Analytical method for valifenalate, valifenalate acid and p-chlorobenzoic acid in soil

Reports:	ECM: EPA MRID No.: MRID 49807289 (Appendix III, pp. 64-198). Ferguson, L-J.C. 2015. ANALYTICAL PHASE REPORT – Terrestrial Field Dissipation of F9170 in Nebraska, USA. Ricerca Document No.: 032967-1. Precision Study Management Study No.: PSM-14-02-05. FMC Tracking No.: 2014EFT-VAL1224. Report prepared by Ricerca Biosciences, LLC, Concord, Ohio, and sponsored and submitted by FMC Corporation, Agricultural Products Group, Ewing, New Jersey; 135 pages. Final report issued November 20, 2015.						
	ILV: EPA MRID No.: MRID 4 Laboratory Validation (ILV) of Valifenalate and Two Metaboli Acid) in Soil. FMC Tracking N 100062321. Report prepared by sponsored and submitted by FM Ewing, New Jersey; 51 pages (i 7, 2016.	9807189. Sha an Analytica tes (Valifenal o.: 2015RES Battelle, No IC Corporatio including pag	anmugan, S. 2016. Independent Il Method for the Determination of late acid and p-Chlorobenzoic -VAL1916. Battelle ID: rwell, Massachusetts, and on, Agricultural Products Group, re 1a). Final report issued January				
Document No.:	MRIDs 49807189 & 49807289						
Guideline:	850.6100						
Statements:	ECM: The study was conducted Laboratory Practice (GLP) stan MRID 49807289). Signed and of were provided (Appendix III, p Authenticity statements were no ILV: The study was conducted standards, which are compatible Signed and dated Data Confide were provided (pp. 2-4). The sta quality assurance statement.	d in complian dards (40 CF dated GLP an p. 65-66). Th ot included. in complianc e with OECD ntiality, GLP atement of au	ce with USEPA FIFRA Good R Part 160; Appendix III, p. 65 of ad Quality Assurance statements e Data Confidentiality and e with USEPA FIFRA GLP GLP (p. 3 of MRID 49807189). and Quality Assurance statements thenticity was included with the				
Classification:	This analytical method is classi insufficient number of samples chromatograms were provided. difficult matrix with which to v LOD and LOQ in the ECM and acceptable procedures. 128200	fied as Suppl was prepared The ILV was alidate the ma ILV were no	emental. In the ECM, an l, and no representative s not provided with the most ethod. The determinations of the ot based on scientifically				
FFFD Final	Sarah C. Hafner. Ph D.	Signature					
Reviewer:	Chemist	Date:	5/11/19				
	Lisa Muto,	Signature:	Jara Muto				
CDM/CSS-	Environmental Scientist	Date:	2/5/18				
Reviewers:	Kathleen Ferguson, Ph.D.,	Signature:	Karalun P. Jergusson				
	Environmental Scientist	Date:	2/5/18				

CDM/CSS-Dynamac JV-altered sections of this Tier II Summary include only the signed cover page, Executive Summary, Deviations and Deficiencies, Reviewer's Verification of Statistical Results, and Conclusions sections. This Tier II Summary may have been altered by the Environmental Fate and Effects Division subsequent to signing by CDM/CSS-Dynamac JV personnel. The CDM/CSS-Dynamac Joint Venture role does not include establishing Agency policies.

Executive Summary

The analytical method, Ricerca Document No. 032967-1 and Precision Study Management Study No. PSM-14-02-05, is designed for the quantitative determination of valifenalate and valifenalate acid in soil at the stated LOQ of 0.005 mg/kg and of p-chlorobenzoic acid in soil at the stated LOQ of 0.01 mg/kg. The LOQs are less than the lowest toxicological level of concern in soil. Although it was not specifically reported, the reviewer assumed that the method for valifenalate, valifenalate acid, and p-chlorobenzoic acid was validated in the first trial with insignificant modifications to the sample processing and analytical equipment and parameters. The ILV matrix was a sandy loam soil, while the ECM matrix was the loamy sand/sandy loam soil used in the Nebraska terrestrial field dissipation study. The ILV was not provided with the most difficult matrix with which to validate the method given the range of soils (e.g., regarding %OC) used in the four submitted valifenalate terrestrial field dissipation studies. The analytes were identified using two or three ion transitions in the ECM and ILV. All ILV data regarding linearity, repeatability, accuracy, precision, and specificity were satisfactory for all three analytes. In the ECM, an insufficient number of samples was prepared (n=3), and no representative chromatograms were provided; however, specificity was evaluated using representative chromatograms from the concurrent recovery samples. All ECM data regarding repeatability, accuracy, precision, linearity and specificity were satisfactory for all three analytes, but the LODs of the method were not reported within the method appendix. Elsewhere in the MRID, the LOD is reported as 1 ppb (or 0.001 mg/kg) for valifenalate and valifenalate acid and 2 ppb (or 0.002 mg/kg) for p-chlorbenzoic acid.

	MR	ID						I imit of
Analyte(s) by Pesticide	Environmental Chemistry Method	Independent Laboratory Validation	EPA Review	Matrix	Method Date (dd/mm/yyyy)	Registrant	Analysis	Quantitation (LOQ)
Valifenalate Valifenalate acid	Appendix III of	MRID		Soil	20/11/2015	FMC	LC-	0.005 mg/kg
p- Chlorobenzoic acid	MRID 49807289 ¹	49807189 ²		boli	20/11/2013	Corporation	MS/MS	0.01 mg/kg

Table 1. Analytical Method Summary

1 In the ECM, the test soil was a field soil from Nebraska which was used in a terrestrial field dissipation study. The soil was characterized as loamy sand at 0-6" (83% sand 10% silt 7% clay, pH 6.0 (1:1 soil:water ratio), 0.90% organic carbon) and sandy loam at 6-36" (67-77% sand 12-18% silt 11-15% clay, pH 4.6-6.1 (1:1 soil:water ratio), 0.26-0.93% organic carbon; USDA soil texture classification; Table 4, p. 31 of MRID 49807289).

2 In the ILV, the sandy loam soil (ID MSL-PF 0-6"; 68% sand 12% silt 20% clay, pH 6.8 (1:1 soil:water ratio), 2.94% organic matter) was provided and characterized by Agvise Laboratories, Northwood, North Dakota (p. 13; Appendix 4, p. 51 of MRID 49807189).

I. Principle of the Method

For the analysis of valifenalate and its metabolites, soil (10 g aliquots) was fortified then extracted by mechanical shaking for 30 minutes with acetone:0.5N HCl (50:50) followed by centrifugation at approximately 3000 rpm. The supernatant was collected and the pellet re-extracted by mechanical shaking for 30 minutes with acetone:0.5N HCl (20:80) followed by centrifugation at approximately 3000 rpm. The supernatants were combined and an aliquot (10 mL) concentrated to approximately 6.5 mL under nitrogen. The aliquot was then brought back to 10mL in methanol water 50:50 (v/v) with 0.1% formic acid. The sample was diluted 10X in methanol:water 10:90 (v/v) with 0.1% formic acid and transferred to an HPLC vial for LC-MS/MS analysis under positive ionization for valifenalate and valifenalate acid. An HPLC coupled with a SCIEX API 4000 Mass Spectrometer using multiple reaction monitoring (MRM) mode (400°C) was used (Appendix III, pp. 82-85 of MRID 49807289). The following LC conditions were employed: ARMOR C18 column (2.1 mm x 100 mm, 5 µm; column temperature 40°C), mobile phase of (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile [mobile gradient phase of percent A:B (v:v) at 0.0-1.5 min. 80:20, 1.7-3.0 min. 5:95, 3.1-5.0 min. 80:20] and injection volume of 20-40 µL. The transitions used for quantitation were m/z 399 \rightarrow 155 for valifenalate and m/z 385 \rightarrow 116 for valifenalate acid. Valifenalate MS/MS transitions m/z 399 \rightarrow 144 and m/z 399 \rightarrow 116 and valifenalate acid transitions m/z 385 \rightarrow 186 and m/z 385 \rightarrow 144 were monitored for confirmatory purposes. Retention times were ca. 3.3 and 3.2 minutes for valifenalate and valifenalate acid, respectively. A separate chromatographic method was used to separate p-chlorobenzoic acid using LC-MS/MS under negative ionization. An HPLC coupled with a SCIEX API 4000 Mass Spectrometer using multiple reaction monitoring (MRM; 550°C) mode was used. The following LC conditions were employed: ARMOR C18 column (2.1 mm x 100 mm, 5 µm; column temperature 40°C), mobile phase of (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile [mobile gradient phase of percent A:B (v:v) at 0.0min. 90:10, 2.5-3.0 min. 10:90, 3.1-5.0 min. 90:10] and injection volume of 50 μ L. Mass transition m/z 155 \rightarrow 111 was used for quantitation, and m/z 155 \rightarrow 35 was monitored for confirmation. Retention time was ca. 2.6 minutes for p-chlorobenzoic acid.

Quantitation was obtained using external calibration curves of standards for each analyte. Standard curves were linear over the concentration range 0.05 - 100 ng/mL with correlation coefficients (R²) greater than 0.99.

Reagent blank and blank control specimens of soil were analysed in triplicate and fortified specimens of soil were analysed in sextuplicate for each fortification level. Fortification experiments were performed at the limit of quantitation and at ten times that level.

The ILV performed the ECM method as written, except for the use of a Wrist Action® Shaker, use of vortex to break up the soil pellet prior to second extraction, possible use of a different second extraction solvent (marked 50:0, v/v instead of 20:80, v:v), addition of a filtration step using a Teflon syringe filter prior to final sample dilution for LC-MS/MS analysis, and insignificant modifications to the analytical equipment and parameters (pp. 21-25 of MRID 49807189). The LC-MS/MS instrument and parameters were similar to those of the ECM. Samples were analyzed for valifenalate, valifenalate acid, and p-chlorobenzoic acid using a Shimadzu LC2080 UHPLC coupled with an Applied Biosystems MDS Sciex API 6500 Linear Ion Trap Mass Spectrometer (550°C). A Thermo Betasil C18 column (2.1 mm x 100 mm, 5 μ m; column temperature 40°C) was used. The other LC conditions were the same as those reported in the ECM. Two ion pair transitions were monitored (quantitation and confirmation, respectively): m/z 399 \rightarrow 155 and m/z 399 \rightarrow 116 for

valifenalate; m/z $385 \rightarrow 116$ and m/z $385 \rightarrow 144$ for valifenalate acid; and m/z $155 \rightarrow 111$ and m/z $155 \rightarrow 35$ for p-chlorobenzoic acid. Reported retention times were *ca*. 2.2-2.4 for all analytes. No other method modifications were reported.

In the ECM and ILV, the validated Limits of Quantification (LOQs) were 0.005 mg/kg for residues of valifenalate and valifenalate acid in soil and 0.010 mg/kg for residues of p-chlorobenzoic acid in soil (pp. 12, 26 of MRID 49807189; Appendix III, p. 81 of MRID 49807289). In the ILV, the method Limits of Detection (LODs) were 0.0015 mg/kg for residues of valifenalate and valifenalate acid in soil and 0.003 mg/kg for residues of p-chlorobenzoic acid in soil. In the ECM (Appendix III), the LODs were not reported. Elsewhere in the MRID, the LOD is reported as 1 ppb (or 0.001 mg/kg) for valifenalate and valifenalate acid in soil and 2 ppb (or 0.002 mg/kg) for p-chlorobenzoic acid in soil.

II. Recovery Findings

<u>ECM (Appendix III of MRID 49807289)</u>: Mean recoveries and relative standard deviations (RSDs) were within guidelines (mean 70-120%; RSD \leq 20%) for analysis of valifenalate and valifenalate acid at fortification levels of 0.005 mg/kg (LOQ) and 0.05 mg/kg (10×LOQ) in one soil matrix and of p-chlorobenzoic acid at fortification levels of 0.01 mg/kg (LOQ) and 0.1 mg/kg (10×LOQ) in one soil matrix; however, an insufficient number of samples was prepared for all fortifications/analytes (n = 3; Appendix III, Tables 2-4, pp. 91-93). Only one individual valifenalate acid recovery sample (out of n=3) at LOQ exceeded 120% (121%). Three ion pair transitions were monitored for valifenalate acid using LC-MS/MS in positive mode; two ion pair transitions were monitored for p-chlorobenzoic acid using LC-MS/MS in negative mode. The quantification and confirmation ion data was comparable. The test soil was a field soil from Nebraska which was used in a terrestrial field dissipation study. The soil was characterized as loamy sand at 0-6" (83% sand 10% silt 7% clay, pH 6.0 (1:1 soil:water ratio), 0.90% organic carbon) and sandy loam at 6-36" (67-77% sand 12-18% silt 11-15% clay, pH 4.6-6.1 (1:1 soil:water ratio), 0.26-0.93% organic carbon; USDA soil texture classification).

<u>ILV (MRID 49807189)</u>: Mean recoveries and RSDs were within guidelines for analysis of valifenalate and valifenalate acid at fortification levels of 0.005 mg/kg (LOQ) and 0.05 mg/kg (10×LOQ) in one soil matrix and of p-chlorobenzoic acid at fortification levels of 0.01 mg/kg (LOQ) and 0.1 mg/kg (10×LOQ) in one soil matrix (Tables 1-3, pp. 44-46). Two individual valifenalate acid samples (out of n=6) at LOQ were below 70% recovery (68, 69%). Two ion pair transitions were monitored for valifenalate, valifenalate acid and p-chlorobenzoic acid using LC-MS/MS in positive or negative mode; the quantification and confirmation ion data was comparable. Sandy loam soil (ID MSL-PF 0-6"; 68% sand 12% silt 20% clay, pH 6.8 (1:1 soil:water ratio), 2.94% organic matter) was provided and characterized by Agvise Laboratories, Northwood, North Dakota (p. 13; Appendix 4, p. 51). Although it was not specifically reported, the reviewer assumed that the method for valifenalate, valifenalate acid and p-chlorobenzoic acid was validated in the first trial with insignificant modifications to the sample processing and analytical equipment and parameters (pp. 12, 21-26).

Analyte	Fortification Level (mg/kg)	Number of Tests	Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)	
		NE Lo	amy Sand (0-6")) and Sandy Loa	m (6-36") Soil ¹		
			Qua	ntitation ion ²			
Valifanalata	0.005 (LOQ)	3	92.7-96.0	93.1	2.8	3.0	
vanienalate	0.05	3	85.5-89.4	87.8	2.1	2.3	
Valifanalata aaid	0.005 (LOQ)	3	102- 121	110	10.0	9.1	
vamenalate acid	0.05	3	103-108	106	2.9	2.7	
p-Chlorobenzoic	0.01 (LOQ)	3	99.4-112	107	6.6	6.2	
acid	0.1	3	96.1-99.1	97.3	1.6	1.6	
	Confirmation ion 1 ²						
W 1'C 1 4	0.005 (LOQ)	3	89.2-92.3	90.9	1.6	1.7	
Valifenalate	0.05	3	85.9-88.3	86.9	1.2	1.4	
	0.005 (LOQ)	3	97.9-110	102	6.9	6.8	
vanienalate acid	0.05	3	109-111	110	1.2	1.1	
p-Chlorobenzoic	0.01 (LOQ)	3	88.6-114	104	13.5	13.0	
acid	0.1	3	95.3-101	97.7	2.9	3.0	
	Confirmation ion 2 ²						
W-1:61-4-	0.005 (LOQ)	3	87.9-90.3	89.2	1.2	1.4	
vanienalate	0.05	3	85.3-89.6	88.0	2.4	2.7	
V-1:6	0.005 (LOQ)	3	109-108	113	4.5	4.0	
valifenalate acid	0.05	3	105-110	108	2.5	2.3	

Table 2. Initial Validation Method Recoveries for Valifenalate, Valifenalate acid, and p-Chlorobenzoic acid in Soil

Data (uncorrected recovery results; Appendix III, Appendix B, pp. 172-173) were obtained from Appendix III, Tables 2-4, pp. 91-93 of MRID 49807289.

1 Soil Characteristics for Nebraska Field Site provided below (Table 4, p. 31 of MRID 49807289). Specific soil depth used for method validation was not reported. Soil samples were homogenized prior to fortification (Appendix III, p. 82 of MRID 49807289).

	Soil Depth in Inches					
Soil Parameter	0-6	6-12	12-18	18-24	24-30	30-36
USDA textural class	Loamy Sand	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
% sand (0.05 to 2.00 mm)	83	77	67	67	71	73
% silt (0.002 to 0.05 mm)	10	12	18	18	16	14
% clay (<0.002 mm)	7	11	15	15	13	13
pH in 1:1 soil: water ratio	6.0	4.6	5.6	6.0	6.1	5.7
% organic carbon	0.90	0.93	0.77	0.39	0.31	0.26
Cation Exchange Capacity (meq/100 g)	8.8	9.9	12.1	11.8	11.1	10.3
Bulk density (gm/cc)	1.34	1.26	1.23	1.25	1.26	1.27
% moisture at ½ bar	10.4	15.4	16.9	16.5	14.6	13.2
% moisture at 15 bar	4.6	6.4	7.7	7.9	6.8	6.1

2 The transitions used for quantitation were m/z $399 \rightarrow 155$ for valifenalate, m/z $385 \rightarrow 116$ for valifenalate acid, and m/z $155 \rightarrow 111$ for p-chlorobenzoic acid. The transitions used for confirmation were m/z $399 \rightarrow 144$ and m/z $399 \rightarrow 116$ for valifenalate, m/z $385 \rightarrow 186$ and m/z $385 \rightarrow 144$ for valifenalate acid, and m/z $155 \rightarrow 35$ for p-chlorobenzoic acid.

Analyte	Fortification Level (mg/kg)	Number of Tests	Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%) ¹	Relative Standard Deviation (%)		
		Sandy Loam Soil ²						
			Qua	ntitation ion ³				
W-1:61-4-	0.005 (LOQ)	6	72-84	78	5	6		
vamenalate	0.05	6	75-90	85	6	7		
Valifenalate acid	0.005 (LOQ)	6	<mark>68</mark> -74	72	3	4		
	0.05	6	82-90	86	3	3		
p-Chlorobenzoic	0.01 (LOQ)	6	97-101	99	2	2		
acid	0.1	6	102-110	107	3	3		
	Confirmation ion ³							
X7.1°C 1.4	0.005 (LOQ)	6	74-87	80	5	6		
vanienalate	0.05	6	80-88	83	3	4		
V-1:f1-4	0.005 (LOQ)	6	67-80	71	5	6		
Valifenalate acid	0.05	6	84-89	86	2	2		
p-Chlorobenzoic	0.01 (LOQ)	6	93-110	102	6	5		
acid	0.1	6	101-107	106	3	3		

Table 3. Independent Validation Method Recoveries for Valifenalate, Valifenalate acid, and p Chlorobenzoic acid in Soil

Data (uncorrected recovery results; pp. 23-24) were obtained from Tables 1-3, pp. 44-46 of MRID 49807189 and DER Attachment 2.

1 Standard deviations were reviewer-calculated since these values were not calculated in the study report (see DER Attachment 2). The rules of significant figures were followed.

2 Sandy loam soil (ID MSL-PF 0-6"; 68% sand 12% silt 20% clay, pH 6.8 (1:1 soil:water ratio), 2.94% organic matter) was provided and characterized by Agvise Laboratories, Northwood, North Dakota (p. 13; Appendix 4, p. 51).

3 Two ion pair transitions were monitored (quantitation and confirmation, respectively): m/z 399→155 and m/z 399→116 for valifenalate; m/z 385→116 and m/z 385→144 for valifenalate acid; and m/z 155→111 and m/z 155→35 for p-chlorobenzoic acid. Only one confirmation ion was monitored for each analyte.

III. Method Characteristics

In the ECM and ILV, the validated LOQs were 0.005 mg/kg for residues of valifenalate and valifenalate acid in soil and 0.010 mg/kg for residues of p-chlorobenzoic acid in soil (pp. 12, 26 of MRID 49807189; Appendix III, p. 81 of MRID 49807289). In the ILV, the method LODs were 0.0015 mg/kg for residues of valifenalate and valifenalate acid in soil and 0.003 mg/kg for residues of p-chlorobenzoic acid in soil; the LODs were set at 30% of the LOQ. In the ECM, the LODs were not reported. No calculations, justifications, or comparisons to background noise were provided for the LOQs and LODs in the ECM or ILV.

		Valifenalate	Valifenalate acid	p-Chlorobenzoic acid			
Limit of ECM		0.005	0.01 mg/kg				
Quantitation (LOQ)	ILV	0.003	0.003 mg/kg				
Limit of Detection	ECM	0.001	0.001 mg/kg				
(LOD)	ILV	0.0015	0.003 mg/kg				
	ECM	$r^2 = 0.9998 (Q)$	$r^2 = 0.9992 (Q)$	$r^2 = 0.9994 (Q)$			
Linearity	ECIVI	0.05-5	ng/mL	0.1-10 ng/mL			
and concentration		$r^2 = 0.99818 (Q)$	$r^2 = 0.99910 (Q)$	$r^2 = 0.99994 (Q)$			
range) ¹	ILV	$r^2 = 0.99968 (C)$	$r^2 = 0.99864 (C)$	$r^2 = 0.99982 (C)$			
8-)		0.025-1.	5 ng/mL	0.075-5 ng/mL			
	ECM ²	Yes at LOQ and $10 \times LOQ$; however, $n = 3$.					
Dopostabla	ECIVI	(characterized loamy sand/sandy loam soil used)					
Repeatable	II V ^{3,4}	Yes at LOQ and 10×LOQ.					
	IL V	(characterized sand loam soil used)					
Reproducible		Yes at LOQ and 10×LOQ.					
		Yes, no matrix interferences were quantified, but some minor baseline noise					
	ECM	was observed around the analyte peak. ⁵					
		No representative method validation chromatograms provided.					
				Yes, matrix			
Specific				interferences were <8%			
speeme		Yes, matrix interference	of the LOQ (based on				
	ILV	LOQ (based on peak heig	peak height). Some				
		noise was observed ar	ound the analyte peak.	minor baseline noise			
				was observed around the			
				analyte peak.			

 Table 4. Method Characteristics for Valifenalate, Valifenalate acid, and p-Chlorobenzoic acid in Soil

Data were obtained from Appendix III, pp. 80-81, 84; Appendix III, Tables 2-4, pp. 91-93 (recovery results); Appendix III, Figures 1-3, pp. 120-122 (calibration curve); Appendix III, Figures 14-19, pp. 133-138 (chromatograms); Appendix III, Appendix C, Tables C4-C6, pp. 193-197 (correlation coefficients) of MRID 49807289; pp. 12, 19-20, 25-26; Tables 1-3, pp. 44-46 (recovery results); Figures 4-6, pp. 32-34 (calibration curves); Figures 10-12, pp. 38-43 (chromatograms) of MRID 49807189. Q = quantitation ion; C = confirmation ion. All results reported for Q and C ions unless specified otherwise.

- 1 Correlation coefficients (r²) were reviewer-calculated based on r values (1/x weighted linear regression analysis) reported in the study report (Appendix III, pp. 80, 84 and Figures 1-3, pp. 120-122 of MRID 49807289; Figures 4-6, pp. 32-34 of MRID 49807189; DER Attachment 2). In the ECM, regression equations and calibration curves were only provided for the quantitation ion transition. Matrix-matched solutions were used in the ILV (pp. 19-20, 26 of MRID 49807189).
- 2 In the ECM, the test soil was a field soil from Nebraska which was used in a terrestrial field dissipation study. The soil was characterized as loamy sand at 0-6" (83% sand 10% silt 7% clay, pH 6.0 (1:1 soil:water ratio), 0.90% organic carbon) and sandy loam at 6-36" (67-77% sand 12-18% silt 11-15% clay, pH 4.6-6.1 (1:1 soil:water ratio), 0.26-0.93% organic carbon; USDA soil texture classification; Table 4, p. 31 of MRID 49807289). Three ion pair transitions were monitored for valifenalate and valifenalate acid using LC/MS/MS in positive mode; two ion pair transitions were monitored for p-chlorobenzoic acid using LC/MS/MS in negative mode.
- 3 In the ILV, the sandy loam soil (ID MSL-PF 0-6"; 68% sand 12% silt 20% clay, pH 6.8 (1:1 soil:water ratio), 2.94% organic matter) was provided and characterized by Agvise Laboratories, Northwood, North Dakota (p. 13; Appendix 4, p. 51 of MRID 49807189). Three or two ion pair transitions were monitored for valifenalate, valifenalate acid, and p-chlorobenzoic acid using LC/MS/MS in positive or negative mode.
- 4 Although it was not specifically reported, the reviewer assumed that the method for valifenalate, valifenalate acid, and p-chlorobenzoic acid was validated in the first trial with insignificant modifications to the sample processing and analytical equipment and parameters (pp. 12, 21-26 of MRID 49807189).
- 5 Specificity based on concurrent recovery LOQ and 10×LOQ representative chromatograms and quantified residues in the controls of the method validation and concurrent recovery samples. Appendix III, Table 6, p. 95 of MRID 49807289 (quantified residues in the controls of the concurrent recovery samples).

IV. Method Deficiencies and Reviewer's Comments

The Appendix III, pp. 64-198 of TFD MRID 49807189 was the ECM for the ILV. The ILV stated that the independent validation was originally for Eurofins method RA034 v07 (MRID 49807188), but followed the method specified in Precision Study Management Amendment 2 (PSM-14-02-05 Amendment 2) because Precision Study Management Amendment 2 is used for field samples and "Eurofins method RA034 v07 MRM transitions were very unusual, used both positive and negative ionization for a given analyte" (p. 26 of MRID 49807189).

Precision Study Management Amendment 2 was contained in Appendix IV, pp. 235-240 (6 pages) of TFD MRID 49807189 as part of the Study Protocol and Amendments for ECM (pp. 200-242). PSM-14-02-05 Amendment 2 was the modified sample processing and analytical parameters for Eurofins method RA034 v07 which were used and rewritten in the ANALYTICAL PHASE REPORT – Terrestrial Field Dissipation of F9170 in Nebraska, USA (Appendix III, pp. 64-198 of MRID 49807289).

2. The ILV matrix was a sandy loam soil (ID MSL-PF 0-6"; 68% sand 12% silt 20% clay, pH 6.8 (1:1 soil:water ratio), 2.94% organic matter; p. 13; Appendix 4, p. 51 of MRID 49807189), while the ECM matrix was the loamy sand/sandy loam soil used in the Nebraska terrestrial field dissipation study. The ILV was not provided with the most difficult matrix with which to validate the method given the range of soils and %OC used in the terrestrial field dissipation studies (see table below; MRIDs 48907286, 48907287, 48907288, and 48907289).

Property		California	New York	Georgia	Nebraska
USDA Textural Classification		Sandy Loam	Silt Loam	Sand	Loamy Sand
% silt	0.6 in	22	60	7	10
% sand	0-0 III	58	25	88	83
% clay		21	15	5	7
USDA Textural Classification		Sandy Loam	Silt Loam	Loamy Sand	Sandy Loam
% silt	6 12 in	25	62	9	12
% sand	0-12 III	58	23	82	77
% clay		18	15	9	11
% Organic Carbon	0-6 in	1.90	2.5	0.43	0.90
	0-6 in	1.12	0.97	1.39	1.34
	6-12 in	1.18	1.04	1.33	1.26
Pulle density (g/as)	12-18 in	1.20	1.15	1.31	1.23
Burk defisity (g/cc)	18-24 in	1.25	1.17	1.21	1.25
	24-30 in	1.24	1.15	1.29	1.26
	30-36 in	1.23	1.11	1.17	1.27
pH	0-6 in	6.2	5.1	6.6	6.0
Cation Exchange Capacity					
(meq/100g)	0-6 in	13.1	8.2	4.3	8.8
% moisture at 1.3 bar	0-6 in	19.3	28.6	8.0	10.4
% moisture at 15 bar	0-6 in	9.15	9.9	3.4	4.6

Table 5. Soil Characteristics at the Field Sites Treated with F9170-1 WP (Valifenalate)

Table 7.3.1-4 from Tier II Summary of MRIDs 49807286 -87 -88 -89.

- 3. In the ECM, an insufficient number of samples was prepared for all fortifications/analytes (n = 3; Appendix III, Tables 2-4, pp. 91-93 of MRID 48907289). OCSPP guidelines state that a minimum of five spiked replicates should be analyzed at each concentration (*i.e.*, minimally, the LOQ and $10 \times LOQ$) for each analyte.
- 4. In the ECM, no representative chromatograms were provided from the method validation portion of the study. The reviewer assessed specificity based on concurrent recovery LOQ and 10×LOQ representative chromatograms and quantified residues in the controls of the method validation and concurrent recovery samples.
- 5. The determinations of the LOD and LOQ in the ECM and ILV were not based on scientifically acceptable procedures as defined in 40 CFR Part 136 (pp. 12, 26 of MRID 49807189; Appendix III, p. 81 of MRID 49807289). In the ECM, the LODs were not reported in the method (Appendix III) specifically but elsewhere in the MRID. In the ILV, the LODs were set at 30% of the LOQ. No calculations, justifications, or comparisons to background noise were provided for the LOQs and LODs in the ECM or ILV.
- 6. The communications between the ECM and ILV were not reported or discussed. The ILV did report that the Study Monitor was contacted regarding the change of the method to validate from Eurofins method RA034 v07 (MRID 49807188) to Precision Study Management Amendment 2 (PSM-14-02-05 Amendment 2; p. 25 of MRID 49807189). Detailed communication records were not provided. Study personnel listed in the ILV did not include any ECM personnel (pp. 7-8 of MRID 49807189).
- 7. In the ILV, the time required to complete the extraction of one set of 13 samples (one reagent blank, two matrix controls and ten fortified samples) was reported as *ca*. 5 hours, followed by *ca*. 2 hours for LC/MS/MS analysis and *ca*. 1 hour for LC/MS/MS evaluation (p. 26 of MRID 49807189). The total time requirement of the method was reported as *ca*. one working day (8 hours) in the ILV.

V. References

- U.S. Environmental Protection Agency. 2012. Ecological Effects Test Guidelines, OCSPP 850.6100, Environmental Chemistry Methods and Associated Independent Laboratory Validation. Office of Chemical Safety and Pollution Prevention, Washington, DC. EPA 712-C-001.
- 40 CFR Part 136. Appendix B. Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11, pp. 317-319.

DER Attachment 1: Chemical Names and Structures

<u>Valifenalate</u>

Valifenalate

Common Name:
Chemical Name:

chloropCAS No.:283159Molecular Formula:C19H276Lot No.:G019/0Purity:99.52%Expiration Date:Nov 20Molecular Weight:398.88Storage:Ambies

Valifenalate Methyl N-(isopropoxycarbonyl)-*L*-valyl-(3*R*,*S*)-2-(4chlorophenyl)- β -alanine 283159-90-0 C₁₉H₂₇ClN₂O₅ G019/07 (ID in CoA: IR5885) 99.52% Nov 2017 398.88 g/mole Ambient Temperature

Valifenalate Acid

Valifenalate acid

Common Name:	Valifenalate acid
Chemical Name:	(R,S) - β -alanine, N-((1-methylethoxy)-L-valyl-3-(4-chlorophenyl) acid)
CAS No.:	NA
Molecular Formula:	$C_{18}H_{25}CIN_2O_5$
Lot No.:	G029/08 (ID in CoA: IR5839)
Purity:	98.4%
Expiration Date:	Feb 21, 2017
Molecular Weight:	384.86 g/mole
Storage:	Ambient Temperature
	Page 10 of 11

p-Chlorobenzoic acid (PCBA)

p-Chlorobenzoic acid (PCBA)

Common Name:	p-Chlorobenzoic acid (PCBA)
Chemical Name:	4-Chlorobenzoic acid
CAS No.:	74-11-3
Molecular Formula:	C ₇ H ₇ ClO ₂
Lot No.:	LC07337V
Purity:	99.2%
Expiration Date:	May 2017
Molecular Weight:	156.57 g/mole
Storage:	Ambient Temperature