure for toxic effects. See https://www.epa.gov/bmds/what-benchmark-dose-software-bmds. Using this approach, a BMDL is associated with a benchmark response, for example a 5 or 10 % incidence of effect. The aforementioned characterizations of hazard (low, medium, high) would also apply to BMDLs. In the absence of animal data on a chemical or analogous chemical substance, EPA may use other data or information such as from in vitro assays, chemical categories (e.g., Organization for Economic Co-operation and Development, 2014 Guidance on Grouping of Chemicals, Second Edition. ENV/JM/MONO(2014)4. Series on Testing & Assessment No. 194. Environment Directorate, Organization for Economic Co-operation and Development, Paris, France. (http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2014)4&doclanguage=en)), structure-activity relationships, and/or structural alerts to support characterizing human health hazards. ⁶ A chemical substance is considered to have low ecotoxicity hazard if the Fish, Daphnid and Algae LC50 values are greater than 100 mg/L, or if the Fish and Daphnid chronic values (ChVs) are greater than 10.0 mg/L, or there are not effects at saturation (occurs when water solubility of a chemical substance is lower than an effect concentration), or the log Kow value exceeds QSAR cut-offs. A chemical substance is considered to have moderate ecotoxicity hazard if the lowest of the Fish, Daphnid or Algae LC50s is greater than 1 mg/L and less than 100 mg/L, or where the Fish is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA determined the environmental hazard for this new chemical substance based on acute and chronic toxicity data submitted for the new chemical substance. This substance falls within the TSCA New Chemicals Category for Esters. Based on submitted test data, acute toxicity values measured for fish, aquatic invertebrates, and algae are all > 100 mg/L. Chronic toxicity values measured for fish, aquatic invertebrates, and algae are > 100 mg/L (test data with an ACR of 10), > 100 mg/L (submitted test data), and > 100 mg/L (submitted test data), respectively. These toxicity values indicate that the new chemical substance is expected to have low environmental hazard. Application of assessment factors of 5 and 10 to acute and chronic toxicity values, respectively, results in acute and chronic concentrations of concern of 20 mg/L (20,000 ppb) and 1 mg/L (1,000 ppb), respectively. **Exposure and Risk Characterization:** The exposure to a new chemical substance is potentially relevant to whether a new chemical substance is likely to present unreasonable risks because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA considers workers to be a potentially exposed or susceptible subpopulation (PESS) on the basis of greater exposure potential compared to the general population. EPA also considers PESS in conducting general population drinking water exposures by evaluating risks associated with water intake rates for multiple age groups, ranging from infants to adults. EPA considers consumers of specific products to be a potentially exposed or susceptible subpopulation on the basis of greater exposure potential compared to the general population who do not use specific products. Due to low hazard, EPA believes that this chemical substance would be not likely to present an unreasonable risk even if potential exposures were high. Therefore, EPA concludes that the new chemical substance is not likely to present an unreasonable risk under the conditions of use. | 7/24/2019 | /s/ | |-----------|---| | Date: | Tala R. Henry, Ph.D. | | | Deputy Director for Programs | | | Office of Pollution Prevention and Toxics | or Daphnid ChVs are greater than 0.1 mg/L and less than 10.0 mg/L. A chemical substance is considered to have high ecotoxicity hazard, or if either the Fish, Daphnid or Algae LC50s are less than 1 mg/L, or any Fish or Daphnid ChVs is less than 0.1 mg/L (Sustainable Futures https://www.epa.gov/sustainable-futures/sustainable-futures-p2-framework-manual).