CASTNET 2016 Annual Report

Prepared for:

U.S. Environmental Protection Agency Office of Atmospheric Programs

Prepared by:

1128 NW 39th Drive Gainesville, FL 32605

Contract No.: EP-W-12-019

June 2017

Table of Contents

1.0	Intro	oduction	1-1
2.0	Proj	ect Objectives	2-1
3.0	CAS	TNET Sites Visited in 2016	3-1
4.0	Perf	ormance and Audit Results	4-1
	4.1	Ozone	4-2
		4.1.1 Ozone Bias	
	4.2	Flow Rate	4-8
	4.3	Shelter Temperature	
	4.4	Wind Speed	4-10
		4.4.1 Wind Speed Starting Threshold	4-10
	4.5	Wind Direction	4-10
		4.5.1 Wind Direction Starting Threshold	4-11
	4.6	Temperature and Two-Meter Temperature	4-11
		4.6.1 Temperature Shield Blower Motors	
	4.7	Relative Humidity	4-12
	4.8	Solar Radiation	4-14
	4.9	Precipitation	4-15
	4.10	Data Acquisition Systems (DAS)	4-15
		4.10.1 Analog Test	4-15
		4.10.2 Functionality Tests	4-15
5.0	Syste	ems Audit Results	5-1
	5.1	Siting Criteria	5-1
	5.2	Sample Inlets	5-1
	5.3	Infrastructure	5-2
	5.4	Site Operators	5-2
	5.5	Documentation	5-2
	5.6	Site Sensor and FSAD Identification	5-3
6.0	Sum	mary and Recommendations	6-1
	6.1	In Situ Comparisons	6-1
7 0		rences	

List of Appendices

Appendix 1. Audit Standards Certifications

List	of	Tabl	es
	0.	1 44 10 1	

Table 2-1. Performance Audit Challenge and Acceptance Criteria	2-1
Table 3-1. Site Audits	3-1
Table 3-2. Site Ozone PE Visits	3-3
Table 4-1. Performance Audit Results by Variable Tested	4-1
Table 4-2. Performance Audit Results for Ozone	4-3
Table 4-3. Performance Audit Results Shelter Temperature, and Flow Rate	4-8
Table 4-4. Performance Audit Results for Wind Sensors	4-11
Table 4-5. Performance Audit Results for Temperature and Relative Humidity	4-13
Table 4-6. Performance Audit Results for Solar Radiation and Precipitation	4-15
Table 4-7. Performance Audit Results for Data Acquisition Systems	4-16
List of Figures	
Figure 4-1. 2016 Ozone PE Average % Difference	4-7
Figure 4-2. 2017 Ozone PE Average % Difference	4-7

List of Acronyms and Abbreviations

% diff percent difference

A/D analog to digital converter

AQS Air Quality System

ARS Air Resource Specialists, Inc.

ASTM American Society for Testing and Materials

BLM Bureau of Land Management

BLM-WY Wyoming's Bureau of Land Management CASTNET Clean Air Status and Trends Network

CFR Code of Federal Regulation

CMAQ Community Multi-scale Air Quality

DAS data acquisition system

DC direct current

DEP Department of Environmental Protection

deg degree

DQO data quality objectives

DVM digital voltmeter

EEMS Environmental, Engineering & Measurement Services, Inc.

EPA U.S. Environmental Protection Agency
ESC Environmental Systems Corporation

FSAD Field Site Audit Database

g-cm gram centimeter

GPS goblal positioning system

k kilo (1000) km kilometer

lpm liters per minute
MLM Multilayer Model
m/s meters per second

mv millivolt

NADP National Atmospheric Deposition Program
NIST National Institute of Standards and Technology
NOAA National Oceanic and Atmospheric Administration

NPAP National Performance Audit Program

NPS National Park Service

OAQPS Office of Air Quality Planning and Standards

PE Performance Evaluation

ppb parts per billion
OA quality assurance

QA/QC quality assurance/quality control

QAPP Quality Assurance Project Plan

RH relative humidity

RTD Resistance Temperature Detector

SJRWMD Saint John's Water Management District

SOP standard operating procedure SRP standard reference photometer SSRF Site Status Report Forms

TEI Thermo Environmental Instruments

TTP Through The Probe

USEPA U.S. Environmental Protection Agency

USFS U.S. Forest Service

USNO United States Naval Observatory

V volts

VDC volts direct current

WRR World Radiation Reference

1.0 Introduction

The Clean Air Status and Trends Network (CASTNET) is a national air monitoring program developed under mandate of the 1990 Clean Air Act Amendments. Each site in the network measures acidic gases and particles using a continuous collection filter aggregated over a one week period and/or other forms of atmospheric pollution. Hourly averages of surface ozone concentrations and selected meteorological variables are also measured.

Site measurements are used to estimate deposition rates of the various pollutants with the objective of determining relationships between emissions, air quality, deposition, and ecological effects. In conjunction with other national monitoring networks, CASTNET data are used to determine the effectiveness of national emissions control programs and to assess temporal trends and spatial deposition patterns in atmospheric pollutants. CASTNET data are also used for long-range transport model evaluations and effects research.

Historically, CASTNET pollutant flux measurements have been reported as the aggregate product of weekly measured concentrations and model-estimated deposition velocities. The Multi-layer Model (MLM) was used to derive deposition velocity estimates from on-site meteorological parameters, land use types, and site characteristics. In 2011, EPA discontinued meteorological measurements at most EPA-sponsored CASTNET sites. Currently, average historical deposition velocities are used to estimate dry deposition fluxes (Bowker et al 2011). Deposition velocity estimations are currently being derived using the Community Multi-scale Air Quality (CMAQ) Model.

As of 2011, nearly all CASTNET ozone monitors adhere to the requirements of 40 CFR Part 58, and ozone concentration and quality assurance data are submitted to the Air Quality System (AQS) database. Currently 80 sites at 78 distinct locations measure ground-level ozone concentrations.

As of January 2017, the network is comprised of 95 active rural sampling sites across the United States and Canada, cooperatively operated by the Environmental Protection Agency (EPA), the National Park Service (NPS), Environment Canada, Wyoming's Bureau of Land Management (BLM-WY), and several independent partners. AMEC Foster Wheeler is responsible for operating the EPA and Environment Canada sponsored sites, and Air Resource Specialists, Inc. (ARS) is responsible for operating the NPS and Bureau of Land Management (BLM) sponsored sites. All sites collect filter samples for flux estimates.

2.0 Project Objectives

The objectives of this project are to establish an independent and unbiased program of performance and systems audits for all CASTNET sampling sites. Ongoing Quality Assurance (QA) programs are an essential part of any long-term monitoring network.

Performance audits verify that all evaluated parameters are consistent with the accuracy goals as defined in the CASTNET Quality Assurance Project Plan (QAPP). The acceptance criteria have changed over the years and EEMS relies on the CASTNET contractor to provide updates to the acceptance criteria. The current criteria are included in Table 2-1.

Due to budgetary necessity, the meteorological measurements were shifted to operating on an asfunded basis. The meteorological sensors were audited on an as directed basis.

Table 2-1. Performance Audit Challenge and Acceptance Criteria

Sensor	Parameter	Audit Challenge	Acceptance Criteria	
Precipitation	Response	10 manual tips	1 DAS count per tip	
Precipitation	Accuracy	Accuracy $2 \text{ introductions of known}$ $\leq \pm 10.0\% \text{ of input amount}$		
Relative Humidity	Accuracy	Compared to reference instrument or standard solution	≤±10.0%	
Solar Radiation	Accuracy	Compared to WRR traceable standard	\leq ±10.0% of daytime average	
Surface Wetness	Regnance Distilled water chray mist Pag		Positive response	
Surface Wetness	Sensitivity	1% decade resistance	N/A	
Shelter Temperature			2 °C	
Temperature	Accuracy	Comparison to 3 NIST measured baths (~ 0° C, ambient, ~ full-scale)	≤ ± 0.5° C	

Sensor	Parameter	Audit Challenge	Acceptance Criteria	
Delta Temperature	Accuracy	Comparison to temperature sensor at same test point	≤± 0.50° C	
Wind Direction	Orientation Accuracy	Parallel to alignment rod/crossarm, or sighted to distant point	≤±5° from degrees true	
Wind Direction	Linearity	Eight cardinal points on test fixture	≤±5° mean absolute error	
Wind Direction	Response Threshold	Starting torque tested with torque gauge	< 10 g-cm Climatronics; < 20 g-cm R. M. Young	
Wind Speed	Accuracy	Shaft rotational speed generated and measured with certified synchronous motor	$\leq \pm 0.5$ mps below 5.0 mps input; $\leq \pm 5.0\%$ of input at or above 5.0 mps	
Wind Speed	Starting Threshold	Starting torque tested with torque gauge	< 0.5 g-cm	
Mass Flow Controller	Flow Rate	Comparison with Primary Standard	$\leq \pm 5.0\%$ of designated rate	
	Slope		$0.9000 \le m \le 1.1000$	
	Intercept	Linear regression of multi- point test gas concentration as measured with a certified	-5.0 ppb ≤ b ≤ 5.0 ppb	
Ozone	Correlation Coefficient	transfer standard	0.9950 ≤ r	
	Percent Difference	Comparison with Standard Concentration	$\leq \pm 10.0\%$ of test gas concentration	
DAS	Accuracy	Comparison with certified standard	≤± 0.003 VDC	

In addition to the accuracy goals defined in the CASTNET QAPP the ozone monitors fall under the requirements of 40 CFR, Part 58 Appendix A, for quality assurance. To comply with Appendix A, the CASTNET audit program includes annual independent ozone performance evaluations (PE). The EEMS field scientists who conduct ozone PE maintain annual certification

from the Office of Air Quality Planning and Standards (OAQPS). Methods and procedures used are compliant with the National Performance Audit Program (NPAP).

Performance audits are conducted using standards that are certified as currently traceable to the National Institute of Standards and Technology (NIST) or another authoritative organization. All standards are certified annually with the exception of ozone standards which are verified as level 2 standards at EPA regional labs at least twice per year.

Site systems audits are intended to provide a qualitative appraisal of the total measurement system. Site planning, organization, and operation are evaluated to ensure that good Quality Assurance/Quality Control (QA/QC) practices are being applied. At a minimum the following audit issues are addressed at each site systems audit:

- Site locations and configurations match those provided in the CASTNET QAPP.
- Meteorological instruments are in good physical and operational condition and are sited to meet EPA ambient monitoring guidelines (EPA-600/4-82-060).
- Sites are accessible, orderly, and if applicable, compliant with OSHA safety standards.
- Sampling lines are free of leaks, kinks, visible contamination, weathering, and moisture.
- Site shelters provide adequate temperature control.
- All ambient air quality instruments are functional, being operated in the appropriate range, and the zero air supply desiccant is unsaturated.
- All instruments are in current calibration.
- Site documentation (maintenance schedules, on-site SOPs, etc.) is current and log book records are complete.
- All maintenance and on-site SOPs are performed on schedule.
- Corrective actions are documented and appropriate for required maintenance/repair activity.
- Site operators demonstrate an adequate knowledge and ability to perform required site activities, including documentation and maintenance activities.

3.0 CASTNET Sites Visited in 2016

This report covers the CASTNET sites audited in 2016. Only those variables that were supported by the CASTNET program were audited. From February through December 2016, EEMS conducted field performance and systems audits at 37 monitoring sites. Meteorological sensors at two of the sites (FOR605 and BEL116) were also audited. The locations, sponsor agency and dates of the audits along with states and EPA Regions are presented in Table 3-1.

Table 3-1. Site Audits

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
IRL141	EPA/SJRWMD	Indian River Lagoon	FL/R4	2/15/2016
SUM156	EPA/USFS	Sumatra	FL / R4	3/1/2016
GAS153	EPA	Georgia Station	GA / R4	3/8/2016
SND152	EPA	Sand Mountain	AL / R4	3/9/2016
SPD111	EPA	Speedwell	TN / R4	3/12/2016
JOT403	NPS	Joshua Tree NM	CA / R9	3/29/2016
COW137	EPA/USFS	Coweeta	NC / R4	4/13/2016
ESP127	EPA	Edgar Evins St. Park	TN / R4	4/14/2016
CHA467	NPS	Chiricahua NM	AZ/R9	4/19/2016
GRC474	NPS	Grand Canyon NP	AZ/R9	4/20/2016
PET427	NPS	Petrified Forest NP	AZ/R9	4/21/2016
MEV405	NPS	Mesa Verde NP	CO / R8	5/31/2016
CAN407	NPS	Canyonlands NP	UT / R8	6/1/2016
GRB411	NPS	Great Basin NP	NV / R9	6/3/2016
FOR605	BLM/EPA	Fortification Creek	WY / R8	6/22/2016
DEN417	NPS	Denali NP	AK / R10	7/7/2016
SAL133	EPA	Salamonie Reservoir	IN / R5	7/19/2016
ANA115	EPA	Ann Arbor	MI / R5	8/15/2016
MKG113	EPA	M. K. Goddard St. Park	PA / R3	8/15/2016

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
UVL124	EPA	Unionville	MI / R5	8/16/2016
KEF112	EPA	Kane Experimental Forest	PA / R3	8/17/2016
HOX148	EPA	Hoxeyville	MI / R5	8/18/2016
PSU106	EPA	Penn State University	PA / R3	8/22/2016
RED004	EPA	Red Lake Nation	MN / R5	8/30/2016
WST109	EPA	Woodstock	NH/R1	9/15/2016
ABT147	EPA	Abington	Abington CT / R1	
HWF187	EPA	Huntington Wildlife Forest	NY / R2	10/1/2016
ACA416	NPS/Maine DEP	Acadia NP	Acadia NP ME / R1	
HOW191	EPA	Howland AmeriFlux	ME / R1	10/10/2016
ASH135	EPA	Ashland	ME/R1	10/11/2016
CAT175	EPA	Claryville	NY / R2	10/14/2016
CTH110	EPA	Connecticut Hill	NY / R2	10/15/2016
ARE128	EPA	Arendtsville	PA / R3	10/16/2016
NPT006	EPA	Nez Perce	ID / R10	10/20/2016
DIN431	NPS	Dinosaur NM	Dinosaur NM UT / R8	
BEL116	EPA	Beltsville	Beltsville MD / R3	
PNF126	EPA	Cranberry	NC / R4	11/26/2016

In addition to the sites listed in Table 3-1 that were visited for complete systems and performance audits, the 41 sites listed in Table 3-2 were visited to conduct NPAP Through-The-Probe (TTP) ozone Performance Evaluations (PE). Two sites (GRB411 and ARE128) were visited for both full systems and performance audits, and ozone PE audits.

Table 3-2. Site Ozone PE Visits

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
CAD150	EPA	Caddo Valley	AR / R6	2/19/2016
CVL151	EPA	Coffeeville	MS / R4	2/19/2016
ALC188	EPA	Alabama-Coushatta	TX / R6	3/5/2016
PAL190	EPA	Palo Duro	TX / R6	3/7/2016
BBE401	NPS	Big Bend NP	TX / R6	3/8/2016
MCK131	EPA	Mackville	KY / R4	3/11/2016
MCK231	EPA	Mackville (precision site)	KY / R4	3/11/2016
MAC426	NPS	Mammoth Cave NP	KY / R4	3/14/2016
CKT136	EPA	Crockett	KY / R4	3/29/2016
CDZ171	EPA	Cadiz	KY / R4	3/30/2016
CHE185	EPA	Cherokee Nation	OK / R6	4/1/2016
PIN414	NPS	Pinnacles NM	CA / R9	4/4/2016
DCP114	EPA	Deer Creek St. Park	OH / R5	4/16/2016
OXF122	EPA	Oxford	OH / R5	4/16/2016
QAK172	EPA	Quaker City	OH / R5	4/17/2016
PND165	EPA	Pinedale	WY / R8	6/17/2016
BAS601	EPA	Basin	WY / R8	6/21/2016
STK138	EPA	Stockton	IL / R5	7/20/2016
ALH157	EPA	Alhambra	IL / R5	7/21/2016
VIN140	EPA	Vincennes	IN / R5	7/22/2016
CNT169	EPA	Centennial	WY / R8	8/18/2016
LRL117	EPA	Laurel Hill St. Park	PA / R3	8/23/2016
NEC602	EPA	Newcastle	WY / R8	8/24/2016
VOY413	NPS	Voyageurs NP	MN / R5	8/29/2016
PRK134	EPA	Perkinstown	WI / R5	9/1/2016
SAN189	EPA	Santee Sioux	NE / R7	9/9/2016
GRB411	NPS	Great Basin NP	NV / R9	9/18/2016

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
BVL130	EPA	Bondville	IL / R5	9/24/2016
GLR468	NPS	Glacier NP	MT / R8	9/26/2016
CND125	EPA	Candor	NC / R4	10/17/2016
VPI120	EPA	Horton Station	VA / R3	10/17/2016
CDR119	EPA	Cedar Creek St. Park	WV / R3	10/18/2016
PAR107	EPA/USFS	Parsons	WV / R3	10/18/2016
ARE128	EPA	Arendtsville	PA / R3	10/19/2016
PED108	EPA	Prince Edward	VA / R3	10/21/2016
SHN418	NPS	Shenandoah NP - Big Meadows	VA / R3	10/21/2016
GRS420	NPS	Great Smoky Mountains NP	TN / R4	10/27/2016
WSP144	EPA	Washington Crossing St. Park	NJ / R2	11/7/2016
BWR139	EPA	Blackwater NWR	MD / R3	11/8/2016
YEL408	NPS	Yellowstone NP	WY / R8	11/8/2016
BFT142	EPA	Beaufort	NC / R4	11/10/2016

4.0 Performance and Audit Results

Table 4.1 summarizes the number of test failures by variable tested. All test results are those recorded from the site's primary logger.

Performance audit results are discussed for each variable in the following sections. Tables are included to summarize the average and maximum error between the audit challenges and site results as recorded by the on-site Data Acquisition System (DAS). Linear regression and percent difference (% diff) calculation results are included where appropriate. Results that are outside the CASTNET QAPP acceptance criteria are shaded in the tables.

The errors presented in the tables in the following sections, are reported as the difference of the measurement recorded by the DAS and the audit standard. Where appropriate, negative values indicate readings that were lower than the standard, and positive values are readings that were above the standard value. With the exception of the ozone data, which will be discussed in more detail in the following section, the errors appear to be random and without bias. The results are also arranged by audit date. Viewing the results in this order helps to detect any errors that could have been caused by the degradation or drift of the audit standards during the year. The audit standards are transported and handled with care, and properly maintained to help prevent such occurrences. No known problems with the standards were apparent during the year. All standards were within specifications when re-certified at the end of the year.

Detailed reports of the field site audits, which contain all of the test points for each variable at each site, can be found in the Appendices of each 2016 Quarterly report. The variable specific data forms included in Appendix A of each quarter's report contain the challenge input values, the output of the DAS, additional relevant information pertaining to the variable and equipment, and all available means of identification of the sensors and equipment for each site.

Table 4-1. Performance Audit Results by Variable Tested

Variable Tested	Number of Tests	Number of tests Failed	% Failed
Ozone	75	2	1.3
Flow Rate	37	3	8.1
Shelter Temperature (average)	34	17	50
Wind Direction Orientation Average Error	2	1	50

Variable Tested	Number of Tests	Number of tests Failed	% Failed
Orientation Maximum Error	2	1	50
Wind Direction Linearity Average Error	1	0	0.0
Linearity Maximum Error	1	0	0.0
Wind Direction Starting Torque	2	1	50
Wind Speed Low Range Average Error	2	0	0.0
Low Range Maximum Error	2	0	0.0
Wind Speed High Range Average Error	2	0	0.0
High Range Maximum Error	2	0	0.0
Wind Speed Starting Torque	2	0	0.0
Temperature	30	1	3.3
2 Meter Temperature	7	1	14
Relative Humidity	3	0	0.0
Solar Radiation	3	0	0.0
Precipitation	2	0	0.0
DAS Analog to Digital	32	0	0.0

4.1 Ozone

Seventy five ozone monitor audits were performed in 2016, with two monitors (GRB411 and ARE128) audited twice. All ozone challenges were conducted to comply with the OAQPS NPAP-TTP Standard Operating Procedures (SOP) which can be found at https://www3.epa.gov/ttn/amtic/npapsop.html. The results of the ozone audits were uploaded to

the AQS database at the end of each quarter. Each was challenged with ozone-free air and four up-scale concentrations. The ozone test gas concentrations were generated and measured with a NIST-traceable photometer that was verified as a level 2 standard by USEPA.

Two monitors tested failed the annual PE (GRB411 and ASH135). The ASH135 monitor had a known problem and was scheduled to be repaired soon after the audit. The GRB411 monitor was audited a second time approximately three months later and found to be within acceptance criteria. Results of all ozone audits performed are included in Table 4-2.

Table 4-2. Performance Audit Results for Ozone

	Ozone Average (% diff)	Ozone Maximum (% diff)	Ozone Slope	Ozone Intercept	Ozone Correlation
IRL141	-2.1	-4.6	1.00836	-1.47647	0.99997
CAD150	-3.2	-4.4	0.99138	-1.23118	0.99999
CVL151	-3.8	-4.9	0.97364	-0.61837	1
SUM156	-4.2	-5.5	0.97127	-0.54639	0.99993
ALC188	-2.7	-3.3	0.97778	-0.37153	0.99997
PAL190	-5.1	-5.9	0.95475	-0.34953	0.99996
BBE401	-4.6	-5.9	0.96345	-0.33495	0.99998
GAS153	-2.8	-3.5	0.97306	-0.03198	0.99999
SND152	-3.7	-4.3	0.97031	-0.34373	1
MCK131	-3.1	-5.1	0.98866	-0.87496	0.99997
MCK231	-3.9	-5.1	0.97274	-0.57623	1
SPD111	-3.1	-4.2	0.98108	-0.58564	0.99999
MAC426	-2.5	-2.8	0.97892	-0.1997	1
CKT136	-2.7	-3.2	0.97821	-0.23864	1
JOT403	-4.9	-5.3	0.95798	-0.39801	0.99999
CDZ171	-3.5	-4.8	0.97287	-0.32319	0.99999
CHE185	0.7	6.2	0.97361	1.6448	0.99973
PIN414	2.1	3.3	1.03331	-0.71228	0.9999
COW137	-1.0	-1.4	0.99229	0.03487	0.99998
ESP127	-1.3	-2.1	0.975	0.63082	0.99999
DCP114	-1.7	-2.1	0.97443	0.55974	0.99999

	Ozone Average (% diff)	Ozone Maximum (% diff)	Ozone Ozone Intercept		Ozone Correlation
OXF122	-1.4	-1.6	0.98772	-0.26958	0.99998
QAK172	-1.3	-2.1	0.96998	0.98659	1
CHA467	-4.8	-6.7	0.97534	-0.8701	0.9999
GRC474	-4.4	-5.7	0.96775	-0.55396	0.99999
PET427	-3.5	-3.8	0.97261	-0.41686	0.99999
MEV405	-3.4	-6.3	1.01172	-1.62584	0.99817
CAN407	-1.6	-2.6	0.99509	-0.50561	0.99997
GRB411	-9.7	-14.2	0.95038	-1.97991	0.99957
PND165	-4.3	-8.7	0.97932	-0.7121	0.9998
BAS601	-4.4	-5.4	0.95939	0.02332	0.99996
DEN417	4.7	6.1	1.06973	-1.0724	0.99999
SAL133	-0.7	-1.5	0.98516	0.28944	0.99998
STK138	-1.4	-2.4	0.97109	0.68618	0.99999
ALH157	-1.6	-2.5	0.97394	0.53928	0.99998
VIN140	-2.5	-4.4	0.98104	-0.18851	0.99996
ANA115	0.6	1.2	0.99502	0.55491	1
MKG113	-1.0	-2.0	1.00272	-0.79901	0.99998
UVL124	-1.1	-2.9	1	-0.57786	0.99996
KEF112	-1.3	-2.2	0.98447	0.27377	0.99995
CNT169	6.4	6.8	1.07153	-0.45958	0.99999
HOX148	-0.8	-0.9	0.98573	0.47845	0.99998
PSU106	-1.0	-1.2	0.98609	0.18438	1
LRL117	-1.2	-2.0	0.9773	0.56697	0.99998
NEC602	-1.7	-2.3	0.97977	0.1879	0.99995
VOY413	-1.1	-2.2	0.97748	0.57243	0.99994
PRK134	-4.2	-4.7	0.95671	-0.02669	0.99997
SAN189	-2.8	-4.0	0.99074	-0.92556	0.99994
WST109	0.1	0.3	0.99396	0.48937	0.99999
ABT147	-1.9	-2.3	0.97593	0.31758	0.99999
GRB411	-6.5	-8.7	0.94866	-0.61043	0.99996

	Ozone Average (% diff)	Ozone Maximum (% diff)	Ozone Slope	Ozone Intercept	Ozone Correlation
BVL130	-1.8	-2.5	0.99046	-0.34535	0.99999
GLR468	7.7	8.1	1.0788	-0.12526	0.99998
HWF187	-1.4	-1.8	0.98859	-0.21053	0.99999
ACA416	3.2	3.6	1.02779	0.30046	0.99999
HOW191	-3.0	-5.3	0.9895	-0.77461	0.99995
ASH135	-19.3	-23.2	0.84488	-1.88979	0.99996
CTH110	-2.7	-4.1	0.98214	-0.50545	0.99997
ARE128	-1.9	-3.3	0.99462	-0.67845	0.99999
CND125	-2.1	-2.3	0.98222	-0.21269	0.99999
VPI120	-1.7	-2.4	0.98939	-0.26083	0.99999
CDR119	-3.7	-4.7	0.97008	-0.20393	0.99996
PAR107	-1.5	-2.0	0.98764	-0.36289	0.99995
ARE128	-2.6	-3.8	0.9828	-0.27955	0.99998
NPT006	-3.2	-4.3	0.9830	-0.77941	0.99999
PED108	-1.3	-2.2	0.99524	-0.38233	1
SHN418	-0.7	-1.5	0.98889	0.10568	0.99993
DIN431	-1.4	-2.4	0.9929	-0.30017	1
GRS420	1.4	5.7	0.98817	0.69307	0.99999
WSP144	-3.8	-4.3	0.96686	-0.67538	0.99988
BWR139	-0.9	-1.5	0.99546	-0.32609	0.99998
YEL408	-0.2	0.2	0.9910	0.49905	0.99998
BFT142	-2.0	-2.4	0.98367	-0.03766	0.99998
BEL116	-5.1	-8.0	0.97281	-0.80589	0.99999
PNF126	3.3	5.3	1.0435	-0.27084	0.99971

4.1.1 Ozone Bias

Figure 4-1 presents the average percent difference of each site ozone PE for 2016. The results indicate that there may be a slight negative bias. This could be due to the correction factors used to correct the level 2 standard photometer when performing audits. EEMS follows the EPA *Technical Assistance Document* "<u>Transfer Standards for Calibration of Air Monitoring Analyzers for Ozone</u>" *October 2013* which can be found at the AMTIC website:

https://www3.epa.gov/ttn/amtic/files/ambient/qaqc/OzoneTransferStandardGuidance.pdf.

The document provides the rationale for standard photometer designation and the procedures required to ensure photometer stability. The process involves comparisons to a higher level standard (in this case a regional EPA level 1 standard) and also multiple comparisons on separate days, known as "6x6 verification". As described in the document, once the transfer standard comparison relationship with the level 1 standard has been established and the stability requirements are met, the actual ozone concentration is calculated by:

$$Std. O_3 \ conc. = \frac{1}{\overline{m}} \ (Indicated \ O_3 \ conc. - \overline{I})$$

Where:

 \overline{m} = average slope

 \bar{I} = average intercept

EEMS uses this equation with the running 6x6 average slope and intercept to correct level 2 standard photometer measurements back to the regional EPA level 1 standard reference photometer (SRP).

Since the technical assistance document also states that if any adjustments are made to the transfer standard a new 6x6 verification is required, EEMS does not adjust the physical settings (background and span) of the level 2 standards unless the photometer does not meet the criteria (+/- 3 %) comparison to the level 1 standard. This procedure could be introducing a bias to the standard since the level 2 standards are only compared to the level 1 SRP two or three times per year. The running 6x6 slope and intercept averages may not reflect the current relationship between the level 2 and the level 1 standards.

To further investigate this hypothesis EEMS began correcting the level 2 standard photometer using the most recent verification results rather than the running 6x6 results starting in 2017. Preliminary data are presented in Figure 4-2 which shows the average percent differences of the ozone PE audits performed to date in 2017. The data appear to indicate little if any bias.

Figure 4-1. 2016 Ozone PE Average % Difference

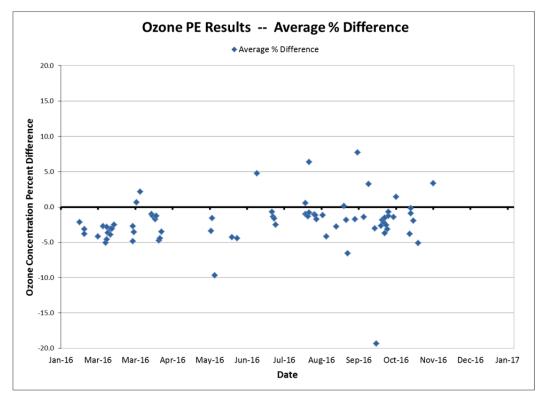
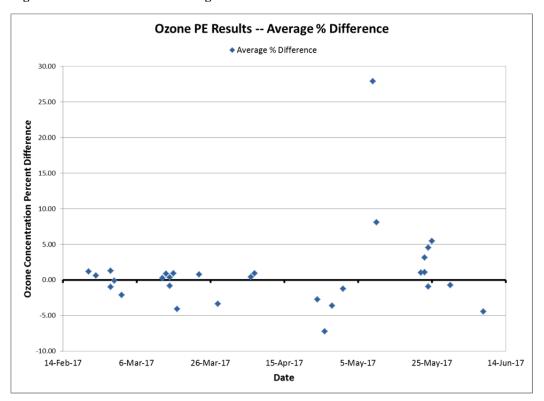



Figure 4-2. 2017 Ozone PE Average % Difference

4.2 Flow Rate

The dry deposition filter pack sampling system flow rates at 37 sites were audited. A NIST-traceable dry-piston primary flow rate device was used for the tests. Two sites were outside the acceptance criterion of \pm 5.0%.

4.3 Shelter Temperature

At each site reporting ozone concentrations to AQS, the hourly average shelter temperature must be between 20 and 30 degrees C, or the hourly ozone data may be invalidated. Shelter temperature was audited at 34 of the sites visited. The method consisted of placing the audit standard in close proximity (in situ) to the shelter temperature sensor and recording either instantaneous observations of both sensors, or averages from both sensors. The audit sensors used are either a Resistance Temperature Detector (RTD) or a Thermocouple.

Most of the differences observed were due to the slow response of the site's shelter temperature sensors. Nearly all the site sensors lagged behind the audit sensor during the rapid changes in temperatures observed as the shelter air conditioning or shelter heating cycled on and off. The shelter temperature sensors never reached the minimum or maximum temperature measured with the audit sensor. This is not likely to add a large error to the hourly averaged shelter temperature measurements. However, since the output of the shelter temperature sensors follow a sine wave curve but the actual shelter temperature does not change following a sine wave curve, if the shelter temperature is set near the lower or higher allowable limits (20 to 30 degrees C) the actual hourly averages may be lower or higher than those measured by the site sensors.

The CASTNET QAPP does not make a distinction between shelter temperature and any other temperature sensor regarding accuracy criteria. However the sensors were evaluated using a 2 degree C acceptance criterion. This criterion better follows the EPA OAQPS guidelines.

The results are summarized in Table 4-3. Flow rate and shelter temperature data are reported only for the sites that were visited for complete systems and performance audits.

Table 4-3. Performance Audit Results Shelter Temperature, and Flow Rate

	Shelter Temp. Average Error (C)	Shelter Temp. Maximum Error (C)	STP Flow Observed (lpm)	Flow DAS (lpm)	Flow Error (% diff)
IRL141	2.2	2.8	1.48	1.51	1.99
SUM156	-0.2	-0.7	1.48	1.50	1.33
GAS153	1.0	1.8	1.45	1.50	3.11

	Shelter Temp. Average Error (C)	Shelter Temp. Maximum Error (C)	STP Flow Observed (lpm)	Flow DAS (lpm)	Flow Error (% diff)
SND152	0.2	1.6	1.48	1.51	1.77
SPD111	-0.6	-1.2	1.48	1.50	1.33
JOT403	-3.9	-5.3	3.00	3.00	-0.11
COW137	-1.3	-2.1	1.48	1.50	1.55
ESP127	3.0	4.5	1.63	1.51	-7.95
CHA467	2.6	5.3	2.98	3.00	0.67
GRC474	2.8	3.2	2.96	2.99	1.00
PET427	1.0	2.6	3.00	3.03	1.10
MEV405	-0.9	-1.7	3.23	3.00	-7.67
CAN407	3.5	4.2	2.95	3.02	2.32
GRB411	2.7	3.3	3.01	3.00	-0.33
FOR605			3.28	3.37	2.87
DEN417	6.4	14.1	2.98	3.00	0.67
SAL133	1.7	3.1	1.53	1.50	-1.78
ANA115	1.8	4.4	1.49	1.50	0.44
MKG113	-0.1	-0.5	1.50	1.50	0.22
UVL124	2.2	2.3	1.50	1.50	0.00
KEF112	0.8	3.2	1.52	1.50	-1.56
HOX148	2.2	3.8	1.50	1.50	0.00
PSU106	1.4	2.1	1.51	1.50	-0.67
RED004			3.01	3.01	0.00
WST109	0.3	4.1	1.47	1.50	1.78
ABT147	0.1	-1.5	1.51	1.50	-0.44
HWF187	1.3	3.4	1.48	1.50	1.11
ACA416	-2.2	-4.2	1.50	1.38	-8.70
HOW191	2.8	4.5	1.49	1.50	0.67
ASH135	3.6	3.7	1.48	1.50	1.33
CAT175			1.49	1.51	1.11
CTH110	0.1	0.8	1.48	1.50	1.33
ARE128	5.4	6.8	1.52	1.50	-0.89

	Shelter Temp. Average Error (C)	Shelter Temp. Maximum Error (C)	STP Flow Observed (lpm)	Flow DAS (lpm)	Flow Error (% diff)
NPT006	1.1	2.7	3.02	3.00	-0.67
DIN431	3.7	8.9	2.98	3.01	0.89
BEL116	3.9	10.9	1.50	1.50	-0.22
PNF126	-3.8	-4.8	1.52	1.50	-1.33

4.4 Wind Speed

The wind speed sensors at two sites equipped for meteorological measurements were audited. Wind speed data accuracy results at all sites were found to be well within the acceptance limit. The results of the wind speed performance audits are presented in Table 4-3.

4.4.1 Wind Speed Starting Threshold

The condition of the wind speed bearings were evaluated as part of the performance audits. The data acceptance criterion for wind speed bearing torque is not defined in the QAPP. However, *Appendix 1: CASTNET Field Standard Operating Procedures*, states that the wind speed bearing torque should be ≤ 0.2 g-cm. To establish the wind speed bearing torque criterion for audit purposes the rational described in the QAPP for data quality objectives (DQO) was applied. The QAPP states that field criteria are more stringent than DQO and established to maintain the system within DQO. Typically field criteria are set at approximately one-half the DQO. Therefore, 0.5 g-cm was used for the acceptance limit for audit purposes. This value is within the manufacture's specifications for a properly maintained system. Both systems were found to be within the acceptance limit.

4.5 Wind Direction

Two separate tests were performed to evaluate the accuracy of each wind direction sensor:

- A linearity test was performed to evaluate the ability of the sensor to function properly and accurately throughout the range from 1 to 360 degrees. This test evaluates the sensor independently of orientation and can be performed with the sensor mounted on a test fixture.
- An orientation test was used to determine if the sensor was aligned properly when installed to measure wind direction accurately in degrees true. An audit standard compass was used to perform the orientation tests.

Using the average error of the orientation tests for both sensors tested, one site was outside the acceptance criterion of \pm 5 degrees. The results of the wind direction performance audits are presented in Table 4-3.

4.5.1 Wind Direction Starting Threshold

The condition of the wind direction bearings were evaluated as part of the performance audits. The data acceptance criterion for wind direction bearing torque is not defined in the QAPP. However, *Appendix 1: CASTNET Field Standard Operating Procedures*, states that the wind direction bearing torque should be ≤ 10 g-cm for R. M. Young sensors. The manufacturer states that a properly maintained sensor will be accurate up to a starting threshold of 11 g-cm. To establish the wind direction bearing torque criterion for audit purposes the rational described in the QAPP for data quality objectives (DQO) was applied. The QAPP states that field criteria are more stringent than DQO and established to maintain the system within DQO. Typically field criteria are set to approximately one-half the DQO. For audit purposes 20 g-cm was used for the acceptance limit for R. M. Young sensors. Climatronics sensors typically have a lower starting torque. For audit purposes a threshold of 10 g-cm was selected for Climatronics sensors. One of the sensors tested was outside of acceptance limits for wind direction starting threshold. The test results are provided in Table 4-4.

Table 4-4. Performance Audit Results for Wind Sensors

	Wind Direction						V	Vind Spee	ed	
	Orientati	tion Error Lin		Linearity Error		Low Range Error		High Rai	nge Error	Starting
Site	Ave (deg)	Max (deg)	Ave (deg)	Max (deg)	Torque (g-cm)	Ave (m/s)	Max (m/s)	Ave (% diff)	Max (% diff)	Torque (g-cm)
BEL116	2.0	3.0	1.5	4.0	22.5	0.05	0.180	0.001	0.002	0.35
FOR605	12.5	13.0			0.5	0.09	0.310	0.008	0.019	0.45

^{*} Note: The wind systems acceptance criteria were applied to the average of the results. The data validation section of the CASTNET QAPP states that if any wind direction or wind speed challenge result is outside the acceptance criterion the variable is flagged.

4.6 Temperature and Two-Meter Temperature

The EPA sponsored site temperature measurement systems consist of a temperature sensor mounted at approximately 9 meters above ground-level on a tower. One site (BEL116) also utilized a second sensor to measure temperature at approximately two meters from the ground (2-meter temperature). Sites operated by the Park Service have recently moved the temperature sensors to two meters from the ground (2 meter temperature).

Temperature sensors utilized by the BLM are not the same type as those at other CASTNET sites. The BLM temperature sensors are combined relative humidity and temperature sensors and not standalone RTD or encased thermistor temperature sensors. Due to the design of the RH/Temperature sensor, it cannot be submerged in water baths in order to challenge the sensor at different temperature audit levels. For that reason the combination RH/Temperature sensors were audited by placing the sensor in a watertight chamber (RH salt chamber) and then placing the chamber in an ice-water bath, ambient bath, and hot water bath. Therefore the audit results are not directly comparable to audit results of RTD or encased thermistor sensors.

All sites use shields to house the sensors that are either mechanically aspirated with forced air, or naturally aspirated. In all cases the sensors were removed from the sensor shields, and placed in a uniform temperature bath with a precision NIST-traceable RTD, during the audit.

Results of the tests indicate that all but one (ABT147) of the 29 sensors (10-meter) tested were within the acceptance criterion.

Only seven 2-meter temperature sensors were tested, with one (FOR605) above acceptance criterion. It should be noted that FOR605 is sponsored by the BLM and operates a combination RH/Temperature sensor as described above. The average errors for all sensors are presented in Table 4-5.

4.6.1 Temperature Shield Blower Motors

All of the temperature sensor shield blower motors encountered during the site audits conducted during 2016 were found to be functioning. All 2-meter temperature sensor shield blowers were functioning properly.

4.7 Relative Humidity

The three relative humidity systems that were audited were tested with a combination of primary standard salt solutions, and a certified transfer standard relative humidity probe. The results of the average and maximum errors throughout the measurement range of approximately 30% to 95% are presented in Table 4-5.

As in previous years, operation of humidity sensors with respect to natural or forced-air aspiration can vary between sites. At most EPA sponsored sites humidity sensors are operating in naturally aspirated shields. At most NPS sponsored sites humidity sensors are operating in shields designed to be mechanically aspirated with forced-air blowers.

During audit tests with the primary standard salt solutions, the sensors were removed from the shields and placed in a temperature controlled enclosure. During audit tests with the transfer

standard probe, the sensor and transfer were placed in the same ambient conditions. Therefore the audit tests do not account for differences in the operation of the sensors due to the different shield configurations.

All sensors tested were within the acceptance criterion. The results of the tests are included in Table 4-5.

Table 4-5. Performance Audit Results for Temperature and Relative Humidity

	Temperature	2 Meter	Relative	Humidity
	Ave. Error	Temperature Ave. Error	Range 0	- 100%
Site	(deg C)	(deg C)	Ave. Error	Max. Error
IRL141	0.19			
SUM156	0.00			
GAS153	0.12			
SND152	0.11			
SPD111	0.06			
COW137	0.02			
ESP127	-0.20			
CHA467	0.04			
GRC474	0.09			
PET427	-0.22			
MEV405		0.31		
CAN407		-0.03		
GRB411		0.07		
FOR605		1.28	0.82	1.30
DEN417		-0.09		
SAL133	0.06			
ANA115	0.08			
MKG113	0.01			
UVL124	-0.06			
KEF112	-0.04			

	T	2 Meter	Relative	Humidity
	Temperature Ave. Error	Temperature Ave. Error	Range 0) – 100%
Site	(deg C)	(deg C)	Ave. Error	Max. Error
HOX148	0.12			
PSU106	0.28			
RED004	-0.03			
WST109	0.12			
ABT147	-0.81			
HWF187	-0.08			
ACA416		-0.03	-1.83	-6.40
HOW191	-0.02			
ASH135	0.02			
CAT175	0.05			
CTH110	0.11			
ARE128	-0.05			
NPT006	-0.34			
DIN431	-0.05			
BEL116	0.03	0.19	1.00	3.30
PNF126	0.23			

4.8 Solar Radiation

The ambient conditions encountered during the audit visits were suitable (high enough light levels) for accurate comparisons of solar radiation measurements. A World Radiation Reference (WRR) traceable Eppley PSP radiometer and translator were used as the audit standard system.

Three sites were tested. All sites had daytime average results that were within the acceptance criterion. The results of the individual tests for each site are included in Table 4-6. The percent difference of the maximum single-hour average solar radiation value observed during each site audit is also reported in Table 4-6 although this criterion is not part of the CASTNET data quality indicators. Those values greater than $\pm 10\%$ are bold.

4.9 Precipitation

The two sites audited used a tipping bucket rain gauge for the obtaining precipitation measurement data. The audit challenges consisted of entering multiple amounts of a known volume of water into the tipping bucket funnel at a rate equal to approximately 2 inches of rain per hour. Equivalent amounts of water entered were compared to the amount recorded by the DAS. The results are summarized in Tables 4-6.

The FOR605 site is solar powered and the tipping bucket is not heated. The tipping bucket heater was found to be functioning properly at the BEL116 site.

THE CONTRACT											
			Solar Radiation Error								
	Site	Daytime Ave. (% diff)	Std. Max. Value (w/m2)	Site Max. Observed (w/m2)	Max. Value (% diff)	Ave. Error (% diff)					
10/5/2016	ACA416	-8.55	662	602	-9.46						
11/14/2016	BEL116	8.53	531	573	9.0	4					
6/22/2016	FOR605	0.14	948	951	0.4	1.9					

Table 4-6. Performance Audit Results for Solar Radiation and Precipitation

4.10 Data Acquisition Systems (DAS)

All of the NPS sponsored sites visited utilized an ESC logger as the primary and only DAS. All EPA sites visited operated Campbell loggers as their only DAS. The results presented in table 4-7 include the tests performed on the primary logger at each site.

4.10.1 Analog Test

The accuracy of each primary logger was tested on two different channels (if two channels were available to be used) with a NIST-traceable Fluke digital voltmeter. At the EPA sponsored sites the channels above analog channel 8 could not be tested since there were no empty channels available to test. All data loggers were within the acceptance criterion of \pm 0.003 volts.

4.10.2 Functionality Tests

Other performance tests used to evaluate the DAS included the verification of the date and time, and operation of the battery backup system used to save the DAS date, time, and configuration during a power outage. All DAS were set to the correct date and within ± 5 minutes per the acceptance criterion for time.

Table 4-7. Performance Audit Results for Data Acquisition Systems

		A	nalog Test				
		Low	Channel	High	Channel	Date Correct	Time Error
	Site	Average	Maximum	Average	Maximum	(Y/N)	(minutes)
2/15/2016	IRL141	0.0001	0.0001			Y	0.00
3/1/2016	SUM156	0.0003	0.0006			Y	0.00
3/8/2016	GAS153	0.0003	0.0007			Y	0.02
3/9/2016	SND152	0.0003	0.0005			Y	0.47
3/12/2016	SPD111	0.0003	0.0005			Y	0.05
3/29/2016	JOT403	0.0002	0.0004			Y	0.00
4/13/2016	COW137	0.0003	0.0004			Y	0.65
4/14/2016	ESP127	0.0003	0.0005			Y	0.68
4/19/2016	CHA467			0.0004	0.0010	Y	2.17
4/20/2016	GRC474			0.0003	0.0005	Y	0.18
4/21/2016	PET427			0.0007	0.0011	Y	2.12
5/31/2016	MEV405	0.0003	0.0007			Y	3.00
6/1/2016	CAN407			0.0002	0.0006	Y	0.33
6/3/2016	GRB411					Y	0.00
6/22/2016	FOR605	0.0000	0.0000			Y	1.68
7/7/2016	DEN417	0.0004	0.0006			Y	0.00
7/19/2016	SAL133	0.0003	0.0004			Y	0.00
8/15/2016	ANA115	0.0001	0.0002			Y	0.00
8/15/2016	MKG113	0.0003	0.0004			Y	0.00
8/16/2016	UVL124	0.0001	0.0001			Y	0.02
8/17/2016	KEF112	0.0003	0.0006			Y	0.07
8/18/2016	HOX148	0.0000	0.0000			Y	0.03
8/22/2016	PSU106	0.0003	0.0005			Y	0.08
8/30/2016	RED004					Y	0.00
9/15/2016	WST109	0.0004	0.0007			Y	0.00

		A	nalog Test	Error (vo	olts)	_	
		Low	Channel	High	Channel	Date Correct	Time Error
	Site	Average	Maximum	Average	Maximum	(Y/N)	(minutes)
9/17/2016	ABT147	0.0003	0.0005			Y	0.00
10/1/2016	HWF187	0.0000	0.0000			Y	0.33
10/5/2016	ACA416					Y	0.00
10/10/2016	HOW191					Y	0.22
10/11/2016	ASH135	0.0000	0.0001			Y	0.08
10/14/2016	CAT175	0.0001	0.0002			Y	0.08
10/15/2016	CTH110	0.0000	0.0000			Y	0.20
10/16/2016	ARE128	0.0001	0.0002			Y	0.08
10/25/2016	DIN431			0.0003	0.0007	Y	2.00
11/14/2016	BEL116	0.0001	0.0001			Y	0.00
11/26/2016	PNF126	0.0000	0.0001			Y	0.00

5.0 Systems Audit Results

The following sections summarize the site systems audit findings and provide information observed regarding the measurement processes at the sites. Conditions that directly affect data accuracy have been reported in the previous sections. Other conditions that affect data quality and improvements to some measurement systems or procedures are suggested in the following sections.

5.1 Siting Criteria

All of the sites that were visited have undergone changes during the period of site operation which include population growth, road construction, and foresting activities. None of those changes were determined to have a significant impact on the siting criteria that did not exist when the site was initially established.

Some sites that are located in state and national parks are not in open areas, and have trees within the 50 meter criterion established in the QAPP. Given the land use and aesthetic concerns, these sites are acceptable and represent an adequate compromise with regard to siting criteria and the goal of long-term monitoring.

5.2 Sample Inlets

With consideration given to the siting criteria compromises described in the previous section, all but one site (LAV410) visited in 2016 have ozone monitor sample trains that are sited properly and in accordance with the CASTNET QAPP. All ozone sample inlets are currently being evaluated with respect to obstructions above the inlet. The acceptance criterion requires that there should be no obstructions (including trees) within a 22.5 degree angle (object distance must be at least two times the height) above the ozone inlet. There are trees that violate the 22.5 degree sample inlet requirement at the LAV410 site.

Ozone sample inlets are between 3 and 15 meters. With the exception of one site (WNC429) Teflon tubing of the proper diameter is used for the ozone inlets. The ozone sample train at WNC429 is primarily glass with an exhaust fan downstream of the ozone sample port. The ozone analyzer at WNC429 (South Dakota) is operated by the State.

With the exception of WNC429, the ozone zero, span, and precision calibration test gases are introduced at the ozone sample inlet, through all filters and the entire sample train. All sample trains are comprised of only Teflon fittings and materials. Sample inlet particulate filters of 5 micron are present at most sites.

The dry deposition filter packs are designed to sample from 10 meters. Most of the filter pack sample lines are also Teflon. Inline filters are present in the sample trains to prevent moisture and particulates from damaging the flow rate controller.

5.3 Infrastructure

Sites continue to be improved by repairing the site shelters which had deteriorated throughout the years of operation. The installation and upgrade of the data loggers and replacement of degrading signal cables, has been very beneficial to the network. A few of the site shelters are still in need of repair, but overall the condition of the sites has improved again during the past year.

5.4 Site Operators

Generally the site operators are very conscientious and eager to complete the site activities correctly. They are willing to, and have performed sensor replacements and repairs at the sites with support provided by the AMEC and ARS field operations centers. In some cases, where replacements or repairs were made, documentation of the activities was not complete, and did not include serial numbers of the removed and installed equipment.

Many of the CASTNET site operators also perform site operator duties for the National Atmospheric Deposition Program (NADP). Many of the NPS site operators also perform other air, or environmental quality functions within their park. All are a valuable resource for the program. Some of the site operators mentioned that the CASTNET features in the NPS "Monitor" are informative, helpful, and appreciated.

Still many of the site operators have not been formally trained to perform the CASTNET duties by either AMEC or ARS. They had been given instructions by the previous site operators and over the phone instructions from the field operation centers at AMEC and ARS.

5.5 Documentation

There were some documentation problems with the Site Status Report Forms (SSRF) completed by the site operators each week during the regular site visits. Common errors included improper reporting of "initial flow", "final flow", and "leak check" values.

The NPS site operator procedures are well developed and readily accessible at all of the NPS sites visited. There is an electronic interface (DataView 2) available to view, analyze, and print site data. There are electronic "checklists" for the site operator to complete during the site visits; however, all of the CASTNET filter pack procedures are not included in the "checklists". Flow rates and leak check results are not recorded electronically.

An electronic logbook is included in the interface software. This system permits easy access to site documentation data. Complete calibration reports have been added to the system and accessible through the site computer, however the reports available on-site are not up to date.

5.6 Site Sensor and FSAD Identification

Continued improvement has also been made in the area of documentation of sensors and systems used at the sites. It is important to maintain proper sensor identification for the purposes of site inventory and to properly identify operational sensors for data validation procedures. Many sensors have had new numbers affixed for proper identification.

Where possible the identification numbers assigned (serial numbers and barcodes) are used within the field site audit database for all the sensors encountered during the site audits. The records are used for both the performance and systems audits. If a sensor is not assigned a serial number by the manufacturer, that field is entered as "none". If it is unknown whether an additional client ID number is assigned to a sensor, and a number is not found, the client ID is also entered as "none". If it is typical for a manufacturer and/or client ID number to be assigned to a sensor, and that number is not present, the field is entered as "missing". If either the serial number or the client ID numbers cannot be read, the field is entered as "illegible". An auto-number field is assigned to each sensor in the database in order to make the records unique.

6.0 Summary and Recommendations

The CASTNET Site Audit Program has been successful in evaluating the field operations of the sites. The results of performance and systems audits are recorded and archived in a relational database, the Field Site Audit Database (FSAD). CASTNET site operations are generally acceptable and continue to improve. Some differences between actual site operations and operations described in the QAPP have been identified and described. Procedural differences between EPA and NPS sponsored sites have also been described.

As discussed previously the shelters have received some much needed attention. It was also observed that improvements were made to the shelter temperature control systems. As a requirement in 40 CFR Part 58 for ozone monitoring, shelter temperature is an important variable. Additional improvement could be made to accurately measure and report shelter temperature.

The previous paragraphs and sections included some recommendations for improving the field operations systems. One recommendation for improving the audit program is presented in the following section; this recommendation was also included in the previous annual report.

6.1 In Situ Comparisons

An improvement to the audit procedures designed to evaluate the differences in measurement technique would be to develop an "In Situ" audit measurement system. This would require a suite of sensors that would be collocated with the site sensors. Ideally the audit sensors would address the inconsistent sensor installations observed throughout the network. By deploying a suite of certified NIST traceable sensors installed and operating as recommended by the manufacturer and to EPA guidelines, subtle differences in the operation of the existing CASTNET measurement systems could be evaluated. The "In Situ" sensors would be operated at each site for a 24 hour period and the measurements would be compared to the CASTNET measurements. A portable system of meteorological sensors would be beneficial for meteorological measurement evaluations particularly at BLM sponsored sites.

7.0 References

Office of Air Quality and Planning Standards AMTIC website, SOP and guidance documents: www.epa.gov/ttn/amtic/

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume II - Ambient Air Specific Methods – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV - Meteorological Measurements – EPA.

Clean Air Status and Trends Network (CASTNET) Quality Assurance Project Plan (2003) – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume I: - A Field Guide To Environmental Quality Assurance – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume II: Part1 Ambient Air Quality Monitoring Program Quality System Development – EPA.

Sensitivity of the National Oceanic and Atmospheric Administration multilayer model to instrument error and parameterization uncertainty: Journal of Geophysical Research, Vol. 105. No. D5, March 16, 2000.

Wind System Calibration, Recommended Calibration Interval, Procedure, and Test Equipment: November 1999, R. M. Young Company

Bowker, G.E., Schwede, D.B.; Lear, G.G.; Warren-Hicks, W.J., and Finkelstein, P.L., 2011. Quality assurance decisions with air models: a case study of imputation of missing input data using EPA's multi-layer model. Water, Air, and Soil Pollution 222, 391e402.

APPENDIX 1

Audit Standards Certifications

Enter date in yellow highlighted cell next to "Date". Place cursor next to m ₁ and type ctrl+a. Enter new slope and intercept in yellow highlighted cells Date 1/20/2016	Enter date in yellow highlighted cell next to "Date". Place cursor next to m ₁ and type ctrl+a. Enter new slope and intercept in yellow highlighted cells Date 1/21/2016	Enter date in yellow highlighted cell next to "Date". Place cursor next to m ₁ and type ctrl+a. Enter new slope and intercept in yellow highlighted cells Date 1/22/2016	Enter date in yellow highlighted cell next to "Date". Place cursor next to m ₁ and type ctrl+a. Enter new slope and intercept in yellow highlighted cells Date 1/23/2016	Enter date in yellow highlighted cell next to "Date". Place cursor next to m ₁ and type ctrl+a. Enter new slope and intercept in yellow highlighted cells Date 1/29/2016	Enter date in yellow highlighted cell next to "Date". Place cursor next to m ₁ and type ctrl+a. Enter new slope and intercept in yellow highlighted cells Date 9/12/2016
m ₁ 1/20/2016 0.996283	m ₁ 1/21/2016 0.995048	m ₁ 1/22/2016 0.996080	m ₁ 1/23/2016 0.998330	m ₁ 1/29/2016 1.00680	m ₁ 9/12/2016 1.00466
m ₂ 1/19/2016 0.99735	m ₂ 1/20/2016 0.99628	m ₂ 1/21/2016 0.99505	m ₂ 1/22/2016 0.99608	m ₂ 1/23/2016 0.99833	m ₂ 1/29/2016 1.00680
m ₃ 1/18/2016 0.99700	m ₃ 1/19/2016 0.99735	m ₃ 1/20/2016 0.99628	m ₃ 1/21/2016 0.99505	m ₃ 1/22/2016 0.99608	m ₃ 1/23/2016 0.99833
m ₄ 9/21/2015 1.01937	m ₄ 1/18/2016 0.99700	m ₄ 1/19/2016 0.99735	m ₄ 1/20/2016 0.99628	m ₄ 1/21/2016 0.99505	m ₄ 1/22/2016 0.99608
m ₅ 1/7/2015 1.01820	m ₅ 9/21/2015 1.01937	m ₅ 1/18/2016 0.99700	m ₅ 1/19/2016 0.99735	m ₅ 1/20/2016 0.99628	m ₅ 1/21/2016 0.99505
m ₆ 1/8/2014 1.00420	m ₆ 1/7/2015 1.01820	m ₆ 9/21/2015 1.01937	m ₆ 1/18/2016 0.99700	m ₆ 1/19/2016 0.99735	m ₆ 1/20/2016 0.99628
I ₁ 1/20/2016 -0.201849	I ₁ 1/21/2016 -0.212226	I ₁ 1/22/2016 -0.281123	I ₁ 1/23/2016 -0.334816	I ₁ 1/29/2016 -0.09460	I ₁ 9/12/2016 0.01298
I ₂ 1/19/2016 -0.46253	I ₂ 1/20/2016 -0.20185	I ₂ 1/21/2016 -0.21223	I ₂ 1/22/2016 -0.28112	I ₂ 1/23/2016 -0.33482	I ₂ 1/29/2016 -0.09460
I ₃ 1/18/2016 -0.21412	I ₃ 1/19/2016 -0.46253	I ₃ 1/20/2016 -0.20185	I ₃ 1/21/2016 -0.21223	I ₃ 1/22/2016 -0.28112	I ₃ 1/23/2016 -0.33482
I ₄ 9/21/2015 0.02326	I ₄ 1/18/2016 -0.21412	I ₄ 1/19/2016 -0.46253	I ₄ 1/20/2016 -0.20185	I ₄ 1/21/2016 -0.21223	I ₄ 1/22/2016 -0.28112
I ₅ 1/7/2015 -0.41020	I ₅ 9/21/2015 0.02326	I ₅ 1/18/2016 -0.21412	I ₅ 1/19/2016 -0.46253	I ₅ 1/20/2016 -0.20185	I ₅ 1/21/2016 -0.21223
I ₆ 1/8/2014 0.35220	I ₆ 1/7/2015 -0.41020	I ₆ 9/21/2015 0.02326	I ₆ 1/18/2016 -0.21412	I ₆ 1/19/2016 -0.46253	I ₆ 1/20/2016 -0.20185
Average m 1/20/2016 1.00540	Average m 1/21/2016 1.00387	Average M 1/22/2016 1.00019	Average m 1/23/2016 0.99668	Average m 1/29/2016 0.99832	Average m 9/12/2016 0.99953
Avarage I 1/20/2016 -0.15221	Avarage I 1/21/2016 -0.24628	Avarage I 1/22/2016 -0.22477	Avarage I 1/23/2016 -0.28444	Avarage I 1/29/2016 -0.26452	Avarage I 9/12/2016 -0.18527
S _m (%) 1/20/2016 1.07	S _m (%) 1/21/2016 1.15	S _{m (%)} 1/22/2016 0.94	S _{m (%)} 1/23/2016 0.11	S _m (%) 1/29/2016 0.43	S _m (%) 9/12/2016 0.50
S _I (ppb) 1/20/2016 0.3	S _I (ppb) 1/21/2016 0.2	S _I (ppb) 1/22/2016 0.2	S _I (ppb) 1/23/2016 0.1	S _I (ppb) 1/29/2016 0.1	S _I (ppb) 9/12/2016 0.1
Test s m 1/20/2016 PASS	Test s m 1/21/2016 PASS	Test s m 1/22/2016 PASS	Test s m 1/23/2016 PASS	Test s m 1/29/2016 PASS	Test s m 9/12/2016 PASS
Test s 1 1/20/2016 PASS	Test s 1 1/21/2016 PASS	Test s 1 1/22/2016 PASS	Test s 1 1/23/2016 PASS	Test s 1 1/29/2016 PASS	Test s 7 9/12/2016 PASS
EEMS # 01110 At EEMS s/n: 49CPS 70008-364 1/20/2016 BKG = 0.0 COEF = 1.018	EEMS # 01110 At EEMS s/n: 49CPS 70008-364 1/21/2016 BKG = 0.0 COEF = 1.018	EEMS # 01110 At EEMS s/n: 49CPS 70008-364 1/22/2016 BKG = 0.0 COEF = 1.018	EEMS # 01110 At EEMS s/n: 49CPS 70008-364 1/23/2016 6-day BKG = 0.0 COEF = 1.018	EEMS # 01110 At EPA R-4 s/n: 49CPS 70008-364 1/29/2016 Verification BKG = 0.0 COEF = 1.018	EEMS # 01110 At EPA R-7 s/n: 49CPS 70008-364 9/12/2016 Verification BKG = 0.0 COEF = 1.018

cell next to "Do m ₁ and type ctr Enter new slop	Enter date in yellow highlighter ell next to "Date". Place cursor next to h and type ctrl+a. inter new slope and intercept in ellow highlighted cell: Date 1/21/2016 Enter date in yellow highlightet cell next to "Date". Place cursor next to m and type ctrl+a. Enter new slope and intercept in yellow highlighted cell: 1/22/2016			irsor next to	Enter date in yellow highlighted cell next to "Date". Place cursor next to m ₁ and type ctrl+a. Enter new slope and intercept in yellow highlighted cell:			cell next to "E m ₁ and type co Enter new slo	Date". Place cu trl+a. pe and intercep	Enter date in yellow highlighted cell next to "Date". Place cursor next to m, and type ctrl+a. Enter new slope and intercept in yellow highlighted cell:			esor next to	Enter date in y cell next to "I m ₁ and type c Enter new slo yellow highlig	ersor next to		
	Date S/N=	1/21/2016 0517112175		Date S/N=	1/22/2016 0517112175		Date S/N=	1/23/2016 0517112175		Date S/N	1/29/2016 0517112175		Date S/N	2/8/2017 0517112175		Date S/N=	3/21/2017 0517112175
m_1	1/21/2016	0.991499	m ₁	1/22/2016	0.993072	m ₁	1/23/2016	0.994291	m ₁	1/29/2016	1.00100	m ₁	2/8/2017	1.008785	m ₁	3/21/2017	1.002500
m_2	1/20/2016	0.99565	m_2	1/21/2016	0.99150	m_2	1/22/2016	0.99307	m_2	1/23/2016	0.99429	m_2	1/29/2016	1.00100	m_2	2/8/2017	1.00879
m_3	1/19/2016	0.99975	m_3	1/20/2016	0.99565	m_3	1/21/2016	0.99150	m_3	1/22/2016	0.99307	m_3	1/23/2016	0.99429	m_3	1/29/2016	1.00100
m_4	1/18/2016	0.99722	m_4	1/19/2016	0.99975	m_4	1/20/2016	0.99565	m_4	1/21/2016	0.99150	m_4	1/22/2016	0.99307	m_4	1/23/2016	0.99429
m_5	1/7/2015	1.01540	m_5	1/18/2016	0.99722	m_5	1/19/2016	0.99975	m_5	1/20/2016	0.99565	m_5	1/21/2016	0.99150	m_5	1/22/2016	0.99307
m_6	1/3/2015	0.99307	m_6	1/7/2015	1.01540	m_6	1/18/2016	0.99722	m_6	1/19/2016	0.99975	m_6	1/20/2016	0.99565	m_6	1/21/2016	0.99150
I_1	1/21/2016	-0.844393	I ₁	1/22/2016	-0.398185	I ₁	1/23/2016	-0.686363	I_1	1/29/2016	0.25770	I ₁	2/8/2017	0.363823	I ₁	3/21/2017	0.458700
I_2	1/20/2016	-0.23545	I_2	1/21/2016	-0.84439	I_2	1/22/2016	-0.39819	I_2	1/23/2016	-0.68636	I_2	1/29/2016	0.25770	I_2	2/8/2017	0.36382
I_3	1/19/2016	-0.73832	I_3	1/20/2016	-0.23545	I_3	1/21/2016	-0.84439	I_3	1/22/2016	-0.39819	I_3	1/23/2016	-0.68636	I_3	1/29/2016	0.25770
I_4	1/18/2016	-0.43380	I_4	1/19/2016	-0.73832	I_4	1/20/2016	-0.23545	I_4	1/21/2016	-0.84439	I_4	1/22/2016	-0.39819	I_4	1/23/2016	-0.68636
I_5	1/7/2015	-0.09100	I_5	1/18/2016	-0.43380	I_5	1/19/2016	-0.73832	I_5	1/20/2016	-0.23545	I_5	1/21/2016	-0.84439	I_5	1/22/2016	-0.39819
I_6	1/3/2015	0.13058	I_6	1/7/2015	-0.09100	I_6	1/18/2016	-0.43380	I_6	1/19/2016	-0.73832	I_6	1/20/2016	-0.23545	I_6	1/21/2016	-0.84439
Average M	1/21/2016	0.99876	Average M	1/22/2016	0.99876	Average M	1/23/2016	0.99525	Average M	1/29/2016	0.99588	Average M	2/8/2017	0.99738	Average M	3/21/2017	0.99852
Avarage I	1/21/2016	-0.36873	Avarage I	1/22/2016	-0.45686	Avarage I	1/23/2016	-0.55609	Avarage I	1/29/2016	-0.44084	Avarage I	2/8/2017	-0.25715	Avarage I	3/21/2017	-0.14145
$S_{m(\%)}$	1/21/2016	0.87	S m (%)	1/22/2016	0.87	S m (%)	1/23/2016	0.30	S m (%)	1/29/2016	0.38	S m (%)	2/8/2017	0.65	S m (%)	3/21/2017	0.67
$S_{I\ (ppb)}$	1/21/2016	0.4	S _I (ppb)	1/22/2016	0.3	S _I (ppb)	1/23/2016	0.2	S _I (ppb)	1/29/2016	0.4	S _I (ppb)	2/8/2017	0.5	S _{I (ppb)}	3/21/2017	0.6
Test s _m	1/21/2016	PASS	Test s _m	1/22/2016	PASS	Test s _m	1/23/2016	PASS	Test s _m	1/29/2016	PASS	Test s _m	2/8/2017	PASS	Test s _m	3/21/2017	PASS
Test s_I	1/21/2016	PASS	Test s _I	1/22/2016	PASS	Test s _I	1/23/2016	PASS	Test s _I	1/29/2016	PASS	Test s _I	2/8/2017	PASS	Test s _I	3/21/2017	PASS
$\frac{1}{5} \left[\sum_{i=1}^{6} $	(m ;)	$rac{1}{6}$	$\left(\sum_{i=1}^{6} m \right)$	$\begin{bmatrix} i \end{bmatrix}^2$			S_m	$=\frac{100}{m}$	$\frac{1}{5} \left[\sum_{i=1}^{6} \right]$	(m _i)	$0^2 - \frac{1}{6}$	$\left(\sum_{i=1}^{6} m \right)$	i 2			S_m	$=\frac{100}{m}\sqrt{\frac{1}{2}}$
$\sum_{i=1}^{6}$	I_i) ²	- 1/6	$\sum_{i=1}^{6} I_{i}$					$S_{i} = \sqrt{\frac{1}{5}}$	$\left[\sum_{i=1}^{6} \right]$	$(I_i)^2$	$-\frac{1}{6}$	$\sum_{i=1}^{6} I_{i}$					$S_{i} = \sqrt{\frac{1}{5}}$
EEMS 6-day calibrat At EEMS BKG = COEF =			EEMS 6-day calibrat At EEMS BKG = COEF =		5	EEMS 6-day calibrat At EEMS BKG = COEF =		5	EEMS Verification At EPA R-4 BKG = COEF =	1/29/2016 -0.6 1.020		EEMS Verification At EEMS BKG = COEF =	2/8/2017 -0.6 1.020		EEMS 6-day calibra At EPA R4 BKG = COEF =	5 01111 tion 3/21/2017 -0.6 1.020	

S/N Enter new slop yellow highlig	nted cells		S/N = 0419606966 Enter new slope and entercept in yellow highlighted cells Date 3/5/2015		t in	yellow highlighted cells		S/N Enter new slop yellow highlig	hted cells		S/N Enter new slop yellow highlig	hted cells		S/. Enter new slop yellow highlig	hted cells		S/N = 0419606966 Enter new slope and intercept in yellow highlighted cells			
	Date 3/4/2015	0.992773	m ₁	3/5/2015	0.99532	m ₁	3/7/2015	0.99124	m	Date 3/8/2015	0.99208	m ₁	Date 3/9/2015	0.99502	m ₁	Date 6/25/2015	0.99659	m ₁	Date 1/28/2016	1.00120
$\frac{m_1}{m_2}$	3/3/2015	0.992773	m ₂	3/4/2015	0.99532	m ₂	3/5/2015	0.99124	m_1	3/8/2015	0.99208	m ₂	3/9/2015	0.99302	m ₂	3/9/2015	0.99659	m ₂	6/25/2015	0.99659
m ₃	1/7/2015	1.02480	m ₃	3/3/2015	0.99785	m ₃	3/4/2015	0.99277	m ₃	3/5/2015	0.99532	m ₃	3/7/2015	0.99124	m ₃	3/8/2015	0.99208	m ₃	3/9/2015	0.99502
m_4	1/8/2014	1.01870	m ₄	1/7/2015	1.02480	m ₄	3/3/2015	0.99785	m ₄	3/4/2015	0.99277	m ₄	3/5/2015	0.99532	m ₄	3/7/2015	0.99124	m ₄	3/8/2015	0.99208
m_5	1/4/2014	1.00565	m ₅	1/8/2014	1.01870	m ₅	1/7/2015	1.02480	m_5	3/3/2015	0.99785	m ₅	3/4/2015	0.99277	m_5	3/5/2015	0.99532	m ₅	3/7/2015	0.99124
m_6	1/3/2014	1.00489	m_6	1/4/2014	1.00565	m_6	1/8/2014	1.01870	m_6	1/7/2015	1.02480	m_6	3/3/2015	0.99785	m_6	3/4/2015	0.99277	m_6	3/5/2015	0.99532
I_1	3/4/2015	-0.445048	I_1	3/5/2015	-0.49499	I ₁	3/7/2015	-0.46416	I_1	3/8/2015	-0.33284	I ₁	3/9/2015	-0.53651	I ₁	6/25/2015	-0.18324	I ₁	1/28/2016	0.02750
\mathbf{I}_2	3/3/2015	-0.29464	I_2	3/4/2015	-0.44505	I_2	3/5/2015	-0.49499	I_2	3/7/2015	-0.46416	I_2	3/8/2015	-0.33284	I_2	3/9/2015	-0.53651	I_2	6/25/2015	-0.18324
I_3	1/7/2015	0.57470	I_3	3/3/2015	-0.29464	I_3	3/4/2015	-0.44505	I_3	3/5/2015	-0.49499	I_3	3/7/2015	-0.46416	I_3	3/8/2015	-0.33284	I_3	3/9/2015	-0.53651
I ₄	1/8/2014	0.40360	I ₄	1/7/2015	0.57470	I_4	3/3/2015	-0.29464	I_4	3/4/2015	-0.44505	I_4	3/5/2015	-0.49499	I_4	3/7/2015	-0.46416	I_4	3/8/2015	-0.33284
I ₅	1/4/2014	0.39663	I ₅	1/8/2014	0.40360	I_5	1/7/2015	0.57470	I ₅	3/3/2015	-0.29464	I ₅	3/4/2015	-0.44505	I ₅	3/5/2015	-0.49499	I_5	3/7/2015	-0.46416
I ₆	1/3/2014	0.12097	I_6	1/4/2014	0.39663	I_6	1/8/2014	0.40360	I_6	1/7/2015	0.57470	I_6	3/3/2015	-0.29464	I_6	3/4/2015	-0.44505	I_6	3/5/2015	-0.49499
Average M	3/4/2015	1.00744	Average M	3/5/2015	1.00585	Average M	3/7/2015	1.00345	Average M	3/8/2015	0.99901	Average M	3/9/2015	0.99405	Average M	6/25/2015	0.99384	Average M	1/28/2016	0.99524
Avarage I	3/4/2015	0.12603	Avarage I	3/5/2015	0.02337	Avarage I	3/7/2015	-0.12009	Avarage I	3/8/2015	-0.24283	Avarage I	3/9/2015	-0.42803	Avarage I	6/25/2015	-0.40946	Avarage I	1/28/2016	-0.33070
S _{m (%)}	3/4/2015	1.21	S m (%)	3/5/2015	1.31	S _{m (%)}	3/7/2015	1.44	S m (%)	3/8/2015	1.29	S m (%)	3/9/2015	0.25	S _{m (%)}	6/25/2015	0.21	S m (%)	1/28/2016	0.36
$S_{I~(ppb)}$	3/4/2015	0.4	S _{I (ppb)}	3/5/2015	0.5	S _I (ppb)	3/7/2015	0.5	S _{I (ppb)}	3/8/2015	0.4	S _{I (ppb)}	3/9/2015	0.1	S _I (ppb)	6/25/2015	0.1	S _I (ppb)	1/28/2016	0.2
Test s _m	3/4/2015	PASS	Test s _m	3/5/2015	PASS	Test s _m	3/7/2015	PASS	Test s _m	3/8/2015	PASS	Test s _m	3/9/2015	PASS	Test s _m	6/25/2015	PASS	Test s _m	1/28/2016	PASS
Test s_I	3/4/2015	PASS	Test s _I	3/5/2015	PASS	Test s _I	3/7/2015	PASS	Test s _I	3/8/2015	PASS	Test s _I	3/9/2015	PASS	Test s _I	6/25/2015	PASS	Test s _I	1/28/2016	PASS
$\frac{1}{5} \left[\sum_{i=1}^{6} \right]$	(m _i)	$\frac{1}{6}$	$\left(\sum_{i=1}^{6} m \right)$	i 2 3			$S_m =$	$=\frac{100}{m}$	$\frac{1}{5} \left[\sum_{i=1}^{6} \right]$	(m _i)	$rac{1}{6}$	$\left(\sum_{i=1}^{6} m \right)$	$\begin{bmatrix} i \end{bmatrix}^2$			S_m =	$=\frac{100}{m}$	$\frac{1}{5} \left[\sum_{i=1}^{6} \right]$	(m _i)	$\frac{1}{6}$
$\left[\sum_{i=1}^{6} \right]$	$(I_i)^2$	$-\frac{1}{6}$	$\sum_{i=1}^{6} I_{i}$			ш		$S_{i} = \sqrt{\frac{1}{5}}$	$\left[\sum_{i=1}^{6} \right]$	$(I_i)^2$	$-\frac{1}{6}$	$\sum_{i=1}^{6} I_{i}$	2				$S_{i} = \sqrt{\frac{1}{5}}$	$\left[\sum_{i=1}^{6} $	$(I_i)^2$	- 1/6
EEMS # At EEMS	01112		EEMS #	01112		EEMS #	01112		EEMS # At EEMS	01112		EEMS #	01112		EEMS # At EPA R-7			EEMS # At EPA R-4	01112	
offset = span =	-0.2 1.017		offset = span =	-0.2 1.017		offset = span =	-0.2 1.017		offset = span =	-0.2 1.017		offset = span =	-0.2 1.017		Verifi offset = span =	-0.2 1.017		Verifi offset = span =	-0.2 1.017	

			167	Enter date in yellow highlighted cell next to "Date". S/N = 0517112167 Enter new slope and intercept in yellow highlighted cells Date 1/23/2016			Enter date in yellow highlighted cell next to "Date". S/N = 0517112167 Enter new slope and intercept in yellow highlighted cells Date 1/28/2016			Enter date in y cell next to "E S/. Enter new slop yellow highlig	N = 0517112 The period of the state of t	2167	Enter date in yellow highlighted cell next to "Date". Enter new slope and intercept in yellow highlighted cells Date 3/21/2017				
m_1	1/21/2016	0.996503	m_1	1/22/2016	0.998195	m_1	1/23/2016	0.999917	m ₁	1/28/2016	1.00770	m ₁	9/14/2016	1.01342	m ₁	3/21/2017	1.00560
m_2	1/20/2016	0.99993	m_2	1/21/2016	0.99650	m_2	1/22/2016	0.99820	m_2	1/23/2016	0.99992	m_2	1/28/2016	1.00770	m_2	9/14/2016	1.01342
m_3	1/19/2016	1.00076	m_3	1/20/2016	0.99993	m_3	1/21/2016	0.99650	m_3	1/22/2016	0.99820	m_3	1/23/2016	0.99992	m_3	1/28/2016	1.00770
m_4	1/18/2016	0.99819	m_4	1/19/2016	1.00076	m_4	1/20/2016	0.99993	m_4	1/21/2016	0.99650	m_4	1/22/2016	0.99820	m_4	1/23/2016	0.99992
m_5	9/21/2015	1.02307	m_5	1/18/2016	0.99819	m_5	1/19/2016	1.00076	m_5	1/20/2016	0.99993	m_5	1/21/2016	0.99650	m_5	1/22/2016	0.99820
	4/29/2015	1.02260	m_6	9/21/2015	1.02307	m ₆	1/18/2016	0.99819	m ₆	1/19/2016	1.00076	m ₆	1/20/2016	0.99993	m ₆	1/21/2016	0.99650
	1/21/2016	-0.323250	I ₁	1/22/2016	-0.384025	I ₁	1/23/2016	-0.335463	I_1	1/28/2016	0.22470	I ₁	9/14/2016	0.32479	I_1	3/21/2017	0.06720
2	1/20/2016	-0.41890	I_2	1/21/2016	-0.32325	I_2	1/22/2016	-0.38403	I_2	1/23/2016	-0.33546	I_2	1/28/2016	0.22470	I_2	9/14/2016	0.32479
3	1/19/2016	-0.49351	I_3	1/20/2016	-0.41890	I_3	1/21/2016	-0.32325	I_3	1/22/2016	-0.38403	I_3	1/23/2016	-0.33546	I_3	1/28/2016	0.22470
-	1/18/2016	-0.27641	I_4	1/19/2016	-0.49351	I_4	1/20/2016	-0.41890	I_4	1/21/2016	-0.32325	I_4	1/22/2016	-0.38403	I_4	1/23/2016	-0.33546
5	9/21/2015	-0.26399	I_5	1/18/2016	-0.27641	I_5	1/19/2016	-0.49351	I_5	1/20/2016	-0.41890	I_5	1/21/2016	-0.32325	I ₅	1/22/2016	-0.38403
I_6	4/29/2015	-0.20400	I_6	9/21/2015	-0.26399	I_6	1/18/2016	-0.27641	I_6	1/19/2016	-0.49351	I_6	1/20/2016	-0.41890	I_6	1/21/2016	-0.32325
Average M	1/21/2016	1.00684	Average I	1/22/2016	1.00278	Average M	1/23/2016	0.99892	Average M	1/28/2016	1.00050	Average M	9/14/2016	1.00261	Average M	3/21/2017	1.00356
Avarage I	1/21/2016	-0.33001	Avarage	1/22/2016	-0.36001	Avarage I	1/23/2016	-0.37193	Avarage I	1/28/2016	-0.28841	Avarage I	9/14/2016	-0.15202	Avarage I	3/21/2017	-0.07101
S m (%)	1/21/2016	1.24	S m (%)	1/22/2016	1.00	S m (%)	1/23/2016	0.16	S m (%)	1/28/2016	0.38	S m (%)	9/14/2016	0.65	S m (%)	3/21/2017	0.65
$S_{I\ (ppb)}$	1/21/2016	0.1	S I (ppb	1/22/2016	0.1	S _{I (ppb)}	1/23/2016	0.1	S _{I (ppb)}	1/28/2016	0.3	S _I (ppb)	9/14/2016	0.3	S _{I (ppb)}	3/21/2017	0.3
Test s _m	1/21/2016	PASS	Test s	n 1/22/2016	PASS	Test s _m	1/23/2016	PASS	Test s _m	1/28/2016	PASS	Test s _m	9/14/2016	PASS	Test s _m	3/21/2017	PASS
Test s _I	1/21/2016	PASS	Test s	1/22/2016	PASS	Test s _I	1/23/2016	PASS	Test s _I	1/28/2016	PASS	Test s _I	9/14/2016	PASS	Test s _I	3/21/2017	PASS
$\frac{1}{5} \left[\sum_{i=1}^{6} \right]$	(m_i)	$rac{1}{6}$	$\left(\sum_{i=1}^{6} n \right)$	$\begin{bmatrix} n \\ i \end{bmatrix}^2$			S_m :	$=\frac{100}{m}$	$\frac{1}{5} \left[\sum_{i=1}^{6} \right]$	(m _i)	$0^2 - \frac{1}{6}$	$\sum_{i=1}^{6} m$	$\begin{bmatrix} i \end{bmatrix}^2$		П	$S_m =$	$=\frac{100}{m}$
$\left[\sum_{i=1}^{6} \left(I \right) \right]$	I_i) ²	- 1 ($\sum_{i=1}^{6} I$					$S_{i} = \sqrt{\frac{1}{5}}$	$\left[\sum_{i=1}^{6} \right]$	$(I_i)^2$	- \frac{1}{6}	$\sum_{i=1}^{6} I_{i}$			ш		$S_i = \sqrt{\frac{1}{2}}$
EEMS # 6-day calibration At EEMS offset = span =	01113 on 1/21/2016 -0.2 1.015		EEMS 6-day calil At EEMS offset = span =	1/22/2016 - 0.2	;	EEMS # 6-day calibra At EEMS offset = span =			EEMS # Verification At EPA R4 offset = span =	01113 1/28/2016 -0.2 1.015		EEMS # Verification At EPA R7 offset = span =	9/14/2016 -0.2 1.015		EEMS # Verification At EPA R4 offset = span =	01113 3/21/2017 -0.2 1.015	

SESD Project #:

Test #:

U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division **Enforcement and Investigations Branch** Superfund and Air Section 980 College Station Rd. Athens, GA 30605

EPA

GUEST

Agency:

Standard

Instrument

Contact:

EPA Region 4 Keith Harris

EEMS Eric Hebert

Make:

NIST

49CPS

Model:

SRP-10

TEI

S/N:

10

49CPS-0419606966

Guest Test Status:

PASS

"as found"

Guest Known Offset:

0

Level 2	Slope	Intercept	R ²	High O ₃	Lower O ₃
Averages:	1.0012	0.0275	0.9999978	482	0
Upper Tolerance:	1.0300	3.0000			
LowerTolerance	0.9700	-3 0000			

Date Start	Time Start	Date End	Time End	File	Slope	Intercept	R^2	Range (ppb O ₃)	Range (ppb O ₃)
01/27/16	1:09 PM	01/27/16	2:59 PM	c0127001.xls	1.0007	0.0686	0.9999974	482	-0.14
01/27/16	2:59 PM	01/27/16	5:00 PM	c0127002.xls	1.0013	-0.0355	0.9999983	482	0.00
01/27/16	5:00 PM	01/27/16	6:49 PM	c0127003.xls	1.0015	0.0285	0.9999986	481	-0.15
01/27/16	6:49 PM	01/27/16	8:34 PM	c0127004.xls	1.0006	0.1371	0.9999988	482	-0.27
01/27/16	8:35 PM	01/27/16	10:27 PM	c0127005.xls	1.0023	-0.1237	0.9999993	482	0.03
01/27/16	10:27 PM	01/28/16	12:13 AM	c0127006.xls	1.0009	0.0036	0.9999941	483	0.50
01/28/16	12:13 AM	01/28/16	1:58 AM	c0127007.xls	1.0012	0.1138	0.9999984	482	-0.03

Comments:

Instrument tested as found.

Ozone calibration factors at time of test: O3 BKG: -0.2 ppb O3 COEF: 1.017

FEMS # OILIZ

New 6-day m = 0.99524 b = -0.33070

Verification Expires on:

January 28, 2017

Keith Harris 2h 2hi

Date 01/28/16

U. S. Environmental Protection Agency
Region 4 Science and Ecosystem Support Division
Enforcement and Investigations Branch
Superfund and Air Section
980 College Station Rd.
Athens, GA 30605

EPA

GUEST

Agency:

Standard EPA Region 4

Instrument

Contact:

Keith Harris

EEMS Eric Hebert

Make:

NIST

TEI

Model:

SRP-10

49CPS

Model: S/N:

10

517112167

Guest Test Status:

is: PASS

Guest Known Offset:

0

SESD Project #: Test #:

#

"as found"

Level 2	Slope	Intercept
Averages:	1.0077	0.2247
Upper Tolerance:	1.0300	3.0000
LowerTolerance:	0.9700	-3.0000

Date Start		Date End	Time End	File	Slope	Intercept	R^2	Upper Range (ppb O ₃)	Lower Range (ppb O ₃)
01/27/1	1:09 PM	01/27/16	2:59 PM	c0127001.xls	1.0074	0.2954	0.9999975	482	-0.14
01/27/1	16 2:59 PM	01/27/16	5:00 PM	c0127002.xls	1.0079	0.1305	0.9999968	482	0.00
01/27/1	6 5:00 PM	01/27/16	6:49 PM	c0127003.xls	1.0083	0.1883	0.9999984	481	-0.15
01/27/1	6 6:49 PM	01/27/16	8:34 PM	c0127004.xls	1.0071	0.3510	0.9999959	482	-0.27
01/27/1	6 8:35 PM	01/27/16	10:27 PM	c0127005.xls	1.0086	0.0725	0.9999992	482	0.03
01/27/1	6 10:27 PM	01/28/16	12:13 AM	c0127006.xls	1.0072	0.2073	0.9999928	483	0.50
01/28/1	6 12:13 AM	01/28/16	1:58 AM	c0127007.xls	1.0073	0.3276	0.9999978	482	-0.03

Comments:

Instrument tested as found.

Ozone calibration factors at time of test:

-0.2

1.015

R2

0.999997

High O₃

482

Lower O₃

O3 BKG: 0.0 ppb O3 COEF: 0.000

FEMS# OU13

New Aug 6-day

m = 1.00050

b = -0.28841

Verification Expires on:

January 28, 2017

Keith Harris

Date

01/28/16

U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division **Enforcement and Investigations Branch** Superfund and Air Section 980 College Station Rd. Athens, GA 30605

EPA

GUEST

Standard

Instrument

Agency:

EPA Region 4

EEMS

Contact:

Keith Harris

Eric Hebert

Make:

NIST

TEI

Model:

SRP-10

49CPS

49CPS-70008-364

S/N:

10 **Guest Test Status:**

PASS

Guest Known Offset:

0

SESD Project #: Test #:

"as found"

Level 2	Slope	Intercept
Averages:	1.0068	-0.0946
Upper Tolerance:	1.0300	3.0000
LowerTolerance:	0.9700	-3.0000

Time Start	Date End	Time End	File	Slope	Intercept	R ²	Range (ppb O ₃)	Range (ppb O ₃)
9:25 AM	01/29/16	11:10 AM	c0129001.xls	1.0066	-0.0851	0.9999976	480	0.08
11:10 AM	01/29/16	12:55 PM	c0129002.xls	1.0070	-0.0748	0.9999978	481	-0.21
12:55 PM	01/29/16	2:50 PM	c0129003.xls	1.0069	-0.1239	0.9999969	481	-0.14
	Start 9:25 AM 11:10 AM	Start End 9:25 AM 01/29/16 11:10 AM 01/29/16	Start End End 9:25 AM 01/29/16 11:10 AM 11:10 AM 01/29/16 12:55 PM	Start End End File 9:25 AM 01/29/16 11:10 AM c0129001.xls 11:10 AM 01/29/16 12:55 PM c0129002.xls	Start End End File Slope 9:25 AM 01/29/16 11:10 AM c0129001.xls 1.0066 11:10 AM 01/29/16 12:55 PM c0129002.xls 1.0070	Start End End File Slope Intercept 9:25 AM 01/29/16 11:10 AM c0129001.xls 1.0066 -0.0851 11:10 AM 01/29/16 12:55 PM c0129002.xls 1.0070 -0.0748	Start End End File Slope Intercept R² 9:25 AM 01/29/16 11:10 AM c0129001.xls 1.0066 -0.0851 0.9999976 11:10 AM 01/29/16 12:55 PM c0129002.xls 1.0070 -0.0748 0.9999978	Start End End File Slope Intercept R² (ppb O₃) 9:25 AM 01/29/16 11:10 AM c0129001.xls 1.0066 -0.0851 0.9999976 480 11:10 AM 01/29/16 12:55 PM c0129002.xls 1.0070 -0.0748 0.9999978 481

Comments:

Instrument tested as found.

Ozone calibration factors at time of test: O3 BKG: 0.0 ppb O3 COEF: 1.018

EEMS# 01110

New 6-day:

R2

0.999997

High O₃

481

Lower O₂

0

M = 0.99832

b = -0.26452

Verification Expires on:

January 29, 2017

Keith Harris

Page 1 of 1

Date 01/29/16

U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division **Enforcement and Investigations Branch** Superfund and Air Section 980 College Station Rd. Athens, GA 30605

EPA

GUEST

Standard

Instrument

Agency:

EPA Region 4

EEMS

Contact:

Keith Harris

Eric Hebert

Make:

NIST SRP-10 49CPS

Model:

TEL

S/N:

10

517112175

Guest Test Status: Guest Known Offset: PASS

Test #:

SESD Project #:

"as found"

Level 2	Slope	Intercept	R ²
Averages:	1.0010	0.2577	0.999998
Upper Tolerance:	1.0300	3.0000	
LowerTolerance:	0.9700	-3.0000	

Date Start	Time Start	Date End	Time End	File	Slope	Intercept	R^2	Range (ppb O ₃)	Range (ppb O ₃)	
01/29/16	9:25 AM	01/29/16	11:10 AM	c0129001.xls	1.0000	0.2740	0.9999982	480	0.08	
01/29/16	11:10 AM	01/29/16	12:55 PM	c0129002.xls	1.0015	0.2235	0.9999986	481	-0.21	
01/29/16	12:55 PM	01/29/16	2:50 PM	c0129003.xls	1.0014	0.2757	0.9999992	481	-0.14	

Comments:

Instrument tested as found.

Ozone calibration factors at time of test:

O3 BKG: -0.6 ppb O3 COEF: 1.020

EEMS# OILL

New 6-day m=0.99588 b=-0.44084

High O₃

481

Lower O₃

Lower

Verification Expires on:

January 29, 2017

Keith Harris

Date 0/29/16

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 7

Science and Technology Center 300 Minnesota Avenue Kansas City, Kansas 66101

September 15, 2016

Mr. Eric Hebert EEMS

Dear Mr. Hebert:

Enclosed is a summary of the annual ozone photometer verifications conducted on units 49CPS-70008-364 and 0517112167. These verifications were performed on September 12 and 14, 2016. Each verification consisted of three challenges against Standard Reference Photometer (SRP) #7. The average slope and intercept from these three challenges, is used to determine if the photometer is operating in an acceptable manner. Please find enclosed 3 data sheets which identify this process has been completed and the unit has been deemed acceptable.

Photometer verifications/certifications are evaluated according to the criteria stated in the "Transfer Standards for Calibration of Air Monitoring Analyzers for Ozone," technical assistance document. These criteria state that Level 2 transfer standards must have a slope in the range of 0.97 to 1.03, and an intercept in the range of -3.0 to +3.0. Based on these criteria, unit number 233-S is acceptable as level 2 transfer standards. Please review the technical assistance document to establish an average and correction factor based on these results. These results are not to be used for any physical adjustment to the instrument.

If you have any questions concerning the results of these photometer verifications, please call me at (913) 551-5063.

Sincerely.

James N. Regehr

Environmental Scientist

Monitoring & Environmental Sampling Branch

Enclosures

VANZ

Standard Reference Photometer **Calibration Report**

Calibrating Institute:

EPA Region 7

Date:

12-Sep-16

Operator:

J. Regehr / T. Bui

Start Time:

10:26

Instrument:

SRP-07

End Time:

11:37

Comment:

Cell Length=89.73 Certification of EEMS TEI49cPS 70008364 SRP Gene Filename:

c0912001.xls

Calibrated Instrument:

EEMS Owner: **EEMS**

Eric Hebert

Contact: Make: TEI Model:

49c-PS

70008-364

Calibration Results	Value	Standard Uncertainty
Slope	1.00463	0.00025
Intercept	0.02891	0.06659
Covariance		-1 7900F-08

Covariance 0.09516 Res Std Dev

6659 -1.7900E-08

Serial Number: Calibration Parameters:

Raw Saved; Dark Count On (5)

Air Flow Rate:

7.0 l/min

0.0 to

85.0 %

Lamp Intensity Range: Number Conc. Points:

Points/Concentration:

10

Conditioning:

45.0 % for 5 minutes

EEMS	E	EMS	•
Std Day	Prodicted	Pocidual	

Calibration	SRI	P-07	EE	MS	EE	MS	
Data Points	Result	Std. Dev	Result	Std. Dev	Predicted	Residual	
Dark Count 1	17						
Dark Count 2	16						
1	471.5				473.68		
2	382.9				384.73	0.14	
	287.7	0.3				-0.04	
4	199.1	0.1		0.2	200.05		
5	103.8				104.27	0.04	
6	74.9			0.2	75.26	-0.09	
7	0.0	0.2	0.0	0.1	-0.01	-0.02	
BK4 = 0 COUCH =	0				3 ru	n Av	
CACK 2						M=	0.01298
						b=	0.01298
t							
		,		6 da	y aug	m=	0.9995

b= -0, 18527

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 7

Science and Technology Center 300 Minnesota Avenue Kansas City, Kansas 66101

September 15, 2016

Mr. Eric Hebert EEMS

Dear Mr. Hebert:

Enclosed is a summary of the annual ozone photometer verifications conducted on units 49CPS-70008-364 and 0517112167. These verifications were performed on September 12 and 14, 2016. Each verification consisted of three challenges against Standard Reference Photometer (SRP) #7. The average slope and intercept from these three challenges, is used to determine if the photometer is operating in an acceptable manner. Please find enclosed 3 data sheets which identify this process has been completed and the unit has been deemed acceptable.

Photometer verifications/certifications are evaluated according to the criteria stated in the "Transfer Standards for Calibration of Air Monitoring Analyzers for Ozone," technical assistance document. These criteria state that Level 2 transfer standards must have a slope in the range of 0.97 to 1.03, and an intercept in the range of -3.0 to +3.0. Based on these criteria, unit number 233-S is acceptable as level 2 transfer standards. Please review the technical assistance document to establish an average and correction factor based on these results. These results are not to be used for any physical adjustment to the instrument.

If you have any questions concerning the results of these photometer verifications, please call me at (913) 551-5063.

James N. Regehr

Environmental Scientist

Monitoring & Environmental Sampling Branch

Enclosures

VAN)

Standard Reference Photometer **Calibration Report**

Calibrating Institute:

EPA Region 7

Date: Start Time:

14-Sep-16

Operator:

J. Regehr / T. Bui SRP-07

Cell Length=89.73

14:01

Instrument: Comment:

Certification of EEMS TEI49cPS 0517112167 SRP Gene Filename:

End Time:

15:16 c0914001.xls

Calibrated Instrument: Owner:

Contact:

EEMS

EBIS#

Calibration Results Value Slope 1.01229

Uncertainty 0.00065 0.17940

Standard

Make: Model: Eric Hebert TEI 49c-PS

517112167

01113

Covariance Res Std Dev

Intercept

-9.5237E-08

Serial Number: Calibration Parameters:

Raw Saved; Dark Count On (5)

Air Flow Rate:

7.0 l/min

0.0 to 45.0 %

Lamp Intensity Range: Number Conc. Points:

7

Points/Concentration:

10

0.75420

0.26086

Conditioning:

45.0 % for 2 minutes

Calibration	SF	RP-07	EE	MS	EE	MS	
Data Points	Result	Std. Dev	Result	Std. Dev	Predicted	Residual	
Dark Count 1		7					1
Dark Count 2				1			
1	486.4			20.72			
2							
3							
4	1000000						
5 6 7	97.						
6	76.						
7	0.	1 0.2	0.7	1.0	0.85	-0.14	
						3 RUN	Avg
	Duc -	1.5					1.0134
	DKG-	1,015				M =	1.0134
	1		1			3.	, , , , , , , , , , , , , , , , , , ,
	COUF :	1,00					
						h =	0.3247
			l'				
1							
	T.	0 1					
	Nau	6 day					

M= +.00315 1.00261 b= -0.09865 -0.15202

Page 1 of 2

PGVP Vendor ID: H12013

6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507 (951) 653-6780 • FAX (951) 653-2430 • WWW.SCOTTMARRIN.COM

Report Of Analysis EPA Protocol Gas Mixtures

EEMS01

TO: Env'l, Engineering & Measurement Svcs Attn: Eric Hebert 8010 Southwest 17th Place Gainesville, FL 32607 (352) 262-0802

CYLINDER NUMBER: JB03523

REPORT NO: 64679-01

REPORT DATE: April 7, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER SIZE: 50A (52 std cu ft)

CYLINDER PRESSURE: 2000 psig

COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENC	E STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION		ICATE SIS DATA
Carbon monoxide	1490 ± 16 ppm	GMIS Cyl#: AAL7017 1125 ± 12 ppm Exp: 11/29/2020	SRM 1681b Samp#: 1-K-33 Cyl#: CAL016258 983.5 ± 3 ppmv Exp: 4/1/2015	Carle Insts Model 8000 Serial # 8249 Methanation/FID Gas Chromatography LAST CAL DATE: 3/3/2014	3/17/2014 1489 ppm 1491 ppm 1490 ppm x : 1490 ppm	3/24/2014 1492 ppm 1483 ppm 1492 ppm
Nitric oxide NOx Nitrogen dioxide	15.42 ppm < 0.08 ppm	GMIS Cyl#: CC114770 20.58 ± 0.15 ppm Exp; 2/25/2017	SRM 1683b Samp#: 45-V-106 Cyl#: CAL017973 48.79 ± 0.34 ppm Exp: 3/25/2019		3/17/2014 15.42 ppm 15.41 ppm 15.39 ppm x: 15.41 ppm	4/1/2014 15.43 ppm 15.46 ppm 15.43 ppm 15.44 ppm
Sulfur dioxide		GMIS Cyl#: CA03167 10.13 ± 0.11 ppm Exp: 6/12/2017	SRM 1689 Samp#: 98-A-33 Cyl#: FF40537 4.813 ± 0.05 ppm Exp: 1/8/2017	Bovar/W Res Model 922M Serial # 9228379-1 Continuous UV Photometry LAST CAL DATE: 2/27/2014	3/14/2014 15.04 ppm 15.08 ppm 15.05 ppm x: 15.06 ppm	3/21/2014 15.05 ppm 15.06 ppm 15.08 ppm 15.06 ppm
O2-free Nitrogen	Balance		TION DATE: MG		7. 10.00 ppiii	15.00 ppin

CERTIFICATION DATE: March 21, 2014

EPA EXPIRATION DATE: March 22, 2017

ppm = µmole/mole

% = mole-%

 \bar{x} = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012. The above analyses should not be used if the cylinder pressure is less than 100 psig.

STANDARD CALIBRATION GASES IN ALUMINUM CYLINDERS

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost.

PGVP Vendor ID: H12013

(951) 653-6780 • FAX (951) 653-2430 • WWW.SCOTTMARRIN.COM

Report Of Analysis EPA Protocol Gas Mixtures

EEMS01

TO: Env'l, Engineering & Measurement Svcs

Attn: Eric Hebert 8010 Southwest 17th Place Gainesville, FL 32607 (352) 262-0802

CYLINDER NUMBER: JB03389

REPORT NO: 64465-01

REPORT DATE: February 18, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER SIZE: 50A (52 std cu ft)

CYLINDER PRESSURE: 2000 psig

COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENCE	E STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION		ICATE SIS DATA
Carbon monoxide		GMIS Cyl#: AAL17294 2603 ± 26 ppm Exp; 6/27/2020	SRM 2637a Samp#: 56-F-35 Cyl#: CAL017149 2438 ± 5.1 ppmv Exp: 11/9/2015	Carle Insts Model 8000 Serial # 8249 Methanation/FID Gas Chromatography LAST CAL DATE: 1/30/2014	2/6/2014 1398 ppm 1398 ppm 1406 ppm x : 1401 ppm	2/13/2014 1397 ppm 1404 ppm 1407 ppm 1403 ppm
Nitric oxide NOx Nitrogen dioxide	14.10 ppm < 0.07 ppm	GMIS Cyl#: CC114770 20.49 ± 0.15 ppm Exp: 9/20/2021	SRM 1683b Samp#: 45-V-106 Cyl#: CAL017973 48.79 ± 0.34 ppm Exp: 3/25/2019	TECO Model 42C Serial # 57458-333 Continuous Chemiluminescence LAST CAL DATE: 2/14/2014	2/6/2014 14.09 ppm 14.08 ppm 14.07 ppm x: 14.08 ppm	2/14/2014 14.12 ppm 14.09 ppm 14.08 ppm 14.10 ppm
Sulfur dioxide		GMIS Cyl#: CA03167 10.13 ± 0.11 ppm Exp. 6/12/2017	SRM 1689 Samp#: 98-A-33 Cyl#: FF40537 4.813 ± 0.05 ppm Exp: 1/8/2017	Bovar/W Res Model 922M Serial # 9228379-1 Continuous UV Photometry LAST CAL DATE: 1/27/2014	2/5/2014 14.30 ppm 14.29 ppm 14.28 ppm x: 14.29 ppm	2/12/2014 14.30 ppm 14.18 ppm 14.18 ppm 14.22 ppm
O2-free Nitrogen	Balance		-04.45.48s		Idien hhiti	17.22 PPII

CERTIFICATION DATE: February 12, 2014 EPA EXPIRATION DATE: February 13, 2017

ppm = µmole/mole

% = mole-%

 \bar{x} = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012. The above analyses should not be used if the cylinder pressure is less than 100 psig.

STANDARD CALIBRATION GASES IN ALUMINUM CYLINDERS

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost.

SCOTT-MARRIN, INC.
6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507
(951) 653-6780 • FAX (951) 653-2430 • WWW.SCOTTMARRIN.COM

Report Of Analysis NIST-Traceable Gas Mixtures

EEMS01

TO: Env'l, Engineering & Measurement Svcs Attn: Eric Hebert 8010 Southwest 17th Place Gainesville, FL 32607 (352) 262-0802

REPORT NO: 64465-05

REPORT DATE: February 18, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER NUMBER: JB03440

COMPONENT CONCENTRATION (v/v) NIST TRACEABLE REFERENCE STANDARD Carbon monoxide 0.590 ± 0.012 ppmv SRM 2612a Ultrapure Air Balance

Cylinder Size: 50A (52 std cu ft) Cylinder Pressure: 2000 psig Shelf Life: 24 months

ppm = umole/mole

% = mole-%

The above analyses are traceable to the National Institute of Standards and Technology by intercomparison with the reference standard listed herein. Where indicated, volumetric and gravimetric reference standards are traceable thru use of our analytical balance. NIST Certificate Numbers 822/272801-6 and 822/274081-06.

ANALYST: mark

M.J.Monson

The only liability of this company for gas which fails to constitutions eplacement or reanalysis thereof by the company without extra cost. IN ALUMINUM CYLINDERS

SCOTT-MARRIN, INC.

(951) 653-6780 • FAX (951) 653-2430 • WWW.SCOTTMARRIN.COM

Report Of Analysis NIST-Traceable Gas Mixtures

EEMS01

TO: Env'l, Engineering & Measurement Svcs Attn: Eric Hebert 8010 Southwest 17th Place Gainesville, FL 32607 (352) 262-0802

REPORT NO: 64465-05

REPORT DATE: February 18, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER NUMBER: JB03443

COMPONENT CONCENTRATION (v/v) **NIST TRACEABLE** REFERENCE STANDARD Carbon monoxide 0.591 ± 0.012 ppmy Ultrapure Air SRM 2612a Balance

Cylinder Size: 50A (52 std cu ft) Cylinder Pressure: 2000 psig Shelf Life: 24 months

ppm = umole/mole

% = mole-%

The above analyses are traceable to the National Institute of Standards and Technology by intercomparison with the reference standard listed herein. Where indicated, volumetric and gravimetric reference standards are traceable thru use of our analytical balance. NIST Certificate Numbers 822/272801-6 and 822/274081-06.

ANALYST: mark

M.J.Monson

APPROVED:

J. T. Marrin

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost STANDARD CALIBRATION GASES IN ALUMINUM CYLINDERS

PGVP Vendor ID: H12013

6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507

Report Of Analysis **EPA Protocol Gas Mixtures**

EEMS01

TO: Env'l, Engineering & Measurement Svcs Attn: Eric Hebert 8010 Southwest 17th Place

Gainesville, FL 32607 (352) 262-0802

CYLINDER NUMBER: JB03465

REPORT NO: 64679-03

REPORT DATE: April 7, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER SIZE: 50A (52 std cu ft)

CYLINDER PRESSURE: 2000 psig

COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENCE STANDARD		ANALYZER MAKE, MODEL, S/N, DETECTION	REPLICATE ANALYSIS DATA		
Carbon monoxide	4.48 ± 0.07 ppm	GMIS	SRM 2613a	Carle Insts Model 8000		3/13/2014	3/20/2014
			Samp#: 22-16-E	Serial # 8249		4.50 ppm	4.47 ppm
		Cyl#: CC101213	Cyl#: CLM09661	Methanation/FID		4.50 ppm	4.47 ppm
		11.07 ± 0.14 ppm	19.72 ± 0.25 ppm	Gas Chromatography		4.48 ppm	4.50 ppm
		Exp: 10/15/2021	Exp: 8/1/2017	LAST CAL DATE: 3/3/2014	x:	4.49 ppm	4.48 ppm

Ultrapure Air

Balance

CERTIFICATION DATE: March 20, 2014

EPA EXPIRATION DATE: March 21, 2022

ppm = µmole/mole

% = mole-%

 \bar{x} = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012. The above analyses should not be used if the cylinder pressure is less than 100 psig.

SCOTT-MARRIN, INC. 6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507

PGVP Vendor ID: H12013

(951) 653-6780 • FAX (951) 653-2430 • WWW.SCOTTMARRIN.COM

Report Of Analysis EPA Protocol Gas Mixtures

EEMS01

TO: Env'l, Engineering & Measurement Svcs Attn: Eric Hebert 8010 Southwest 17th Place Gainesville, FL 32607 (352) 262-0802

REPORT NO: 64465-03

REPORT DATE: February 18, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER SIZE: 50A (52 std cu ft)

CYLINDER PRESSURE: 2000 psig

COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENC	E STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION	REPLICATE ANALYSIS DATA		
Carbon monoxide Ultrapure Air		GMIS Cyl#: CC101213 11.07 ± 0.14 ppm Exp: 10/15/2021	SRM 2613a Samp#: 22-16-E Cyl#: CLM09661 19:72 ± 0.25 ppm Exp: 8/1/2017	Methanation/FID Gas Chromatography	1/24/2014 4.60 ppm 4.56 ppm 4.60 ppm x: 4.59 ppm	1/31/2014 4.58 ppm 4.61 ppm 4.60 ppm 4.60 ppm	

CERTIFICATION DATE: January 31, 2014

CYLINDER NUMBER: JB03174

EPA EXPIRATION DATE: February 1, 2022

ppm = µmole/mole

% = mole-%

 \bar{x} = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012.

The above analyses should not be used if the cylinder pressure is less than 100 psig.

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost

Report Of Analysis EPA Protocol Gas Mixtures

EEMS01

TO: Env'l, Engineering & Measurement Svcs

Attn: Eric Hebert 8010 Southwest 17th Place Gainesville, FL 32607 (352) 262-0802

CYLINDER NUMBER: JB03450

REPORT NO: 64679-02

REPORT DATE: April 7, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER SIZE: 50A (52 std cu ft)

PGVP Vendor ID: H12013

CYLINDER PRESSURE: 2000 psig

COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENCE STANDARD		ANALYZER MAKE, MODEL, S/N, DETECTION	REPLICATE ANALYSIS DATA		
Carbon monoxide		GMIS Cyl#: ALM021434 56.2 ± 0.4 ppm Exp: 1/10/2021		Carle Insts Model 8000 Serial # 8249 Methanation/FID Gas Chromatography LAST CAL DATE: 3/3/2014	x:	3/14/2014 42.9 ppm 42.6 ppm 43.1 ppm 42.9 ppm	3/21/2014 42.8 ppm 42.8 ppm 42.9 ppm 42.8 ppm
Illtranura Air	Dolones		EAP. 0/21/2010	LAG 1 GAL BATE. 3/3/2014	х:	42.9 ppm	42.8 ppm

Ultrapure Air

CERTIFICATION DATE: March 21, 2014

EPA EXPIRATION DATE: March 22, 2022

ppm = µmole/mole

 \bar{x} = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012. The above analyses should not be used if the cylinder pressure is less than 100 psig.

SCOTT-MARRIN, INC. 6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507

PGVP Vendor ID: H12013

(951) 653-6780 • FAX (951) 653-2430 • WWW.SCOTTMARRIN.COM

Report Of Analysis EPA Protocol Gas Mixtures

EEMS01

TO: Env'l, Engineering & Measurement Svcs Attn: Eric Hebert 8010 Southwest 17th Place Gainesville, FL 32607 (352) 262-0802

REPORT NO: 64465-02

REPORT DATE: February 18, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER SIZE: 50A (52 std cu ft)

CYLINDER PRESSURE: 2000 psig

COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENCE STANDARD		ANALYZER MAKE, MODEL, S/N, DETECTION	REPLICATE ANALYSIS DATA	
Carbon monoxide Ultrapure Air		GMIS Cyl#: ALM021434 56.2 ± 0.4 ppm Exp; 1/10/2021	SRM 1678c Samp#: 4-6-I Cyl#: CLM009356 49.8 ± 0.35 ppmv Exp: 6/21/2015	Gas Chromatography	1/24/2014 46.4 ppm 46.3 ppm 46.2 ppm x: 46.3 ppm	1/31/2014 46.3 ppm 46.6 ppm 46.5 ppm

CERTIFICATION DATE: January 31, 2014

CYLINDER NUMBER: JB03170

EPA EXPIRATION DATE: February 1, 2022

ppm = µmole/mole

x = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012.

The above analyses should not be used if the cylinder pressure is less than 100 psig.

Report Of Analysis NIST-Traceable Gas Mixtures

EEMS01

TO: Env'l, Engineering & Measurement Svcs Attn: Eric Hebert 8010 Southwest 17th Place Gainesville, FL 32607 (352) 262-0802 **REPORT NO: 64715-01**

REPORT DATE: April 14, 2014

CUSTOMER PO NO: E HEBERT

CYLINDER NUMBER: FB03896

COMPONENT CONCENTRATION (v/v)

NIST TRACEABLE REFERENCE STANDARD

n-Propylnitrate 5.02 ± 0.25 ppmv SRM 2627a

Nitrogen Balance

Cylinder Size: 30A (28 std cu ft)
Cylinder Pressure: 2000 psig
Shelf Life: 12 months

ppm = umole/mole

% = mole-%

The above analyses are traceable to the National Institute of Standards and Technology by intercomparison with the reference standard listed herein. Where indicated, volumetric and gravimetric reference standards are traceable thru use of our analytical balance. NIST Certificate Numbers 822/272801-6 and 822/274081-06.

ANALYST:

D.C.Marrin

APPROVED:

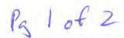
J. T. Marrin

Site Name: EPA R-7					Audit Date:	9/12/2016
Parameter	NPAP Lab Response (ppm)	Station Response (ppm)	Percent Difference	Absolute Difference (ppm)	Pass/Fail	Warning
Ozone				1		
Pre Zero Ozone Audit Point #1					N/A	
Ozone Audit Point #1 Ozone Audit Point #2					N/A N/A	
Ozone Audit Point #3					N/A	
Ozone Audit Point #4					N/A	
Ozone Audit Point #5					N/A	
Post Zero						
Carbon Monoxide						
Pre Zero	0.005	-0.0026		-0.0076	Pass	
CO Audit level 7	21.216	20.865	-1.7	-0.3510	Pass	
CO Audit level 6	12.149	12.021	-1.1	-0.1280	Pass	
CO Audit level 5	7.136	7.120	-0.2	-0.0160	Pass	
CO Audit level CO Audit level					N/A N/A	
Post Zero	0.004	0.0065		0.0025	N/A Pass	
Oxides of Nitrogen	0.004	0.0000		0.0025	газэ	
Pre Zero	0.0001	0.0000		-0.0001	Pass	
NO Audit Point #1	0.2134	0.2071	-3.0	-0.0063	Pass	
NO Audit Point #2	0.1222	0.1192	-2.5	-0.0030	Pass	
NO Audit Point #3	0.0718	0.0700	-2.5	-0.0018	Pass	
NO Audit Point #4					N/A	
NO Audit Point #5				-	N/A	
Post Zero	0	-0.0001		0.0	Pass	
Pre Zero	0.0001	0.0000		-0.0001	Pass	
NOx Audit Point #1	0.2134	0.2069	-3.0	-0.0065	Pass	
NOx Audit Point #2	0.1222	0.1191	-2.5	-0.0031	Pass	
NOx Audit Point #3	0.0718	0.0701	-2.4	-0.0017	Pass	
NOx Audit Point #4					N/A	
NOx Audit Point #5	0.0000	0.0000		0.0	N/A	
Post Zero	0.0000	0.0000		0.0	Pass	
Pre Zero	0.0000	0.0000		0		
NO2 Audit level 7	0.1290	0.1253	-2.9	-0.0037	Pass	
NO2 Audit level 6	0.0750	0.0726	-3.2	-0.0024	Pass	
NO2 Audit level 5	0.0390	0.0373	-4.4	-0.0017	Pass	
NO2 Audit level	0.0000	0.0004		0.0	N/A	
Post Zero	0.0000	0.0001		0.0		
Converter Efficiency NO2 level 7					Pass	
Converter Efficiency NO2 level 6					Pass	
Converter Efficiency NO2 level 5	99.2%				Pass	
Converter Efficiency NO2 level					N/A	
Sulfur Dioxide						
Pre Zero	0.0001	-0.0001		-0.0002	Pass	
SO2 Audit level 8	0.2159	0.2152	-0.3	-0.0007	Pass	
SO2 Audit level 7	0.1237	0.1239	0.2	0.0002	Pass	
SO2 Audit level 6	0.0726	0.0728	0.3	0.0002	Pass	
SO2 Audit level SO2 Audit level					N/A N/A	
Post Zero	0.0000	-0.0001		-0.0001	Pass	
		2.300.		2.300.	. 255	

Site Name: EPA R-7 Audit Date: 9/12/2016

Parameter	NPAP Lab Response (ppm)	Station Response (ppm)	Percent Difference	Absolute Difference (ppm)	Pass/Fail	Warning
Ozone						
Pre Zero						
Ozone Audit Point #1					N/A	
Ozone Audit Point #2					N/A	
Ozone Audit Point #3					N/A	
Ozone Audit Point #4					N/A	
Ozone Audit Point #5					N/A	
Post Zero					IVA	
Carbon Monoxide						
Pre Zero	0.023	0.0009		-0.0221	Booo	
CO Audit level 5			0.5		Pass	
	3.523	3.542	0.5	0.0191	Pass	
CO Audit level 4	1.872	1.906	1.8	0.0340	Pass	
CO Audit level 3	0.741	0.783	5.7	0.0420	Pass	10/
CO Audit level 3	0.408	0.460	12.7	0.0517	Pass	Warning
CO Audit level 2	0.126	0.171	35.7	0.0450	Pass	Warning
Post Zero	-0.045	-0.002		0.0430	Pass	
Oxides of Nitrogen				•		
Pre Zero	0.0002	-0.0001		-0.0003	Pass	
NO Audit Point #1	0.0354	0.0352	-0.6	-0.0002	Pass	
NO Audit Point #2	0.0188	0.0187	-0.5	-0.0001	Pass	
NO Audit Point #3	0.0075	0.0075	0.0	0.0000	Pass	
NO Audit Point #4	0.0041	0.0044	7.3	0.0003	Pass	
NO Audit Point #5	0.0013	0.0015	15.4	0.0002	Pass	
Post Zero	-0.0005	-0.0001		0.0004	Pass	
				_		
Pre Zero	0.0002	-0.0001		-0.0003	Pass	
NOx Audit Point #1	0.0354	0.0350	-1.1	-0.0004	Pass	
NOx Audit Point #2	0.0188	0.0186	-1.1	-0.0002	Pass	
NOx Audit Point #3	0.0075	0.0075	0.0	0.0000	Pass	
NOx Audit Point #4	0.0041	0.0043	4.9	0.0002	Pass	
NOx Audit Point #5	0.0013	0.0015	15.4	0.0002	Pass	
Post Zero	-0.0005	-0.0001		0.0004	Pass	
Pre Zero	0.0000	0.0000		0.0000		
NO2 Audit level 4	0.0180	0.0171	-5.0	-0.0009	Pass	
NO2 Audit level 3	0.0070	0.0064	-8.6	-0.0006	Pass	
NO2 Audit level 2	0.0030	0.0034	13.3	0.0004	Pass	
NO2 Audit level 1	0.0020	0.0017	-15.0	-0.0003	Pass	
Post Zero	0.0000	0.0000	10.0	0.0000	1 400	
1 031 2010	0.0000	0.0000		0.0000		
Converter Efficiency NO2 level 4	99.4%				Pass	
Converter Efficiency NO2 level 3					Pass	
Converter Efficiency NO2 level 2					Pass	
Converter Efficiency NO2 level 1					Pass	
Converter Efficiency NO2 lever	100.0%				rass	
Cultur Dissists						
Sulfur Dioxide	0.0000	0.0000		0.0000	D	
Pre Zero	0.0002	0.0000	4.0	-0.0002	Pass	
SO2 Audit level 5	0.0359	0.0344	-4.2	-0.0015	Pass	
SO2 Audit level 4	0.0191	0.0183	-4.2	-0.0008	Pass	
SO2 Audit level 3	0.0075	0.0070	-6.7	-0.0005	Pass	
SO2 Audit level 2	0.0042	0.0040	-4.8	-0.0002	Pass	
SO2 Audit level 1	0.0013	0.0012	-7.7	-0.0001	Pass	
Post Zero	-0.0005	-0.0001		0.0004	Pass	

Site Name: EPA R-7					Audit Date:	9/12/2016
Parameter	NPAP Lab Response (ppm)	Station Response (ppm)	Percent Difference	Absolute Differenc e (ppm)	Pass/Fail	Warning
Ozone						
Pre Zero						
Ozone Audit Point #1		_			N/A	
Ozone Audit Point #2					N/A	
Ozone Audit Point #3					N/A	
Ozone Audit Point #4					N/A	
Ozone Audit Point #5					N/A	
Post Zero						
Carbon Monoxide				•		
Pre Zero	0.000	-0.0026		-0.0026	Pass	
CO Audit level 7	21.194	20.865	-1.6	-0.3291	Pass	
CO Audit level 6	12.148	12.021	-1.0	-0.1270	Pass	
CO Audit level 5	7.103	7.120	0.2	0.0173	Pass	
CO Audit level					N/A	
CO Audit level					N/A	
Post Zero	0.000	0.0065		0.0065	Pass	
Oxides of Nitrogen						
Pre Zero	0.0000	0.0000		0	Pass	
NO Audit Point #1	0.2132	0.2071	-2.9	-0.0061	Pass	
NO Audit Point #2	0.1222	0.1192	-2.5	-0.0030	Pass	
NO Audit Point #3	0.0714	0.0700	-2.0	-0.0014	Pass	
NO Audit Point #4					N/A	
NO Audit Point #5				_	N/A	
Post Zero	0.0000	-0.0001		0.0	Pass	
Pre Zero	0.0000	0.0000		0	Pass	
NOx Audit Point #1	0.2132	0.2069	-3.0	-0.0063	Pass	
NOx Audit Point #2	0.1222	0.1191	-2.5	-0.0031	Pass	
NOx Audit Point #3	0.0714	0.0701	-1.8	-0.0013	Pass	
NOx Audit Point #4					N/A	
NOx Audit Point #5				_	N/A	
Post Zero	0.0000	0.0000		0.0	Pass	
Pre Zero	0.0000	0.0000		0		
NO2 Audit level 7	0.1290	0.1253	-2.9	-0.0037	Pass	
NO2 Audit level 6	0.0750	0.0726	-3.2	-0.0024	Pass	
NO2 Audit level 5	0.0390	0.0373	-4.4	-0.0017	Pass	
NO2 Audit level					N/A	
Post Zero	0.0000	0.0000		0.0		
Converter Efficiency NO2 level 7	99.9%				Pass	
Converter Efficiency NO2 level 6	99.7%				Pass	
Converter Efficiency NO2 level 5	99.2%				Pass	
Converter Efficiency NO2 level					N/A	
Sulfur Dioxide						
Pre Zero	0.0000	-0.0001		-0.0001	Pass	
SO2 Audit level 8	0.2157	0.2152	-0.2	-0.0005	Pass	
SO2 Audit level 7	0.1236	0.1239	0.2	0.0003	Pass	
SO2 Audit level 6	0.0723	0.0728	0.7	0.0005	Pass	
SO2 Audit level					N/A	
SO2 Audit level	0.0000	0.0004		0.0004	N/A	
Post Zero	0.0000	-0.0001		-0.0001	Pass	


Site Name: EPA R-7 Audit Date: 9/12/2016

Parameter	NPAP Lab Response (ppm)	Station Response (ppm)	Percent Difference	Absolute Difference (ppm)	Pass/Fail	Warning
Ozone						
Pre Zero						
Ozone Audit Point #1					N/A	
Ozone Audit Point #2					N/A	
Ozone Audit Point #3					N/A	
Ozone Audit Point #4					N/A	
Ozone Audit Point #5					N/A	
Post Zero					IVA	
Carbon Monoxide						
Pre Zero	0.023	0.0009		-0.0221	Booo	
CO Audit level 5			0.5		Pass	
	3.523	3.542	0.5	0.0191	Pass	
CO Audit level 4	1.872	1.906	1.8	0.0340	Pass	
CO Audit level 3	0.741	0.783	5.7	0.0420	Pass	10/
CO Audit level 3	0.408	0.460	12.7	0.0517	Pass	Warning
CO Audit level 2	0.126	0.171	35.7	0.0450	Pass	Warning
Post Zero	-0.045	-0.002		0.0430	Pass	
Oxides of Nitrogen				•		
Pre Zero	0.0002	-0.0001		-0.0003	Pass	
NO Audit Point #1	0.0354	0.0352	-0.6	-0.0002	Pass	
NO Audit Point #2	0.0188	0.0187	-0.5	-0.0001	Pass	
NO Audit Point #3	0.0075	0.0075	0.0	0.0000	Pass	
NO Audit Point #4	0.0041	0.0044	7.3	0.0003	Pass	
NO Audit Point #5	0.0013	0.0015	15.4	0.0002	Pass	
Post Zero	-0.0005	-0.0001		0.0004	Pass	
				_		
Pre Zero	0.0002	-0.0001		-0.0003	Pass	
NOx Audit Point #1	0.0354	0.0350	-1.1	-0.0004	Pass	
NOx Audit Point #2	0.0188	0.0186	-1.1	-0.0002	Pass	
NOx Audit Point #3	0.0075	0.0075	0.0	0.0000	Pass	
NOx Audit Point #4	0.0041	0.0043	4.9	0.0002	Pass	
NOx Audit Point #5	0.0013	0.0015	15.4	0.0002	Pass	
Post Zero	-0.0005	-0.0001		0.0004	Pass	
Pre Zero	0.0000	0.0000		0.0000		
NO2 Audit level 4	0.0180	0.0171	-5.0	-0.0009	Pass	
NO2 Audit level 3	0.0070	0.0064	-8.6	-0.0006	Pass	
NO2 Audit level 2	0.0030	0.0034	13.3	0.0004	Pass	
NO2 Audit level 1	0.0020	0.0017	-15.0	-0.0003	Pass	
Post Zero	0.0000	0.0000	10.0	0.0000	1 400	
1 031 2010	0.0000	0.0000		0.0000		
Converter Efficiency NO2 level 4	99.4%				Pass	
Converter Efficiency NO2 level 3					Pass	
Converter Efficiency NO2 level 2					Pass	
Converter Efficiency NO2 level 1					Pass	
Converter Efficiency NO2 lever	100.0%				rass	
Cultur Dissists						
Sulfur Dioxide	0.0000	0.0000		0.0000	D	
Pre Zero	0.0002	0.0000	4.0	-0.0002	Pass	
SO2 Audit level 5	0.0359	0.0344	-4.2	-0.0015	Pass	
SO2 Audit level 4	0.0191	0.0183	-4.2	-0.0008	Pass	
SO2 Audit level 3	0.0075	0.0070	-6.7	-0.0005	Pass	
SO2 Audit level 2	0.0042	0.0040	-4.8	-0.0002	Pass	
SO2 Audit level 1	0.0013	0.0012	-7.7	-0.0001	Pass	
Post Zero	-0.0005	-0.0001		0.0004	Pass	

Site Name: EPA R-7	:				Audit Date:	9/14/2016
Parameter	NPAP Lab Response (ppm)	Station Response (ppm)	Percent Difference	Absolute Difference (ppm)	Pass/Fail	Warning
Ozone						
Pre Zero						
Ozone Audit Point #1					N/A	
Ozone Audit Point #2					N/A	
Ozone Audit Point #3					N/A	
Ozone Audit Point #4					N/A	
Ozone Audit Point #5				1	N/A	
Post Zero						
Carbon Monoxide Pre Zero	0.011			1		
	4.339				N/A	
CO Audit level 5 CO Audit level 4	4.339 1.725				N/A N/A	
CO Audit level 3	0.719				N/A N/A	
CO Addit level 3	0.482				N/A	
CO Audit level 2	0.192			I	N/A	
Post Zero	-0.072			i	IVA	
Oxides of Nitrogen	****		-			
Pre Zero	0.0001	0.0000		-0.0001	Pass	
NO Audit Point #1	0.0449	0.0461	2.7	0.0012	Pass	
NO Audit Point #2	0.0178	0.0179	0.6	0.0001	Pass	
NO Audit Point #3	0.0074	0.0077	4.1	0.0003	Pass	
NO Audit Point #4	0.0050	0.0055	10.0	0.0005	Pass	
NO Audit Point #5	0.0020	0.0027	35.0	0.0007	Pass	
Post Zero	-0.0007	0.0000		0.0007	Pass	
Pre Zero	0.0001	0.0000		-0.0001	Pass	
NOx Audit Point #1	0.0449	0.0461	2.7	0.0012	Pass	
NOx Audit Point #2	0.0178	0.0179	0.6	0.0001	Pass	
NOx Audit Point #3	0.0074	0.0078	5.4	0.0004	Pass	
NOx Audit Point #4	0.0050	0.0056	12.0	0.0006	Pass	
NOx Audit Point #5	0.0020	0.0027	35.0	0.0007	Pass	
Post Zero	-0.0007	0.0001		0.0008	Pass	
Pre Zero	0.0000	0.0001	0.7	0.0001	_	
NO2 Audit level 4	0.0110	0.0107	-2.7	-0.0003	Pass	
NO2 Audit level 3	0.0070	0.0072	2.9	0.0002	Pass	
NO2 Audit level 2 NO2 Audit level 1	0.0030	0.0031	3.3	0.0001	Pass	
Post Zero	0.0010 0.0000	0.0016 0.0000	60.0	0.0006 0.0000	Pass	
				•	Dess	
Converter Efficiency NO2 level 4	98.2%				Pass	
Converter Efficiency NO2 level 3 Converter Efficiency NO2 level 2					Pass Pass	
Converter Efficiency NO2 level 1	100.0%				Pass	
Sulfur Dioxide						
Pre Zero	0.0001					
SO2 Audit level 5	0.0439			•	N/A	
SO2 Audit level 4	0.0174				N/A	
SO2 Audit level 3	0.0073				N/A	
SO2 Audit level 2	0.0049				N/A	
SO2 Audit level 1	0.0019				N/A	
Post Zero	-0.0007					

Site Name: EPA R-7 Audit Date: 9/15/2016 Absolute NPAP Lab Response Station Response Percent **Parameter** Difference Pass/Fail Warning (ppm) (ppm) Difference (ppm) Ozone Pre Zero Ozone Audit Point #1 N/A Ozone Audit Point #2 N/A Ozone Audit Point #3 N/A Ozone Audit Point #4 N/A Ozone Audit Point #5 N/A Post Zero Carbon Monoxide Pre Zero 0.005 0.0045 -0.0005 **Pass** CO Audit level 5 4.324 4.343 0.4 0.0190 **Pass** CO Audit level 4 1.703 1.734 1.8 0.0310 **Pass** CO Audit level 3 0.648 0.676 4.3 0.0280 **Pass** CO Audit level 3 0.428 0.445 4.0 0.0170 **Pass** CO Audit level 2 0.180 10.4 0.163 0.0170 **Pass** Post Zero -0.015 0.019 0.0340 **Pass** Oxides of Nitrogen 0.0001 Pre Zero NO Audit Point #1 0.0447 N/A NO Audit Point #2 0.0176 N/A NO Audit Point #3 0.0067 N/A NO Audit Point #4 0.0044 N/A NO Audit Point #5 N/A 0.0017 Post Zero -0.0002 Pre Zero 0.0001 NOx Audit Point #1 0.0447 N/A NOx Audit Point #2 0.0176 N/A NOx Audit Point #3 0.0067 N/A NOx Audit Point #4 0.0044 N/A NOx Audit Point #5 0.0017 N/A Post Zero -0.0002 Pre Zero 0.0000 NO2 Audit level 4 N/A NO2 Audit level 3 N/A NO2 Audit level 2 N/A NO2 Audit level 1 N/A Post Zero 0.0000 Converter Efficiency NO2 level 4 N/A Converter Efficiency NO2 level 3 N/A Converter Efficiency NO2 level 2 N/A Converter Efficiency NO2 level 1 N/A Sulfur Dioxide 0.0000 -0.0001 0.0001 Pre Zero **Pass** SO2 Audit level 5 0.0437 0.0415 -0.0022 Pass -5.0 SO2 Audit level 4 0.0172 0.0162 -5.8 -0.0010 **Pass** SO2 Audit level 3 0.0050 -24.2 0.0066 -0.0016 **Pass** Warning SO2 Audit level 2 0.0043 0.0032 -25.6 -0.0011 **Pass** SO2 Audit level 1 0.0016 0.0011 -31.3 -0.0005**Pass** Post Zero -0.0001 -0.0001 0.0000 **Pass**

Calibration Certificate

CertificateNo. 65904

Sold To:

Environmental Engineering & Measurement

Services

8010 SW 17th Place

Gainesville, FL 32607

US

Product Serial No. 200-220H Definer 220 High Flow

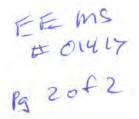
Cal. Date

131818

17-Dec-2015

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data


Technician	Lilianna Malinowska		Lab. Temperature 22.6 °C	
Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Received
25183 sccm	25056 sccm	0.51%	1.00%	In Tolerance
5004.9 sccm	5000.7 sccm	0.08%	1.00%	In Tolerance
1500.2 sccm	1500.45 sccm	-0.02%	1.00%	In tolerance
22.1 °C	22.5 °C	4	± 0.8°C	In Tolerance
751 mmHg	751 mmHg	147	± 3.5 mmHg	In Tolerance

Mesa Laboratories Standards Used

And the same of	400000000000000000000000000000000000000		
Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	29-Nov-2015	28-Nov-2016
Percision Thermometer	305460	21-Sep-2015	20-Sep-2016
Precision Barometer	2981392	28-Jun-2015	27-Jun-2016

= 1.00 56 49

As Shipped Calibration Data

Certificate No	65904		Lab. Pressure	747 mmHg		
Technician	Lilianna Malinowska		Lab. Temperature	22.6 °C		
Instrument Reading	Lab Standard Reading	Deviation	Allowa	able Deviation	As Shipped	
25234 sccm	25101.5sccm	0.53%	1.00%	ó	In Tolerance	
5030.7 sccm	5001.2 sccm	0.59%	1.00%	0	In Tolerance	
1510.4 sccm	1501.6 sccm	0.59%	1.00%	ó	In Tolerance	
22.6 °C	22.6 °C	-	± 0.8°	°C	In Tolerance	
747 mmHg	747 mmHg	-	± 3.5	mmHg	In Tolerance	

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	29-Nov-2015	28-Nov-2016
Percision Thermometer	305460	21-Sep-2015	20-Sep-2016
Precision Barometer	2981392	28-Jun-2015	27-Jun-2016

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

Louis Guido, Chief Metrologist

Calibration Certificate

CertificateNo. 76160

Sold To:

Environmental Engineering & Measurement

Services

200-220H Definer 220 High Flow

8010 SW 17th Place

Product Serial No.

122974

Gainesville, FL 32607

US

Cal. Date

10-Feb-2016

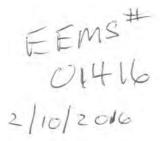
Pg lofe

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

Technician Lab. Pressure mmHg
Lab. Temperature 21.8 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Received
sccm	sccm		1.00%	
sccm	sccm		1.00%	
sccm	sccm		1.00%	
°C	°C	*	± 0.8°C	In Tolerance
mmHg	mmHg	2.0	± 3.5 mmHg	In Tolerance


Mesa Laboratories Standards Used

Description Standard Serial Number Calibration Date Calibration Due Date

Percision Thermometer Precision Barometer 4-14-14

EEMS #01416

Lab. Pressure

748 mmHa

As Shipped Calibration Data

76160

Pg 2 of Z

Technician	Lilianna Malinowska		Lab. Temperature 21.8 °C	
Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Shipped
25171 sccm	25186.5sccm	-0.06%	1.00%	In Tolerance
5012.3 sccm	5000.3 sccm	0.24%	1.00%	In Tolerance
1507.6 sccm	1501.95 sccm	0.38%	1.00%	In Tolerance
21.8 °C	21.8 °C		± 0.8°C	In Tolerance
748 mmHg	748 mmHg	-	± 3.5 mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	29-Nov-2015	28-Nov-2016
Percision Thermometer	305460	21-Sep-2015	20-Sep-2016
Precision Barometer	2981392	28-Jun-2015	27-Jun-2016

Calibration Notes

Certificate No

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

Louis Guido, Chief Metrologist

Calibration Certificate

CertificateNo. 76161

Sold To:

Environmental Engineering & Measurement

Services

200-220L Definer 220 Low Flow

8010 SW 17th Place

Serial No.

120910

Gainesville, FL 32607

Cal. Date

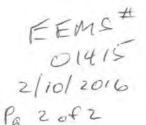
Product

10-Feb-2016

EEMST

US

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.


As Received Calibration Data

Technician	Lilianna Malinowska		Lab. Pressure Lab. Temperature	747 mmHg 21.5 °C		
Instrument Reading	Lab Standard Reading	Deviation	Allowa	able Deviation	As Received	
484.74 sccm	480.43 sccm	0.9%	1.00%		In Tolerance	
108.09 sccm	107.98 sccm	0.1%	1.00%		In Tolerance	
33.41 sccm	33.18 sccm	0.69%	1.00%	i	In tolerance	
20.2 °C	20.5 °C	-	± 0.8°	С	In Tolerance	
746 mmHg	760 mmHg	-	± 3.5	mmHg	In Tolerance	

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date	
ML-800-10	103743	07-Apr-2015	06-Apr-2016	
Percision Thermometer	305460	21-Sep-2015	20-Sep-2016	
Precision Barometer	2981392	28-Jun-2015	27-Jun-2016	

As Shipped Calibration Data

Certificate No Technician	76161 Lilianna Malinowska	7	Lab. Pressure Lab. Temperature	748 mmHg 21.5 °C	
Instrument Reading	Lab Standard Reading	Deviation	Allowa	able Deviation	A
454.40	450.045	0.040	4.000		

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Shipped
451.16 sccm	450.215sccm	0.21%	1.00%	In Tolerance
100.37 sccm	100.415 sccm	-0.04%	1.00%	In Tolerance
30.741 sccm	30.6215 sccm	0.39%	1.00%	In Tolerance
21.5 °C	21.5 °C		± 0.8°C	In Tolerance
748 mmHg	748 mmHg	-	± 3.5 mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-10	103743	07-Apr-2015	06-Apr-2016
Percision Thermometer	305460	21-Sep-2015	20-Sep-2016
Precision Barometer	2981392	28-Jun-2015	27-Jun-2016

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

Louis Guido, Chief Metrologist

Project: Bios NEXUS EEMS # 01420/01410 Certification

Project #: Contact Name: Contact Phone #:

Contact Address:

Flow Rate Standard: EEMS#

BIOS Definer 220-H 01416 2/10/2016 Certification Date: Certification #: 76160

0.998946 slope = 0.011852 inter =

Date:

2/28/2016 Flow rates are corrected to STP of one atmosphere and 25.0 degrees C. were plumbed together in series.

All tests were conducted with dry air. Nexus #1420, Definer 220-H EEMS# 01416

UNADJUSTED:

BIOS Nexus, EEMS # 01420 / 01410

Flow Rate Standard--Definer 220-H

01420 / 01410				
Slope =	0.990909			
Intercept =	0.031721			
Correl =	0.99988			

	Temp	Press
	deg C	mmHg
Definer	21.2	765
NEXUS	20.5	764

SL/m: standard liters per minute

Raw Readings (Each set for 10 reading sets)

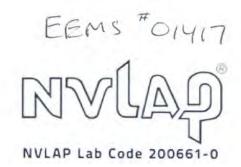
Target	Definer	Nexus
1	0.932	0.936
	0.931	0.936
	0.932	0.935
	0.931	0.933
	Definer	Nexus
1.2	1.131	1.128
	1.130	1.122
	1.122	1.138
	1.127	1.134
	<u>Definer</u>	Nexus
1.5	1.418	1.438
		1.432
		1.430
	1.424	1.432
_	<u>Definer</u>	Nexus
2	Definer 1.933	Nexus 1.963
2	Definer 1.933 1.934	Nexus 1.963 1.948
2	Definer 1.933 1.934 1.932	Nexus 1.963 1.948 1.964
2	Definer 1.933 1.934 1.932	Nexus 1.963 1.948
2	Definer 1.933 1.934 1.932 1.933	Nexus 1.963 1.948 1.964 1.961
2	Definer 1.933 1.934 1.932	Nexus 1.963 1.948 1.964 1.961 Nexus
	Definer 1.933 1.934 1.932 1.933 Definer 2.9373	Nexus 1.963 1.948 1.964 1.961 Nexus
	Definer 1.933 1.934 1.932 1.933 Definer 2.9373	Nexus 1.963 1.948 1.964 1.961 Nexus 2.929 2.931
	Definer 1.933 1.934 1.932 1.933 Definer 2.9373 2.9429 2.9354	Nexus 1.963 1.948 1.964 1.961 Nexus 2.929 2.931
	Definer 1.933 1.934 1.932 1.933 Definer 2.9373 2.9429 2.9354	Nexus 1.963 1.948 1.964 1.961 Nexus 2.929 2.931 2.936
	Definer 1.933 1.934 1.932 1.933 Definer 2.9373 2.9429 2.9354	Nexus 1.963 1.948 1.964 1.961 Nexus 2.929 2.931 2.936 2.928
	Definer 1.933 1.934 1.932 1.933 Definer 2.9373 2.9429 2.9354 2.9424 Definer	Nexus 1.963 1.948 1.964 1.961 Nexus 2.929 2.931 2.936 2.928

3.436 3.433 3.441 3.433 3.447 3.427

Definer 220-H	9100	NEXUS / DC-LITE		
STP SL/M		reading	Diff	% Diff
Corrected	Flow	SL/m		
X	SL/m	Υ	Y - X	(Y - X)/X
0.921		0.935	0.014	1.6%
1.117		1.131	0.014	1.2%
1.41		1.43	0.024	1.7%
1.92		1.96	0.036	1.9%
2.93		2.93	0.000	0.0%
3.43		3.43	-0.005	-0.1%

	-		, ,	
Average	Error	(SL)	/m) :

0.014


NEXUS / DC_LITE Corrected Values (using slope and intercept)					
SL/m	% Diff				
0.911 1.109 1.414 1.945 2.926	-0.009 -0.008 0.005 0.022 -0.005	-1.0% -0.7% 0.4% 1.1% -0.2%			
3.429	-0.005	-0.2%			

Average

Error (SI/m) 0.001

Conf	irmation			
Test at 1.60	set point	using		
NEXUS / DC-LITE only (Y) Definer only (X)				
R1	R2	R1	R2	
1.530	1.528	1.52	1.522	
Average	1.529	Average	1.5210	
Nexus corrected Value	1.511	corr =	1.511	
Diff from Definer value (X)	0.02%			
Test at 3.00	set point	using		
NEXUS / DC-LITE only (Y)		Definer onl	y (X)	
R1	R2	R1	R2	
2.93	2.925	2.9317	2.9296	
Average	2.928	Average	2.9307	
Nexus corrected Value	2.922	corr =	2.922	
Diff from Definer value (X)	0.02%			

Calibration Certificate

CertificateNo. 89109

Sold To:

Environmental Engineering & Measurement

Services

Product

200-220H Definer 220 High Flow

Serial No.

131818

Cal. Date

20-Apr-2016

8010 SW 17th Place Gainesville, FL 32607

US

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

Lab. Pressure 752 mmHa Lilianna Malinowska Technician Lab. Temperature 22.2 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Received
27096.2 sccm	26484.73 sccm	2.31%	1.00%	Out of Tolerance
5424.64 sccm	5312.97 sccm	2.1%	1.00%	Out of Tolerance
1658.26 sccm	1622.86 sccm	2.18%	1.00%	Out of Tolerance
21,3 °C	22.5 °C	4	± 0.8°C	Out of Tolerance
752 mmHg	751 mmHg	4	± 3.5 mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date	
ML-800-44	103521	24-Jun-2015	23-Jun-2016	
Percision Thermometer	305460	22-Sep-2015	21-Sep-2016	
Precision Barometer	2981392	29-Jun-2015	28-Jun-2016	

As Shipped Calibration Data

Certificate No Technician	89109 Lilianna Malinowska			56 mmHg 2.2 °C	
Instrument Reading	Lab Standard Reading	Deviation	Allowable	Deviation A	As Shipped
26532.5 sccm	26441.5sccm	0.34%	1.00%	Ir	n Tolerance
5325.16 sccm	5307.04 sccm	0.34%	1.00%	Ir	n Tolerance
1632.29 sccm	1623.96 sccm	0.51%	1.00%	Ir	n Tolerance
21.7 °C	21.7 °C		± 0.8°C	Tr.	n Tolerance
756 mmHg	756 mmHg	4	± 3.5 mml	Hg II	n Tolerance

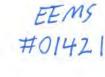
Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date	
ML-800-44	101897	29-Nov-2015	28-Nov-2016	
Percision Thermometer	305460	21-Sep-2015	20-Sep-2016	
Precision Barometer	2981392	28-Jun-2015	27-Jun-2016	

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21,1°C and 760 mmHg.


Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

Louis Guido, Chief Metrologist

Calibration Certificate

CertificateNo. 85366

Sold To:

Environmental Engineering & Measurement

Services

Product

200-220H Definer 220 High Flow

8010 SW 17th Place Gainesville, FL 32607

Serial No.

148613

US

Cal. Date

16-Mar-2016

Sales Date

21-Apr-2016 Calibration interval commences on sale date.

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory, Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Calibration Data

Certificate No Technician	85366 Zenaida Ortiz		Lab. Pressure Lab. Temperature	748 mmHg 22.6 °C		
Instrument Reading	Lab Standard Reading	Deviation	Allowa	able Deviation	As Shipped	
26540.9 ccm	26461.27 ccm	0.3%	1.00%	1	In Tolerance	
5325.13 ccm	5312.46 ccm	0.24%	1.00%		In Tolerance	
1628.87 ccm	1624.94 ccm	0.24%	1.00%		In Tolerance	
22 °C	22 °C	4	± 0.8°	С	In Tolerance	
748 mmHg	748 mmHg	9	± 3.5	mmHg	In Tolerance	

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date	
ML_800_10	103743	07-Apr-2015	06-Apr-2016	
Percision Thermometer	305460	21-Sep-2015	20-Sep-2016	
Precision Barometer	2981392	28-Jun-2015	27-Jun-2016	

Calibration Certificate

CertificateNo. 87566

Sold To:

Environmental Engineering & Measurement

Services

Product

200-220L Definer 220 Low Flow

8010 SW 17th Place

Serial No.

148737

Gainesville, FL 32607

Cal. Date

22-Mar-2016

US

Sales Date 21-Apr-2016 Calibration interval commences on sale date.

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Calibration Data

Certificate No Technician	87566 Lilianna Malinowska		Lab. Pressure Lab. Temperature	751 mmHg 21.9 °C		
Instrument Reading	Lab Standard Reading	Deviation	Allowa	able Deviation	As Shipped	
480.14 ccm	480.12 ccm	0.0%	1.00%		In Tolerance	
107.89 ccm	107.98 ccm	-0.08%	1.00%		In Tolerance	
33.13 ccm	33.2 ccm	-0.21%	1.00%	i i	In Tolerance	
21.5 °C	21.5 °C		± 0.8°	С	In Tolerance	
749 mmHg	749 mmHg		± 3.5	mmHg	In Tolerance	

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML_800_10	103743	07-Apr-2015	06-Apr-2016
Percision Thermometer	305460	21-Sep-2015	20-Sep-2016
Precision Barometer	2981392	28-Jun-2015	27-Jun-2016

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

Louis Guido, Chief Metrologist

4/21/2016	01421	DATA FR	OM MESA LABS	BS test raw		% diff		
		220	std			01421-01417		
		1.62887	1.62494	4.0839	4.07	-0.83%		
		5.32513	5.31246	6.0814	6.06	-0.59%		
		26.5409	26.46127	9.1051	9.08	-0.60%		
				12.089	12.05	-0.66%		
sl	ope	1.003088						
in	nter	-0.00231						

01417	DATA FROM MESA LABS		test raw	test corr
	220	std		
	1.63229	1.62396	4.1229	4.11
	5.32516	5.30704	6.1229	6.10
	26.5325	26.4415	9.1659	9.13
			12.176	12.13
	01417	220 1.63229 5.32516	220std1.632291.623965.325165.30704	220std1.632291.623964.12295.325165.307046.122926.532526.44159.1659

slope 1.003371 inter 0.001647

Certificate of Calibration Fluke Calibration, American Fork **Primary Temperature Laboratory**

01229

B5C18007

09 Dec 2015

21.0 to 25.0 °C

83.5 to 88.5 kPa

15 to 60 %RH

18 Dec 2015

Certificate Number:

Date of Calibration:

Relative Humidity:

Date Due:

Pressure:

Issue Date:

Temperature:

Description:

Digital Thermometer with Probe

Manufacturer:

Serial Number:

Fluke

Model:

1551A 3275143

Status:

As-Found: New

As-Left: In Tolerance

Calibration:

Full

Procedure:

AFC124 - 001

Customer:

FOTRONIC CORPORATION

MELROSE MA

PO Number:

0203284

This calibration is traceable to the SI through recognized national measurement institutes, ratiometric techniques, or natural physical constants and is in compliance with ISO17025:2005 and ANSI/NCSL Z540.1. The calibration has been completed in accordance with the Fluke Calibration Quality System document QSD 111.0. Calibration certificates without signatures are not valid. This certificate applies to only the item identified and shall not be reproduced other than in full, without the specific written approval by Fluke Corporation. This certificate shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This calibration certificate may contain data that is not covered by the Scope of Accreditation. The unaccredited test points, where applicable, are indicated by an asterisk (*), or confined to clearly marked sections. Functional tests are not accredited.

Measurement uncertainties at the time of test are given where applicable. They are calculated in accordance with the method described in the ISO Guide to the Expression of Uncertainty in Measurement. The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k such that the coverage probability corresponds to approximately 95 %.

Comments:

Cert: 85C1800 Due: 5/N: 3275143

Electronically signed by Approved Signatory Michael Coleman Metrologist

Fluke Corporation

Telephone

Internet

Page 1 of 3

Certificate of Calibration

Model: 1551A Serial No.: 3275143 Certificate No: B5C18007

As Found Data -

Page 20f 2

No As Found Data Required

EEMS * 01229

Slope = 1.0000112 int = -0.001926

12/9/2015

As Left Data -

Data ID: B5343072143703

Calibrat	ion Constants	Nominal (°C)	Actual (°C)	Measured (°C)	Error (°C)	Tolerance (°C)	Uncertainty	Pass/Fai
R0	100.003539	-50	-49.9886	-49.9898	-0.0012	±0.0500	±0.0080	P
A	3.917265E-03	-25	-25.0848	-25.0911	-0.0063	±0.0500	±0.0080	P
В	-6.408775E-07	0	-0.0078	-0.0070	0.0008	±0.0500	±0.0080	P
C	-1.292775E-11	100	100.0117	100.0118	0.0001	±0.0500	±0.0080	P
MINOP	-60	157	156.9983	156.9973	-0.0010	±0.0500	±0.0080	P
MAXOP	170			100000000000000000000000000000000000000	0013436			

Name	Reference	Offset
Device C	alibration Const	ants
DEVICE CAL 1 DEVICE CAL 2 DEVICE CAL 3 DEVICE CAL 4	50.0080 100.0020 150.0070 200.0000	0.0882 0.0760 0.0652 0.0598
User Ca	libration Consta	nts
USER CAL 1 USER CAL 2 USER CAL 3	-50.0000 0.0000 157.0000	0.0000 0.0000 0.0000

Certificate Number A2062999 Issue Date: 12/23/15

Certificate of Calibration

Page 1 of 2

EEMS #

Customer: ENVIRONMENTAL ENGINEERING & MEASUREMENT SERVICES

1128 NW 39TH DRIVE GAINESVILLE, FL 32605

FEDEX

P.O. Number:

ID Number: 01226

Description: DIGITAL STIK THERMOMETER

Manufacturer: FLUKE

Model Number: 1551A EX

Serial Number: 2085085

Technician: JEFF BAHMANN

On-Site Calibration:

Comments:

12/23/2015 Calibration Date:

12/23/2016 Calibration Due:

FLUKE 1551A EX,52A EX Procedure:

Rev: 11/1/2010

Temperature:

Humidity:

70 40 % RH

As Found Condition: IN TOLERANCE Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

FORD.

JACK SHULER, QUALITY MANAGER

Jack Shulee

Calibration Standards

Asset Number 30946	Manufacturer FLUKE	Model Number 5616	<u>Date Calibrated</u> 9/8/2014	<u>Cal Due</u> 2/25/2016
A06118	HART SCIENTIFIC	9103	1/13/2015	5/13/2016
A11967	HART SCIENTIFIC	9140	10/29/2014	6/27/2016
A88072	FLUKE/HART	1502A	11/23/2015	3/5/2016

Technical Maintenance, Inc.

Certificate Number A2062999 Issue Date: 12/23/15

Certificate of Calibration

Page 2 of 2

Data Sheet

Parameter	Nominal	Minimum	Maximum	As Found	As Left	Unit	ADJ/FAIL
Temperature Accuracy	-25.00	-25.05	-24.95	-25.02	-25.02	°C	
Temperature Accuracy	0.00	-0.05	0.05	0.05	0.05	°C	
Temperature Accuracy	100.00	99.95	100.05	99.96	99.96	°C	
Temperature Accuracy	150.00	149.95	150.05	149.95	149.95	°C	

|2|23|2015 |2|23|2015 |2|23|2015 |2|pe = 0.9996275 |3|pe = 0.9999999 |4|23|2015 |2|23|2015

Technical Maintenance, Inc.

Date 1/19/2016 - - Calibration and verification of three RTD meters with most recent certification of EEMS RTD

	TMI Data	12/23	/2015		
	TMI STD		_	EMS RTD	
cert date=	12/23/2015			1226	(van 2)
				diff	corrected
	-25.00		-25.02	0.020	-25.035
	0.00		0.05	-0.050	0.044
	100.00		99.96	0.040	99.991
	150.00		149.95	0.050	150.000
				0.000	-0.006
				0.000	-0.006
				RTD	01226
		2016 co	rection:	slope=	0.9996275
				intercept=	0.0059542
				0.9999999	
	(`	i, // s	<u></u>		
	Ein	Helver	4	1/19/2016	

At EEMS	Date 6 1/19/2016 RTD 01226	RTD 01230 / 012 EEMS AER	31	RTD 01227 EEMS SEG		RTD 01228 EEMS van1		RTD 01229 EEMS van1	
raw	corrected	raw	corrected	raw	corrected	raw	corrected	raw	corrected
0.0 15.5		0.03 15.53		0.02 15.59	0.00 15.53		#DIV/0! #DIV/0!	0.01 15.51	
28.7 41.4		28.75 41.44		28.85 41.58			#DIV/0! #DIV/0!	28.73 41.44	
51.0		51.06		51.25			#DIV/0!	51.08	_
	slope = intercept =	0.999048 0.027816		1.00279 0.021429		#DIV/0! #DIV/0!		0.9998	
	correlation =	1.0000]	1.0000		#DIV/0!	1	1.0000]

Date

1/10/2016 - - Calibration and verification of three thermocouples and fluke meters with most recent certification of EEMS RTD

	TMI Data	12/23	/2015		
	TMI		Е	EMS	
	STD			RTD	
cert date=	12/23/2015		0	1226	
				diff	corrected
	-25.000		-25.02	0.020	-25.035
	0.000		0.05	-0.050	0.044
	100.000		99.96	0.040	99.991
	150.000		149.95	0.050	150.000
				0.000	-0.006
				0.000	-0.006
1					
				RTD 012	30/01231
		2016 cor	rection:	slope=	0.99962748
				intercept=	0.0059542
				0.9999999	

Ein Hebert 1/10/2016

At	Date	fluke =	01311		01312		01310	
EEMS	1/10/2016	nake =	EEMS		EEMS	ľ	EEMS]
_			_		_		_	
	RTD		SEG		van 2		van 1	
01	1226	thermo =	01236		01237		01238	
raw	corrected		raw	corrected	raw	corrected	raw	corrected
0.02	0.01		0.1	0.09	0.1	0.12	0.1	0.07
15.62	15.62		15.6	15.58	15.6	15.60	15.7	15.65
31.79	31.80		31.8	31.77	31.7	31.69	31.8	31.72
50.64	50.65		50.6	50.56	50.6	50.58	50.7	50.59
68.69	68.71		68.8	68.75	68.8	68.76	68.9	68.76
89.91	89.90		90.0	89.94	90.0	89.95	90.2	90.03
80.46	80.45		80.5	80.45	80.5	80.45	80.5	80.34
	-0.01			-0.01		0.02		-0.03
The	rmocouple off	fset =	-0.2		-0.6		0.4	
POST	CALIBRATION	CHECK						
23.63	23.63		23.7	23.68	23.6	23.60	23.6	23.53
	slop	e =	1.000533		1.0007715		1.00161	
	interce	ept =	0.009986		-0.015795		0.02947	
	correla	tion =	1.0000		1.0000		1.0000	

Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions¹

This standard is issued under the fixed designation E 104; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This practice describes two methods for generating constant relative humidity (rh) environments in relatively mall containers.
- 1.2 This practice is applicable for obtaining constant relative humidities ranging from dryness to near saturation
- at temperatures spanning from 0 to 50°C. 1.3 This practice is applicable for closed systems such as
- environmental conditioning containers and for the calibration of hygrometers. 1.4 This practice is not recommended for the generation
- of continuous (flowing) streams of constant humidity unless precautionary criteria are followed to ensure source stability. (See Section 9.)
- 1.5 Caution—Both saturated salt solutions and sulfuric acid-water solutions are extremely corrosive, and care should be taken in their preparation and handling. 1.6 This standard may involve hazardous materials, oper-
- ations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (For more specific safety precautionary information see 1.5

2. Referenced Documents

and 10.1.)

- 2.1 ASTM Standards:
- D 1193 Specification for Reagent Water²
- D4023 Definitions of Terms Relating to Humidity Measurements³
- E 126 Test Method for Inspection and Verification of Hvdrometers⁴
- 2.2 Other Document:

DIN50008 "Konstantklimate uber waBerigen Losungen" (Constant Climates Over Aqueous Solutions).

Part 1: Saturated Salt and Glycerol Solutions.

¹ This practice is under the jurisdiction of ASTM Committee D-22 on

Part 2: Sulfuric Acid Solutions. (1981)5

3 Annual Book of ASTM Standards, Vol 11.03. Annual Book of ASTM Standards, Vol 14.03.

3. Definitions

3.1 non-hygroscopic material—material which neither absorbs nor retains water vapor.

3.2 For definitions of other terms used in this practice refer to Definitions D 4023.

4. Summary of Practice

4.1 Standard value relative humidity environments are generated using selected aqueous saturated salt solutions or various strength sulfuric acid-water systems.

5. Significance and Use

5.1 Standard value relative humidity environments are important for conditioning materials in shelf-life studies or in the testing of mechanical properties such as dimensional stability and strength. Relative humidity is also an important operating variable for the calibration of many species of measuring instruments.

6. Interferences

- 6.1 Temperature regulation of any solution-head space environment to ±0.1°C is essential for realizing generated relative humidity values within ±0.5 % (expected).
- 6.2 Sulfuric Acid-Water systems are strongly hygroscopic and can substantially change value by absorption and desorption if stored in an open container. Only freshly prepared solutions, or solutions which values have been
- independently tested for strength should be used. 6.3 Some aqueous saturated salt solutions change composition following preparation by hydrolysis or by reaction with environmental components (for example, carbon dioxide absorption by alkaline materials). These solutions should be freshly prepared on each occasion of use.

7. Apparatus

Method E 126.)

7.1 Container—The container, including a cover or lid which can be secured airtight, should be made of corrosion resistant, non-hygroscopic material such as glass. A metal or plastic container is acceptable if the solution is retained in a

dish or tray made of appropriate material. Refer also to 9.2 for size restrictions. 7.2 Hydrometers—One or more hydrometers may be used to test sulfuric acid solution densities for the range of

humidities concerned. The hydrometer(s) should have a

minimum scale division of 0.001 gm/cm3. (Refer to Test

Sampling and Analysis of Atmospheres and is the direct responsibility of Subcommittee D22.11 on Meteorology.

Current edition approved Feb. 22, 1985. Published June 1985. ² Annual Book of ASTM Standards, Vol 11.01.

⁵ Published by Deutsches Institut für Normung, 4-10 Burggrzfenstrasse Postfach 1107, D-1000 Berlin, Federal Republic of Germany. Also available from NSI Publication Office, New York, NY.

8. Reagents and Materials

8.1 Purity of Reagents-Reagent grade chemicals shall be used for preparation of all standard solutions. Unless otherwise indicated, it is intended that all reagents conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society where such specifications are available.6 Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determi-

nation. 8.1.1 Saturated salt solutions may be prepared using either amorphous or hydrated reagents (that is, reagents containing water of crystallization). Hydrated reagents are often preferred to amorphous forms for their solvating

characteristics. 8.2 Purity of Water-Reagent water produced by distillation, or by ion exchange, or reverse osmosis followed by distillation shall be used. See Specification D 1193.

9. Technical Precautions

9.1 Although a container capable of airtight closure is described in Section 7, it may be desirable to have a vent under certain conditions of test or with some kinds of containers (changes in pressure may produce undesirable cracks in some types of containers). The vent should be as small as practical to minimize loss of desired equilibrium

conditions when in use. 9.2 The container should be small to minimize the influence of any temperature variations acting upon the container and contents. A maximum proportion of 25 cm3 volume/cm2 of solution surface area is suggested, and overall container headspace volume should be no larger than

necessary to confine a stored item.

9.3 Measurement accuracy is strongly dependent on the ability to achieve and maintain temperature stability during actual use of any solution system. Temperature instability of ±0.1°C can cause corresponding instabilities in generated values of relative humidity of ±0.5 %.

9.4 The compatibility of any constant relative humidity system used for instrument calibration testing should be confirmed by reference to the instrument manufacturer's

instructions. 9.5 Important considerations leading to stability should include (but are not necessarily limited to) the following:

9.5.1 Elimination of leakage paths. 9.5.2 Elimination of heat sources or heat sinks, or both,

for temperature stability. 9.5.3 Limiting flow rate to preclude source carry-over.

10. Preparations of Aqueous Solutions

10.1 Caution-Saturated salt-water systems and sulfurie acid solutions should be regarded as hazardous materials Refer to 1.6 for guidelines.

10.2 Saturated Salt-Water Systems:

10.2.1 Select a salt of characteristic value from Annex A1.

Note -The reference document by Greenspan contains information on many other saturated salt solutions which may be used. These additional systems, however, are less accurately or less completely defined in value. Also, some may only be used when freshly prepared (to limit the influence of chemical instability such as hydrolysis or acid ear absorption). The salts listed in Annex A1 can be used for a year or more.

10.2.2 Place a quantity of the selected salt in the bottom

of a container or an insert tray to a depth of about 4 cm for low rh salts, or to a depth of about 1.5 cm for high rh salts. 10.2.3 Add water in about 2-mL increments, stirring well

after each addition, until the salt can absorb no more water as evidenced by free liquid. Although a saturated solution system is defined when any excess quantity of undissolved solute is present, it is preferred to keep the excess liquid present to a minimum for ease in handling and for minimal

impact on stability should temperature variations occur. 10.2.4 Close the container and allow 1 h for temperature stabilization.

10.2.5 The container may be used as a reservoir from which quantities of slush can be transferred for use, or the entire container may be used for conditioning tests.

10.3 Sulfuric Acid-Water Solutions:

10.3.1 Determine the acid concentration corresponding to the desired relative humidity value from Annex A2, interpolating as necessary.

10.3.2 Measure sufficient working quantities of sulfuric acid reagent and reagent water so that, when mixed in proper proportion, a sufficient depth of liquid is available for proper floatation of a test hydrometer. (See Section 9.)

10.3.3 Measure solution density after the sulfuric acidwater solution has cooled following mixing. Refer to Annex A2 for desired values.

10.3.4 Store the prepared mixture in a container with a tight-fitting lid. Check solution density before each occasion of use.

11. Precision and Bias

11.1 Under ideal conditions, the bias (accuracy) of the sources generated by this practice are equal to the uncertainty figures associated with each source value, as stated in the Annex tables. In actual use, lack of temperature equilibrium (±0.5°C) and other functional losses can reduce the bias statement to ±2.5 %. Precision is ±0.5 % rh.

^{*} Reagent Chemicals, American Chemical Society Specifications, " Am. Chemical Soc., Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see "Reagent Chemicals and Standards," by Joseph Rosin, D. Van Nostrand Co., Inc., New York, NY, and the "United States Pharmacopcia."

Greenspan, L., "Humidity Fixed Points of Binary Saturated Aqueous Solutions," Journal of Research, National Institute of Standards and Technologi-Vol. 81A, 1977, pp. 89-96.

ANNEXES

(Mandatory Information)

A1.1 EQUILIBRIUM RELATIVE HUMIDITY VALUES FOR SELECTED SATURATED AQUEOUS SALT SOLUTIONS

Magnesturn

Nitrate⁴

Mg(NOab.

6H2O, %

60.4 ± 0.6

58.8 ± 0.4

Sodium

Chloride^A

NaCL %

75.5 ± 0.3

75.7 ± 0.2-

74.4 ± 0.2

· Potasstum

Chloride^A

KCL %

88.6 ± 0.5

37.7-4-O.E

81.2 ± 0.3

Barium

Chloride⁸

BaCL.

H,O, %

C3 ± 2

Potassium

Nitrate⁴

KNO3. %

96.3 ± 2.9

 96.3 ± 2.1

84.8 ± 2.5

Potassium

Sutfate^A

K2SO4. X

98.8 ± 2.1

98.5 ± 0.9

95.8 ± 0.5

10	11.3 ± 0.4	23.4 ± 0.5	33.5 ± 0.2	43.1 ± 0.4	. 57.4 ± 0.3	75.7 ± 0.2	86.8 ± 0.4	93 ± 2	96.0 ± 1.4	98.2 ± 0.8
15	11.3 ± 0.4	23.4 ± 0.3	33.3 ± 0.2	43.2 ± 0.3	55.9 ± 0.3	75.6 ± 0.2	85.9 ± 0.3	82 ± 2	85.4 ±1.0	97.9 ± 0.6
20	11.3 ± 0.3	23.1 ± 0.3	33.1 ± 0.2	43.2 ± 0.3	54.4 ± 0.2	75.5 ± 0.1	85.1 ± 0.3	91 ± 2	94.6 ± 0.7	97.6 ± 0.5
25	11.3 ± 0.3	22.5 ± 0.3	32.8 ± 0.2	43.2 ± 0.4	52.9 ± 0.2	75.3 ± 0.1	64.3 ± 0.3	90 ± 2	93.6 ± 0.6	97.3 ± 0.5
30	11.3 ± 0.2	21.6 ± 0.5	32.4 ± 0.1	43.2 ± 0.5	51.4 ± 0.2	75.1 ± 0.1	83.6 ± 0.3	89 ± 2	92.3 ± 0.6	97.0 ± 0.4
35	11.3 ± 0.2	***	32.1 ± 0.1	444	49.9 ± 0.3	74.9 ± 0.1	83.0 ± 0.3	88 ± 2	90.8 ± 0.8	96.7 ± 0.4
40	112 ± 02	144	31.6 ± 0.1		48.4 ± 0.4	74.7 ± 0.1	82.3 ± 0.3	87 ± 2	89.0 ± 1.2	96.4 ± 0.4
45	112 ± 0.2	***	31.1 ± 0.1		46.9 ± 0.5	74.5 ± 0.2	81.7 ± 0.3	9000	87.0 ± 1.8	96.1 ± 0.4

 $^{45.4 \}pm 0.6$ A See "Humidity Fixed Points of Binary Saturated Aqueous Solutions," by L. Greenspen. Published in the Journal of Research by the National Institute of Standards and technology, Vol 81A, 1977, pp. 89-96.

30.5 ± 0.1

Magnesium

Chloride^A

MgCl2.

6H2O, %

33.7 ± 0.3

33.6 ± 0.3

Potassium

Carbonate^A

K2Co3, X

43.1 ± 0.7

43.1 ± 0.5

Lithium

Chloride⁴

LICI, X

11.2 ± 0.5

11.3 ± 0.5

11.1 ± 0.2

fempera-

ure (°C)

0

50

Potassium

Acetate⁴

CH₃Cook

A2. EQUILIBRIUM RELATIVE HUMIDITY VALUES FOR SULFURIC ACID-WATER SOLUTIONS

NOTE—The values shown in this table are stated with an uncertainty of ±1 % rh

Weight % H ₂ SO ₄	Density, g/mL at	Density, g/mL at	Density, g/mL at	Eq	ustorium Relative	Humidity in % at	t*C
	20°C	23°C	25 %	-5°C	23°C	25°C	50°C
5	10 317	10 307	10 300	98	98	98	98
10	10 661	10 648	10 640	96	96	96	96
15	11 020	11 005	10 994	82	92	82	93
20	11 394	11 376	11 365	88	88	88	89
25	11 783	11 764	11 760	82	82	82	83
30	12 185	12 164	12 150	74	75	75	77
35	12 599	12 577	12 563	65	66	67	69
40	13 028	13 005	12 991	54	66	67	59
45	13 476	13 452	13 437	43	46	46	49
60	13 591	13 972	13 911	43 32	35	35	38
55	14 453	14 428	14 412	23	25	25	28
60	14 983	14 957	14 940	14	16	16	19
65	15 533	15 507	15 490	8	9	9	11
70	16 105	16 077	16 059	4	4	6	6

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any kem mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such petent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and If not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for edditional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend, if you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.

See the German standard, DIN 50008, Constant Climates Over Aqueous Solutions, (referenced in 2.2).

Date 1/23/2016 - - Calculation of correction factor for RH standard with most recent certification of EEMS Hygropalm

TN	/II - Certificatio	n date = 12/24/2	015				
					At	Date	
	TMI	[EEMS		EEMS	1/23/2016	
	STD	Ну	gropalm		Hy	/gropalm	
cert date=	4/11/2015	(01225			01225	ID
			diff	corrected	raw	corrected	salt
	33.000	33.40	-0.400	33.279	33	.2 33.07	32.8
	50.000	49.30	0.700	49.532	53	<mark>.7</mark> 54.03	52.9
	75.000	74.40	0.600	75.189	70	<mark>.9</mark> 71.61	75.3
					90	<mark>.7</mark> 91.85	93.6
						-0.86	
						-0.86	
						-0.86	
			Rotroni	c 01225		-0.86	
	2	016 correction:	slope=	0.9783			
	fo	or RH	intercept=	0.8446			
			0.9998137		POS	ST CALIBRATIO	N CHECK
		4 1 1 4 4				slo	pe =
		Si Helest				inter	cant –

At	Date							
EEMS	1/23/2016		EEMS		EEMS		EEMS	
Hyg	ıropalm		to 01225		to salt		to salt	
0.	1225	ID =	01220		01220		01225	
raw	corrected	salt	raw	corrected	raw	corrected	raw	corrected
33.2	33.07	32.8	33.9	32.69	33.9	34.51	33.2	35.01
53.7	54.03	52.9	54.5	53.61	54.5	56.58	53.7	57.19
70.9	71.61	75.3	74.1	73.50	74.1	77.58	70.9	75.80
90.7	91.85	93.6	91.1	90.76	91.1	95.79	90.7	97.22
	-0.86			-1.72		-1.81		-0.91
	-0.86			-1.72		-1.81		-0.91
	-0.86			-1.72		-1.81		-0.91
	-0.86			-1.72		-1.81		-0.91
POST	CALIBRATION	N CHECK						
	slo	pe =	0.985069		0.9333384		0.92426	
	interd	cept =	1.693537		1.6935374		0.84459	
	correl	ation =	0.9987		0.9987		1.0000	

Ein Hebert

Certificate Number A2063482 Issue Date: 12/24/15

Certificate of Calibration

Page 1 of 2

Customer: ENVIRONMENTAL ENGINEERING & MEASUREMENT SERVICES

1128 NW 39TH DRIVE

GAINESVILLE, FL 32605

FEDEX

P.O. Number:

ID Number: 01225

Description:

THERMO HYGROMETER

Manufacturer: ROTRONIC

Model Number: HYGROPALM

Serial Number: 40861 002/124431

Technician:

SEAN LEWIS

On-Site Calibration:

Comments:

Calibration Date:

Calibration Due:

Procedure:

12/24/2015 12/24/2016

TMI-M-HYGROTHERMOGRAPHS

EEMS#

Rev: 2/22/2011

Temperature:

Humidity:

70 F 43 % RH

As Found Condition: IN TOLERANCE

Calibration Results: IN TOLERANCE

09783

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

TOR FRANK BAHMANN, BRANCH MANAGER

JACK SHULER, QUALITY MANAGER

Jack Shulee

Calibration Standards

Asset Number 9304027

Manufacturer THUNDER SCIENTIFIC Model Number 2500

Date Calibrated 4/11/2015

Cal Due 4/11/2016

temp: m = 0.97865

b = 1.56232 0F

-2 = 0.99996

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637

Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

ANSI/NCSL Z540-1-1994

Certificate Number A2063482 Issue Date: 12/24/15

Certificate of Calibration

Page 2 of 2

Data Sheet

Parameter	Nominal	Minimum	Maximum	As Found	As Left	Unit ADJ/FAIL
Temperature Accuracy	61.7	61.3	62.1	62.0	62.0	°F
Temperature Accuracy	68.9	68.5	69.3	68.9	68,9	°F
Temperature Accuracy	79.6	79.2	80.0	79.5	79.5	°F
Relative Humidity Accuracy	33.0	32.0	34.0	33.4	33.4	%RH
Relative Humidity Accuracy	50.0	48.8	51.3	49.3	49.3	%RH
Relative Humidity Accuracy	75.0	73.5	76.6	74.4	74.4	%RH

Technical Maintenance, Inc.

Certificate of Calibration

Customer: ENVIRONMENTAL ENGINEERING & MEASUREMENT SERVICES

1128 NW 39TH DRIVE

P.O. Number:

GAINESVILLE, FL 32605

ID Number: 45656048/124432

FEDEX

Description:

TEMP/HUM PROBE

Calibration Date:

12/24/2015

Manufacturer: ROTRONIC

Calibration Due:

12/24/2016

Model Number: HYGROCLIP

Procedure:

TMI-M-HYGROTHERMOGRAPHS

Rev: 2/22/2011

Serial Number: 45656 048/124432

Temperature:

70 F

Technician:

SEAN LEWIS

Humidity:

43 % RH

As Found Condition: IN TOLERANCE

On-Site Calibration:

Calibration Results: IN TOLERANCE

Comments:

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FOR FRANK BAHMANN, BRANCH MANAGER

JACK SHULER, QUALITY MANAGER

Calibration Standards

Asset Number 9304027

Manufacturer THUNDER SCIENTIFIC Model Number 2500

Date Calibrated 4/11/2015

Cal Due 4/11/2016

Technical Maintenance, Inc.

Rev. 8 6/30/15 www.tmicalibration.com

ANSI/NCSL Z540-1-1994

Certificate Number A2063483 Issue Date: 12/24/15

Certificate of Calibration

Page 2 of 2

Data Sheet

Parameter	Nominal	Minimum	Maximum	As Found	As Left	Unit ADJ/FAIL
Temperature Accuracy	61.7	61.3	62.1	62.0	62.0	°F
Temperature Accuracy	68.9	68.5	69.3	68.9	68.9	°F
Temperature Accuracy	79.6	79.2	80.0	79.5	79.5	°F
Relative Humidity Accuracy	33.0	32.0	34.0	33.4	33.4	%RH
Relative Humidity Accuracy	50.0	48.8	51.3	49.3	49.3	%RH
Relative Humidity Accuracy	75.0	73.5	76.6	74.4	74.4	%RH

Technical Maintenance, Inc.

Warren-Knight Instrument Company

2045 Bennett Road Philadelphia, PA 19116

Phone: 215-464-9300; Fax: 215-464-9303

Web: http://www.warrenind.com

CERTIFICATION OF CALIBRATION AND CONFORMANCE

We hereby certify that the equipment below has been manufactured and/or inspected by standards traceable to NIST. Calibration of the specified instrument has been performed in compliance with ANSI Z540-1 requirements. It is warranted that the equipment has been calibrated to be in full conformance with the drawings and specifications of the instrument. Calibration tests were performed on the material specified below and were in accordance with all applicable quality assurance requirements with data on file at our facility.

Customer Name:	Environmental Engineering & Meas	surement Service	es, I	nc.
Purchase Order #:				
Instrument:	Ushikata Tracpn S-25 Compass			<i>(-)</i>
Serial Number:	191832	BEC		(SEG)
Quantity:			1	
Calibration Due:	12/2016	12	9	2015
				0

Pegg 1 of 2

John Noga, Quality Control

January 14, 2016

Measurement Standards

Theodolite Wild T-3 S/N 18801 Calibration 02/06/15 Due 02/06/16 NIST Number 738/229329-83 738/223398

Optical Wedge K&E 71-7020 S/N 5167 Calibration 02/12/14 Due 02/12/19 731/244084-89 731/2216117

100

Warren-Knight Instrument Company

2045 Bennett Road Philadelphia, PA 19116

Phone: 215-464-9300; Fax: 215-484-9303

Page 2 of 2

Web: http://www.warrenind.com Calibration Data Record Temperature: Humidity: 66 245 Customer Name Item Name USHIKATA Manufacturer Model 12.9.15 Calibration Date Serial Number Job Card Number Calibration Frequency Date of Certification Customer Reference Number Measurement Standards Theodolite Wild T-3 S/N 18801 Calibration 02/12/15 Due 02/12/16 NIST Number 738/229329-83 738/223398 Optical Wedge K&E 71-7020 S/N 5167 Calibration; 02/12/14 Due 2/12/19, NIST Number 731/244084-89 731/221617 Initial Report Compass Needle Error (Minute) Vanes (Degree) ☐ Pass ☐ Fail +/-30 Pivot in line with Circle/Sights ☐ Pass ☐ Fail 45 +/-30 Needle +/-30 90 Pivot Sharpness Straightness (+/-15 Minutes) ☐ Pass ☐ Fail +/-30 ☐ Pass ☐ Fail +/- 30 180 Balance ☐ Pass ☐ Fail +/- 30 Lifter Function Azimuth Ring Control Knob Function ☐ Pass ☐ Fail 315 +/-30 ☐ Pass ☐ Fail Pinion Gear ☐ Pass ☐ Fail Graduation Clarity Graduation less than 1 minute in any position Pass Fail ☐ Pass ☐ Fail Bubble in Level Physical Condition ☐ Pass ☐ Fail Pass/Repair/Replace N/A Replace Repair Needle E Sharpen E Magnetize Cap with Jewel Pivot 🗈 Sharpen Level 2 Remount North Sight North Sight Block South Sight South Sight Block Vane Spring Control Knob Assembly Cover Glass Cover Glass Gasket Clamp Screw Pinion Gear Compass Ring Final Report Direction (Degree) Compass Needle Error (Minute) Pivot in line with Circle/Sights Pass | Fail +/- 30 30 530 45 +/- 30 Needle Dess D Fail 90 Pivot Sharpness 135 +/-30 30 Pass D Fail Straightness (+/-15 Minutes) Pass D Fail 180 +/-30 30 Balance Pass D Fail +/-30 30 Lifter Function 30 Azimuth Ring 270 +/-30 30 +/-30 Control Knob Function Pass - Fail 315 Pass | Fail Pinion Gear Pass | Fail Graduation Clarity Graduation less than 1 minute in any position Pass | Fail Level Bubble Pass | Fail Bubble in Level Pass | Fail Physical Condition Certification taseple Repair Technician John Noga, Quality Assurance

Warren-Knight Instrument Company

2045 Bennett Road Philadelphia, PA 19116

Phone: 215-464-9300; Fax: 215-464-9303

Web: http://www.warrenind.com

CERTIFICATION OF CALIBRATION AND CONFORMANCE

We hereby certify that the equipment below has been manufactured and/or inspected by standards traceable to NIST. Calibration of the specified instrument has been performed in compliance with ANSI Z540-1 requirements. It is warranted that the equipment has been calibrated to be in full conformance with the drawings and specifications of the instrument. Calibration tests were performed on the material specified below and were in accordance with all applicable quality assurance requirements with data on file at our facility.

Customer Name: Purchase Order #:		Environmental Engineering & Measur	1/ #1
Instrument:	1	Ushikata Tracon S-25 Compass	Van
Serial Number:	1	190037	EEMS 01265
Quantity:		1	LLIII) OILBS
Calibration Due:	1	12/2016	12/9/2015

John Nøga, Quality Control

January 14, 2016

Measurement Standards

Theodolite Wild T-3 S/N 18801 Calibration 02/06/15 Due 02/06/16 NIST Number 738/229329-83 738/223398

Optical Wedge K&E 71-7020 S/N 5167 Calibration 02/12/14 Due 02/12/19 731/244084-89 731/2216117

Warren-Knight Instrument Company 2045 Bennett Road Philadelphia, PA 19116 Phone: 215-464-9300; Fax: 215-464-9303 Web: http://www.warrenind.com

Page 2 of 2

Calibration Da	ta Record	- /	/	12.0		Temperature	Н	umidity:			
Customer Nam	ie	/	EEN		Item Name	U5H10	LATH				
Manufacturer		/	6	1265	Model						
Serial Number			1900	37	Calibration Date	12-9-13					
Calibration Fre	nuency		, , , , ,	-	Job Card Number	5-230	78				
Customer Refe		hal			Date of Certification	12-9-15					
Measurement Stan		Dei			Date of bottom	-					
Theodolite Wild	T-3 S/N 188	RO1 Calif	oration 02/1	12/15 Due (02/12/16 NIST Number 7:	88/229329-83 738	/223398				
Ontical Wedge	K&F 71-7020	0 S/N 516	7 Calibratio	n: 02/12/14 D	ue 2/12/19, NIST Numbe	r 731/244084-89	731/221617				
Initial Report	1000							1,000			
Vanes						Direction	Tolerance (Minute)	Compass Needle Error (Minute)			
	and the state of	A.2		I D bear I	7 rati	(Degree)	+/- 30	(windle)			
Pivot In line wit	h Circle/Sigh	its		☐ Pass [□ Fall		+/- 30				
Needle				10-1	7 2 2	45 90	+/- 30				
Pivot Sharpness				☐ Pass [
Straightness (+/	-15 Minutes	i)			☐ Pass ☐ Fail 135 +/-30 ☐						
Balance				☐ Pass ☐							
Lifter Function				☐ Pass ☐	Fail	225	÷/- 30				
Azimuth Ring				270 +/- 30							
Control Knob Function			☐ Pass □	☐ Pass ☐ Fail = 315 +/-30							
Pinion Gear			☐ Pass ☐	☐ Pass ☐ Fail							
Graduation Clarity			☐ Pass ☐	☐ Pass ☐ Fail							
Graduation less than 1 minute in any position			☐ Pass ☐	Pass Fail							
Level Bubble											
Bubble in Level				□ Pass □ Fail							
Physical Condition				☐ Pass ☐ Fail							
Pass/Repair/Replac	ė										
Pass N/A	Replace	Repair									
				2 Sharpen 5	Magnetize						
			Cap with	Jewel							
			Pivot E	Sharpen							
			Level E	Remount							
			North Si	ght							
			North Si	ght Block							
			South Si	ght							
			South Sig	Sight Block							
			Vane Spr	oring Knob Assembly							
			Drive								
			Control I								
			Cover GI	ass							
			Cover GI	ass Gasket							
			.Clamp So	crew							
			Pinion G	ear							
			Compass	Ring				4			
Final Report							-1	F. S			
Vanes				/		Direction (Degree)	Tolerance (Minute)	Compass Needle Error (Minute)			
Pivot in line with	Circle/Sinhs	te		Pass [Fail	0	+/-30	430			
	- CII CIE/ SIBIII	L-J		1		45	+/- 30	(30			
Needle				Pass D	T Fail	90	+/-30	30			
Pivot Sharpness	AE 842			Pass D		135	+/-30	30			
Straightness (+/-	15 Minutes)			1		180	+/-30	30			
Balance				Pass L							
Lifter Function			Pass [Fail	225	+/-30	530				
Azimuth Ring			1		270	+/-30	30				
Control Knob Fu	nction			VE Pass L		315	+/-30	(30			
Pinion Gear				Pass [
Graduation Clari	ty			Pass L	Fail						
Graduation less t		te in any	position	Pass [Fail						
evel Bubble				/.							
Bubble in Level				Pass [
Physical Condition	in 1			Pass [Fail			- di			
Certification	2 //	1	100	14 (250)	93-79 A W						
paseel	1/00	Con	N								
Poppir Technicis		1			John Noga, Quality A	Assurance					

Warren-Knight Instrument Company

2045 Bennett Road Philadelphia, PA 19116

Phone: 215-464-9300; Fax: 215-464-9303

Web: http://www.warrenind.com

CERTIFICATION OF CALIBRATION AND CONFORMANCE

We hereby certify that the equipment below has been manufactured and/or inspected by standards traceable to NIST. Calibration of the specified instrument has been performed in compliance with ANSI Z540-1 requirements. It is warranted that the equipment has been calibrated to be in full conformance with the drawings and specifications of the instrument. Calibration tests were performed on the material specified below and were in accordance with all applicable quality assurance requirements with data on file at our facility.

Customer Name:	Environmental Engineer	ring & Measurement Services, Inc.
Purchase Order #:		
Instrument:	Ushikata Tracon S-25 Co	ompass
Serial Number:	199578	FEMS 01272
Quantity:	1	. 1
Calibration Due:	12/2016	12/9/2015

Page 1 of 2

John Noga, Quality Control

January 14, 2016

Measurement Standards

Theodolite Wild T-3 S/N 18801 Calibration 02/06/15 Due 02/06/16 NIST Number 738/229329-83 738/223398

Optical Wedge K&E 71-7020 S/N 5167 Calibration 02/12/14 Due 02/12/19 731/244084-89 731/2216117

Warren-Knight Instrument Company 2045 Bennett Road Philadelphia, PA 19116 Phone: 215-464-9300; Fax: 215-464-9303 Web: http://www.warrenind.com

Page 2 of 2

Calibration Data Re Customer Name	cora	100	1.0	1	Temperatur		Humidity:
Manufacturer	-/	GE #	- /7)	Mem Name	USH	18474	
	-	1000	1272				
Serial Number		1773	18	Calibration Date	12-9-	15	
Calibration Frequen	-		/	Job Card Number	5-230	59	
Customer Reference Measurement Standards	Number			Date of Certification	12-9-1	5	
Theodolite Wild T-3 S	/N 10001 C	71	17/15		1000		
Ontical Wadaa V.S.E.7	7020 5/01 5	alibration 02/1	12/15 Due	02/12/16 NIST Number 73	8/229329-83 73	8/223398	
Initial Report	1-70203/N 5	167 Calibratio	n; 02/12/14	Due 2/12/19, NIST Number	r 731/244084-89	731/221617	
Vanes				n			The second second
					Direction (Degree)	Tolerano (Minute)	
Pivot in line with Circle	e/Sights		☐ Pass	☐ Fail	0	+/- 30	(windle)
Veedle			-	7	45	+/-30	
Pivot Sharpness			☐ Pass	☐ Fail	90	+/-30	
itraightness (+/-15 Mi	nutes)		☐ Pass	☐ Fail	135	+/-30	
alance			☐ Pass I	☐ Fail	180	+/-30	
ifter Function			☐ Pass [Fail	225	+/- 30	
zimuth Ring					270	+/- 30	-
ontrol Knob Function			☐ Pass [Fail -	315	+/- 30	
inion Gear			☐ Pass [] Fail	-	1 17 30	
raduation Clarity			☐ Pass [
raduation less than 1	minute in an	y position	☐ Pass □				
evel Bubble							
ubble in Level			☐ Pass [Fail			
hysical Condition			☐ Pass ☐	Fail			
ess/Repair/Replace		1					
ass N/A Repla							
			Sharpen 🗈	Magnetize			
		Cap with J					
		Pivot 🗈 S					T. T
		Level E R					
		North Sigh					
		North Sigh					
		South Sigh					
		South Sigh					
		Vane Sprin	ng				
		Drive					
			ob Assembly				
		Cover Glass					
		Cover Glass					
		.Clamp Scre					
	Ö	Pinion Gear					
Report		Compass Ri	ing				4
25			1		rection	Televisia	
A for House with the comme	A.V.		1	1)	Pegree)	Tolerance (Minute)	Compass Needle Error (Minute)
ot in line with Circle/S	ghts		Pass [Fail	0	+/- 30	£30
fle			1/1		45	±/+ 30	<30 <30
t Sharpness		117	d pass D	Fail	90	+/-30	30
ightness (+/-15 Minut	es)		Dess 🗆	ail	135	+/- 30	30
nce			Pass D I		180	+/-30	30
r Function		L	Pass D I		225	+/-30	
uth Ring			1		270	+/-30	30
			D Pass D F		815	+/-30	530
			Pass D F			7.55	(30
uation Clarity			Pess D F				
uation less than 1 mir	ute in any no		Pass D F				
Bubble	- Le m way po	16	7,	an .			
DUDUIE.		11	1				
ile in Level			Pass F	lis			
			Pass F				

USP CALIBRATION PROCEDURE 18802/18811 ANEMOMETER DRIVE

EEMS#

01260 101261 01262 DWG: CP18802(C)

REV: C101107 PAGE: 4 of 4 BY: TJT

CHK: JC

DATE: 10/11/07 W.C. GAS-12

CERTIFICATE OF CALIBRATION AND TESTING

R. M. Young Company certifies that the equipment listed below was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

MODEL: 18802 / 18811 SERIAL NUMBER: CA02777

(18802 Comprised of Models 18820A Control Unit & 18830A Motor Assembly) (18811 Comprised of Models 18820A Control Unit & 18831A Motor Assembly)

Nominal Motor RPM	27106D Output Frequency (Hz) - (1)	Calculated Rpm (1)	Indicated Rpm (2)
1	8802 -	⊠ cw/cd	CW rotation verified
300	50	300	300
2700	450	2700	2700
5100	850	5100	5100
7500	1250	7500	7500
10,200	1700	10200	10200
12,600	2100	12600	12600
15,000	2500	15000	15000
1	8811 -	☑ CW / CC	CW rotation verified
30.0	5	30.0	30.0
150.0	25	150.0	150.0
300.0	50	300.0	300.0
450.0	75	450.0	450.0
600.0	100	600.0	600.0
750.0	125	750.0	750.0
990.0	165	990.0	990.0

Measured frequency output of RM Young Model 27106D standard anemometer attached (1) to motor shaft - 27106D produces 10 pulses per revolution of the anemometer shaft. Indicated on the Control Unit LCD display. (2)

Indicates out of tolerance

☐ New Unit(s)	Service / Repair Unit □ As Found No Calibration Adjustments Required □ As Left	
Date of inspection	II Dec. 15 EEMS # 018_60 01261 100	01262

CALIBRATION PROCEDURE 18802/18811 ANEMOMETER DRIVE

DWG: CP18802(C)

REV: C101107 BY: TJT

PAGE: 4 of 4 DATE: 10/11/07

CHK: JC

W.C. GAS-12

CERTIFICATE OF CALIBRATION AND TESTING

R. M. Young Company certifies that the equipment listed below was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

MODEL:

18802 / 18811

SERIAL NUMBER: CA04013

(18802 Comprised of Models 18820A Control Unit & 18830A Motor Assembly) (18811 Comprised of Models 18820A Control Unit & 18831A Motor Assembly)

EEMS #5 01253 01254 01255

Nominal Motor RPM	27106D Output Frequency (Hz) - (1)	Calculated Rpm (1)	Indicated Rpm (2)
1	8802 -	⊠ cw/c	CW rotation verified
300	50	300	300
2700	450	2700	2700
5100	850	5100	5100
7500	1250	7500	7500
10,200	1700	10,200	10,200
12,600	2100	12,600	12,600
15,000	2500	15,000	15,000
	18811 -	⊠ cw/c	CW rotation verified
30.0	5	30.0	30.0
150.0	25	150.0	150.0
300.0	50	300.0	300.0
450.0	75	450.0	450.0
600.0	100	600.0	600.0
750.0	125	750.0	750.0
990.0	165	990.0	990.0

Measured frequency output of RM Young Model 27106D standard anemometer attached (1) to motor shaft - 27106D produces 10 pulses per revolution of the anemometer shaft.

Indicated on the Control Unit LCD display. (2)

Indica	tes	out	of	to	lerance	,
--------	-----	-----	----	----	---------	---

☐ New Unit(s)	Service / Repair U No Calibration Adj		☐ As Found ☐ As Left
Traceable frequency mo	eter used in calibration	Model: DP5740	SN:4863
	11 Feb 2016 ne Year		
The second secon		Tester	d By

Filename: CP18802(C).doc

Certificate of Calibration and Testing

Test Unit:

Model:

18802

Serial Number: _

CA4353

Description:

Anemometer Drive - 200 to 15,000 Rpm

- Comprised of Models 18820A Control Unit & 18830A Motor Assembly

R.M. Young Company certifies that the above equipment has been inspected and calibrated using standards whose accuracies are traceable to the National Institute of Standards and Technologies (NIST).

Nominal Motor Rpm	27106D Output Frequency Hz (1)	Calculated Rpm (2)	Indicated Rpm (3)
300	50	300	300
2700	450	2700	2700
5100	850	5100	5100
7500	1250	7500	7500
10,200	1700	10200	10200
12,600	2100	12600	12,600
15,000	2500	15000	15000

⁽¹⁾ Measured frequency output of RM Young Model 27106D standard anemometer attached to motor shaft

(2) 27106D produces 10 pulses per revolution of the anemometer shaft

(3) Indicated on the Control Unit LCD display

*Indicates out of tolerance

Traceable frequency meter used in calibration

Date of inspection

3/7/16

BK 1823

Tested By Jan GM /

Series 9100

System SN 6496

EEMS 01152

FLOW CALIBRATION/CERTIFICATION REPORT

MFC# 1

Size: 20 SLPM

SERIAL # 0115330001

This flow controller was calibrated using a NIST-traceable Flow Standard. This calibration was performed with AIR at a standard reference temperature of 77°F and a pressure of 29.92 in. Hg. This is not performance data. This data is used by the system operating modes to improve the flow accuracy.

		Set Flow		True Flow	
5	%	1.0	SLPM	1.017	SLPM
10	%	2.0	SLPM	2.019	SLPM
20	%	4.0	SLPM	4.029	SLPM
30	%	6.0	SLPM	6.039	SLPM
40	%	8.0	SLPM	8.057	SLPM
50	%	10.0	SLPM	10.060	SLPM
60	%	12.0	SLPM	12.082	SLPM
70	%	14.0	SLPM	14.110	SLPM
80	%	16.0	SLPM	16.147	SLPM
90	%	18.0	SLPM	18.209	SLPM
100	%	20.0	SLPM	20.323	SLPM

Slope 1.0131 Intercept -0.0330

Verified by Lewis Lundmark

Date: 3-15-16

EEMS 01152

Series 9100

System SN 6496

FLOW CALIBRATION/CERTIFICATION REPORT

MFC# 2

Size: 100 SCCM

SERIAL # 0106722025

This flow controller was calibrated using a NIST-traceable Flow Standard. This calibration was performed with AIR at a standard reference temperature of 77°F and a pressure of 29.92 in. Hg. This is not performance data. This data is used by the system operating modes to improve the flow accuracy.

		Set	Flow	True	Flow
5	%	5.0	SCCM	5.303	SCCM
10	%	10.0	SCCM	10.409	SCCM
20	%	20.0	SCCM	20.683	SCCM
30	%	30.0	SCCM	30.839	SCCM
40	%	40.0	SCCM	40.997	SCCM
50	%	50.0	SCCM	51.149	SCCM
60	%	60.0	SCCM	61.482	SCCM
70	%	70.0	SCCM	71.545	SCCM
80	%	80.0	SCCM	81.693	SCCM
90	%	90.0	SCCM	92.085	SCCM
100	%	100.0	SCCM	102.610	SCCM

Slope Intercept 1.0216 0.1661

Verified by:

emic Lundmark Date: 2-15-16

O1152

Series 9100

System SN 6496

FLOW CALIBRATION/CERTIFICATION REPORT

MFC# 3

Size: 10 SCCM

SERIAL # 0009449001

This flow controller was calibrated using a NIST-traceable Flow Standard. This calibration was performed with AIR at a standard reference temperature of 77°F and a pressure of 29.92 in. Hg. This is not performance data. This data is used by the system operating modes to improve the flow accuracy.

		Se	t Flow	True	Flow
5	%	0.5	SCCM	0.525	SCCM
10	%	1.0	SCCM	1.053	SCCM
20	%	2.0	SCCM	2.089	SCCM
30	%	3.0	SCCM	3.122	SCCM
40	%	4.0	SCCM	4.137	SCCM
50	%	5.0	SCCM	5.160	SCCM
60	%	6.0	SCCM	6.163	SCCM
70	%	7.0	SCCM	7.151	SCCM
80	%	8.0	SCCM	8.148	SCCM
90	%	9.0	SCCM	9.194	SCCM
100	0/0	10.0	SCCM	10.199	SCCM

Slope	
Intercept	

1.0156 0.0523

Verified by:

Lundmark Date: 2-15-16

Certificate Number A2062909 Issue Date: 12/23/15

Certificate of Calibration

Page 1 of 5

Customer: ENVIRONMENTAL ENGINEERING & MEASUREMENT SERVICES

1128 NW 39TH DRIVE

GAINESVILLE, FL 32605

FEDEX

P.O. Number:

ID Number: 01310

Description:

DIGITAL MULTIMETER

Manufacturer: FLUKE

Model Number: 187

Serial Number: 86590148

Technician:

MIKE CASOLI

On-Site Calibration:

Comments:

Calibration Date:

Calibration Due:

Procedure:

12/23/2015 12/23/2016

EEMS.#

METCAL FLUKE 187

Rev: 6/15/2015

Temperature:

Humidity:

68

42 % RH

As Found Condition: IN TOLERANCE Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

FURD

JACK SHULER, QUALITY MANAGER

Jack Shule

Calibration Standards

Asset Number 1727902

Manufacturer FLUKE

Model Number 5522A/SC1100

Date Calibrated 10/14/2015

Cal Due

10/14/2016

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637

Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Fluke Model: 187 Multimeter Instrument Data Sheet

ID Number: 01310 Serial Number: 85690148 Test Run: FOUND-LEFT
Date Tested: 23 December 2015

		_
Tact	Dagu	140
LEST	RESH	HS

Test Description	True Value	Test Result	Lower limit	Upper limit Units	Result	TUR
DISPLAY	OPERATIONAL VERIFIC	ATION				
Display Test					Pass	
BACKLIGHT (PERATIONAL VERIFICA	TION				
Backlight Test					Pass	
INPUT ALERT	OPERATIONAL VERIFIC	ATION				
Alert Function / Non-	-Current Functions				Pass	
Alert Function OHMS					Pass	
No Alert Function mAn	mps / mA Input				Pass	
KEYPAD OF	PERATIONAL VERIFICAT	ION				
Keypad Buttons Operat	tional				Pass	
AC VOL	TAGE VERIFICATION TE	ST				
4.5000 V @ 20 Hz		4.4758	4.4020	4.5980 V	Pass	
4.5000 V @ 45 Hz		4.4957	4.4780	4.5220 V	Pass	
4.5000 V @ 1 kHz		4.5027	4.4780	4.5220 V	Pass	
4.5000 V @ 10 kHz		4.4997	4.4780	4.5220 V	Pass	
4.5000 V @ 20 kHz		4.4961	4.4285 4.1360	4.5715 V 4.8640 V	Pass	
4.5000 V @ 100 kHz 45.000 V @ 45 Hz		44.955	44.780	45.220 V	Pass	
45.000 V @ 1 kHz		45.026	44.780	45.220 V	Pass	
45.000 V @ 10 kHz		45.094	44.780	45.220 V	Pass	
45.000 V @ 20 kHz		45.284	44.285	45.715 V	Pass	
450.00 V @ 45 Hz		449.51	447.80	452.20 V	Pass	
450.00 V @ 1 kHz		450.27	447.80	452.20 V	Pass	
450.00 V @ 10 kHz		451.15	447.80	452.20 V	Pass	
900.0 V @ 45 Hz		898.6	892.4	907.6 V	Pass	
900.0 V @ 1 kHz		900.0	892.4	907.6 V	Pass	
900.0 V @ 10 kHz		902.8	892.4	907.6 V	Pass	
45.0000 mV @ 20 Hz		44.8540	44.0200	45.9800 mV	Pass	
45.000 mV @ 45 Hz		45.049 44.940	44.780	45.220 mV 45.220 mV	Pass	
45.000 mV @ 1 kHz 45.000 mV @ 10 kHz		43.556	42.710	47.290 mV	Pass	
45.000 mV @ 10 kHz		43.399	42.485	47.515 mV	Pass	
45.000 mV @ 20 kHz		41.001	38.210	51.790 mV	Pass	
450.00 mV @ 20 Hz		447.61	440.20	459.80 mV	Pass	
450.00 mV @ 45 Hz		450.53	447.80	452.20 mV	Pass	
		449.27	447.80	452.20 mV	Pass	
450.00 mV @ 1 kHz		434.50	427.10	472.90 mV	Pass	
450.00 mV @ 1 kHz 450.00 mV @ 10 kHz		454.50	W 800 7 4 500 W			
		433.60	424.85	475.15 mV	Pass	
450.00 mV @ 10 kHz						

Fluke Model: 187 Multimeter

Instrument Data Sheet

ID Number: 01310 Serial Number: 85690148 Test Run: FOUND-LEFT
Date Tested: 23 December 2015

2900.0 mV @ 45 Hz 2900.0 mV @ 1 kHz 2900.0 mV @ 10 kHz 2900.0 mV @ 10 kHz 2898.6 2884.4 2915.6 mV Pass 2900.0 mV @ 10 kHz 2898.6 2884.4 2915.6 mV Pass 2900.0 mV @ 10 kHz 2898.6 2884.4 2915.6 mV Pass 2900.0 mV @ 100 kHz 2895.6 2852.5 2947.5 mV Pass 2900.0 mV @ 100 kHz 2962.6 FREQUENCY ACCURACY VERIFICATION TEST DC VOLTAGE VERIFICATION TEST DC VOLTAGE VERIFICATION TEST 5.0000 V 4.9995 4.9977 5.0023 V Pass 3.0000 V 3.9996 3.9980 4.0020 V Pass 3.0000 V 2.9997 2.9982 3.0018 V Pass 1.0000 V 1.9998 1.9985 2.0015 V Pass 1.0000 V -4.9993 5.0023 -4.9977 V Pass 5.0000 V -4.9993 5.0023 -4.9977 V Pass 5.0000 V -4.9993 -5.0023 -4.9977 V Pass 5.0000 V -4.9993 -5.0023 -4.9977 V Pass 5.0000 V -4.9993 -5.00.18 -4.99.92 V Pass 5.0000 V -4.99.93 -5.00.18 -4.99.92 V Pass 5.00.00 V -4.99.93 -5.00.22 -4.99.48 V Pass 5.00.00 V -4.99.93 -5.00.52 -4.94.8 V Pass 5.00.00 V -4.00 MEASUREMENT ACCURACY VERIFICATION DCV + ACV MEASUREMENT ACCURACY VERIFICATION 5.0000 mV -4.99.93 -5.00.02 -4.9.83 V Pass 5.00.00 mV -4.99.93 -5.00.07 -4.9.930 Pass 5.00.00 mV -4.99.99 -5.00.07 -4.9.930 Pass 5.00.00 mV -4.99.99 -5.00.07 -4.99.83 TPass	2900.0 mV @ 45 Hz	alt TU	Result	Upper limit Units	Lower limit	Test Result	True Value	Test Description
2900.0 mV @ 1 kHz	2900.0 mV @ 1 kHz	ss	Pass		2884.4	2891.9		2900.0 mV @ 45 Hz
2900.0 mV @ 10 kHz	2900.0 mV @ 10 kHz					2901.8		2900.0 mV @ 1 kHz
2900.0 mV @ 20 kHz	2900.0 mV @ 20 kHz					2898.6		2900.0 mV @ 10 kHz
### Pass	FREQUENCY ACCURACY VERIFICATION TEST DC VOLTAGE VERIFICATION TEST							2900.0 mV @ 20 kHz
PREQUENCY ACCURACY VERIFICATION TEST 20.000 kHz @ 150 mV 20.000 19.998 20.002 kHz Pass DC VOLTAGE VERIFICATION TEST 5.0000 V 4.9995 4.9977 5.0023 V Pass 4.0000 V 3.9996 3.9980 4.0020 V Pass 3.0000 V 2.9997 2.9982 3.0018 V Pass 5.0000 V 1.9998 1.9985 2.0015 V Pass 1.0000 V 0.9998 0.9987 1.0013 V Pass 5.0000 V 4.9993 -5.0023 -4.9977 V Pass 55.000 V 49.994 49.982 50.018 V Pass 55.000 V 49.994 99.982 50.018 V Pass 550.000 V 49.995 499.48 500.52 V Pass 550.00 V 499.95 499.48 500.52 V Pass 500.00 V -499.93 -500.52 -499.88 V Pass 500.00 V -499.93 -500.52 -499.88 V Pass 1000.0 V 999.8 999.8 1001.2 V Pass 1000.0 V 1 kHz 45.031 44.735 45.265 V Pass 150.000 V 1 kHz 45.031 44.735 45.265 V Pass 150.000 V 1 kHz 45.031 44.735 45.265 V Pass 150.000 V 1 kHz 45.031 44.735 45.265 V Pass 150.000 V 1 kHz 45.031 44.735 45.265 V Pass 150.000 W 1 kHz 45.031 44.735 45.265 V Pass 150.000 W 1 kHz 50.000 W 99.99 499.83 500.17 mV Pass 150.000 mV -49.99 -49.99 499.83 500.17 mV Pass 150.000 mV -49.99 -50.017 -499.83 mV Pass 150.000 mV -49.99 -50.017 -499.83 mV Pass 150.000 mV -499.99 -500.17 -499.83 mV Pass 150.000 mV -499.99 -2901.2 -2898.8 mV Pass 150.000 mV -2899.9 -2901.2 -2898.8 mV Pass 150.000 mV -499.99 -2901.2 -2898.8 mV Pass 150.000 mV -499.99 -2901.2 -2898.8 mV Pass 150.000 mV -409.99 -409.99 -409.90 -409.90 -409.90 mV -409.99 -409.90	FREQUENCY ACCURACY VERIFICATION TEST 20.000 kHz @ 150 mV 20.000 lg.998 20.002 kHz DC VOLTAGE VERIFICATION TEST 5.0000 V 4.9995 4.9977 5.0023 V 8.0000 V 2.9997 2.9982 3.0018 V 8.20000 V 1.9998 1.9985 2.0015 V 8.20000 V 1.9998 1.9985 5.0015 V 8.20000 V 1.9998 1.9985 5.0023 4.9977 9.9000 V 1.9994 4.9994 4.9994 4.9992 5.0.018 V 8.20000 V 4.9.994 4.9.992 5.0.018 V 8.20000 V 4.9.993 5.0.018 V 8.20000 V 4.9.993 5.000 V 4.9.993 5.000 V 5.000 MV 5		2 44-14					
DC VOLTAGE VERIFICATION TEST	DC VOLTAGE VERIFICATION TEST 19.998	,,	2 435	5250.0 MV		70.1017		
DC VOLTAGE VERIFICATION TEST 5.0000 V	DC VOLTAGE VERIFICATION TEST 5.0000 V					TEST	URACY VERIFICATION	
5.0000 V	5.0000 V	ss	Pass	20.002 kHz	19.998	20.000		20.000 kHz @ 150 mV
4.0000 V 3.9996 3.9980 4.0020 V Pass 2.0000 V 2.9997 2.9982 3.0018 V Pass 2.0000 V 1.9998 1.9985 2.0015 V Pass 3.0000 V 1.9998 1.9985 2.0015 V Pass 3.0000 V 1.9998 1.9985 2.0015 V Pass 5.0000 V 1.9998 1.9985 2.0015 V Pass 5.0000 V 1.9998 1.9995 4.9987 1.0013 V Pass 5.0000 V 1.9994 1.9994 1.9995 5.0018 V Pass 5.0000 V 1.9994 1.9995 1.0018 1.9995 1.0018 1.9995 1.0018 1.9995 1.0018 1.9995 1.0018 1.9995 1.0018 1.001	4.0000 V 3.9996 3.9980 3.9980 3.000 V 2.9997 2.9982 3.0018 V P2 2.0000 V 1.9998 1.9985 2.0015 V P2 2.0000 V 1.9998 1.9985 2.0015 V P2 2.0000 V 1.0000 V 0.9998 0.9987 1.0013 V P2 5.0000 V 4.9993 -5.0023 -4.9977 V P2 5.0000 V 4.9.993 -50.018 -49.982 V P2 5.00.00 V 4.99.93 -50.018 -49.982 V P2 5.00.00 V 4.99.95 4.99.48 500.52 V P2 6.00.00 V 4.99.93 -500.52 -4.99.48 V P2 6.000.00 V 9.99.8 998.8 1001.2 V P2 6.000 V 9.99.7 -1001.2 -998.8 V P2 6.000 V @ 1 kHz 4.5000 V @ 1 kHz 4.5000 V @ 1 kHz 4.5000 V @ 1 kHz 900.0 V @ 1 kHz 901.8 891.5 908.5 V P2 6.000 mV 50.000 mV 50.000 mV 49.991 -50.000 mV -49.991 -50.000 mV -49.993 -500.17 mV P2 6.000 mV -49.996 -500.17 -499.83 mV P2 6.000 mV -499.96 -500.17 -499.83 mV P3 6.000 mV -490.96 -500.17 -499.83 mV P3 6.000 mV -490.96 -500.17 -499.83 mV P3 6.000 mV -490.96 -500.17 -490.83 mV P3 6.000 mV -490.96 -500.17 -490.83 mV P3 6.000 mV -490.96 -500.17 -490.83 mV P3 6.000 mV -490.96 -490.00 mV -					T	GE VERIFICATION TES	DC VOLTAGE
4.0000 V 3.9996 3.9980 4.0020 V Pass 2.0000 V 2.9997 2.9982 3.0018 V Pass 2.0000 V 1.9998 1.9985 2.0015 V Pass 3.0000 V 1.9998 1.9985 2.0015 V Pass 3.0000 V 1.9998 1.9985 2.0015 V Pass 5.0000 V 1.9998 1.9985 2.0015 V Pass 5.0000 V 1.9998 1.9995 4.9987 1.0013 V Pass 5.0000 V 1.9994 1.9994 1.9995 5.0018 V Pass 5.0000 V 1.9994 1.9995 1.0018 1.9995 1.0018 1.9995 1.0018 1.9995 1.0018 1.9995 1.0018 1.9995 1.0018 1.001	4.0000 V 3.9996 3.9980 3.9980 3.000 V 2.9997 2.9982 3.0018 V P2 2.0000 V 1.9998 1.9985 2.0015 V P2 2.0000 V 1.9998 1.9985 2.0015 V P2 2.0000 V 1.0000 V 0.9998 0.9987 1.0013 V P2 5.0000 V 4.9993 -5.0023 -4.9977 V P2 5.0000 V 4.9.993 -50.018 -49.982 V P2 5.00.00 V 4.99.93 -50.018 -49.982 V P2 5.00.00 V 4.99.95 4.99.48 500.52 V P2 6.00.00 V 4.99.93 -500.52 -4.99.48 V P2 6.000.00 V 9.99.8 998.8 1001.2 V P2 6.000 V 9.99.7 -1001.2 -998.8 V P2 6.000 V @ 1 kHz 4.5000 V @ 1 kHz 4.5000 V @ 1 kHz 4.5000 V @ 1 kHz 900.0 V @ 1 kHz 901.8 891.5 908.5 V P2 6.000 mV 50.000 mV 50.000 mV 49.991 -50.000 mV -49.991 -50.000 mV -49.993 -500.17 mV P2 6.000 mV -49.996 -500.17 -499.83 mV P2 6.000 mV -499.96 -500.17 -499.83 mV P3 6.000 mV -490.96 -500.17 -499.83 mV P3 6.000 mV -490.96 -500.17 -499.83 mV P3 6.000 mV -490.96 -500.17 -490.83 mV P3 6.000 mV -490.96 -500.17 -490.83 mV P3 6.000 mV -490.96 -500.17 -490.83 mV P3 6.000 mV -490.96 -490.00 mV -							
3.0000 V 2.9997 2.9982 3.0018 V Pass 2.0000 V 1.9998 1.9995 2.0015 V Pass 2.0000 V 1.9998 1.9995 1.0000 V Pass 5.0000 V -4.9993 -5.0023 -4.9977 V Pass 50.000 V 49.994 49.982 50.018 V Pass 50.000 V 49.993 -5.0023 -4.9977 V Pass 50.000 V 49.993 -5.00.18 -49.982 V Pass 50.000 V 49.993 -5.00.18 -49.982 V Pass 50.000 V 49.993 -5.00.18 -49.982 V Pass 50.000 V 49.995 499.48 500.52 V Pass 50.000 V -499.93 -500.52 -499.48 V Pass 1.000.0 V 999.8 998.8 1001.2 V Pass 1.000.0 V 999.8 998.8 1001.2 V Pass 1.000.0 V -999.7 -1001.2 -998.8 V Pass 1.000.0 V Pass 500.00 V 1 kHz 45.031 44.735 45.265 V Pass 45.000 V 8 1 kHz 450.34 447.35 45.265 V Pass 900.0 V 8 1 kHz 900.0 V 8 1 kHz 901.8 891.5 908.5 V Pass 500.00 V 8 1 kHz 900.0 V 8 1 kHz 900.0 V 9 1 kHz 901.8 891.5 908.5 V Pass 900.0 V 8 1 kHz 900.0 V 9 1 kHz 901.8 891.5 908.5 V Pass 900.0 V 9 1 kHz 900.0 V 9 1 kHz 901.8 891.5 908.5 V Pass 900.0 V 9 1 kHz 900.0 V 9 1 kHz 901.8 891.5 908.5 V Pass 900.0 V 9 1 kHz 99.99 499.83 500.17 W Pass 900.0 W 99.99 499.83 200.17 MV Pass 900.0 W 99.99 499.83 200.17 MV Pass 900.0 W 99.99 499.83 200.17 MV Pass 900.0 W 99.99 99.99 499.83 200.17 MV Pass 900.0 W 99.99 99.99 99.83 200.17 MV Pass 900.0 W 99.99 99.99 99.89 898.8 2901.2 W Pass 900.0 W 99.99 99.99 99.89 898.8 2901.2 W Pass 900.0 W 99.99 99.99 99.99 99.89 898.8 2901.2 W Pass 900.0 W 99.99 99.99 99.99 99.99 99.89 898.8 2901.2 W Pass 900.0 W 99.99	3.0000 V 2.9997 2.9982 3.0018 V 2.0000 V 1.9998 1.9985 2.0015 V 2.0000 V 0.9998 0.9987 1.0013 V 2.0000 V -4.9993 -5.0023 -4.9977 V 2.9000 V 49.994 49.982 50.018 V 2.0000 V -49.993 -50.000 V -49.993 -50.018 V 2.0000 V -49.993 -50.000 V -49.993 -50.018 V 2.0000 V -49.993 -50.018 V 2.0000 V -49.993 -50.018 V 2.0000 V 2.0000 V -49.993 -50.018 V 2.0000 V 2.0000 V -49.993 -50.018 V 2.0000 V 2.0000 V -49.995 -50.018 V 2.0000 V 2.0000 V -49.995 -50.018 V 2.0000 V 2.0000 V -49.995 -50.018 V 2.0000 V 2.00000 V 2.0000 V 2.00000 V 2.000000 V 2.00000 V 2.000000 V 2.000000 V 2.000000 V 2.000000 V 2.000000 V 2.000000 V 2.0000000 V 2.0000000 V 2.00000000 V 2.000000000 V 2.000000000000000000000000000000000000	ss	Pass	5.0023 V	4.9977	4.9995		
2.0000 V	2.0000 V	ss	Pass	4.0020 V	3.9980	3.9996		
1.0000 V	1.0000 V	ss	Pass	3.0018 V	2.9982	2.9997		3.0000 V
-5.0000 V	-5.0000 V	ss	Pass	2.0015 V	1.9985	1.9998		2.0000 V
50.000 V	50.000 V	ss	Pass	1.0013 V	0.9987	0.9998		1.0000 V
-50.000 V	-50.000 V	ss	Pass	-4.9977 V	-5.0023	-4.9993		-5.0000 V
## ## ## ## ## ## ## ## ## ## ## ## ##	500.00 V	ss	Pass	50.018 V	49.982	49.994		50.000 V
-500.00 V	-500.00 V	ss	Pass	-49.982 V	-50.018	-49.993		-50.000 V
-500.00 V	-500.00 V			500.52 V	499.48	499.95		500.00 V
1000.0 V 999.8 998.8 1001.2 V Pass -999.7 -1001.2 -998.8 V Pass -1000.0 V -999.7 -1001.2 -998.8 V Pass -990.0 V @ 1 kHz	1000.0 V 999.8 998.8 1001.2 V Pa -1000.0 V -999.7 -1001.2 -998.8 V Pa DCV + ACV MEASUREMENT ACCURACY VERIFICATION 4.5000 V @ 1 kHz 4.5031 4.4735 4.5265 V Pa 45.000 V @ 1 kHz 45.031 44.735 45.265 V Pa 450.00 V @ 1 kHz 450.34 447.35 452.65 V Pa 900.0 V @ 1 kHz 901.8 891.5 908.5 V Pa 50.000 mV -901.8 891.5 908.5 V Pa -50.000 mV -49.991 -50.070 -49.930 mV Pa -500.00 mV -49.996 -500.17 -499.83 mV Pa -500.00 mV -499.96 -500.17 -499.83 mV Pa				-500.52	-499.93		-500.00 V
-1000.0 V -999.7 -1001.2 -998.8 V Pass DCV + ACV MEASUREMENT ACCURACY VERIFICATION 4.5000 V @ 1 kHz	-1000.0 V -999.7 -1001.2 -998.8 V Pa DCV + ACV MEASUREMENT ACCURACY VERIFICATION 4.5000 V @ 1 kHz	770	7 77 7					1000.0 V
4.5000 V @ 1 kHz	4.5000 V @ 1 kHz	7						-1000.0 V
45.000 V @ 1 kHz	45.000 V @ 1 kHz					CION	ACCURACY VERIFICAT	DCV + ACV MEASUREMENT AC
45.000 V @ 1 kHz	45.000 V @ 1 kHz	ss	Pass	4.5265 V	4.4735	4.5031		4.5000 V @ 1 kHz
450.00 V @ 1 kHz	450.00 V @ 1 kHz							45.000 V @ 1 kHz
900.0 V @ 1 kHz 901.8 891.5 908.5 V Pass 50.000 mV 50.003 49.930 50.070 mV Pass -50.000 mV -49.991 -50.070 -49.930 mV Pass 500.00 mV 499.99 499.83 500.17 mV Pass -500.00 mV -499.96 -500.17 -499.83 mV Pass 2900.0 mV 2900.0 2898.8 2901.2 mV Pass -2900.0 mV -2899.9 -2901.2 -2898.8 mV Pass 0CmV+ACmV MEASUREMENT ACCURACY VERIFICATION 45.000 mV @ 1 kHz 44.925 42.350 47.650 mV Pass 450.00 mV @ 1 kHz 449.18 447.35 452.65 mV Pass	900.0 V @ 1 kHz 901.8 891.5 908.5 V Pa 50.000 mV 50.003 49.930 50.070 mV Pa -50.000 mV -49.991 -50.070 -49.930 mV Pa 500.00 mV 499.99 499.83 500.17 mV Pa -500.00 mV -499.96 -500.17 -499.83 mV Pa 2900.0 mV 2900.0 mV 2900.0 2898.8 2901.2 mV Pa							450.00 V @ 1 kHz
-50.000 mV	-50.000 mV -49.991 -50.070 -49.930 mV Pa 500.00 mV 499.99 499.83 500.17 mV Pa -500.00 mV -499.96 -500.17 -499.83 mV Pa 2900.0 mV 2900.0 2898.8 2901.2 mV Pa							900.0 V @ 1 kHz
-50.000 mV	-50.000 mV -49.991 -50.070 -49.930 mV Pa 500.00 mV 499.99 499.83 500.17 mV Pa -500.00 mV -499.96 -500.17 -499.83 mV Pa 2900.0 mV 2900.0 2898.8 2901.2 mV Pa							
-50.000 mV	-50.000 mV -49.991 -50.070 -49.930 mV Pa 500.00 mV 499.99 499.83 500.17 mV Pa -500.00 mV -499.96 -500.17 -499.83 mV Pa 2900.0 mV 2900.0 2898.8 2901.2 mV Pa	ss	Pass	50.070 mV	49.930	50.003		50.000 mV
499.99 499.83 500.17 mV Pass -500.00 mV -499.96 -500.17 -499.83 mV Pass 2900.0 mV 2900.0 2898.8 2901.2 mV Pass -2900.0 mV -2899.9 -2901.2 -2898.8 mV Pass -2900.0 mV Pass -2899.9 -2901.2 -2898.8 mV Pass -2900.0 mV 44.925 42.350 47.650 mV Pass 450.00 mV @ 1 kHz 449.18 447.35 452.65 mV Pass -2900.0 mV Pass -2900.0 mV @ 1 kHz 449.18 447.35 452.65 mV Pass -2900.0 mV @ 1 kHz 449.0 mV @ 1 kHz 449.18 447.35 452.65 mV Pass -2900.0 mV @ 1 kHz 449.0 mV @ 1 kHz	500.00 mV 499.99 499.83 500.17 mV Pa -500.00 mV -499.96 -500.17 -499.83 mV Pa 2900.0 mV 2900.0 2898.8 2901.2 mV Pa			-49.930 mV	-50.070	-49.991		-50.000 mV
-500.00 mV	-500.00 mV -499.96 -500.17 -499.83 mV Pa 2900.0 mV 2900.0 2898.8 2901.2 mV Pa				499.83			500.00 mV
2900.0 mV 2900.0 2898.8 2901.2 mV Pass -2900.0 mV -2899.9 -2901.2 -2898.8 mV Pass -2901.2 -2901.2 -2898.8 mV Pass -2901.2 -2901.2 -2898.8 mV Pass -2901.2 -290	2900.0 mV 2900.0 2898.8 2901.2 mV Pa							-500.00 mV
-2900.0 mV -2899.9 -2901.2 -2898.8 mV Pass	1000 0 1000				2898.8			2900.0 mV
45.000 mV @ 1 kHz 44.925 42.350 47.650 mV Pass 450.00 mV @ 1 kHz 449.18 447.35 452.65 mV Pass				-2898.8 mV	-2901.2	-2899.9		-2900.0 mV
450.00 mV @ 1 kHz 449.18 447.35 452.65 mV Pass	CmV+ACmV MEASUREMENT ACCURACY VERIFICATION					ON	ACCURACY VERIFICATI	CmV+ACmV MEASUREMENT ACC
450.00 mV @ 1 kHz 449.18 447.35 452.65 mV Pass	45.000 mV @ 1 kHz 44.925 42.350 47.650 mV D=	99	Page	47.650 mV	42 350	44.925		45.000 mV @ 1 kHz
2000 0 11 0 1 1 11								

Instrument Data Sheet

Fluke Model: 187 Multimeter

ID Number: 01310 Serial Number: 85690148

Test Run: FOUND-LEFT Date Tested: 23 December 2015

Test Description	True Value	Test Result	Lower limit	Upper limit Units	Result	TUF
190.00 Ohm		190.04	189.80	190.20 Ω	Pass	
1.9000 kOhm		1.9000	1.8988	1.9012 kΩ	Pass	
19.000 kOhm		19.000	18.988	19.012 kΩ		
190.00 kOhm		190.00	189.88	190.12 kΩ	Pass	
1.9000 MOhm		1.8997	1.8967		Pass	
19.000 MOhm		19.003	18.806	1.9033 ΜΩ	Pass	
100.0 MOhm		99.8	96.8	19.194 ΜΩ	Pass	
		33.0	90.0	103.2 MΩ	Pass	
CONDUCTAN	NCE VERIFICATION TE	ST				
10.00 ns						
10.00 115		10.02	9.80	10.20 ns	Pass	
AC CURREN	T TEST VERIFICATION					
45 000 = 7 6 1 1						
45.000 mA @ 1 kHz		45.047	44.642	45.358 mA	Pass	
350.00 mA @ 1 kHz		350.39	347.32	352.68 mA	Pass	
450.00 µA @ 1 kHz		450.32	446.42	453.58 µA	Pass	
4500.0 μA @ 1 kHz		4502.9	4465.7	4534.3 µA	Pass	
DC CURREN	T VERIFICATION TEST					
45.000 mA		45.011	44.922	45.078 mA	Pass	
350.00 mA		350.15	349.45	350.55 mA	Pass	
450.00 μA		450.01	448.67	451.33 µA	Pass	
4500.0 µА		4500.0	4488.5	4511.5 µА	Pass	
AC CURRENT V	ERIFICATION TEST (C	cont.)				
1.5000 A @ 1 kHz		4.5039	4 4205	4		
10.000 A @ 1 kHz		10.007	4.4305 9.845	4.5695 A 10.155 A	Pass	
DC CURRENT I	EDITION TO THE					
DC CORRENT V.	ERIFICATION TEST (C	ont.)				
1.5000 A		4.5003	4.4765	4.5235 A	Pass	
.0.000 A		10.000	9.948	10.052 A	Pass	
CAPACITA	NCE VERIFICATION TE	STS				
0.900 nF		0.007	0.000	12 200 111		
0.10 nF		0.897 9.19	0.877	0.923 nF	Pass	1.59
0.1 nF		90.1	8.96	9.24 nF	Pass	
.000 µF		1.000	88.7 0.985	91.5 nF	Pass	
		2.000	0.900	1.015 uF	Pass	

Instrument Data Sheet

Fluke Model: 187 Multimeter

ID Number: 01310

Serial Number: 85690148

Test Run: FOUND-LEFT Date Tested: 23 December 2015

Test Results

Test Description TEMPERATURE	True Value ACCURACY VERIFICAT	Test Result	Lower limit	Upper limit	Units	Result	TUR
-10.0 °C							
0.0 °C		-9.9	-11.1	-8.9	°C	Pass	
100.0 °C		0.0	-1.0	1.0	°C	Pass	
350.0 °C		100.1	98.0	102.0	°C	Pass	
30.0 6		350.2	345.5	354.5	°C	Pass	

***** End of Certificate *****

Certificate Number A2062914 Issue Date: 12/23/15

Certificate of Calibration

Customer: FNVIRONMENTAL ENGINEERING & MEASUREMENT SERVICES

1128 NW 39TH DRIVE

GAINESVILLE, FL 32605

FEDEX

P.O. Number:

ID Number: 01311

Description:

DIGITAL MULTIMETER

Manufacturer: FLUKE

Model Number: 287

Serial Number: 95740135

Technician:

MIKE CASOLI

On-Site Calibration:

Comments:

Calibration Date:

Calibration Due:

Procedure:

12/23/2015 12/23/2016

METCAL FLUKE 287

Rev: 6/15/2015

Temperature:

F 68 42 % RH

Humidity: As Found Condition: IN TOLERANCE Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

FAR

JACK SHULER, QUALITY MANAGER

Jack Shules

Calibration Standards

Asset Number 1727902

Manufacturer FLUKE

Model Number 5522A/SC1100 **Date Calibrated**

10/14/2015

Cal Due 10/14/2016

Technical Maintenance, Inc.

Phone: 813-978-3054 Fax 813-978-3758

ANSI/NCSL Z540-1-1994

Instrument Data Sheet

Fluke Model: 287 Multimeter

ID Number: 01311 Serial Number: 95740135

Test Description	True Value	Test Result	Lower limit	Upper limit Units	Result TU
IDENTIFICATION &	FIRMWARE REVISION				
Same Sauce Company					
Manufacturer: FLUKE fodel: 287					
Serial Number: 95740	135				
Firmware Level: V1.00					
TONE WARN	ING VERIFICATION				
Fone Warning Functiona	1				Pass
	CCURACY VERIFICATION				
		0.001	-0.020	0.020 mV	Pass
0.000 mV 0.025 mV		0.025	0.005	0.045 mV	Pass
-0.025 mV		-0.025	-0.045	-0.005 mV	Pass
50.000 mV		50.001	49.955	50.045 mV	Pass
500.00 mV		500.00	499.86	500.14 mV -249.92 mV	Pass
-250.00 mV 50.00 mV		-249.99 50.00	-250.08 49.97	50.03 mV	Pass
DCmV + ACmV MEASUREME	ENT ACCURACY VERIFI	CATION			
250.00 mV @ 35 kHz		248.48	237.10	262.90 mV	Pass
RESISTANCE MEASUREMEN	NT ACCURACY VERIFIC				
0.00 Ohm		0.01	-0.10	0.10 Ωs	Pass
1.000 Ohm		0.990	0.899	1.101 Ωs	Pass
190.00 Ohm		190.02	189.81	190.19 Ωs 1.90115 kΩs	Pass
1.90000 kOhm		1.90019	1.89885	19.012 kΩs	Pass
19.000 kOhm	190.0100	19.005 190.000	189.895	190.125 kΩs	Pass
190.000 kOhm 1.9000 MOhm	190.0100	1.9009	1.8967	1.9032 MΩs	Pass
10.000 MOhm		10.007	9.846	10.154 MΩs	Pass
100.00 MOhm	100.300	100.00	92.08	108.52 MΩs	Pass
	CCURACY VERIFICATION				
5.000 mV @ 20 Hz		5.001	4.865	5.135 mV	Pass
50.000 mV @ 65 kHz		48.623	48.210	51.790 mV	Pass
50.00 mV @ 100 kHz		49.06	47.85	52.15 mV	Pass
250.00 mV @ 65 kHz		246.61	240.85	259.15 mV	Pass
500.00 mV @ 45 Hz		499.63	498.25	501.75 mV	Pass

Fluke Model: 287 Multimeter

Instrument Data Sheet

ID Number: 01311 Serial Number: 95740135

est Results		-1/				
est Description	True Value	Test Result	Lower limit	Upper limit Units	Result	TUR
FREQUENCY MEASUREMENT	ACCURACY VERIFICA					
5.000 Hz @ 500 mV		45.000	44.986	45.014 Hz	Pass	
50.00 kHz @ 600 mV		950.00	949.90	950.10 kHz	Pass	
ACV MEASUREMENT AC	CCURACY VERIFICATIO					
0.1000 V @ 60 Hz		0.1010	0.0952	0.1048 V	Pass	
0.5000 V @ 10 kHz		0.4974	0.4945	0.5055 V	Pass	
3.0000 V @ 100 kHz		3.0469	2.8160	3.1840 V	Pass	
15.000 V @ 100 kHz		15.000	14.435	15.565 V	Pass	
500.00 V @ 10 kHz		499.41	497.75	502.25 V	Pass	
1000.0 V @ 10 kHz		999.4	993.5	1006.5 V	Pass	
DCV MEASUREMENT AG	CCURACY VERIFICATION					
4.0000 V		4.0000	3.9988	4.0012 V	Pass	
-40.000 V		-40.000	-40.012	-39.988 V	Pass	
400.00 V		399.99	399.86	400.14 V	Pass	
600.0 V		600.0	599.6	600.4 V	Pass	
DCV + ACV MEASUREMEN						
0.2000 V		0.2001	0.1978	0.2023 V	Pass	
2.0000 V @ 5 kHz		2.0047	1.9660	2.0340 V	Pass	
DIODE MEASUREMENT	ACCURACY VERIFICAT	ION				
1.0000 V		1.0020	0.9880	1.0120 V	Pass	
Beeper is Operational					Pass	
ACIUA MEASUREMENT	ACCURACY VERIFICA	TION				
500.00 µA @ 60 Hz		500.18	496.80	503.20 uA	Pass	
500.00 μA @ 10 kHz		500.25	496.80	503.20 µA	Pass	
5000.0 μA @ 10 kHz		5003.1	4969.0	5031.0 µA	Pass	2
	r ACCURACY VERIFICA					
500.00 µA		499.96	499.43 4996.1	500.57 µA 5003.9 µA	Pass Pass	

Annual Data Shoot

Fluke Model: 287 Multimeter

Instrument Data Sheet

ID Number: 01311 Serial Number: 95740135

est Description	True Value	Test Result	Lower limit	Upper limit Units	Result	TUR
4.000 mA @ 20 Hz		3.989	3.940	4.060 mA	Pass	2 17
30.000 mA @ 10 kHz		30.029	29.800	30.200 mA	Pass	3.17
300.00 mA @ 10 kHz		300.37	284.60	315.40 mA	Pass	
400.00 mA @ 60 Hz		400.06	397.55	402.45 mA	Pass	
DCIMA MEASUREMENT ACCU	RACY VERIFICAT	ION				
0.100 mA		0.102	0.090	0.110 mA	Pass	
50.000 mA		49.991	49.965	50.035 mA	Pass	
400.00 mA		399.92	399.38	400.62 mA	Pass	
ACI MEASUREMENT ACCURA	CY VERIFICATIO	on ======				
5.0000 A @ 1 kHz		5.0034	4.9580	5.0420 A	Pass	
5.000 A @ 1 kHz		5.001	4.955	5.045 A	Pass	
DCI MEASUREMENT ACCURA	CY VERIFICATION	NC				
5.0000 A		5.0002	4.9840	5.0160 A	Pass	
10.000 A		10.001	9.968	10.032 A	Pass	
TEMPERATURE MEASUREMENT	ACCURACY VERI	FICATION				
0.0 °C		-0.1	-1.0	1.0 °C	Pass	
100.0 °C		99.9	98.0	102.0 °C	Pass	
1000.0 °C		1000.0	989.0	1011.0 °C	Pass	
CAPACITANCE MEASUREMENT	ACCURACY VERIF	CICATION				
0.900 nF		0.899	0.886	0.914 nF	Pass	
9.10 nF		9.09	8.96	9.24 nF	Pass	
90.1 nF		89.9	88.7	91.5 nF	Pass	
1.000 µF		1.000	0.985	1.015 µF 1.06 µF	Pass	
1.000 pt		1.00	0.94			

Certificate Number A2062915 Issue Date: 12/23/15

Certificate of Calibration

Page 1 of 4

Customer: ENVIRONMENTAL ENGINEERING & MEASUREMENT SERVICES

1128 NW 39TH DRIVE

GAINESVILLE, FL 32605

FEDEX

P.O. Number:

ID Number: 01312

Description:

DIGITAL MULTIMETER

Manufacturer: FLUKE

Model Number: 287

Serial Number: 95740243

Technician:

MIKE CASOLI

On-Site Calibration:

Comments:

Calibration Date:

Calibration Date:

Calibration Due:

Procedure:

12/23/2015 12/23/2016 METCAL FLUKE 287

EEMS#

Rev: 6/15/2015

Temperature:

Humidity:

68 F

42 % RH

As Found Condition: IN TOLERANCE

Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

FOR

Jack Shuler, QUALITY MANAGER

Calibration Standards

Asset Number 1727902 Manufacturer FLUKE

Model Number

5522A/SC1100

Date Calibrated

10/14/2015

Cal Due 10/14/2016

Technical Maintenance, Inc.

Instrument Data Sheet

Fluke Model: 287 Multimeter

ID Number: 01312 Serial Number: 95740243

Test Run: FOUND-LEFT Date Tested: 23 December 2015

Test Results						
Test Description	True Value	Test Result	Lower limit	Upper limit Units	Result	TUR
IDENTIFICATION &	FIRMWARE REVISION	====			result	TOK
		====				
Manufacturer: FLUKE						
Model: 287						
Serial Number: 95740	243					
Firmware Level: V1.00						
	ING VERIFICATION					
Tone Warning Functiona						
=======================================					Pass	
DCmV MEASUREMENT A		ON				
0.000 mV		0.000	0.000	2 222 1		
0.025 mV		0.024	-0.020 0.005	0.020 mV	Pass	
-0.025 mV		-0.025	-0.045	0.045 mV -0.005 mV	Pass	
50.000 mV		50.000	49.955	50.045 mV	Pass	
500.00 mV		500.01	499.86	500.14 mV	Pass	
-250.00 mV		-249.98	-250.08	-249.92 mV	Pass	
50.00 mV		50.02	49.97	50.03 mV	Pass	
DCmV + ACmV MEASUREMEN		CATION				
250.00 mV @ 35 kHz		248.23	237.10	262.90 mV	Pass	
RESISTANCE MEASUREMENT	ACCURACY VERIFICA					
		====				
0.00 Ohm		0.01	-0.10	0.10 Ωs	Pass	
1.000 Ohm 190.00 Ohm		0.990	0.899	1.101 Ωs	Pass	
1.90000 kOhm		190.02	189.81	190.19 Ωs	Pass	
19.000 kOhm		1.89989	1.89885	1.90115 kΩs	Pass	
190.000 kOhm	189.9700	19.002 190.000	18.988	19.012 kΩs	Pass	
1.9000 MOhm	109.9700	1.8994	189.855	190.085 kΩs	Pass	
10.000 MOhm		9.999	1.8967 9.846	1.9032 MΩs	Pass	
100.00 MOhm	99.700	100.00	91.52	10.154 MΩs 107.88 MΩs	Pass Pass	
ACmV MEASUREMENT ACC	URACY VERIFICATION	====				
5.000 mV @ 20 Hz		4.990	A 96E	E 125		
50.000 mV @ 65 kHz		48.859	4.865 48.210	5.135 mV	Pass	
50.00 mV @ 100 kHz		49.05	47.85	51.790 mV	Pass	
250.00 mV @ 65 kHz		246.75	240.85	52.15 mV 259.15 mV	Pass	
500.00 mV @ 45 Hz		499.54	498.25		Pass	
			430.23	501.75 mV	Pass	

Fluke
Model: 287
Multimeter

Instrument Data Sheet

ID Number: 01312 Serial Number: 95740243 Test Run: FOUND-LEFT
Date Tested: 23 December 2015

Test Description	True Value	Test Result	Lower limit	Upper limit Units	Result	TUR
FREQUENCY MEASUREMENT	ACCURACY VERIFICA	TION				
45.000 Hz @ 500 mV		45.000	44.986	45.014 Hz	Pass	
950.00 kHz @ 600 mV		950.00	949.90	950.10 kHz	Pass	
ACV MEASUREMENT ACC						
0.1000 V @ 60 Hz		0.0976	0.0952	0.1048 V	Pass	
0.5000 V @ 10 kHz		0.4956	0.4945	0.5055 V	Pass	
3.0000 V @ 100 kHz		3.1735	2.8160	3.1840 V	Pass	
15.000 V @ 100 kHz		14.974	14.435	15.565 V	Pass	
500.00 V @ 10 kHz		499.32	497.75	502.25 V	Pass	
1000.0 V @ 10 kHz		999.1	993.5	1006.5 V	Pass	
DCV MEASUREMENT ACC						
4.0000 V		4.0001	3.9988	4.0012 V	Pass	
-40.000 V		-40.001	-40.012	-39.988 V	Pass	
400.00 V		400.00	399.86	400.14 V	Pass	
600.0 V		600.0	599.6	600.4 V	Pass	
DCV + ACV MEASUREMENT	ACCURACY VERIFICAT	TION				
0.2000 V		0.1999	0.1978	0.2023 V	Pass	
2.0000 V @ 5 kHz		2.0038	1.9660	2.0340 V	Pass	
DIODE MEASUREMENT AC	CURACY VERIFICATION	DN				
1.0000 V		1.0081	0.9880	1.0120 V	Pass	
eeper is Operational					Pass	
ACIUA MEASUREMENT A						
500.00 µA @ 60 Hz		499.95	496.80	503.20 µA	Pass	
500.00 µA @ 10 kHz		500.12	496.80	503.20 µA	Pass	1.1
5000.0 μA @ 10 kHz		5001.6	4969.0	5031.0 µA	Pass	
DCIUA MEASUREMENT A						
500.00 μA		500.00	499.43	500.57 µA	Pass	
- color par						

ACIMA MEASUREMENT ACCURACY VERIFICATION

Fluke Model: 287 Multimeter

Instrument Data Sheet

ID Number: 01312 Serial Number: 95740243

Test Description	True Value	Test Result	Lower limit	Upper limit Units	Result	TUR
						2011
4.000 mA @ 20 Hz		3.973	3.940	4.060 mA		
30.000 mA @ 10 kHz		30.019	29.800	30.200 mA	Pass	2 1
300.00 mA @ 10 kHz		300.29	284.60	315.40 mA	Pass	3.1
400.00 mA @ 60 Hz		399.99	397.55	402.45 mA	Pass	
DCImA MEASUREMENT A	ACCURACY VERIFICAT	ION				
0.100 mA		0.110	0.000			
50.000 mA		49.993	0.090 49.965	0.110 mA	Pass	
400.00 mA		399.99	399.38	50.035 mA 400.62 mA	Pass Pass	
ACI MEASUREMENT ACC	CURACY VERIFICATION	1				
5.0000 A @ 1 kHz		5.0030	4.0500	L 1930		
5.000 A @ 1 kHz		4.998	4.9580	5.0420 A 5.045 A	Pass Pass	
DCI MEASUREMENT ACC	URACY VERIFICATION					
5.0000 A		E 0014				
10.000 A		5.0014	4.9840 9.968	5.0160 A 10.032 A	Pass Pass	
TEMPERATURE MEASUREME	NT ACCURACY VERIFI	CATION				
.0 °C		0.0	-1.0	1.0 °C	Pass	
00.0 °C		100.0	98.0	102.0 °C		
000.0 °C		1000.1	989.0	1011.0 °C	Pass	
CAPACITANCE MEASUREMENT	T ACCURACY VERIFIC	ATION				
.900 nF		0.886	0.886	0.014-5	2000	40.00
.10 nF		9.08	8.96	0.914 nF 9.24 nF	Pass	0.97
0.1 nF		90.1	88.7	91.5 nF	Pass	
.000 µF		1.001	0.985	1.015 µF	Pass	
.00 µF		1.00	0.94	1.06 uF	Pass	

THE EPPLEY LABORATORY, INC.

12 Sheffield Avenue, PO Box 419, Newport, Rhode Island USA 02840 Phone: 401.847.1020 Fax: 401.847.1031 Email: info@eppleylab.com

Calibration Certificate

Page 1 of 2

01246

Instrument:

Precision Spectral Pyranometer, Model PSP, Serial Number 34341F3

Procedure:

This pyranometer was compared in Eppley's Integrating Hemisphere according to procedures described in ISO 9847 Section 5.3.1 and Technical Procedure, TP01 of

The Eppley Laboratory, Inc.'s Quality Assurance Manual on Calibrations.

Transfer Standard: Eppley Precision Spectral Pyranometer, Model PSP, Serial Number 21231F3

Results:

Sensitivity:

 $S = 9.41 \, \mu V / Wm^{-2}$

Uncertainty:

 $U_{95} = \pm 0.91\%$ (95% confidence level, k=2)

Resistance:

699 Ω at 23°C

Date of Test:

December 29, 2015

Traceability:

This calibration is traceable to the World Radiation Reference (WRR) through comparisons with Eppley's AHF standard self-calibrating cavity pyrheliometers which participated in the Eleventh International Pyrheliometric Comparisons (IPC XI) at Davos, Switzerland in September-October 2010. Unless otherwise stated in the remarks section below or on the Sales Order, the results of this calibration are "AS

FOUND / AS LEFT".

Due Date:

Eppley recommends a minimum calibration cycle of five (5) years but encourages

annual calibrations for highest measurement accuracy.

Customer:

EEMS

Gainesville, FL

Signatures:

enter /M. VIEIRA

Eppley SO:

64603

Date of Certificate: January 5, 2016

Remarks:

With Amplifier # 10765 Gain = 75.91 So 1 Volt Out = 1400 Wm⁻²

The Eppley Laboratory, Inc. 12 Sheffield Ave. P.O. Box 419

Phone # 401-847-1020 Fed. ID No. 05-0136490

s.o. No. 64603

EEMS# 12/30/2015

01245 /01246

Name / Address

EEMS

Att: Erik Hebert 1128 NW 39th Drive Gainesville, FL 32605 Ship To

12/29/2015

EEMS

Att: Eric Hebert 1128 NW 39th Drive Gainesville, FL 32605 Rege 2 of 2

P.O... Verbal Ship Date 1/12/2016 Ship Via UPS COLLECT

Reset Amplifier # 10765

Recalibration of Model PSP# 34341F3 W Case, Shuld a Cable

Set Gain so $1V = 1400 \text{ Wm}^2$ $1400 \times S = \sqrt{\text{Full}}$ $V_{\text{Full}} = 13174$ $V_{\text{Full}} = 13174$

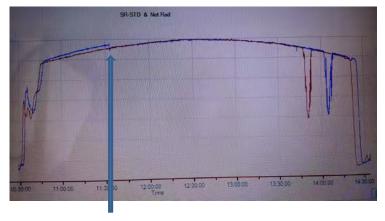
Gain = 11/V = 175.91

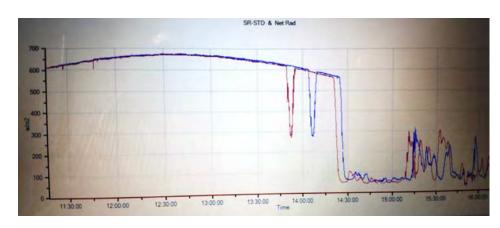
Terms Credit Card

Made in USA

FOB Newport, RI USA

Site EEMS MOBILE LAB 2


Sensor # P'	Y48645/T	ranslator	# FFN	JS 012	4 0


Sensor # F 140045/ Hansiator # ELIVIS 01240						
Date&Time	SR-RMY Field Std	Eppley Std				
	W/M2	W/M2				
11/01/2016 11:00	658.71	649.5				
11/01/2016 12:00	691.75	693.4				
11/01/2016 15:00	112.92	119.5				
11/01/2016 16:00	51.14	49.2				
12/01/2016 03:00	1.4	-2.4				
12/01/2016 08:00	40.84	39.8				
12/01/2016 09:00	59.8	67.2				
12/01/2016 10:00	297.2	302.5				
12/01/2016 11:00	624.7	623.2				
12/01/2016 12:00	669.29	666.7				
12/01/2016 15:00	116.84	124.7				

SR-RMY Field	Uncorr	ected	Corre	ected
corrected = (x-b)/m	error		error	
W/M2	W/M2	% diff	W/M2	% diff
656.9	9.21	1.4%	7.4	1.1%
689.6	-1.65	-0.2%	-3.8	-0.5%
115.1	-6.58	-5.5%	-4.4	-3.7%
53.8	1.94	3.9%	4.6	9.3%
4.4	3.8		6.8	
43.6	1.04	2.6%	3.8	9.5%
62.4	-7.4	-11.0%	-4.8	-7.2%
298.0	-5.3	-1.8%	-4.5	-1.5%
623.1	1.5	0.2%	-0.1	0.0%
667.4	2.59	0.4%	0.7	0.1%
119.0	-7.86	-6.3%	-5.7	-4.6%

Average =

slope = 1.00748 intercept = -3.05909

-0.79 -1.6%

0.00

0.00

Adjusted

C'i - A -l'int- d	EEMS# =	01245	01244	
Site:AuditVan1	_	Eppley	Licor	
Date	Time	SR Std : Value		% diff
15/09/2016	10:19	497.7	499.5	0.4%
15/09/2016	10:20	512.3	514.9	0.5%
15/09/2016	10:21	511.0	525.3	2.8%
15/09/2016	10:22	413.9	441.2	6.6%
15/09/2016	10:23	279.5	287.7	2.9%
15/09/2016	10:24	264.8	260.9	-1.5%
15/09/2016	10:25	310.1	300.1	-3.2%
15/09/2016	10:26	295.2	301.1	2.0%
15/09/2016	10:27	258.9	261.7	1.1%
15/09/2016	10:28	252.7	250.2	-1.0%
15/09/2016	10:29	272.1	263.4	-3.2%
15/09/2016	10:30	272.5	273.1	0.2%
15/09/2016	10:31	279.4	274.4	-1.8%
15/09/2016	10:32	284.9	285.9	0.4%
15/09/2016	10:33	291.8	284.0	-2.7%
15/09/2016	10:34	369.8	348.3	-5.8%
15/09/2016	10:35	451.3	468.0	3.7%
15/09/2016	10:36	306.4	317.5	3.6%
15/09/2016	10:37	306.0	297.5	-2.8%
15/09/2016	10:38	325.4	325.8	0.1%
15/09/2016	10:39	317.2	316.6	-0.2%
15/09/2016	10:40	318.6	314.1	-1.4%
15/09/2016	10:41	351.4	355.3	1.1%
15/09/2016	10:42	274.9	284.5	3.5%
15/09/2016	10:43	255.5	255.0	-0.2%
15/09/2016	10:44	255.5	252.0	-1.4%
15/09/2016	10:45	262.9	258.0	-1.8%
15/09/2016	10:46	274.6	268.7	-2.2%
15/09/2016	10:47	284.6	279.0	-1.9%
15/09/2016	10:48	294.2	289.4	-1.7%
15/09/2016	10:49	292.4	289.9	-0.8%
15/09/2016	10:50	282.9	281.0	-0.7%
15/09/2016	10:51	272.5	269.8	-1.0%
15/09/2016	10:52	266.0	261.7	-1.6%
15/09/2016	10:53	271.0	266.0	-1.9%
15/09/2016	10:54	258.0	253.1	-1.9%
15/09/2016	10:55	255.0	249.6	-2.1%
15/09/2016	10:56	253.5	247.4	-2.4%
15/09/2016	10:57	256.7	249.6	-2.8%
15/09/2016	10:58	264.6	255.6	-3.4%
_5, 55, 2010	10.50	201.0	233.0	3.170
15/09/2016	11:09	345.7	332.6	-3.8%
15/09/2016	11:10	391.1	375.3	-4.0%
10,00,2010	11.10	331.1	373.3	7.070

15/09/2016	11:11	394.2	395.3	0.3%
15/09/2016	11:12	360.3	354.7	-1.6%
15/09/2016	11:13	371.7	361.9	-2.6%
15/09/2016	11:14	369.6	362.6	-1.9%
15/09/2016	11:15	363.7	359.6	-1.1%
15/09/2016	11:16	355.8	350.1	-1.6%
15/09/2016	11:17	337.1	331.2	-1.7%
15/09/2016	11:18	339.2	328.4	-3.2%
15/09/2016	11:19	343.8	336.2	-2.2%
15/09/2016	11:20	341.6	333.6	-2.3%
15/09/2016	11:21	343.5	334.3	-2.7%
15/09/2016	11:22	341.6	333.6	-2.3%
15/09/2016	11:23	331.0	320.3	-3.2%
15/09/2016	11:24	327.1	317.0	-3.1%
15/09/2016	11:25	325.4	313.1	-3.8%
15/09/2016	11:26	356.2	324.6	-8.9%
15/09/2016	11:27	470.4	462.2	-3.5%
15/09/2016	11:27	483.0	445.8	-1.7 <i>%</i> -7.7%
		440.4	443.8 476.5	
15/09/2016	11:29			8.2% -3.9%
15/09/2016	11:30	334.0	321.0	
15/09/2016	11:31	457.3	413.7	-9.5%
15/09/2016	11:32	487.2	457.7	-6.1%
15/09/2016	11:33	522.9	512.9	-1.9%
15/09/2016	11:34	457.1	447.2	-2.2%
15/09/2016	11:35	562.2	549.5	-2.3%
15/09/2016	11:36	586.4	558.9	-4.7%
15/09/2016	11:37	627.7	624.0	-0.6%
15/09/2016	11:38	629.2	622.9	-1.0%
15/09/2016	11:39	599.4	589.9	-1.6%
15/09/2016	11:40	615.9	607.9	-1.3%
15/09/2016	11:41	616.6	607.6	-1.5%
15/09/2016	11:42	617.8	608.9	-1.4%
15/09/2016	11:43	618.2	610.2	-1.3%
15/09/2016	11:44	619.7	611.4	-1.3%
15/09/2016	11:45	620.9	612.3	-1.4%
15/09/2016	11:46	624.2	616.0	-1.3%
15/09/2016	11:47	626.6	619.0	-1.2%
15/09/2016	11:48	630.9	623.1	-1.2%
15/09/2016	11:49	637.8	629.8	-1.3%
15/09/2016	11:50	648.3	639.5	-1.4%
15/09/2016	11:51	656.8	648.6	-1.3%
15/09/2016	11:52	666.1	658.2	-1.2%
15/09/2016	11:53	670.6	663.6	-1.0%
15/09/2016	11:54	676.6	670.0	-1.0%
15/09/2016	11:55	645.6	644.0	-0.3%
15/09/2016	11:56	674.6	662.9	-1.7%
15/09/2016	11:57	683.3	677.0	-0.9%

15/09/2016	11:58	680.8	681.0	0.0%
15/09/2016	12:01	675.0	660.8	-2.1%
15/09/2016	12:02	693.8	687.4	-0.9%
15/09/2016	12:03	660.6	683.8	3.5%
15/09/2016	12:04	484.8	470.5	-2.9%
15/09/2016	12:05	501.0	476.4	-4.9%
15/09/2016	12:06	641.8	627.0	-2.3%
15/09/2016	12:07	660.9	650.4	-1.6%
15/09/2016	12:08	660.8	654.1	-1.0%
15/09/2016	12:09	662.7	655.7	-1.1%
15/09/2016	12:10	662.3	655.8	-1.0%
15/09/2016	12:11	662.8	657.2	-0.8%
15/09/2016	12:12	661.6	654.9	-1.0%
			avera	ge = -1.4%