Number: P-18-0177

TSCA Section 5(a)(3) Determination: The chemical substance is not likely to present an unreasonable risk (5(a)(3)(C))

Chemical Name:

Specific: Waxes and Waxy substances, rice bran, oxidized; CASRN: 1883583-80-9

Conditions of Use (intended, known, or reasonably foreseen)¹**:**

- Intended conditions of use (specific): Import for use as a lubricant and surface protection agent in shoe polishes, car polishes, and floor coatings, consistent with the manufacturing, processing, use, distribution, and disposal information described in the PMN.
- Known conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are known conditions of use and found none.
- Reasonably foreseen conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are reasonably foreseen conditions of use and found none.

Summary: The chemical substance is not likely to present an unreasonable risk of injury to health or the environment, without consideration of costs or other nonrisk factors, including an unreasonable risk to a potentially exposed or susceptible subpopulation identified as relevant by the Administrator under the conditions of use, based on the risk assessment presented below. Although EPA estimated that the new chemical substance could be very persistent, the new chemical substance has a low potential for bioaccumulation, such that repeated exposures are not expected to cause food-chain effects via accumulation in exposed organisms. Based on EPA's TSCA New Chemicals Program Chemical Categories for Neutral Organics², test data on the new chemical substance itself and test data on analogous chemical substances, EPA estimates that the chemical substance has moderate environmental hazard and low human health hazard. EPA

¹ Under TSCA § 3(4), the term "conditions of use" means "the circumstances, as determined by the Administrator, under which a chemical substance is intended, known, or reasonably foreseen to be manufactured, processed, distributed in commerce, used, or disposed of." In general, EPA considers the intended conditions of use of a new chemical substance to be those identified in the section 5(a) notification. Known conditions of use include activities within the United States that result from manufacture that is exempt from PMN submission requirements. Reasonably foreseen conditions of use are future circumstances, distinct from known or intended conditions of use, under which the Administrator expects the chemical substance to be manufactured, processed, distributed, used, or disposed of. The identification of "reasonably foreseen" conditions of use will necessarily be a case-by-case determination and will be highly fact-specific. Reasonably foreseen conditions of use will not be based on hypotheticals or conjecture. EPA's identification of conditions of use includes the expectation of compliance with federal and state laws, such as worker protection standards or disposal restrictions, unless case-specific facts indicate otherwise. Accordingly, EPA will apply its professional judgment, experience, and discretion when considering such factors as evidence of current use of the new chemical substance outside the United States, evidence that the PMN substance is sufficiently likely to be used for the same purposes as existing chemical substances that are structurally analogous to the new chemical substance, and conditions of use identified in an initial PMN submission that the submitter omits in a revised PMN. The sources EPA uses to identify reasonably foreseen conditions of use include searches of internal confidential EPA PMN databases (containing use information on analogue chemicals), other U.S. government public sources, the National Library of Medicine's Hazardous Substances Data Bank (HSDB), the Chemical Abstract Service STN Platform, REACH Dossiers, technical encyclopedias (e.g., Kirk-Othmer and Ullmann), and Internet searches.

² TSCA New Chemicals Program (NCP) Chemical Categories. <u>https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/chemical-categories-used-review-new</u>.

concludes that the new chemical substance is not likely to present an unreasonable risk under the conditions of use.

Fate: Environmental fate is the determination of which environmental compartment(s) a chemical moves to, the expected residence time in the environmental compartment(s) and removal and degradation processes. Environmental fate is an important factor in determining exposure and thus in determining whether a chemical may present an unreasonable risk. EPA estimated physical/chemical and fate properties of the new chemical substance using data for analogue(s) (waxes), data submitted for the new chemical substance, and EPI (Estimation Program Interface) SuiteTM (http://www.epa.gov/tsca-screening-tools/epi-suitetm-estimationprogram-interface). In wastewater treatment, the new chemical substance is expected to be removed with an efficiency of 90% due to sorption and biodegradation. Removal of the new chemical substance by biodegradation is negligible to high. Sorption of the new chemical substance to sludge is expected to be low to strong and to soil and sediment is expected to be moderate to strong. Migration of the new chemical substance to groundwater is expected to be slow to moderate due to moderate to strong sorption to soil and sediment. Due to low estimated vapor pressure and Henry's law constant, the new chemical substance is expected to undergo negligible volatilization to air. Overall, these estimates indicate that the new chemical substance has low potential to volatilize to air and has low to moderate potential to migrate to groundwater.

Persistence³: Persistence is relevant to whether a new chemical substance is likely to present an unreasonable risk because chemicals that are not degraded in the environment at rates that prevent substantial buildup in the environment, and thus increase potential for exposure, may present a risk if the substance presents a hazard to human health or the environment. EPA estimated degradation half-lives of the new chemical substance using data for analogous chemicals (waxes) and EPI SuiteTM. EPA estimated that the new chemical substance's aerobic and anaerobic biodegradation half-lives are from 2 to > 6 months. These estimates indicate that the new chemical substance may be persistent or very persistent in aerobic environments (e.g., surface water) and anaerobic environments (e.g., sediment).

Bioaccumulation⁴: Bioaccumulation is relevant to whether a new chemical substance is likely to present an unreasonable risk because substances that bioaccumulate in aquatic and/or terrestrial species pose the potential for elevated exposures to humans and other organisms via food chains. EPA estimated the potential for the new chemical substance to bioaccumulate using data for analogous chemicals (waxes) and EPI SuiteTM. EPA estimated that the new chemical substance

³ Persistence: A chemical substance is considered to have limited persistence if it has a half-life in water, soil or sediment of less than 2 months or there are equivalent or analogous data. A chemical substance is considered to be persistent if it has a half-life in water, soil or sediments of greater than 2 months but less than or equal to 6 months or if there are equivalent or analogous data. A chemical substance is considered to be very persistent if it has a half-life in water, soil or sediments of greater than 6 months or there are equivalent or analogous data. (64 FR 60194; November 4, 1999)

⁴ Bioaccumulation: A chemical substance is considered to have a low potential for bioaccumulation if there are bioconcentration factors (BCF) or bioaccumulation factors (BAF) of less than 1,000 or there are equivalent or analogous data. A chemical substance is considered to be bioaccumulative if there are BCFs or BAFs of 1,000 or greater and less than or equal to 5,000 or there are equivalent or analogous data. A chemical substance is CFS or BAFs of 5,000 or greater or there are equivalent or analogous data. (64 FR 60194; November 4 1999)

has low bioaccumulation potential based on large predicted molecular volume, which limits bioavailability for the larger components of the mixture and EPI SuiteTM for the lower molecular weight components (bioconcentration factor = 29 [estimated] and bioaccumulation factor = 110 [estimated] for a potentially representative structure). Although EPA estimated that the new chemical substance could be very persistent, the substance has a low potential for bioaccumulation, such that repeated exposures are not expected to cause food-chain effects via accumulation in exposed organisms.

Human Health Hazard⁵: Human health hazard is relevant to whether a new chemical substance is likely to present an unreasonable risk because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA estimated the human health hazard of this chemical substance based on its estimated physical/chemical properties, available data on the new chemical substance, and by comparing it to structurally analogous chemical substances for which there is information on human health hazard. Absorption of the new chemical substance is expected to be nil to poor via all routes based on physical/chemical properties. For the new chemical substance, EPA did not identify any health effects as hazards.

Environmental Hazard: EPA estimated the environmental hazard of this new chemical substance using the Ecological Structure Activity Relationships (ECOSAR) Predictive Model (https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model); specifically the QSAR for Neutral Organics as well as acute toxicity data submitted for the new chemical substance itself. This substance falls within the TSCA New Chemicals Categories of Esters and Neutral Organics. Acute toxicity values measured for fish, aquatic invertebrates and algae are 21.9 mg/L (ECOSAR), >100 mg/L (measured data) and 61.9 mg/L (measured data) respectively. Chronic toxicity values for fish, aquatic invertebrates, and algae are 2.67 mg/L (ECOSAR), 10 mg/L (measured data with an ACR of 10), and 42.1 mg/L (measured data) respectively. These toxicity values indicate that the new chemical substance is expected to have moderate environmental hazard. Application of assessment factors of 5 and 10 to acute and chronic toxicity values, respectively, results in acute and chronic concentrations of concerns of 4.378 mg/L (4,378 ppb) and 0.267 mg/L (267 ppb) respectively.

⁵ A chemical substance is considered to have low human health hazard if effects are observed in animal studies with a No Observed Adverse Effect Level (NOAEL) equal to or greater than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have moderate human health hazard if effects are observed in animal studies with a NOAEL less than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have high human health hazard if there is evidence of adverse effects in humans or conclusive evidence of severe effects in animal studies with a NOAEL of less than or equal to 10 mg/kg/day or if there are equivalent data on analogous chemical substances. EPA may also use Benchmark Dose Levels (BMDL) derived from benchmark dose (BMD) modeling as points of departure for toxic effects. See https://www.epa.gov/bmds/what-benchmark-dose-software-bmds. Using this approach, a BMDL is associated with a benchmark response, for example a 5 or 10 % incidence of effect. The aforementioned characterizations of hazard (low, medium, high) would also apply to BMDLs. In the absence of animal data on a chemical or analogous chemical substance, EPA may use other data or information such as from in vitro assays, chemical categories (e.g., Organization for Economic Co-operation and Development, 2014 Guidance on Grouping of Chemicals, Second Edition. ENV/JM/MONO(2014)4. Series on Testing & Assessment No. 194. Environment Directorate, Organization for Economic Co-operation and Development, Paris, France. (http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2014)4&doclanguage=en)),

structure-activity relationships, and/or structural alerts to support characterizing human health hazards.

Exposure: The exposure to a new chemical substance is potentially relevant to whether a new chemical substance is likely to present unreasonable risks because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance.

EPA estimates occupational exposure and environmental release of the new chemical substance under the intended conditions of use described in the PMN using ChemSTEER (Chemical Screening Tool for Exposures and Environmental Releases; <u>https://www.epa.gov/tsca-screening-tools/chemsteer-chemical-screening-tool-exposures-and-environmental-releases</u>). EPA uses EFAST (the Exposure and Fate Assessment Screening Tool; <u>https://www.epa.gov/tsca-screening-tools/e-fast-exposure-and-fate-assessment-screening-tool-version-2014</u>) to estimate general population, consumer, and environmental exposures.

EPA considers workers to be a potentially exposed or susceptible subpopulation (PESS) on the basis of greater exposure potential compared to the general population. EPA also considers PESS in conducting general population drinking water exposures by evaluating risks associated with water intake rates for multiple age groups, ranging from infants to adults. EPA considers consumers of specific products to be a potentially exposed or susceptible subpopulation on the basis of greater exposure potential compared to the general population who do not use specific products.

For this assessment, EPA assessed worker exposure via inhalation and dermal routes. Releases to water, air, and landfill were estimated. Exposure to the general population was assessed via drinking water and fugitive air inhalation. Exposure to consumers was assessed via dermal and inhalation routes.

Risk Characterization: EPA assesses risks to workers considering engineering controls described in the PMN but in the absence of personal protective equipment (PPE) such as gloves and respirators. If risks are preliminarily identified, EPA then considers whether the risks would be mitigated by the use of PPE (e.g., impervious gloves, respirator).

For workers, hazard concerns were considered to be low and risks were not calculated. Based on expected low hazards, risks are considered to be low. For general population, hazard concerns were considered to be low and risks were not calculated. Based on expected low hazards, risks are considered to be low. For consumers, hazard concerns were considered to be low and risks were not calculated. Based on expected to be low and risks were not calculated. Based on expected to be low and risks were not calculated.

Risks to the environment were evaluated by comparing estimated surface water concentrations with the acute and chronic concentrations of concern. Risks from acute exposure to the environment were not identified due to releases to water that did not exceed the acute COC. Risks from chronic exposure to the environment were not identified due to releases to water that exceeded the chronic COC of 267 ppb for less than 20/days/year (6/250 days/year during use of the new chemical substance).

Because no unreasonable risks to workers, the general population, consumers, or environment were identified, EPA has determined that the new chemical substance is not likely to present unreasonable risk to human health or the environment under the conditions of use.

07/26/2019

Date:

/s/

Tala R. Henry, Ph.D. Deputy Director for Programs Office of Pollution Prevention and Toxics