Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air

Compendium Method IO-3.7

DETERMINATION OF METALS IN AMBIENT PARTICULATE MATTER USING NEUTRON ACTIVATION ANALYSIS (NAA) GAMMA SPECTROMETRY

Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268

June 1999

Method IO-3.7

Acknowledgments

This Method is a part of *Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air* (EPA/625/R-96/010a), which was prepared under Contract No. 68-C3-0315, WA No. 2-10, by Midwest Research Institute (MRI), as a subcontractor to Eastern Research Group, Inc. (ERG), and under the sponsorship of the U.S. Environmental Protection Agency (EPA). Justice A. Manning, John O. Burckle, Scott Hedges, Center for Environmental Research Information (CERI), and Frank F. McElroy, National Exposure Research Laboratory (NERL), all in the EPA Office of Research and Development, were responsible for overseeing the preparation of this method. Other support was provided by the following members of the Compendia Workgroup:

- James L. Cheney, U.S. Army Corps of Engineers, Omaha, NE
- Michael F. Davis, U.S. EPA, Region 7, KC, KS
- Joseph B. Elkins Jr., U.S. EPA, OAQPS, RTP, NC
- Robert G. Lewis, U.S. EPA, NERL, RTP, NC
- Justice A. Manning, U.S. EPA, ORD, Cincinnati, OH
- William A. McClenny, U.S. EPA, NERL, RTP, NC
- Frank F. McElroy, U.S. EPA, NERL, RTP, NC
- William T. "Jerry" Winberry, Jr., EnviroTech Solutions, Cary, NC

This Method is the result of the efforts of many individuals. Gratitude goes to each person involved in the preparation and review of this methodology.

Author(s)

• Jack Weaver, North Carolina State University, Raleigh, NC

Peer Reviewers

- David Brant, National Research Center for Coal and Energy, Morgantown, WV
- Ron Fleming, Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI
- Joseph Lambert, Raleigh, NC
- Lauren Drees, U.S. EPA, NRMRL, Cincinnati, OH

DISCLAIMER

This Compendium has been subjected to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Method IO-3.7 Determination of Metals in Ambient Particulate Matter Using Neutron Activation Analysis (NAA) Gamma Spectrometry

TABLE OF CONTENTS

<u>Page</u>

1.	Scope	. 3.7-1
	Applicable Documents	
	2.1 ASTM Documents	
	2.2 U.S. Government Documents	
	2.3 Other Documents	. 3.7-3
3.	Summary of Method	. 3.7-3
4.	Significance	
5.	Interferences	
	Safety	
	6.1 Čhemical Toxicology.	
	6.2 Radioactive Safety	
7.	Definitions	
8.	Apparatus and Equipment	. 3.7-6
	8.1 Research Nuclear Reactor	
	8.2 Gamma Spectroscopy System	. 3.7-7
9.	Reagents and Consumable Materials	
	9.1 Reagents	
	9.2 Standard Stock Solutions	. 3.7-8
	9.3 Blanks	. 3.7-8
	9.4 Quality Control Standard Reference Materials	. 3.7-8
	9.5 Sample Irradiation Vials	
10.	Sample Receipt in the Laboratory	. 3.7-9
	Calibration	
12.	Quality Control	3.7-10
13.	Procedure	3.7-12
	13.1 Unknown Sample Preparation	3.7-12
	13.2 Metal Blank Preparation	3.7-13
	13.3 Duplicate Sample Preparation	3.7-13
	13.4 Standards Preparation	3.7-13
	13.5 Irradiation and Counting for Short - Lived Isotopes	
	13.6 Irradiations and Counting for Medium and Long - Lived Isotopes	3.7-14
	Calculations and Data Processing	3.7 - 14
	Precision and Accuracy	
16.	References	3.7-16

[This page intentionally left blank]

Chapter IO-3 CHEMICAL SPECIES ANALYSIS OF FILTER-COLLECTED SPM

Method IO-3.7 DETERMINATION OF METALS IN AMBIENT PARTICULATE MATTER USING NEUTRON ACTIVATION ANALYSIS (NAA) GAMMA SPECTROMETRY

1. Scope

1.1 The area of toxic air pollutants has been the subject of interest and concern for many years. Recently the use of receptor models has resolved the elemental composition of atmospheric aerosol into components related to emission sources. The assessment of human health impacts resulting in major decisions on control actions by federal, state, and local governments is based on these data. Accurate measures of toxic air pollutants at trace levels are essential to proper assessments.

1.2 Suspended particulate matter (SPM) in air generally is a complex, multi-phase system of all airborne solid and low vapor pressure liquified particles having aerodynamic particle sizes from below 0.01-100 μ m and larger. Historically, SPM measurement has concentrated on total suspended particulates (TSP), with no preference to size selection.

1.3 The most commonly used device for sampling TSP in ambient air is the high volume (hi-vol) sampler, which consists essentially of a blower and a filter and usually operates in a standard shelter to collect a 24-h sample. The sample is weighed to determine the concentration of TSP and is usually analyzed chemically to determine the concentration of various inorganic compounds. The hi-vol is considered a reliable instrument for collecting TSP in ambient air. When EPA first regulated TSP, the national ambient air quality standard (NAAQS) was stated in terms of SPM with aerodynamic particle sizes of < 100 μ m captured on a filter as defined by the hi-vol TSP sampler. Therefore, the hi-vol TSP sampler was the reference method. The method is codified in 40 CFR 50, Appendix B.

1.4 More recently, research on the health effects of TSP in ambient air has focused increasingly on those particles that can be inhaled into the respiratory system, i.e., particles of aerodynamic diameter of $< 10 \ \mu m$. These particles are referred to as PM₁₀. The health community generally recognizes that these particles may cause significant, adverse health effects. Therefore, the primary NAAQS for SPM is now stated in terms of PM₁₀ rather than TSP. The reference method for PM₁₀ is codified in 40 CFR 50, Appendix J, and specifies a measurement principle based on extracting an ambient air sample with a powered sampler that incorporates inertial separation of PM₁₀ size range particles and collection of these particles on a filter for a 24-h period. Again, the sample is weighed to determine PM₁₀ concentration and is usually analyzed chemically to determine the concentration of various inorganic compounds.

1.5 Current research strongly suggests that atmospheric particles commonly occur in two distinct modes: the fine (< 2.5μ m) mode and the coarse ($2.5-10.0 \mu$ m) mode. The fine or accumulation mode (also termed the respirable particulate matter) is attributed to the growth of particles from the gas phase and subsequent agglomerization, whereas the coarse mode is made of mechanically abraded or ground particles. Because of their initially gaseous origin, the fine range of particle sizes includes inorganic ions such as sulfate, nitrate, and ammonia as well as combustion-form carbon, organic aerosols, metals, and other combustion products. Coarse particles, on the other hand, normally consist of finely divided minerals such as oxides of aluminum silicate, iron, calcium, and potassium.

1.6 Airborne particulate materials retained on a sampling filter, whether TSP or PM_{10} size fractions, may be examined by a variety of analytical methods. This method describes the procedures for the neutron activation analysis (NAA) technique. The NAA method provides analytical procedures for determining percent, ppt, ppm, or ppb levels of 40-50 elements that might be captured on typical glass fiber filters used in hi-vol and dichotomous sampling devices. The NAA is not matrix dependent and is therefore highly applicable for elemental analysis of a broad spectrum of particulate material. A summary of elements for which NAA is a suitable analysis technique is provided in Table 1.

1.7 NAA should be performed by nuclear applications engineers, radiochemists, and inorganic chemists with related nuclear expertise. A minimum of 2-year's experience with NAA (of all matrices of interest) is recommended.

2. Applicable Documents

2.1 ASTM Documents

- D4096 Application of High Volume Sample Method For Collection and Mass Determination of Airborne Particulate Matter.
- D1356 Definition of Terms Related to Atmospheric Sampling and Analysis.
- D1357 Practice For Planning the Sampling of the Ambient Atmosphere.
- D2986 Method for Evaluation of Air Assay Media by the Monodisperse DOP (Dioctyl Pthalate) Smoke Test.

2.2 U.S. Government Documents

- STP598 Calibration in Air Monitoring
- U.S. Environmental Protection Agency, *Quality Assurance Handbook for Air Pollution Measurement Systems, Volume I: A Field Guide for Environmental Quality Assurance,* EPA-600/R-94/038a.
- U.S. Environmental Protection Agency, *Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II: Ambient Air Specific Methods (Interim Edition),* EPA-600/R-94/038b.
- "Reference Method for the Determination of Particulate Matter in the Atmosphere," *Code of Federal Regulations*, 40 CFR 50, Appendix B.
- "Reference Method for the Determination of Particulate Matter in the Atmosphere (High Volume Method)," *Code of Federal Regulations*, 40 CFR 50, Appendix J.
- "Reference Method for the Determination of Particulate Matter in the Atmosphere (PM₁₀ Method)," *Code of Federal Regulations*, 40 CFR 50, Appendix J.
- "1978 Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air," *Federal Register* 43 (194):46262-3.
- Test Methods for Evaluating Solid Waste, Method 9022, EPA Laboratory Manual, Vol. 1-A, SW-846.

2.3 Other Documents

- Crouthamel, C.E., et. al., Applied Gamma Ray Spectrometry, Pergamon Press, 1975.
- Lederer, C.M., et al., *Table of the Isotopes*, Sixth Edition, John Wiley and Sons, 1967.
- Shapiro, J., *Radiation Protection*, Harvard University Press, 1972.
- Faw, R., and Shultis, J., *Radiological Assessment*, Prentice Hall, 1993.

- Heydorn, K., *Neutron Activation Analysis for Clinical Trace Element Research*, Vol. 1, CRC Press, 1984.
- Burn, R., *Research, Training, Test and Production Reactor Directory*, American Nuclear Society, Third Edition, 1988.

3. Summary of Method

3.1 NAA is an analytical technique dependent on the measurement of the number and energy of gamma and X-rays emitted by the radioactive isotopes produced in the sample matrix by irradiation with thermal neutrons from a nuclear reactor. Typically, the sample matrix plus appropriate blanks, SRMs, duplicates, and standards of the elements of interest are irradiated for a selected time period in the neutron flux core region of a research nuclear reactor. After irradiation and an appropriate radioactive decay, a gamma count-energy spectrum is obtained by counting the sample on a nuclear gamma spectroscopy detection system.

3.2 The NAA technique is qualitative in the sense that it incorporates the detection of characteristic radioisotopes (the neutron-induced radioactivity of each trace element emits a characteristic gamma ray energy spectrum, hence individual nuclear fingerprint); it is quantitative in that the detection system records not only the energy of a given gamma emission, but also the number of emissions per unit time.

3.3 Quantitative analysis is obtained by comparing the number of characteristic X-ray or gamma-rays of the unknown with the number determined for a standard. Interferences with a few elements must be corrected for using the intensity of related interference gamma peaks and computer programs for processing peak subtraction. Likewise, computer programs should also correct for sample count time, radioactive decay, sample weight or volume, reactor flux, and detector geometry. Calibration and efficiency of the detection system must be monitored throughout the counting period. Method detection limits (MDLs) for elements detected by NAA are listed in Table 2.

3.4 Method detection limits are intended as a guide to instrumental limits of a system optimized for multielement determinations and employing commercial instrumentation and computer programs. However, actual MDLs are dependent on the sample matrix, instrumentations, and selected operating conditions of the particular nuclear research reactor.

4. Significance

4.1 In general, NAA is a versatile and non-labor intensive analytical technique. Liquids, solids, and gases can be analyzed by NAA. It is a multi-element technique in that many elements can be analyzed simultaneously in a given sample spectrum without changing or altering the apparatus as is necessary in atomic absorption, etc. Importantly, special sample preparations, such as digestion or extractions, are not required, and therefore the NAA method is non-destructive, i.e., the integrity of the sample is not changed in any manner by prechemistry or the addition of any foreign materials for irradiation. Thus, the problem of reagent-introduced contaminates is completely avoided. For most elements of interest, the analytical approach for NAA requires little if any post-irradiation chemistry; thus, the amount of technician contact per sample analysis is reduced considerably. The NAA method is fast and convenient; for many elements, several samples can be irradiated at a given time and counted later on a given decay schedule.

4.2 Finally, the NAA method offers high sensitivity to trace elements. The sensitivity obtained by activation analysis is a function of the neutron cross section of the element in question, available neutron flux, length of irradiation, resolution of the detector, matrix composition, and the total sample size. Hence, increasing neutron fluxes, increased irradiation times, and major advances in nuclear technology in the areas of increased efficiency and resolution have pushed the detection limits of most elements to very low levels.

5. Interferences

5.1 Elemental Nuclear Parameters. The radioactive elements, their related isotopes, and their nuclear parameters are shown in Table 3.

5.2 Interferences. Interferences with NAA occur in three primary categories as described in the following paragraphs.

5.2.1 Sensitivity. Sensitivity can decrease when an element exists in sufficient quantity to produce high gamma activity in the filter sample that masks the lower gamma activity from other elements of interest. The primary correction for this situation (when feasible) is to pick irradiation times and decay times that emphasize the elements of interest and de-emphasize the interfering element.

5.2.2 Similar gamma ray emissions. This situation exists when two radionuclides emit a gamma ray of similar energy that interferes with each other. Possible corrections to this situation are as follows:

- Utilize different irradiation and decay times.
- Use high-quality, high-resolution HPGe or GeLi detectors to resolve close peak, especially when using sophisticated computer programs that use iterative least square curve fitting and peak search routines.
- Use computer programs that locate a "clean" gamma photopeak of the interference and use its net area and known nuclear characteristics to calculate and subtract the interfering peak net area from the gamma ray of interest along with percent error calculations.

5.2.3 Duplicate radionuclide production. This interference occurs when the nuclei of 2 unrelated elements absorb a neutron and produce the exact same radionuclide. The correction is to use the net area of a gamma peak of another radionuclide associated with the interference and the known nuclear characteristics produced by the interference parent to calculate the actual production rates of the interference and subtract from the radionuclide gamma peak of interest along with percent error calculations.

6. Safety

6.1 Chemical Toxicology.

6.1.1 The toxicology or carcinogenicity of all chemicals used in this method is not completely known. Each chemical should be regarded as a potential health hazard, and exposure to these compounds should be as low as reasonably possible. Each laboratory is responsible for maintaining a current awareness file of OSHA regulations regarding the safe handling of the chemicals specified in this method.

6.1.2 A reference file of material data handling sheets (MDS) also should be available to all personnel involved in the chemical analysis. All chemicals should have the purchase date and expiration date written on the container. Each professional or technician working in the laboratory should participate in yearly chemical safety refresher courses.

6.2 Radioactive Safety

6.2.1 The radiological operations should be under the direction of a radiological safety officer or health physicist.

6.2.2 The laboratory must have an Agreement State or NRC license to possess controlled levels of radioactivity.

6.2.3 All professionals and lab technicians should be officially trained, certified, and documented to work with radioactive materials.

6.2.4 Radiation surveys of the lab area work stations should be performed daily to properly limit the dose exposure to lab personnel and to lower the background levels of radioactivity subject to the nuclear detector systems used for NAA.

6.2.5 Contamination swipes of work areas should be performed weekly to protect employees from internal uptake and to prevent contamination of the nuclear detectors or specific samples being counted.

7. Definitions

[<u>Note</u>: Definitions used in this document are consistent with ASTM methods. All pertinent abbreviations and symbols are defined within this document at point of use.]

7.1 Instrument Detection Limit (IDL). The concentration equivalent of the element, which is equal to three times the standard deviation of the blank.

7.2 Method Detection Limit (MDL). The minimum concentration of the element that can be identified, measured, and reported with a 99% confidence level that the element concentration is greater than zero.

7.3 Laboratory Reagent Blank (LRB) (Preparation Blank). An aliquot of water that is treated exactly as a sample, including exposure to all labware, equipment, solvents, reagents, etc. that are used with other samples. The LRB is used to determine if the method analytes or other interferences are present in the laboratory environment, the reagents, or apparatus.

7.4 Internal Standard. Pure elements added to a solution in known amounts and used to measure the relative responses of other elements that are components of the same solution. The internal standard must be an element that is not a sample component.

7.5 Stock Standards Solution. A concentrated solution containing one or more elements prepared in the laboratory using certified reference compounds or purchased from a reputable commercial source.

7.6 Calibration Check. A radioactive standard (i.e., Ra²²⁶) used to determine acceptable instrument performance prior to calibration and sample analyses.

7.7 Laboratory Fortified Blank (LFB). An aliquot of reagent water to which known quantities of the method elements are added in the laboratory. The LFB is analyzed exactly like the sample, and its purpose is to determine whether method performance is within acceptable control limits.

7.8 Laboratory Fortified Sample Matrix (LFM). An aliquot of an environmental sample to which known quantities of the method elements are added in the laboratory. The LFB is analyzed exactly like the sample, and its purpose is to determine whether the sample matrix contributes bias to the analytical results. The background concentrations of the elements in the sample matrix must be determined in a separate aliquot and the measured values in the LFM corrected for the concentrations found.

7.9 Quality Control Standard Reference Material (SRM's). Elementally certified standard reference materials (NIST, NRC, IAEA, etc.) of a matrix similar to the unknowns that are analyzed as blind control samples with the knowns.

8. Apparatus and Equipment

The basic instrumentation for performing neutron activation analysis consists of a nuclear reactor for irradiating the samples, nuclear detectors for detecting the gamma emissions, and various types of multichannel analyzer systems that range from simple data acquisition systems to complex computerized data acquisition and processing systems. A general summary of the basic NAA process is shown in Figure 1.

8.1 Research Nuclear Reactor

8.1.1 The research nuclear reactor must have a minimum thermal neutron flux: $1 \times 10^{13} \text{ n/cm}^2\text{-s}$, open pool water cooled type containment, rotating, out-of-core, wet sample exposure facilities for uniform sample irradiation for 1 to 24 h, and pneumatic irradiation facilitates for fast 10 s to 60 min sample irradiations.

8.1.2 Primary consideration must be given to accurately measuring the thermal neutron flux distribution within the volume that is intended for irradiation of the samples. Many conditions cause a distortion of the flux; hence, irradiation facilities need to be found where the flux does not vary over a few percent (2% or less). If this situation does not exist, small flux monitors must be located in the different sample positions for monitoring and counting the flux and making appropriate tables of flux correction factors.

8.2 Gamma Spectroscopy System

8.2.1 Large Volume Lithium-Drifted Coaxial Ge(Li) or HPGe Nuclear Detectors. The primary component in a gamma spectroscopy system is the gamma detector. This detector typically consists of a coaxial-shaped lithium-drifted germanium Ge(Li) crystal or a high-purity HPGe coaxial detector mounted in a vacuum tight cryostat, a liquid-nitrogen Dewar, and a very low noise preamplifier, all in one complete unit. These detectors are very sensitive to a wide energy range of gammas, from 0-3.0 MeV. Typical efficiencies for commercial detectors run from 10-50% with some possessing up to 100% efficiency. These detectors typically have an energy resolution of 1.7-2.2 keV and are capable of effectively providing a clear definitive response to the many different energy gammas in a typical irradiated sample. Due to their sensitivity to gamma rays from natural background radioactivity, Ge(Li) and HPGe detectors must be shielded by several inches of lead with a copper - cadmium inner liner. The nuclear characteristics of all radionuclides detectable on detectors such as these are shown in Table 4.

8.2.2 Low Energy Photon Detector (LEPD). A supplementary component of the gamma spectrometry system is a low energy photon detector (LEPD or LEPS). This detector is sensitive to low-energy photons ((-rays and X-rays) and resolves X-ray events that are close in energy value. Since many elements, when bombarded with thermal neutrons in a reactor, give off X-rays and low energy (-rays, the LEPD offers increased NAA sensitivity to many trace metals. The use of X-ray spectrometry when combined with a low energy photon detector has several notable advantages over routine (-ray spectrometry. The isotopes decay with characteristic X-rays unique to the element; gamma decays are not necessarily so. Therefore, in an X-ray spectrum of a given matrix, many elements can be determined without the overlapping of photopeaks that sometimes occurs in (-ray spectrometry. Another useful characteristic of the LEPD is that it is "blind" to the higher energy (-rays emitted by the radioactive matrix. That is, the higher-energy photons tend to pass through the detector without interaction, while the low-energy particles are absorbed. The low-energy photon detector plus Dewar is very similar in size and shape to the standard large-volume Ge(Li) detectors. The LEPD unit is constructed of a virtually windowless (less than 1µm Ge) lithium-drifted germanium crystal wafer and is maintained at liquid nitrogen temperatures by a cryosorption pumping and a liquid nitrogen Dewar. The detector has a standard end cap window of 5 mils of beryllium. Such a detector, when coupled

with a 4096 or greater multichannel analyzer, has a useful range from 3 to approximately 600 keV. At above 500-600 keV, the relative photopeak efficiency drops off, but the resolution remains sufficient to separate photopeaks as close as 3 keV. At 270 keV, photopeaks as close as 750 keV can be separated. Typical resolution at 5.9 keV is 225 eV, and at 122 keV, it is 600 eV. The nuclear parameters of elements detected by LEPD detectors are illustrated in Table 5.

8.2.3 Data Acquisition Systems. The commercial multichannel analyzer (MCA) is a device whose primary function is to sort and store the myriad of proportion signals coming from the nuclear detector due to gamma interaction with the detector. Based upon the calibration of the system (usually 0 - 2 MeV for Ge(Li) and 0 - 200 keV for the LEPD), the analyzer will sort incoming signals according to their energy and store them in an appropriate memory bit or "channel." Such a system typically might have 4096 or 8192 channels and be attached to microprocessors that have simple data reduction routines for determining net X-rays counts in a peak and the X-rays energy of the peak. The more complex MCA data acquisition systems consist of either: (1) multiple 4096 channel analyzers connected to PC type computers with sufficient storage to have a variety of peak search and radionuclide identification routines, a library of reference standards, half-life decay corrections, etc.; the final product is a report listing the various experimental parameters of the sample and a listing of $\mu g/g$, etc. of each element present in the sample plus the error limits; or (2) multijob, multi-task data acquisition processing systems, which allow flexibility in designing specific data acquisition areas for independently operating many separate nuclear detector systems with built-in microprocessors and minicomputers. The final product is the same as that for the PC type gamma spectroscopy systems.

9. Reagents and Consumable Materials

9.1 Reagents

[<u>Note</u>: For purposes such as cleaning the hi-purity irradiation vials, acidifying solutions for storage, and conducting standard dilution procedures, etc., sources of high-purity nitric acid should be maintained.]

9.1.1 Nitric Acid, high-purity, concentrated (sp.gr.1.41). Commercial Sources.

9.1.2 Water. ASTM Type I water (ASTM D1193) for use in cleaning procedures, standard dilutions, etc.

9.2 Standard Stock Solutions

[<u>Note</u>: High-quality commercial grades of (atomic absorption) elemental standard solutions plus mixed element standards can be effectively used.]

9.2.1 For the elements Ti, I, Cu, Mg, Mn, Na, K, Cl, V, and Al, the acid base for the solution must be nitric acid. Both HCl and H_2SO_4 produce interferences in the standards for short-lived elements that are not acceptable.

9.2.2 For all other elements, either a HNO₃ or HCl acid base is suitable.

9.2.3 Both single and multi-element standards should be prepared in bulk in the different size irradiation container volumes used to eliminate stability problems.

9.3 Blanks

A laboratory reagent blank (LRB) is used to determine potential contamination problems and to determine background levels of the elements of interest. The LRB must contain all the reagents in the same volumes as used in preparing the samples. It must be carried through the sample preparation scheme.

9.4 Quality Control (QC) Standard Reference Materials

The SRMs must be obtained from commercial (outside the lab) and federal sources of <u>certified</u> standard reference materials. Certification documents and expiration dates must be maintained.

9.5 Sample Irradiation Vials

Pre-cleaned, high-purity Kartell or Olympic linear polyethylene vials in the 1 mL, 2.5 mL, 5 mL, 10 mL, and 20 mL size should be maintained. A device needs to be maintained in a clean hood for heat-sealing all sample vials.

10. Sample Receipt in the Laboratory

As you are notified of their availability, personnel within the neutron activation analysis laboratory shall receive the samples as they are mailed or hand carried. Upon receipt of samples, assign each job a control number and the chain of custody documents. Assign all samples an ascending NAA Lab number in the NAA Laboratory Sample Receipt Log. Store all samples requiring refrigeration in refrigerator-freezers. All other samples should be stored under cool, dry, and dark conditions in laboratory storage cabinets in the restricted areas of the laboratory. (Samples requiring desiccant storage are stored in that manner). Limit all contact with these samples to only the personnel assigned to this project.

11. Calibration

Ge(Li) or HPGe gamma spectroscopy detection systems are generally operated on an energy range of 0 to 2000 keV utilizing 4096 to 8192 channels of data acquisition storage. The three calibration items of daily interest are energy calibration, detector peak resolution, and efficiency stability.

11.1 Maintain a radioactive source (i.e. Ra-226 or an NIST multi-radionuclide source) that provides gamma emissions from 50-1,750 keV.

11.2 Maintain this calibration source in a condition that allows a fixed, unchanged geometry that can be duplicated exactly each time it is used.

11.3 Arrange for computer programs that allow daily comparisons of an initial first count of this standard to all future daily counts.

11.4 Set up a daily QA/QC procedure for each detector that has the following:

- Duplicated geometry.
- Duplicated count time.
- Duplicated computer program parameters.

• Duplicated count comparisons that are compared to initial settings.

11.5 Count the calibration standard and process data.

11.6 For the energy calibration check, review all the designated gamma peak measurements to determine that all peaks are within \pm 0.5 keV of their true value.

11.7 For the peak resolution check, review all peaks for anomalies, but concentrate on the 1,172-1,333 keV region to insure a peak resolution of 2.2 keV or less.

11.8 For the efficiency resolution check, compare peaks in the 500 to 600 keV and the 1100 to 1300 keV energy range to determine that the net gamma count in those peaks (corrected for decay) have not varied more than $\pm 5.0\%$ from the initial preset measured values.

12. Quality Control (QC)

For neutron activation analysis methods, it is recommended that a documented, certified QA/QC program utilizing validated SOPs and QA/QC document forms be established. A series of standard operating procedures should be defined in the following areas for quality control of the complete analytical procedure. Documented performance records showing quality of performance should be maintained.

12.1 When samples arrive, verify them against shipping documents. Notify discrepancies and assign control numbers. Record the samples in the entry log, and assign appropriate (matrix related) storage. An analytical job plan should also be formatted. The following control forms and concepts should be developed and used:

- Sample Receipt Control Numbers.
- Chain of Custody Document Form.
- Unique Sample I.D. Numbers.
- Daily Freezer and Refrigerator Temperature Checks recorded on forms.
- Controlled Access Areas.

12.2 Maintain all laboratory areas in a controlled, clean, and organized atmosphere. The following control forms should be developed and used:

- Daily Hood System Flow Checks.
- Daily Radiation Surveys of the Lab Work Area recorded on forms.
- Weekly Laboratory Radiation Swipe Tests recorded on forms.

12.3 All employees of the laboratory shall have documented training programs. The following control forms should be developed and used:

- Employee Systems Operation Certifications (annual).
- Employee Update Training (annual).
- Employee SOP Certification.

12.4 Prepare all analytical standards and unknowns (as required) in class 100 clean hood conditions according to documented instructions. The following control forms should be developed and used:

- Unknown Preparation Form.
- Standard Preparation Form.
- SRM, Blank, and Duplicates Preparation Form.

- Shelf-Life Certifications.
- Sample Weight QA form.
- Sample Volume QA form.

12.5 Prior to use each day, check and certify each weight balance system (using NIST certified weights). Each technician using the systems certifies balance compliance. Records are stored on all certifications. A Daily Balance Calibration Checks control form should be developed for this activity.

12.6 Routinely check pipettes for volume certification using the weighing of deionized water of known volumes. Records are stored on all certifications. A Weekly Pipette Calibration Checks control form should be developed for this activity.

12.7 Conduct a daily calibration, efficiency, and resolution check (using an NIST source, etc.) on each gamma spectroscopy system. A (sign-off) daily review of certification should be made prior to use by each technician using the system. Stored records are maintained on all QA data. The following control forms and concepts should be developed and used:

- Daily QA/QC Calibration, Efficiency, and Resolution Checks.
- Daily QA/QC Performance Charts.
- Weekly QA/QC Background Checks.
- System Maintenance Logs.

12.8 Nuclear reactor flux monitor irradiations will be made and accurate flux monitor corrections maintained for the irradiation locations in each of the wet exposure irradiation ports. Certified records should be maintained for all data and calculations related to these flux correction factors. These documents are:

- NIST Flux Correction Tables.
- Flux Raw Data Documents and Experimental Parameters.

12.9 For each nuclear detector used in the system, determine all geometry (different sample counting configurations) correction factors (curves). The following documents should be maintained:

- Certified Geometry Correction Factors Tables.
- Geometry Raw Data Documents and Experiment Parameters.
- **12.10** Prepare validation documents for the following:
 - SOPs.
 - All Computer Programs Used.

12.11 Maintain computer backup disks at a different location for the following:

- Gamma Spectroscopy Data Acquisition and Data Processing Programs.
- System QA/QC Gamma Spectroscopy Data.
- Client Project Gamma Spectra and Nuclear Parameters for Samples, Standards, Duplicates, SRMs and Blanks.

12.12 Thoroughly document all sample irradiation and counting. The following control forms should be developed and used:

- Nuclear Reactor Run Sheet.
- Pneumatic Facility Operation Form.
- Sample Counting and Data Processing Form.

12.13 For QA/QC control, a batch of NAA samples is considered to be a group of samples irradiated at the same time under the same irradiation conditions, counted on the same gamma spectroscopy detectors and data acquisition systems, and processed under the exact same count time, calibration, efficiency, and geometry conditions. Each NAA sample batch should contain the following QC samples as a minimum:

- Blank Vial Analyses 1 blank vial per 20 unknown samples.
- NBS SRM Analyses 2 SRMs per 20 unknown samples.
- Duplicate Unknown Analyses 1 duplicate per 20 unknown samples.
- Standards Triplicate standards per batch of unknowns.

12.14 Use data review forms to evaluate the performance of these categories for each batch (and monthly summaries) with the following controls:

- Duplicates: Solids = $\pm 20\%$ variance. Liquids = $\pm 10\%$ variance. Air = $\pm 20\%$ variance.
- Method blanks: < 3X method blank average.
- SRMs: Solids $\pm 10\%$ certified value.
 - Liquids \pm 5% certified value.
 - Air = $\pm 20\%$ certified value.
- Standards: $\pm 1\%$ variance.
- **12.15** The following system manuals and training documents should be maintained:
 - Gamma Spectroscopy System Manuals.
 - Computer Program Software Manuals.
 - Radiation Safety Study Guide (Health Physics Manual).
 - QA/QC Validation Guidelines.
 - QA/QC Lab Inspections.
 - Applied Gamma Ray Spectrometry, Adams and Dams.
 - *Table of the Isotopes*, Lederer, Hollander & Perlman.
 - SOP Manual
 - Detector Geometry Correction Manual
 - Reactor Flux Correction Manual
 - Material Safety Data Sheet Manual

13. Procedure

13.1 Unknown Sample Preparation

13.1.1 Pre-punch air filter samples to a 3.0 cm diameter. All sample handling should be performed in laminar flow clean hoods using new disposable plastic gloves, etc.

13.1.2 Carefully fold each air filter disk into itself until it is 1/4 its original size. See Figure 2 for an illustration of the folding process.

13.1.3 Carefully insert the filter into pre-cleaned Kartell or Olympic hi-purity linear polyethylene irradiation vials that are 30 mm long and 8 mm in diameter. Put the sample I.D. number on the vial using marking pens that use ink that contains none of the elements of interest. Heat-seal and pre-clean the vial prior to irradiation. All sample preparation should be controlled by instructions on the unknown QA/QC form.

Each of the new Kartell or Olympic hi-purity irradiation polyethylene vials are treated as follows prior to placing samples into them for irradiation:

- 10 min soak in 20% nitric acid-distilled water solution.
- 60 min soak in deionized water.
- Rinse in distilled water.

In each batch of new irradiation vials, a total of 10 of each type vial and trace element levels determined to ensure that contamination of the samples by the vial will not occur.

13.2 Metal Blank Preparation

13.2.1 Prepare method blank filters using the same procedures identified in Section 13.1 for unknowns.13.2.2 Prepare a minimum of one method blank filter per 20 unknown samples.

13.3 Duplicate Sample Preparation

13.3.1 Prepare duplicate sample filters using the same procedures identified in Section 13.1 for unknown filter being duplicated.

13.3.2 Prepare a minimum of one duplicate filter per 20 unknown samples.

13.4 Standards Preparation

13.4.1 Prepare or purchase mixed element standards, liquid or solid, including the three categories of standards itemized in Table 6.

13.4.2 Using the instructions on the QA/QC Standards preparation form, carefully pipette (using QA/QC certified and checked calibrated pipettes) 0.5 ml of each mixed standard solution into its own unique (precleaned) Kartel or Olympic plastic 30 mm by 8 mm irradiation vial that has been labeled as follows:

SMES (Short Mixed Element Standard)

MMES (Medium Mixed Element Standard)

LMES (Long Mixed Element Standard)

Next trim, heat-seal, and clean vials as per the instructions for the unknowns.

13.4.3 Standards should be prepared in triplicate based on the elements that are being analyzed in the air particulate filters.

13.5 Irradiation and Counting for Short - Lived Isotopes

Unknown samples, standards, blanks, duplicates, and SRMs are irradiated individually for 20 s to 10 min in the pneumatic transfer system of the nuclear reactor at a flux of 1.0×10^{13} n/cm²-sec. (or greater). After a monitored decay, each sample vial is rinsed in a radioactive hood and placed in non-irradiated counting vials. After an exact decay time (determined by the results of preliminary sample analyses), each sample, standard, blank, duplicate and SRM is counted for 30 to 300 s on designated Ge(Li) detection systems. Data is analyzed (using the nuclear parameters in Tables 2 and 3) and spectra are permanently stored on disk with appropriate nuclear parameters included. The elements typically analyzed by short-lived isotopes are Al, V, Ti, Mn, Mg, Cl, Cu, F, O, Na, K, I, etc.

13.6 Irradiations and Counting for Medium and Long - Lived Isotopes

Unknown samples, standards, blanks, duplicates, and SRMs are again irradiated for 1 to 24 h at a flux of 1.0 x 10¹³ n/cm²-s. (or greater) in the rotating wet vertical exposure irradiation facilities of the nuclear reactor. After approximately a 5-7 day radioactive decay (to allow interfering activities to decay away) of the samples and reference standards, both unknowns, SRMs, and standards are counted for 400-1,200 s on the gamma detection systems. Data is analyzed (using the nuclear reactor parameters in Tables 4 and 5) and spectra is permanently stored on disk with appropriate decay time, dead time, etc. and other nuclear data included. The elements typically analyzed by medium-lived isotopes are Na, K, As, Sm, Cd, La, Mo, Br, Sb, U, Hg, Au, W, Pt, etc. After a 14-21 day decay, a 1,000-1,800 s gamma count of each sample and standard is made for long-lived isotopes. The elements typically analyzed by long-lived isotopes are Ce, Ca, Lu, Th, Cr, Eu ,Yb, Nd, Zr, Ag, Cs, Fe, Sc, Zn, Co, Sr, Rb, Ni, Ba, etc. (using nuclear parameters shown in Tables 4 and 5).

14. Calculations and Data Processing

Spectral data from the unknown samples, standards, and SRMs are processed using the commercially developed computer programs for gamma peak search, least squares fitting, and NAA quantitative analysis. All spectra and associated nuclear parameters from the analyses are stored on disk for future access as needed. Results are reported as μ grams or nanograms element per cubic meter of air with percent error limits (2 sigma) based on known errors associated with counting statistics, precision, accuracy of standards, weighing, pipetting, etc. As part of the computer processing during the counting phase, an automatic peak search performs a gaussian peak fit on all single peaks. Multiples (several peaks close together) are analyzed by an iterative least squares gaussian fit. The result from this peak program is the determination of the centroid channel (energy), FWHM (full width-half max), net integrated peak area, and background. When no peak area appears, the system calculates a less-than value (based on all available nuclear parameters) for the elemental determination. The number of counts per sec per cubic meter of air, etc. of sample (N_a) is computed as:

$$N_a$$
 ' $\frac{N}{(V_{std})(t_c)(D)(F)(G)}$

where:

N = the number of counts observed (net peak area).

 V_{std} = the standard cubic meters of air sampled (m³)

F = the sample reactor flux position correction.

- G = the sample geometry correction.
- $t_c =$ the live counting time in seconds established for each count.
- D = a dimensionless decay correction related to the end of the sample irradiation and is computed by:

D' exp.
$$\left[\frac{(0.693t)}{(T_{1/2})} \right]$$

where:

- t = the elapsed time from end of irradiation to the middle of the counting sequence in the same units as T.
- T = the half-life of the element being evaluated.

The number of μg , etc. of element per cubic meter of air is then calculated by dividing (N_a) by (N_s), which is the analogous term to (N_a) but obtained for a standard. The output results for each element are represented in units of $\mu g/m^3$. A sample data output report is provided as Figure 3.

15. Precision and Accuracy

Precision is measured as the percent difference between the values obtained for duplicates (i.e., N_{a1} and N_{a2}). The average of the values is used to base the percentage difference. The measurement of precision provides us with the best indication of quality control's success. This determination is shown in the sum of errors associated with weighing, pipetting, individual reactor irradiations, counting statistics, detector efficiency and resolution, and sample homogeneity.

% D '
$$\frac{\left[\frac{(N_{a2} \& N_{a1})}{(N_{a1} \% N_{a2})}\right]}{2} x 100$$

15.1 Precision errors associated with typical reactor flux changes in pool type research reactors are illustrated in Table 7.

15.2 Typical precision errors associated with detector efficiency changes with time are illustrated in Table 8.

15.3 Typical precision errors associated with all variables involved in the preparation of samples are illustrated in Table 9.

15.4 Accuracy

Accuracy is measured by percent error for standards and the results for analysis of various Standard Reference Materials from NIST, Canada, IAEA, and other related agencies. Percent error is expressed as the following equation:

% Error ' $\left[\frac{(\text{Observed \& Known})}{(\text{Known})} \right] x 100$

15.4.1 Tables 10 through 13 represent a typical accuracy check in various matrix Standard Reference Materials that are routinely irradiated and analyzed with unknowns.

15.4.2 For accurate QA control, a wide variety of SRMs should be maintained in the laboratory similar to the typical ones listed in Table 14.

16. References

- 1. Crouthamel, C.E., et al., Applied Gamma Ray Spectrometry, Pergamon Press, 1975.
- 2. Lederer, C.M., et al., *Table of the Isotopes*, 6th Edition, John Wiley and Sons, 1967.
- 3. U. S. Environmental Protection Agency, *Test Method for Evaluating Solid Waste*, Method 9022, EPA Laboratory Manual, Vol. #1 A, SW-846.
- 4. Shapiro, J., *Radiation Protection*, Harvard University Press, 1972.
- 5. Faw, R., and Shultis, J. Radiological Assessment, Prentice Hall, 1993.
- 6. Heydorn, K., Neutron Activation Analysis for Clinical Trace Element Research, CRC Press, Vol. 1, 1984.
- 7. Burn, R., *Research, Training, Test and Production Reactor Directory*, American Nuclear Society, Third Edition, 1988.

ELEMENT	SYMBOL	Chemical Abstract Services Registry Numbers (CASRN)
TITANIUM	Ti	7440 - 32 - 6
TIN	Sn	7440 - 31 - 5
IODINE	Ι	7553 - 56 - 2
MANGANESE	Mn	7439 - 96 - 5
MAGNESIUM	Mg	7439 - 95 - 4
COPPER	Cu	7440 - 50 - 8
VANADIUM	V	7440 - 62 - 2
CHLORINE	Cl	7782 - 50 - 5
ALUMINUM	Al	7429 - 90 - 5
MERCURY	Hg	7439 - 97 - 6
SAMARIUM	Sm	7440 - 19 - 9
TUNGSTEN	W	7440 - 33 - 7
MOLYBDENUM	Мо	7439 - 98 - 7
URANIUM	U	7440 - 61 - 1
LANTHANUM	La	7439 - 91 - 0
CADMIUM	Cd	7440 - 43 - 9
ARSENIC	As	7440 - 38 - 2
ANTIMONY	Sb	7440 - 36 - 0
BROMINE	Br	7726 - 95 - 6
SODIUM	Na	7440 - 23 - 5
POTASSIUM	К	7440 - 09 - 7
CERIUM	Ce	7440 - 45 - 1
CALCIUM	Ca	7440 - 70 - 2
LUTETIUM	Lu	7439 - 94 - 3
SELENIUM	Se	7782 - 49 - 2
TERBIUM	Tb	7440 - 27 - 9
THORIUM	Th	7440 - 29 - 1
CHROMIUM	Cr	7440 - 47 - 3
EUROPIUM	Eu	7440 - 53 - 1
YTTERBIUM	Yb	7440 - 64 - 4
HAFNIUM	Hf	7440 - 58 - 6
BARIUM	Ba	7440 - 39 - 3
STRONTIUM	Sr	7440 - 24 - 6
NEODYMIUM	Nd	7440 - 00 - 8
SILVER	Ag	7440 - 22 - 4
ZIRCONIUM	Zr	7440 - 67 - 7
CESIUM	Cs	7440 - 46 - 2
NICKEL	Ni	7440 - 02 - 0
SCANDIUM	Sc	7440 - 20 - 2
RUBIDIUM	Rb	7440 - 17 - 7
IRON	Fe	7439 - 89 - 6
ZINC	Zn	7440 - 66 - 6
COBALT	Co	7440 - 48 - 4
TANTALUM	Ta	7440 - 25 - 7

TABLE 1. EXAMPLE SUMMARY OF ELEMENTS COMPATIBLE WITH NAA

ON ACTIVATION ANALYSIS (NAA) METH	IN NANOGRAMS ¹ AND n_0/m^32
TABLE 2. EXAMPLE OF ESTIMATED NEUTH	DETECTION I IMITS (MDI 8) IN NANGGRAMS ¹ AND ^{104/m3} 2
	TABLE 2. EXAMPLE OF ESTIMATED NEUTRON ACTIVATION ANALYSIS (NAA) METH

Method Detection Limis	(MDLs)	ng/m ³	0.04	60.0	9.2	0.04	0.18	0.40	4.2	4.6	2.3	3.2	9.2	4.6	60:0	0.20	0.04	0.20	0.09	9.2	92.6			
Method Dete	(ME	ng	0.00	0.200	2.00	0.01	0.04	0.09	06.0	1.00	0.500	0.700	2.00	1.00	0.02	0.04	0.01	0.04	0.02	2.00	20.00			
DETECTION LIMITS (MULS) IN INAINOGRAMS - AIND IIG/IIT - ection Limis		Element	SAMARIUM	SCANDIUM	SELENIUM	SILVER	SODIUM	STRONTIUM	TANTALUM	TELLURIUM	TERBIUM	THORIUM	NIL	TITANIUM	TUNGSTEN	URANIUM	VANADIUM	YTTERBIUM	YTTRIUM	ZINC	ZIRCONIUM			
Method Detection Limis	(MDLs)	ng/m^3	0.02	5.0	9.2x10 ⁻³	4629.0	0.5	0.2	4.2x10 ⁻³	231.0	0.02	0.9	5.0	9.2	1.8	46.0	0.09	1.8	0.92	0.04	0.02	9.2x10 ⁻³	18.5	06.0
Method De	(M)	ng	0.005	1	0.002	1000	0.1	0.04	0.0000	50	0.005	0.2	1	2	0.4	10	0.02	0.4	0.2	0.01	0.004	0.002	4.00	0.200
		Element	INDIUM	IODINE	IRIDIUM	IRON	KRYPTON	LANTHANUM	LUTETIUM	MAGNESIUM	MANGANESE	MERCURY	MOLYBDENUM	NEODYMIUM	NICKEL	NIOBIUM	PALLADIUM	PLATINUM	POTASSIUM	PRASEODYMIUM	RHENIUM	RHODIUM	RUBIDIUM	RUTHENIUM
Method Detection Limis	(MDLs)	ng/m^3	5.0	0.4	0.04	60:0	2.3	0.04	4.2	231.0	9.2	0.02	9.2	92.5	0.4	0.9	1x10-5	0.2	4.1x10 ⁻⁴	92.5	9.2	0.09	8.2	0.02
Method Det	(M)	ng	1	60.0	0.01	0.02	0.5	0.01	0.9	50	2	0.04	2	20.0	60.0	0.20	0.000004	0.04	0.00009	20.0	2.00	0.02	0.70	0.00
		Element	ALUMINUM	ANOMITNA	ARGON	ARSENIC	BARIUM	BROMINE	CADMIUM	CALCIUM	CERIUM	CESIUM	CHLORINE	CHROMIUM	COBALT	COPPER	DYSPROSIUM	ERBIUM	EUROPIUM	FLUORINE	GADOLINIUM	GOLD	HAFNIUM	HOLMIUM

¹Results listed are based on a 10 h irradiation at 1 x 10¹³ n/cm-s with no interfering elements or matrix effects. ²Based upon dichotouous sampling for 24-hrs using a 37-min Teflon® filter at a sampling rate of 0.9 m³/hr.

Chapter IO-3 Chemical Analysis

HOD

Method IO-3.7 Neutron Activation Analysis

			TABLE 3.	GAMMA RA	GAMMA RAY INTERFERENCES	INCES		
Element	Isotope	Half-Life	Energy (keV)	Interfering Isotope	Half-Life	Interference (keV)	Reference (keV)	Abundance Ratio
Dysprosium	$^{165}\mathrm{Dy}$	2.33 h	94.7	²³³ Th	22.3 m	94.7	86.5	0.346
Magnesium	^{27}Mg	$9.46 \mathrm{m}$	843.8	^{26}Mn	2.58 h	846.8	1810.7	3.636
Manganese	$^{56}\mathrm{Mn}$	2.58 h	846.8	^{27}Mg	9.46 m	843.8	1014.4	2.496
Antimony	¹²² Sb	2.70 d	564.2	$^{76}\mathrm{As}_{134}\mathrm{Cs}$	26.32 h 2.06 y	563.2 563.2	559.1 795.8	0.0267 0.0981
Arsenic	$^{26}\mathrm{As}$	26.32 h	559.1	$^{114\mathrm{mIn}}$	49.51 d	558.4	190.3	0.0649
Bromine	$^{82}_{82}\mathrm{Br}$	35.3 h 35.3 h	$\begin{array}{c} 619.1 \\ 776.5 \end{array}$	0M ⁶⁶	23.9 h 65.94 h	618.3 778.0	685.7 739.6	$0.2300 \\ 0.3578$
Calcium	⁴⁷ Ca	4.54 d	1297.1	$^{152}\mathrm{Eu}$	13.33 y	1299.1	1408.1	0.0784
Gallium	72Ga	14.1 h	834.1	^{54}Mn	312.12 d	834.8		
Germanium	77Ge	11.3 h	264.4	75 Se	119.77 d	264.7	400.7	5.121
Gold	$^{198}\mathrm{Au}$	2.70 d	411.8	$^{152}\mathrm{Eu}$	13.33 y	411.1	344.3	0.0839
Holmium	$^{166}\mathrm{Ho}$	26.8 h	80.6	$^{131}\mathrm{I}$	8.04 d	80.2	364.5	0.0323
Tungsten	¹⁸⁷ W	23.9 h	134.2	¹³¹ Ba ¹⁸¹ Hf	11.8 d 42.39 d	133.6 133.0	216.0 345.9	0.1095 2.3800
D	M	23.9 h	685.7	^{110m}Ag	249.76 d	687.0	657.8	0.0681
	^{239}Np	2.36 d	228.2	¹³² Te ¹⁸² Ta	78.2 h 114.5 d	228.3 229.3	49.8 222.1	$6.1250 \\ 0.4790$
Uranium	^{239}Np	36 d	277.6	²³² Th ¹⁴⁷ Nb ¹⁵² Eu	$\begin{array}{c} 1.4\mathrm{E}{+} \ 10\mathrm{y} \\ 10.98 \ \mathrm{d} \\ 13.33 \ \mathrm{y} \end{array}$	277.4 275.4 275.4	583.2 531.0 344.3	0.0747 0.0611 0.0013
Ytterbium	$^{175}\mathrm{Yb}$	4.19 d	282.5	^{177m} Lu	160.9 d	281.8	208.4	0.2315
Antimony	124 Sb	60.2 d	602.7	^{134}CS	2.06 y	604.7	795.8	1.1418

Page 3.7-18

				TABLE 3. (continued)	ntinued)			
Element	Isotope	Half-Life	Energy (keV)	Interfering Isotope	Half-Life	Interference (keV)	Reference (keV)	Abundance Ratio
Cerium	¹⁴¹ Ce	32.5 d	145.4	¹⁸³ Та ¹⁷⁵ Үb	5.10 d 4.19 d	144.1 144.9	$246.1 \\ 396.3$	$0.0954 \\ 0.0511$
Cesium	$^{134}_{134}$ CS	2.06 y 2.06 y	604.7 795.8	¹²⁴ Sb ²³² Th	60.2 d 1.4E+10y	602.7 795.0	$1691.0\\911.2$	2.0660 0.1632
Chromium	⁵¹ Cr	27.7 d	32.1	¹⁴⁷ Nb ^{177m} Lu	10.98 d 160.9 d	319.4 319.0	531.0 378.5	0.1488 0.3971
Hafnium	181Hf	42.39 d	133.0	¹³¹ Ba ¹¹⁴ Ce	11.8 d 284.9 d	133.6 133.5	216.0	0.1095
	$^{181}{ m Hf}$	42.39 d	482.2	$^{194\mathrm{m}}\mathrm{Ir}$	171.0 d	482.7	338.8	1.7586
Indium	114m In	49.51 d	190.3	59 Fe	44.5 d	192.4	1099.2	0.0545
Iridium	192 Ir	73.83 d	296.0	$^{177\mathrm{m}}\mathrm{Lu}$	160.9 d 4.5E+09y	296.4 295.2	378.5 351.9	$0.1949 \\ 0.5175$
	$^{192}\mathrm{Ir}$	73.83 d	468.1	$^{154}\mathrm{Eu}$	8.59 y	468.1	478.3	0.2627
Iron	⁵⁹ Fe	44.5 d	1291.6	^{115m} Cd ¹⁸² Ta	44.6 d 114.5 d	1290.6 1289.2	933.8 1221.4	$0.4450 \\ 0.0461$
Mercury	²⁰³ Hg	46.61 d	279.2	⁷⁵ Se	119.77d	279.5	264.7	0.4257
Nickel	⁵⁸ Co	70.82 d	810.8	$^{152}\mathrm{Eu}$	13.33 y	810.8	778.9	0.0244
Osium	^{185}Os	93.6 d	646.1	124 Sb	60.2 d	645.9	602.7	0.0755
Ruthenium	103 Ru	32.26 d	497.1	¹³¹ Ba	11.8 y	496.3	373.2	3.308
Scandium	⁴⁶ Sc	83.81 d	1120.6	¹⁸² Ta ²³⁸ U	114.5 d 4.5E+09y	1121.3 1120.3	$1221.4 \\ 609.3$	$1.2915 \\ 0.3254$
Selenium	⁷⁵ Se	119.77 d	264.7	¹⁸² Ta	114.5 d	264.1	222.1	0.4789
Silver	$^{110\mathrm{m}}\mathrm{Ag}_{110\mathrm{m}}\mathrm{Ag}$	249.76 d 249.76 d	657.8 884.7	$^{152}{ m Eu}_{192}{ m Ir}$	13.33 y 73.83 d	656.5 884.5	778.9 316.5	$0.0110 \\ 0.0034$
			1					

June 1999

				TABLE 3. (continued)	ontinued)			
Element	Isotope	Half-Life	Energy (keV)	Interfering Isotope	Half-Life	Interference (keV)	Reference (keV)	Abundance Ratio
Thorium	²³³ Pa	27.0 d	300.2	¹⁶⁰ Tb ²³² Th	72.3 d 1.4E+10y	298.6 300.1	879.4 238.6	$0.8781 \\ 0.0623$
	²³³ Pa	27.0 d	312.0	$^{42}\mathrm{K}$	12.36 h	312.4	1524.7	0.0186
Thulium	$^{170}\mathrm{Tm}$	128.6 d	84.3	¹⁸² Ta	14.5 d	84.7	100.1	0.1943
Tin	^{113}Sn	115.09 d	391.7	¹⁶⁰ Tb	72.3 d	392.5	298.6	0.0496
	$^{169}\mathrm{Yb}$	32.02 d	177.2	^{177m} Lu	160.9 d	177.0	378.5	0.1235
Ytterbium	dY^{691}	32.02 d	198.0	¹⁶⁰ 丁b ¹⁸² 丁a	72.3 d 114.5 d	$197.0 \\ 198.4$	298.6 222.1	$0.1940 \\ 0.1987$
Zinc	⁶⁵ Zn	243.9 d	1115.6	⁴⁶ Sc ¹⁵² Eu ¹⁶⁰ Tb ¹⁸² Ta	83.81 d 13.33 y 72.3 d 114.5 d	1120.6 1112.1 1115.1 1113.4	889.3 1408.0 1178.0 1221.4	$\begin{array}{c} 1.0000\\ 0.6475\\ 0.1000\\ 0.0160 \end{array}$
	${}^{95}\mathrm{Zr}$	64.02 d	724.2	¹²⁴ Sb ¹⁵⁴ Eu	60.2 d 8.59 y	722.8 723.3	602.7 1274.8	0.1115 0.5549
Zirconium	${}^{95}\mathrm{Zr}$	64.02 d	756.7	¹⁵⁴ Eu	8.59 y	756.9	1274.8	0.1115
	95 Nb	34.97 y	765.8	¹⁵² Eu ¹⁶⁰ Tb	13.33 y 72.3 d	764.9 765.3	778.9 879.4	0.0139 0.0670

Page 3.7-20

	L	TABLE 4. NUC	CLEAR PAR	AMETERS FO	R NEUT	NUCLEAR PARAMETERS FOR NEUTRON ACTIVATION ANALYSIS	ION ANALY	/SIS	
			Neutron activ. (Neutron activation cross section (barn)				Most use	Most useful (-ray
Element	Stable isotope	Abundance (%)	Thermal (F)	Epithermal (1)	1 / F	Radionuclide formed	Half-Life	Energy (keV)	Abundance (%)
F	$^{19}\mathrm{F}$	100	0.0098	0.04	4.1	$^{20}\mathrm{F}$	11.4 s	1634	100
Na	^{23}Na	100	0.528	0.31	0.59	^{24}Na	15.0 hr	1368	100
Mg	^{26}Mg	11.2	0.0038	0.03	7.9	^{27}Mg	9.5 min	844	70
Al	27 AI	100	0.232	0.17	0.73	²⁸ Al	2.3 min	1779	100
S	S_{9E}	0.015	0.15	:		S_{LE}	5.1 min	3105	06
CI	37CI	24.5	0.43	0.17	0.41	³⁸ CI	37.3 min	2168	100
К	41K	6.8	1.48	1.28	0.86	⁴² K	12.4 hr	1525	18
Ca	⁴⁶ Ca	0.0033	0.7	0.32	0.46	⁴⁷ Ca	4.6 d	1297	74
-	:	:		-		⁴⁷ Sc	3.4 d	160	73
1	48Ca	0.185	1.1	0.90	0.82	⁴⁹ Ca	8.8 min	3084	89
Sc	⁴⁵ Sc	100	10			^{46m} Sc	20 s	143	46
ł	1	1	25	11	0.44	⁴⁶ Sc	84 d	889	100
Ti	50Ti	5.3	0.179	~ 5	~ 30	^{21}Ti	5.8 min	320	95
Λ	^{21}V	100	4.90	2.7	0.55	^{52}V	3.75 min	1434	100
Cr	⁵⁰ Cr	4.3	16.0	8.5	0.53	⁵¹ Cr	27.8 d	320	6
Mn	^{55}Mn	100	13.3	14	1.1	^{56}Mn	2.58 hr	847	66
Fe	³⁸ Fe	0.31	1.14	1.2	1.1	$^{59}\mathrm{Fe}$	45 d	1099	56
Co	59Co	100	19.9	-		^{60m} C0	10.4 min	59	2.1
-	:	:	37.5	75	2	0 ⁰⁰	5.2 yr	1333	100
Ni	^{58}Ni	67.8	1	1		⁶⁵ Ni	71 d.	811	66
1	$^{64}\mathrm{Ni}$	1.16	1.50	0.9	0.6	⁶⁵ Ni	2.55 hr	1482	25

Chapter IO-3 Chemical Analysis

I.

٦

Neutron activation cross section (barn)	Abundance Thermal Epithermal (%) (F) (1)	18.6 0.07 0.24 3.4	39.5 4.7 2.5 0.53	20.6 3.5	36.7 0.52 0.9 1.7	100 4.4 63 14	0.9 55 500 9.1	9 21 42 2.0	50.5 2.6	11.0 125 11	49.5 3.0 50 17	72.1 0.45 7 16	27.9 0.12 2.3 19	0.55 0.7 7.5 11	9.9 0.8 4 5	100 0.0010 0.89 890	17.4 0.0075 0.38 51		2.8 0.05 5.0 100 ⁹⁷ Zr	qN ₂₆	100 0.15 8.0 53 ^{94m} Nb
Neutron ac																					
	Stable t isotope	$^{ m WZ^{89}}$	⊓Ga	⁷⁰ Ge	⁷⁴ Ge	^{75}As	74 Se	⁷⁹ Se	$^{79}\mathrm{Br}$		$^{81}\mathrm{Br}$	$^{85}\mathrm{Rb}$	$^{87} m Rb$	$^{94} m Sr$	$^{86} m Sr$	γ^{88}	$^{94} m Zr$		$^{96}\mathrm{Zr}$:	$^{93}\mathrm{Nb}$
Neutr		Abundance (%)	Stable Abundance isotope (%) ⁶⁸ Zn 18.6	Stable Abundance isotope (%) ®Zn 18.6 71Ga 39.5	Stable Abundance Stable Abundance isotope (%) ®Zn 18.6 ⁿ Ga 39.5 ⁿ Ge 20.6	Stable Abundance Stable Abundance isotope (%) ⁶⁸ Zn 18.6 ⁷¹ Ga 39.5 ⁷⁴ Ge 20.6 ⁷⁴ Ge 36.7	Stable Abundance Stable Abundance isotope (%) %Zn 18.6 ⁿ Ga 39.5 ⁿ Ge 20.6 ⁿ Ge 36.7 ⁿ As 100	Stable Abundance Stable Abundance isotope (%) 68 Zn 18.6 76 Ga 39.5 70 Ge 20.6 74 Ge 36.7 74 Se 0.9	Stable Abundance (%) isotope (%) (%) 68 Zn 18.6 (%) 68 Zn 18.6 30.5 71 Ga 39.5 20.6 74 Ge 20.6 36.7 74 Ge 36.7 100 75 Se 0.9 9	Stable Abundance Stable (%) isotope (%) 68Zn 18.6 ¹⁰ Ga 39.5 ⁷¹ Ga 39.5 ⁷⁰ Ge 30.7 ⁷⁴ Ge 36.7 ⁷⁴ Se 0.9 ⁷⁹ Se 9 ⁷⁹ Br 50.5	Stable Abundance $Stable$ $(\%)$ $isotope$ $(\%)$ ^{68}Zn 18.6 ^{68}Zn 18.6 ^{76}Ge 39.5 ^{70}Ge 30.7 ^{74}Ge 36.7 ^{74}Ge 36.7 ^{74}Ge 36.7 ^{74}Ge 36.7 ^{74}Ge 36.7 ^{74}Ge 96.7 ^{74}Ge 96.7 ^{74}Ge 96.7 ^{74}Ge 96.7 ^{74}Ge 96.7 ^{74}Ge 96.7 ^{74}Ge 96.9 ^{74}Se 0.9 ^{78}Se 9 ^{78}Se 9 ^{78}Se 9 ^{78}Se 9	Stable Abundance (%) isotope (%) (%) ⁶⁸ Zn 18.6 (%) ⁶⁸ Zn 18.6 30.5 ⁷⁰ Ge 20.6 36.7 ⁷⁴ Ge 36.7 100 ⁷⁴ Ge 36.7 100 ⁷⁴ Ge 0.9 9 ⁷³ Se 0.9 9 ⁷³ Se 0.9 9 ⁷³ Se 9.5 9 ⁷³ Se 9.5 9 ⁷⁴ Se 0.9 9 ⁷³ Se 9.5 9	Stable Abundance (%) sisotope (%) (%) isotope (%) (%) isotope 39.5 18.6 nGe 39.5 39.5 nGe 20.6 36.7 nGe 36.7 100 nGe 36.7 100 nGe 36.7 9 nGe 96.7 9 nGe 36.7 100 nGe 9 9 nGe 100 9 nGe 9 9 nGe 9 9 nGe 10 9 nGe 10 1 nGe 1 1	Stable Abundance (%) sisotope (%) (%) 68 Zn 18.6 (%) 68 Zn 18.6 (%) 71 Ga 39.5 (%) 71 Ge 20.6 (%) 74 Ge 36.7 (%) 74 Ge 90.9 (%) 78 Se 9 9 78 Se 9 9 (%)	Stable Abundance Stable Abundance (%) ^{68}Zn ^{88}Zn 18.6 ^{68}Zn ^{18}Ga 39.5 ^{70}Ge 39.5 30.7 ^{70}Ge 30.6 20.6 ^{74}Ge 36.7 36.7 ^{74}Ge 36.7 96.7 ^{74}Ge 36.7 96.7 ^{74}Ge 36.7 96.7 ^{74}Ge 96.7 96.7 ^{74}Ge 96.7 96.7 ^{74}Ge 96.7 96.7 ^{78}Br 50.5 96.7 ^{78}Br 50.5 $$ ^{78}Br 49.5 $ ^{87}Bb$ 72.1 $8^{87}B$ ^{84}Sr 0.55 0.55	Stable Abundance (%) $(%)$ (%) (%)	Stable Abundance $(\%_6)$ sisotope $(\%_6)$ $(\%_6)$ 68 Zn 18.6 $(\%_6)$ 68 Zn 18.6 $(\%_6)$ 70 Ge 20.6 39.5 74 Ge 36.7 36.7 74 Ge 36.7 96.7 74 Ge 9.9 9.9 74 Ge 9.9 9.9 86 Sr 9.9 9.9	Stable Abundance $(\%)$ sisotope $(\%)$ $(\%)$ ^{68}Zn $(\%)$ $(\%)$ ^{68}Zn 18.6 $(\%)$ ^{70}Ge 39.5 100 ^{70}Ge 30.7 39.5 ^{70}Ge 30.6 20.6 ^{74}Ge 36.7 90.6 ^{74}Ge 36.7 100 ^{74}Ge 36.7 90.6 ^{74}Ge 36.7 90.6 ^{74}Ge 90.9 90.6 ^{74}Ge 90.9 90.6 ^{74}Ge 90.9 90.6 ^{78}Br 72.1 90.9 ^{86}Sr 90.55 90.55 ^{96}Sr 9.9 90.55 ^{96}Sr 90.9 90.9 ^{97}Sr 90.9 90.9	Stable Abundance $(\%)$ sisotope $(\%)$ $(\%)$ 6^{87} Zn 18.6 $(\%)$ 6^{87} Zn 18.6 39.5 7^{1} Ge 39.5 100 7^{3} Ge 20.6 36.7 7^{3} Ge 9.0 9 7^{3} Se 0.9 9.67 7^{3} Se 9.9 9.67 7^{3} Se 9.9 9.9 8^{1} Br 72.1 9.9 8^{6} Sr 0.55 9.9 8^{6} Sr 9.9 9.9 8^{6} Sr 9.9 9.9 8^{6} Sr 100 8^{6} 8^{6} Sr 9.9 9.9 8^{6} Sr 17.4 17.4	Stable Abundance (%) sisotope (%) (%) note (%) 18.6 note 20.6 36.7 note 26.6 36.7 note 26.6 36.7 note 26.6 9 note 100 9 note 7% 9 note 20.5 9 note 20.5 9 note 7% 100 srRb 72.1 9 srRb 27.9 9 srRb 27.9 9 srRb 27.9 9 srRb 27.9 9 srRb 27.9 9 srRb 27.9 9 srRt	Stable Abundance (%) 6*Zn 18.6 (%) 6*Zn 18.6 (%) 6*Szn 18.6 (%) 7aGe 39.5 18.6 7aGe 20.6 20.6 74Ge 36.7 100 74Ge 36.7 100 74Ge 96.7 100 74Ge 96.7 9 74Ge 9.9 9 79Br 73.1 9 8*Br 49.5 9 8*Br 27.9 9 8*Stb 27.9 9 8*Stb 27.9 9 8*Str 100 17.4 8*Str 100 17.4 8*Str 17.4 17.4 8*Str 2.8 2.8 <tr td=""> 2.8 <!--</td--></tr>

Method IO-3.7 Neutron Activation Analysis

Chemical Analysis

Chapter IO-3

	Most useful (-ray	Abundance (%)	91	91	88	48	19	47	5	96	26	50	17	80	-	64	87	84	97	66	50	68	82
	Most use	Energy (keV)	307	215	497	724	319	51	88	658	528	336	190	1293	In x rays	391	158	160	332	564	1691	150	365
		Half-Life	14.0 min	2.8 d	39.5 d	4.4 hr	35.9 hr	4.4 min	13.5 hr	255 d	53.5 hr	4.5 hr	50 d	54 min	117 d	100 min	14.0 d	40 min	9.6 min	2.8 d	60 d	25 min	8.0 d
		Radionuclide formed	$^{101}\mathrm{Tc}$	⁹⁷ Ru	¹⁰³ Ru	¹⁰⁵ Ru	¹⁰⁵ Rh	$^{104\mathrm{m}}\mathrm{Rh}$	$\mathbf{p}\mathbf{q}^{e01}$	$^{110\mathrm{m}}\mathrm{Ag}$	115Cd	^{115m} In	114m In	^{116m} In	113 Sn	113m In	^{117m}Sn	$^{123\mathrm{m}}\mathrm{Sn}$	$^{125\mathrm{m}}\mathrm{Sn}$	122 Sb	124 Sb	131 Te	1311
continued		1 / F	1	26	3.2	11	-	7.9	16	12	67	-	~ 20	16	38	1	82	5.5	64	29	30	2	-
TABLE 4. (continued)	Neutron activation cross section (barn)	Epithermal (1)	-	5.5	4.2	5.2	-	1100	186	55	20	-	~ 180	2600	27		0.49	0.83	9	180	120	0.4	:
	Neutron activa (t	Thermal (F)	1	0.21	1.3	0.47	1	139	12	4.7	0.3	1	7.8	161	0.71	-	0.006	0.15	0.14	6.2	4	0.2	:
		Abundance (%)	1	5.5	31.6	18.8	:	100	26.8	48.6	28.9	1	4.3	95.7	0.95	-	14.2	4.7	6	57.3	42.7	34.5	;
		Stable isotope	1	${}^{96}\mathrm{Ru}$	102 Ru	104 Ru	!	$^{103}\mathrm{Rh}$	$^{108}\mathrm{Pd}$	$^{109}\mathrm{Ag}$	¹¹⁴ Cd	-	¹¹³ In	¹¹³ In	^{112}Sn	-	^{118}Sn	¹²² Sn	134 Sn	^{121}Sb	123 Sb	$^{130}\mathrm{Te}$:
		Element	-	Ru	1	:	-	Rh	Pd	Ag	Cd		In		Sn	-	-	1	1	Sb	1	Te	:

Chapter IO-3 Chemical Analysis

le:

TABLE 4. (continued)	Neutron activation cross section (barn) Most useful (-ray	Thermal Epithermal Epithermal $[F]$ (F) (I) $1/F$ (I) $Energy (96)$ (1) (1) (1) (1) (2)	30 465 16 ¹³⁴ Cs 5.05 yr 797 99	11 270 25 ^{I31} Ba 12.0 d 496 48	0.16 2.4 1.50 ^{133m} Ba 28.7 hr 268 16	0.35 0.3 0.9 ¹³⁹ Ba 83 min 166 23	9 11 1.2 ¹⁴⁰ La 40.2 hr 1597 96	0.58 0.49 0.8 ^{MI} Ce 33.d 146 48	1.1 1.4 1.3 ^{H3}Ce 33 hr 293 46	1.4 2.8 2 ¹⁴⁷ Nd 11.0 d 91 28	2.5 17 6.8 ¹⁴⁹ Nd 1.9 hr 211 27	1.3 1.4 11 ¹⁵¹ Nd 12 min 116 40	¹⁵¹ Pm 28 hr 340 21	210 2900 14 133 Sm 47 hr 103 28	5.5 27 4.9 ¹⁵⁵ Sm 22 min 104 73	2800 11400 4.1 ^{152m}Eu 9.3 hr 963 12	5300 3800 0.7 ¹⁵² Eu 12.5 yr 1408 22	400 1500 3.8 ¹⁵⁴ Eu 16 yr 1274 37	1100 3000 2.7 ¹⁵³ Gd 242 d 98 55	3.5 80 23 ¹⁵⁸ Gd 18 hr 363 9	25 400 16 ¹⁶⁰ Tb 72 d 299 30	2100 ^{165m} Dy 1.26 min Dy x rays	000 0 160 - 0 0 000 - 0 0 0 0 0 0 0 0 0 0 0 0 0
(Radionuclide formed	¹³⁴ Cs	¹³¹ Ba	^{135m} Ba	¹³⁹ Ba	140 La	¹⁴¹ Ce	¹⁴³ Ce	147Nd	149Nd	¹⁵¹ Nd	¹⁵¹ Pm	¹⁵³ Sm	¹⁵⁵ Sm	^{152m} Eu	¹⁵² Eu	¹⁵⁴ Eu	¹⁵³ Gd	¹⁵⁹ Gd	qT^{001}	165mDy	1650
ontinued		1 / F	16	25	150	0.9	1.2	0.8	1.3	2	6.8	11	-	14	4.9	4.1	0.7	3.8	2.7	23	16	:	0.0
TABLE 4. (c	ttion cross section Darn)	Epithermal (1)	465	270	24	0.3	11	0.49	1.4	2.8	17	14	-	2900	27	11400	3800	1500	3000	80	400	1	UUo
T	Neutron activa (b	Thermal (F)	30	11	0.16	0.35	6	0.58	1.1	1.4	2.5	1.3	1	210	5.5	2800	5300	400	1100	3.5	25	2100	0600
		Abundance (%)	1	0.12	2.6	70.4	100	88.5	11.1	17.2	5.7	5.6	-	26.7	22.6	47.8	-	52.2	0.21	24.8	100	28.1	
		Stable isotope	1	¹³⁰ Ba	¹³⁴ Ba	¹³⁸ Ba	¹³⁹ La	¹⁴⁰ Ce	¹⁴² Ce	146Nd	148Nd	PN021	-	¹⁵² Sm	^{154}Sm	$^{151}\mathrm{Eu}$	-	¹⁵³ Eu	¹⁵² Gd	¹⁵⁸ Gd	$^{159}\mathrm{Tb}$	^{164}Dy	
		Element	1	Ba	-	-	La	Ce	-	Nd	-	-	-	Sm		Eu	-		Gd	-	Tb	Dy	

Method IO-3.7 Neutron Activation Analysis

TABLE 4. (continued)	Neutron activation cross section (barn) Most useful (-ray	al Epithermal Epithermal $1/F$ Radionuclide Half-Life Energy Abundance (%c)	1700 16 ¹⁷⁰ Tm 130 d 84 3.3	25000 7.8 ¹⁸⁹ Yb 31 d 198 35	31 0.48 1^{75} Yb 4.2 d 396 6.0	7 1.3 177 Yb 1.9 hr 150 16	600 33 ^{176m}Lu 3.7 hr 88 10	~ 1100 ~ 0.5 ^{177}Lu $6.7 d$ 208 6.1	^{179m} Hf 18.6 s 214 94	28 2.2 ^{IsI} Hf 43 d 482 81	700 32 ¹⁸² Ta 115 d 1222 34	420 11 ¹⁸⁷ W 24.0 hr 686 27	1700 15 ^{Is6} Re 3.7 d 137 9	310 4.1 ^{ISS} Re 16.8 hr 155 10	39 2.4 ¹⁹¹ Os 15 d 129 25	4000 4.3 192 Ir 74 d 468 49	1390 13 ¹⁹⁴ Ir 17.4 hr 328 10	~ 6 ~ 8 ¹⁹⁷ Pt 19 hr 77 20	53 14 ¹⁹⁹ Pt 30 min 543 24	¹⁹⁹ Au 3.15 d 158 37	1550 16 ¹⁹⁸ Au 2.69 d 412 95	~ 1220 ~ 0.4 ¹⁹⁷ Hg 2.70 d 78 18	4.3 0.9
(Radionuclide formed	$^{170}\mathrm{Tm}$	dY^{0}	$^{175}\mathrm{Yb}$	$q_{\lambda_{LL}}$	^{176m} Lu	¹⁷⁷ Lu	179mHf	181	¹⁸² Ta	¹⁸⁷ W	¹⁸⁶ Re	¹⁸⁸ Re	SO^{101}	$^{192}\mathrm{Ir}$	$^{194}\mathrm{Ir}$	197 Pt	$^{199}\mathrm{Pt}$	¹⁹⁹ Au	^{198}Au	¹⁹⁷ Hg	²⁰³ Hg
continued		1 / F	16	7.8	0.48	1.3	33		1	2.2	32	11	15	4.1	2.4	4.3	13		14	-	16		0.9
TABLE 4. (tion cross section arn)	Epithermal (1)	1700	25000	31	7	600		-	28	700	420	1700	310	39	4000	1390	~ 6	53	-	1550	~ 1220	4.3
	Neutron activa (b	Thermal (F)	106	3200	65	5.5	18	2050	52	12.6	22	37	110	75	16	925	110	0.8	3.7	1	98.8	3000	4.9
		Abundance (%)	100	0.14	31.7	12.6	37.4	2.6	27.2	35.2	100	28.4	37.1	62.9	26.4	3.85	61.5	25.2	7.2	-	100	0.15	29.8
		Stable isotope	$^{189}\mathrm{Tm}$	$^{168}\mathrm{Yb}$	$^{174}\mathrm{Yb}$	$q \Lambda_{9/1}$	¹⁷⁵ Lu	¹⁷⁶ Lu	$\mathrm{JH}_{6/1}$	180Hf	¹⁸¹ Ta	186W	¹⁸⁵ Re	¹⁸⁷ Re	^{190}Os	191 Ir	193 Ir	$^{196}\mathrm{Pt}$	¹⁹⁸ Pt	-	nA ⁷	¹⁹⁶ Hg	²⁰² Hg
		Element	Tm	Yb	-	-	Lu	-	Hf	-	Та	W	Re	-	Os	Ir	-	Pt	1	-	Au	Hg	1

Chapter IO-3 Chemical Analysis

r					
TABLE 4. (continued)	Most useful (-ray	Abundance (%)	1	51	14
	Most use	Energy (keV)	Various	75	278
		Half-Life	Various	23.5 min	2.35 d
		Radionuclide formed	Fission products	239 U	^{238}Np
		1 / F	0.5	103	ł
	Neutron activation cross section (barn)	Epithermal (1)	275^{d}	280	:
		Thermal (F)	580^{d}	2.72	:
		Abundance (%)	0.72	99.3	:
		Stable isotope	235 U	238 U	:
		Element	U	1	!

Element	Isotope	Abundance	Half-life	Nuclear cross section	Low-energy photon energies (keV)
Selenium	⁷⁵ Se	0.87	120.0 days	30.0	10.7, 66.3, 96.7, 121.1, 136.0
Selenium	^{79m} Se	23.52	3.9 min.	0.4	95.9
Mercury	¹⁹⁷ Hg	0.14	65.0 hr.	905.0	66.98, 68.79, 77. 97
Cadmium	¹¹⁵ Cd	28.86	53.0 hr.	1.2	24.2
Cobalt	^{60m} Co	100.00	10.5 min.	37	58.5
Platinum	¹⁹⁷ Pt	25.30	20.0 hr.	1.0.0	66.8, 75.7, 99.0, 129.7
Palladium	^{109m} Pd	26.71	5.0 min.	12.2	188.9
Barium	¹³⁹ Ba	71.66	82.9 min.	0.4	36.4, 165.8
Tungsten	^{187}W	28.41	24.0 hr.	40.0	69.3, 71.2, 72.3, 134.3
Germanium	⁷⁵ Ge	36.54	82.0 min.	0.5	198.6, 264.6
Cesium	^{134m} Cs	100.00	2.9 hr.	30.6	31.0, 35.0, 127.4
Tin	¹²³ Sn	4.72	39.4 min.	0.2	160.2
Antimony	^{122m} Sb	57.25	3.5 min.	6.0	61.6, 76.3
Europium	^{152m} Eu	47.82	9.3 hr.	8730.0	40, 122
Samarium	¹⁵³ Sm	26.72	46.7 hr.	210.0	41, 70, 103
Gadolinium	¹⁵⁹ Gd	24.87	18.0 hr.	3.4	44
Terbium	¹⁶⁰ Tb	100.00	73.0 days	46.0	46, 87
Dysprosium	¹⁶⁵ Dy	28.18	2.3 hr.	700.0	47, 98
Holmium	¹⁶⁶ Ho	100.00	27.0 hr.	64.0	49, 81
Erbium	¹⁷¹ Er	4.88	7.5 hr.	9.0	41, 118
Ytterbium	¹⁶⁹ Yb	0.14	32.0 days	11,000.0	54, 190
Ytterbium	¹⁷⁵ Yb	31.84	4.2 days	9.0	54
Lutetium	¹⁷⁷ Lu	2.59	6.8 days	2100.0	56, 88, 113
Palladium	¹⁰⁹ Pd	26.70	13.6 hr.	12.2	22, 41, 88, 104

TABLE 5. NUCLEAR PARAMETERS OF LEPD - SENSITIVE ELEMENTS	S
--	---

~
Ð
A V
ST/
Щ
Ą
NUCLIDE
Ŋ
0
NDIOI
RA
H
TABLE
T_{I}

		TABLE	TABLE 6. RADIONUCLIDE STANDARDS	NDARDS	
SHORT - LIVED RADION STANDARDS	IVED RADIONUCLIDES STANDARDS	MEDIUM - LI S	MEDIUM - LIVED RADIONUCLIDES STANDARDS	S TONG - TIV	LONG - LIVED RADIONUCLIDE STANDARDS
ELEMENT	CONCENTRATION (µgrams)	ELEMENT	CONCENTRATION (µgrams)	ELEMENT	CONCENTRATION (µgrams)
Titanium	250.0	Mercury	10.0	Cerium	25.0
Iodine	250.0	Samarium	0.50	Calcium	500.0
Manganese	1.00	Tungsten	5.00	Lutetium	0.02
Magnesium	500.0	Molybdenum	50.0	Selenium	25.0
Copper	500.0	Uranium	5.00	Terbium	5.00
Sodium	20.0	Lanthanum	5.00	Thorium	10.0
Vanadium	5.00	Cadmium	50.0	Chromium	25.0
Potassium	500.0	Gold	1.00	Europium	0.010
Chlorine	500.0	Arsenic	10.0	Ytterbium	1.00
Aluminum	250.0	Antimony	5.00	Hafnium	10.0
		Bromine	1.00	Barium	500.0
		Sodium	20.0	Strontium	200.0
		Potassium	500.0	Neodymium	25.0
		Platinum	10.0	Silver	0.500
				Zirconium	250.0
				Cesium	25.0
				Nickel	250.0
				Scandium	2.50
				Rubidium	250.0

Page 3.7-28

1.00

25.0

Tantalum

Cobalt Zinc Iron

12,500.0100.0

Flux Monitor Run	Date	Net Counts at 0.411 MeV Au-198 Gamma Peak
Flux Run 1	January	$58,266 \pm 0.4\%$
Flux Run 2	February	$58,397 \pm 0.4\%$
Flux Run 3	March	$58,402 \pm 0.4\%$
Flux Run 4	April	$58,122 \pm 0.4\%$
Flux Run 5	May	$58,316 \pm 0.4\%$
Flux Run 6	June	$58,105 \pm 0.4\%$
Flux Run 7	July	$58,247 \pm 0.4\%$
Flux Run 8	August	$58,399 \pm 0.4\%$
Flux Run 9	September	$58,518 \pm 0.4\%$
Flux Run 10	October	$58,175 \pm 0.4\%$
Flux Run 11	November	$58,348 \pm 0.4\%$
Flux Run 12	December	$58,433 \pm 0.4\%$
	Average	$58,310 \pm 208$

TABLE 7. GOLD FLUX MONITOR COMPARISON¹

¹ Information in this table is an indication of the potential flux variation from one reactor irradiation to another throughout the sample year using duplicate reactor parameters. There is a 0.4% error is associated with the counting statistics.

	STABILITY STUDIES
Date	609.3 KeV Gamma Counts
July 27, 1994	$26,758 \pm 0.6\%$
July 28, 1994	$26,523 \pm 0.6\%$
July 29, 1994	$26,840 \pm 0.6\%$
July 30, 1994	$26,635 \pm 0.6\%$
July 31, 1994	$26,402 \pm 0.6\%$
June 30, 1994	$26,677 \pm 0.6\%$
May 16, 1994	$26,770 \pm 0.6\%$
April 18, 1994	$26,554 \pm \ 0.6\%$
March 14, 1994	$26,726 \pm 0.6\%$
February 7, 1994	$26,836 \pm 0.6\%$
January 10, 1994	$26,786 \pm 0.6\%$
December 31, 1993	$26,554 \pm 0.6\%$
November 27, 1993	$26,766 \pm 0.6\%$
October 21, 1993	$26,670 \pm 0.6\%$
September 28, 1993	$26,749 \pm 0.6\%$
August 23, 1993	$26,741 \pm 0.6\%$
AVERAGE	$26,687 \pm 285$

TABLE 8. EXAMPLE OF 38% HPGE DETECTOREFFICIENCY STABILITY STUDIES1

¹ Based on 300 second count of Ra-226 Standard Source in a fixed geometry.

Chapter IO-3 Chemical Analysis

Standard	I	Br	Cl
EPA Standard 1	71326	28314	18220
EPA Standard 2	71538	28630	18357
EPA Standard 3	71105	28127	18201
EPA Standard 17	71250	28230	18488
EPA Standard 18	71612	29450	18245
EPA Standard 19	71427	28421	18119
EPA Standard 37	71582	28819	17860
EPA Standard 38	71851	28844	18092
EPA Standard 39	71841	28560	18031
EPA Standard 41	72124	29006	18545
EPA Standard 42	72831	28861	18344
EPA Standard 43	72199	28796	18566
EPA Standard 71	72828	28860	18339
EPA Standard 72	71868	28723	18316
EPA Standard 73	72017	29495	18221

TABLE 9. I, Br, Cl STANDARD COMPARISON¹

¹ (1) These are integrated gamma ray photopeak net counts for the 442.0 MeV I-128 gamma ray, the 617.0 Mev Br-80 gamma ray, and the 1642.0 Mev Cl-38 gamma ray of typical standards used for short-lived analyses.

(3) Each standard represents a separate 3 minute pneumatic rabbit irradiation at 1 x 10¹³ n/cm²-sec, 21 minute decay, and 500 sec. count on a 35 percent GeLi Gamma Spectrometry System.

(4) Standards 1 through 3 were prepared as fresh stock solutions.

(5) Standards 17 through 19 were prepared as fresh stock solutions.

(6) Standards 37 through 39 were prepared as fresh stock solutions.

(7) Standards 41 through 43 and 71 through 73 were prepared as fresh stock solutions.

(8) This table provides information on the sum of errors associated with (a) weighing, (b) pipetting, (c) individual reactor irradiations, (d) counting statistics, and (e) detector efficiency and resolution stability over a period of 1 year.

⁽²⁾ Each standard is composed of 200 μgrams Cl (200 lambda), 25 μgrams Br (25 lambda), and 25 μgrams I (25 lambda) for a total volume of 250 lambda (0.25 ml).

TABLE 10. NAA OF TRACE ELEMENTS IN NIST 1632¹ (µgrams/gram)

The value in brackets in the certified or best known value for this element in this Standard Reference Material.

Element	NAA Value	NIST Certified Value
Titanium	944.17	(960)
Tin	15.0	(10.1)
Iodine	2.713	(2.88)
Manganese	38.957	(40)
Magnesium	1625.16	(1600)
Copper	< 20.0	(18)
Silicon	31,857.35	(33,800)
Vanadium	34.771	(35)
Chlorine	947.63	(962)
Aluminum	18,100.96	(17,800)
Mercury	0.141	(0.12)
Samarium	1.637	(1.66)
Tungsten	< 3.0	
Molybdenum	3.867	(3.82)
Uranium	1.414	(1.4)
Lanthanum	10.389	(10.5)
Cadmium	< 0.25	
Gold	< 0.00001	
Arsenic	5.894	(5.9)
Antimony	3.629	(3.6)
Bromine	17.787	(17.7)

Element	NAA Value	NIST Certified Value
Sodium	387.95	(380)
Potassium	2854.84	(2900)
Cerium	20.06	(19.6)
Calcium	4225.14	(4100)
Lutetium	0.13	(0.13)
Europium	0.343	(0.34)
Selenium	2.947	(2.9)
Thorium	3.1	(3.1)
Chromium	20.287	(20.2)
Ytterbium	0.788	(0.78)
Neodymium	3.0	
Barium	351.28	(342)
Cesium	1.52	(1.52)
Silver	< 0.09	(0.056)
Nickel	< 20.0	(15)
Scandium	3.881	(3.86)
Rubidium	21.441	(21.1)
Iron	8741.63	(8700)
Zinc	34.256	(37)
Cobalt	5.832	(5.78)

Chapter IO-3 Chemical Analysis

Report No.	NIST Certified Value	NAA Measured Value
333260	11.0 ± 1.0	11.092
333227	11.0 ± 1.0	10.907
333227	11.0 ± 1.0	11.116
333233	11.0 ± 1.0	11.202
333233	11.0 ± 1.0	10.591
333233	11.0 ± 1.0	11.000
333233	11.0 ± 1.0	10.967
333226	11.0 ± 1.0	11.186
333226	11.0 ± 1.0	11.311
315670	11.0 ± 1.0	10.550
315670	11.0 ± 1.0	11.223
315612	11.0 ± 1.0	10.864
315612	11.0 ± 1.0	11.142

TABLE 11. NAA OF SE IN NIST SRM 1643 - A WATER (nanograms Se/ml water)

Method IO-3.7 Neutron Activation Analysis

Report #	Cd	As	Zn	Selenium	Copper
NIST Certified Values	3.5 ± 0.4	13.4 ± 1.9	852.0 ± 14.0	2.1 ± 0.5	63.0 ± 3.5
333266	3.351	13.618	842.51	2.278	64.729
333266	3.301	13.512	846.25	2.194	63.686
333296	3.477	13.342	8842.47	2.041	61.149
348760	3.613	13.371	843.43	2.044	63.617
348766	3.485	14.324	842.26	2.149	62.103
348766	3.528	13.665	857.52	2.083	63.152
348778	3.413	12.188	854.76	2.137	66.901
348114	3.496	12.745	842.92	1.960	64.119
348115	3.67	12.978	863.47	2.331	63.253
348115	3.31	14.185	846.12	2.099	61.317
348112	3.232	12.439	863.92	2.077	61.749
315668	3.867	13.729	855.3	2.004	60.355
315668	3.693	13.023	856.11	2.081	63.301
315668	3.29	13.026	848.85	2.217	61.972
315668	3.877	13.193	849.47	2.103	63.580
315668	3.421	13.178	867.33	2.072	61.753
315668	3.422	13.288	845.83	2.085	60.981
315648	3.565	13.006	847.01	2.095	64.620
315685	3.383	13.317	860.01	2.234	61.347
315695	3.796	13.407	860.85	2.064	65.079
315685	3.226	13.357	844.43	2.111	62.318

TABLE 12. QA NAA ANALYSES OF NIST SRM 1566 OYSTER (µgrams element/gram SRM)

Chapter IO-3 Chemical Analysis

Report No.	Mercury	Arsenic	Selenium	Zinc
NIST Certified Values	0.95 ± 0.1	3.3 ± 0.4	3.6 ± 0.4	13.6 ± 1.0
333215	1.003	3.407	3.646	12.752
331215	0.086	3.494	3.852	13.876
333266	0.919	3.278	3.537	13.417
333266	0.903	3.269	3.662	13.876
333296	0.996	3.509	3.578	13.553
333296	0.988	3.164	3.794	14.172
348766	1.005	3.365	3.864	14.021
348766	0.946	3.278	3.828	14.487
348766	0.89	3.497	3.461	14.134
348766	1.019	3.299	3.669	13.731
348766	0.957	3.256	3.627	12.821
348766	0.983	3.56	3.554	12.878
348766	1.002	3.482	3.49	13.925
348778	0.923	3.412	3.483	14.552
348115	0.982	3.544	3.994	14.238
315685	0.933	3.699	3.726	14.008
315685		3.346	3.514	13.872
348760	0.995	3.348	3.519	14.347
348760	0.942	3.256	3.731	13.901
348760	1.134	3.278	3.695	13.335
348760	0.974	3.544	3.9	12.843
348760	0.956	3.525	3.59	12.725

TABLE 13. QA NAA ANALYSES OF NIST SRM RM-50 TUNA (µgrams element/gram SRM)

TABLE 14. CERTIFIED STANDARD REFERENCE MATERIALS

NIST 1645 **River Sediment** 4335 Peruvian Soil 1648 Urban Particulate Matter 1649 Urban Particulate Matter 1630 Coal 1632 Coal 4353 Rocky Flats Soil 1632-A Coal 1632-B Coal 160-B Steel 1635 Coal Fuel Oil 1621 1566 **Oyster Tissue** 1566-A Oyster Tissue RM-50 Tuna 1577 Bovine Liver 1577-A Bovine Liver 1577-B Bovine Liver 1575 Pine Needles 1570 Spinach 1549 Milk 1573 Tomato Leaves RM 8505 Oil 1571 Orchard Leaves 1084 Oil 1633 Flyash Citrus Leaves 1572 1643-A Water 1643-B Water 1643-C Water 1646 **Estuarine Sediment** 1568 Rice Flour Wheat Flour 1567 **Basalt Flour** 688 Obsidian 278 2672 Urine 2671 Urine 697 Bauxite 610-V-611 Glass 45-B River Sediment

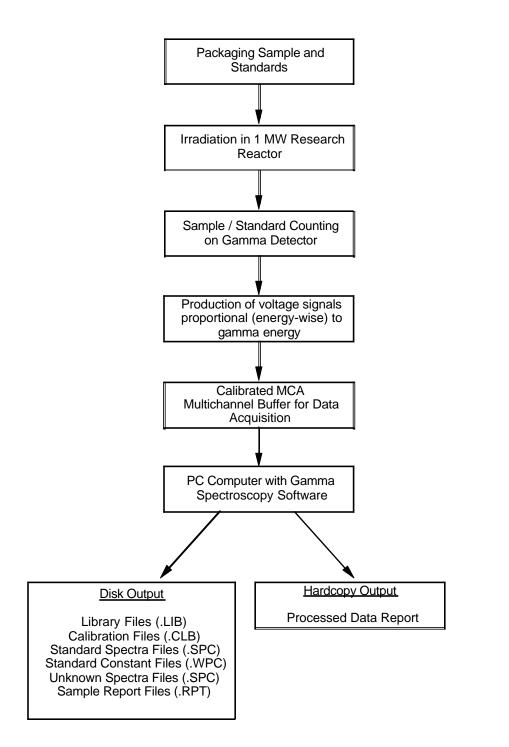
NIST (continued)
FDAAnimal Feed101-FSteel121-DSteel360-AZircalloy2704Buffalo River Sediment
IAEA
V-2-1 Wheat Flour Soil 5 Soil SP-M-1 Seaplant MA-M-1 Oyster Tissue MA-6 Fish H-4 Muscle MA-A-1 Copepod MA-A-2 Fish A-11 Milk Powder V-4 Potatoes V-8 Rye Flour V-10 Hay MA-B-1 Clam A-2 Blood SL-1 Lake Sediments A-3-1 Animal Bone S-7 Uranium Ore F-1 Feldspar S-8 Uranium Ore Air-3/1 Air Filters V-9 Cotton Cellulose SD-B-2 Oyster H-9 Diet MA-A-3 Shrimp H-8 Kidney MA-B-3-1 Fish

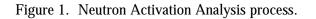
950-A Uranium U-100 Uranium U-030 Uranium TABLE 14. (continued)

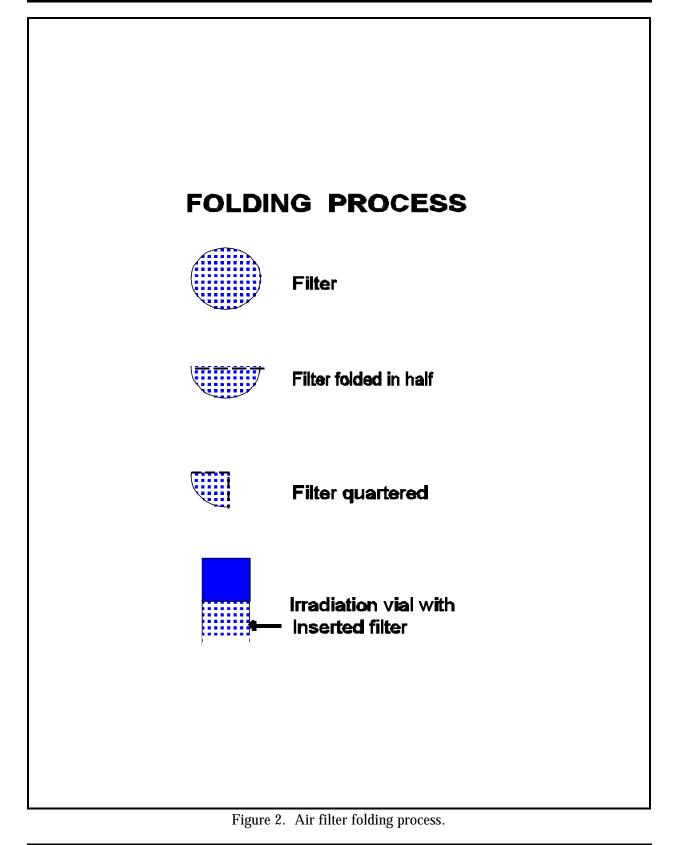
CANADA

GRS-1 Gold Tailings UTS-2 Uranium Tailings UTS-4 Uranium Tailings FER-4 Iron Formation Rock FER-1 Iron Formation Rock FER-2 Iron Formation Rock FER-3 Iron Formation Rock MP-2 W-Mo Ore DL-1A Uranium-Thorium Ore DH-1A Uranium-Thorium Ore KC-1 Zn, Pb, Sn, and Ag PTC-1 Flotation Rocks SO-1 Reference Soil MA-1 Gold Ore SCH-1 Iron Ore PD-1 Non Ferrous Dust GFETC 82-3664 Coal 83-0008 Coal GFETC SO-2 Reference Soil SO-3 Reference Soil CLV-1 Vegetation

NATIONAL RESEARCH COUNCIL CANADA


PACS-1Marine SedimentsDOLT-1Dogfish LiverDORM-1Dogfish MuscleTORT-1Lobster


EASTMAN KODAK


TEG-50-C Gelatin TEG-50-B Gelatin

USGS

W2 Diabase Soil BHVO-1 Basalt 106-A Monazite Sand 107-A Monazite Sand 110-A Monazite Sand AGV-1 Andesite C20280 Coal CLB-1 Coal

Sample description SITE 38597 AIR PARTICULATE FILTER EPA CONTROL #456238 Spectrum Filename: LONG38.SPC Acquisition information 21-SEP-95 15:02:54 Start time 1200 Live time Real time 1333 10.01%Dead time Détector/Geometry IDs í & 0 Detector system 38% GELI DETECTOR Calibration Filename: QAQC38.CLB Created: 22-AUG-95 17:11:57 & 4.034 keV: Gain .480 keV/channel Zero offset Library Files Main analysis library: LONG38.LIB NAC Files Concentration per countrate table LONG38.WPC Analysis parameters 1 for an energy of 4.51keV Start channel Stop channel Stop channel4048 for an energy of 1949.85keVPeak rejection level200.000% Activity scaling factor 2.7000E+01/ 1.0000E+00 = 2.7000E+01 Detection limit method: MDA - EG&G ORTEC method Additional random error: Additional systematic error: Background width 0.000000E+00 0.000000E+00 Background width: best method (based on spectrum). Sample weight = 2.8324000E+01 grams. Status Commence YES 18-AUG-95 17:00:00 Corrections Decay correct to date Decay during acquisition Peaked background correction NO NO Absorption (Internal) NO Geometry correction Random summing NO Energy calibration normalized difference: . 1415

Figure 3. NAA sample output data report.

CHANNEL		BACKGROUND	NET	AREA	CNT8/SEC			PECTE
820,28	398.30	8830.		155,	. 13		.810 -	sM
825.62	400.88	8333.		443.	. 37	48.61 42.31	1. 193 Se-75	
846.20	410.77	8287.		380,	. 13 . 37 . 30			
856.12	415.54	6749.		613.	. 51	23,58		
915.28	444.00			495.	. 4 1	24.87		s
926.27	449.29	8670.		245.		66.03	1.306 -	
981.57	475.89	5907. 3699.		196.		64.32	.923 Bi-214 .832 -	ાં ક
013.96	491.48	3699.		61.		111.90	.832 -	sM
126.55	545.60	8446.		155.	. 13		.992 Cs-138	
138.26	551.23	6945.		160.	. 13	78.38	1.381 W-187	8
146.70	555.29	7829.		179.	.15	78.66	1.058 Y-91M	S
163.94	563.57	12028.		817. 1054.	.68	30.24	2.078 As-76	S
175.80	569.27	9001.		1054.	.88	15.24	1.350 Cs-134	
199.96	580.89	5782.		68.	. 06	149.46	1.004 Fb-214	s
248.80	604.37	15695.		8213,	6.84	3.42	1.588 Ca-134	- SI
271.46	615.26	7944		484.	. 39	3.42 29.18 45.08	1.078 Ru-108	
280.63	619.67	10441. 11478. 6897. 11230. 9577.		458.	. 38	45.08	1.682 Br-82	з
333.00	844.84	11478.		143.	. 12	183.71	.000 -	s .
350.89	653.44	6897.		91.	. 08	108.61	.501 Sr-91	sM
485.47	718.11	11230.		491,	. 41.	42.04	1.066 Bi-21-	. \$
497.53	723.90	9577.		841.	. 70	24.47	2.794 Zr-95	
584.24	765.56	5962.		577.	. 48	:0.49	1.548 Nb-95	
603.69	774.90	4523.		78.	.07			
612.42	779.10	8659.		78. 1491.	1.24	10.39		
660.63	802.26	10235.		531.	. 44	34.37	1.741 Cs-134	-
728.65	834.93	10235. 12918.		3744.	3.12	34.37 6.14	1.703 Kr-88	
744.88	842.72	8944.		361.	. 30	54.79	.473 -	
778.00	858.63	8645.		243.				ŝ
821.02	879.29			1203.	1.00	26.47	1.666 Tb-160) –
926.28	.929.83	9567.		315.	. 26	59.18	.726 -	
936.61	934.79			315. 57.	. 05	139.76	.726 - .668 -	5
972.85	952.19	6615.		108.	, 09	126.38	.795 -	ŝ
997.01	963.79	7314.		302	. 25	59,19		: s
024.10	976.79	5416.		302. 243.	. 20	57.05	,748 -	 8
160.85	1042.43	3183		166	. 14	71.10		5
250.63	1085.51	4158.		166. 966.	. 80	10.70	1.910 Au-198	
304.71	1111.46	3160		594	50	15 51	1.383 Eu-152	
322.99	1120.23	5271	1	45640.	.80 .50 121.37 .10	.30	1.799 B1-214	
409,68	1161.82	2061	1	121.	10	65.62	1.116 -	
443.29	1177.94	1785.		744	. 62	13.22	2.337 Tb-160	
465,36	1188.53		•	613	51	27.75	1.948 Ta-182	
489.02	1199.88	1499.		135		54.31		s
554,40	1231.23	1387.		535.	. 45	20.14	2.678 Ta-182	
641.15	1272.84	1718.		588.	. 49	14,69	4.007 Eu-154	
679.09	1291.03	1910.		19017.	15.85	.90	1.960 Fe-59	
675.05 695.80	1299.04	1264.		162.	. 14	40.04	1.259 1-133	5
707.22	1304.52	564.		72.	.06	40.04 55.14	.745 -	3 6
722.40	1311.79	1399.		118.	. 10	67.63	.624 -	5
784.17	1331.82	2024.		9797.	8.16	1.65	1.963 Co-60	4
831.59	1364.14	1507.		258.	. 22	41.22	1.421 -	0
905.96	1399.79	1307.		260.	. 22	$\frac{41.22}{27.36}$	2.136 -	9 8
903.98 921.52	1355.75	i226.		1655.	1,38	5.33	1.951 Eu-152	
00 L . U A	1401.40	1440,		1000.	1,00	0.00	1,001 Eu-102	

00FF DC			NET AREA				SUSPECTER
2955.35	1423.46	285.	17.		113.65	.541 -	9
3002.04	1445.84			. 07	56,53	.909 -	S
3031.48	1459.94		158.	. 13	40.03	2.032 K-	
3114,49	$1499.7 \\ 1525.28$	472. 504.	48.	.04	69.71	.985 -	\$ 40 -
3167.84 3173.70	1525.28 1528.09	912,	20. 53.	.02 .04	$152.25 \\ 161.75$.969 K-	-
3284.22	15281.03	935.	53. 104.	.04		.662 - 1.464 -	8 S
3325.20	1600.65	690.	65.		81,94	.691 -	5 5
3392.88	1633.06	549.	64.	. 05		1.192 -	s
3550.03	1669.16	787.			20.47	1.672 Sb	
3625.10	1744.25	331.	23.	02	103.11	.585 -	S S
3682.28	1771.62	583.	59.		71.82	1.419 Co	
	1779.63	535.			66.59	. 776 -	
	1905.82	146.	17.		110.18	.582 -	3
3967.78	1908.24	103.	14.			.751 -	8
NUCLIDE			CKGROUND NET		NTENSITY	Y ***** UNCERT SIGMA	********* FWHM keV
			-+-+-+-+-+-+-+-+-+-+-+-++++++				
+-+-+-+-+ CE-141	294.75	145.39	16561.		15.47	1.78	1.049
CA-SC47	323.62	159.29	10932.	13361.		108.06	1.049 .564s
LU-177	26.66	208.89	15220.	270.	.23	79.35	.987
SE-75		264.64		1337.	1.11	12.62	1.198
TB-160	614.62	299.36	11566.	4521.	3.77	4.98	2.548s
TH-PA233	640.52	311.82	12241.	14737.	12.28	1.57	1.237
CR-51	657.56	320.02	11009.	9420.	7.85	2.26	1.275
EU-152	707.75	344.17	10106.	7899.	6.58	2.78	1.383s
YB-175 HF-181	819,38 994.66	$397.87 \\ 482.18$	9126. 9142	613. 3986.	51 3.32	31.43	1.049s
		496.77	9142. 9825.	526.	.44	$4.45 \\ 34.22$	$1.360 \\ 1.331$
					.44	34.44	1.991
BA-131	1025.00 1080. 03				28	39 39	1 9790
BA-131 NB-847	1080.03	533.42	18402.	488.	. 30 .28	52.38 70.63	1.939s .741s
BA-131 NB-847 AG-110M					.28	52.38 70.63 51.31	1. 979 s .741s .592s
BA-131 SB-847 AG-110M ZR-95	1090.03 1359.90	533.69 657.77	1 8402 . 12933.	488. 336,		70.63	.7418
BA-131 SB-847 AG-110M ZR-95 CS-134 NI-C058	1090.03 1359.90 1566.55 1647.32 1677.40	533.43 657.77 757.06 775.86 810.31	1 8402 . 12933. 8927. 8888. 7748.	488. 336. 334.	.28 .28 4.01 .39	$70.63 \\ 51.31$.741s .592s
BA-131 SB-\$47 AG-110M ZR-95 CS-134 NI-C058 SC-46	1090.03 1359.90 1566.55 1647.32 1677.40 1841.66	533.82 657.77 757.06 775.86 810.31 889.20	1 2802 . 12933. 8927. 8888. 7748. 17338. 1	488. 336, 334. 4812. 474. 175795.	.28 .28 4.01 .39 146.50	70.6351.314.4732.52.29	.7418 .592s 1.747 1.694 1.854
3A-131 NB-847 AG-110M ZR-95 CS-134 NI-C058 SC-46 RB-86	1080.03 1359.90 1566.55 1647.32 1677.40 1841.66 2230.73	533.82 657.77 757.06 775.86 810.31 889.20 1075.96	1 2802 . 12933. 8927. 8888. 7748. 17338. 4884.	488. 336, 334. 4812. 474. 175795. 530.	.28 .28 4.01 .39 146.50 1.27	70.6351.314.4732.52.29 15.36	.7418 .592s 1.747 1.694 1.854 1.857s
3A-131 NB-847 AG-110M ZR-95 CS-134 NI-C058 SC-46 RB-86 FE-59	1090.03 1359.90 1566.55 1647.32 1677.40 1841.66 2230.73 2278.68	533.82 657.77 757.06 775.86 810.31 889.20 1075.96 1098.97	1 2802 . 12933. 8927. 8888. 7748. 17338. 4884. 4754.	488. 336, 334, 4812, 474, 175795, 530, 28146,	.28 .28 4.01 .39 146.50 1.27 23.46	70.6351.314.4732.52.29 $15.36.82$.7418 .592s 1.747 1.694 1.854 1.857s 1.818
BA-131 NB-847 AG-110M ZR-95 CS-134 NI-C058 SC-46 RB-86 FE-59 ZN-65	1090.03 1359.90 1566.55 1647.32 1677.40 1841.66 2230.73 2278.68 2313.05	533.82 657.77 757.06 775.86 810.31 889.20 1075.96 1098.97 1115.46	18802. 12933. 8927. 8888. 7748. 17338. 4884. 4754. 5486.	488. 336, 334, 4812, 474, 175795, 530, 28146, 904,	$\begin{array}{r} .28 \\ .28 \\ 4.01 \\ .39 \\ 146.50 \\ 1.27 \\ 23.46 \\ .75 \end{array}$	70.6351.314.4732.52.29 $15.36.8215.69$.7418 .592s 1.747 1.694 1.854 1.857s 1.818 1.214s
3A-131 NB-847 AG-110M CR-95 CS-134 VI-C058 SC-46 RB-86 FE-59 CN-65 CN-65 CO-60	1090.03 1359.90 1566.55 1647.32 1677.40 1841.66 2230.73 2278.68 2313.05 2432.70	533.82 657.77 757.06 775.86 810.31 889.20 1075.96 1098.97 1115.46 1172.86	18802. 12933. 8927. 8888. 7748. 17338. 4884. 4754. 5486. 2607.	488. 336. 334. 4812. 474. 175795. 530. 28146. 904. 10668.	.28 .28 4.01 .39 146.50 1.27 23.46 .75 8.89	70.63 51.31 4.47 32.52 .29 $15.36.8215.6914$.7418 .592s 1.747 1.694 1.854 1.857s 1.818 1.214s 1.699
BA-131 NB-\$47 AG-110M ZR-95 CS-134 NI-C058 SC-46 RB-86 FE-59 ZN-65 CO-60 TA-182	1090.03 1359.90 1566.55 1647.32 1677.40 1841.66 2230.73 2278.68 2313.05	533.82 657.77 757.06 775.86 810.31 889.20 1075.96 1098.97 1115.46 1172.86 1221.17	18802. 12933. 8927. 8888. 7748. 17338. 4884. 4754. 5486.	488. 336, 334, 4812, 474, 175795, 530, 28146, 904,	$\begin{array}{r} .28 \\ .28 \\ 4.01 \\ .39 \\ 146.50 \\ 1.27 \\ 23.46 \\ .75 \end{array}$	70.6351.314.4732.52.29 $15.36.8215.69$.7418 .592s 1.747 1.694 1.854 1.857s 1.818 1.214s

			DESINS	
NUCLIDE	ACTIVITY	TIME CORRECTED ACTIVITY CI/FILTER	UNCERTAINTY 1 S COUNTING	STORIA
· · · · · · · · · · · · · · · · · · ·			-+-+- +-+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-+
CE-141	5,7446E+01	1.1842E+02	1,78%	
CA-SC47	2.9450E-01	2.7921E+02	108.06%	
LU-177 <	9.29E-02	3.02E+00		
SE-75	6.7286E-01	8.1717E-01	12.62%	
TB-160 <	3.02E-02	4.17E-02		
CR-91233	3.4570E+00	9,9300E+00	2.36% 2.78%	
EV-152 #	1.6722E+00	1.6810E+00 3.84E+00	2.104	
YB-175 < HF-181	1.44E-02 8.7521E-01	1.4827E+00	4.45%	
BR-891 <	4.1734E-02	3,2258E+00	34.22%	
ND-147 #	1.7114E-01	1.4340E+00	52.29%	
AG-110M#	1.1270E-01	1.2367E-01	70.63%	
ZR-95	6.3816E-01	9.1626E-01	51,31%	
88-0048	1.0602E+00	1.4000E+00	32.52%	
SC-48	3.1370E+02	4, J516E+02	. 29%	
RB-86 #	1.8377E+00	6.4784E#00	15,36% .82%	
FE-59	3.2557E+01		. 628 1. 44%	
20-68 < TA-182	1. 2135 E+02 8.1669E-01	1.0018E+00	12.39%	
			n had bad shape.	
	- 	SUMM	A R Y	
TOTAL AATI	VITY (3.9	to 1946.6 keV)	9.2716130E+02	PCI/FILTER
208.40 7	LU-177 28	38.60 & TB-160	САКДЕД Р 344.20 * EU-1 1115.40 ? ZN-6	E_A_K_S ********** 52 396.10 & YB-175 5
		but only one pe		
	tive during de	multiplet and the convolution	NTP CIÓN MONO	
_	is too narrow			
G - Peak	is too wide a	a FW25M, but ok	at FWHM.	
	fails sensiti			
		nut first peak o	f this nuclide	
		a qualification		
+ - Peak	activity high	er than countin	g uncertainty ra	nge.
			uncertainty ran	ξ υ .
= - Peak	outside analy	sis energy rang	e, lose enough to t	h.u
	ulateu peak ce arv anardv caj	traid for posit	ive identification	no Dn.
A - Calc libr	background sub			
libr				

	E OF COUNT TIM	E CORRECTED UN	CONCENTRAT CERTAINTY I SIGMA	IONS
ELEMENT CO	NCENTRATION CO PPM	NCENTRATION PPM	COUNTÍNG	
			+-+-+- + - +	• + - + - + - + - + - + - + - + - + - +
ERIUM CALCIUM	6.7245E-02 1 8274E-02	1.3862E-01 1.7325E+01	1.70% 108.00%	
UTETIUM	0.0000E+00		.00%	
ELENIUM	8.3820E-03		12.60%	
TERBIUM	9.5249E-04		4.90%	
THORIUM	9,5379E-03 7.5336E-02		1.50%	
UROPIUM	1.6366E-03		2.70%	
TTERBIUM	2.6731E-04	7.1331E-02	31.40%	
ALFNIUM	3.8694E-03		4.40%	
ARIUN	9.9312E-02 2.2194E-01		34.20% 39.30%	
TRONTIUM	7.6179E-03		52.20%	
LVER	1.0487E-02		70,60%	
ERCONIUM	7.5958E-02	1.0906E-01	51.30%	
ESIUM	6.6270E-03	•	4.40% 32.50%	
NICKEL SCANDIUM	5,1279E-02 1,5329E-02		. 20%	
UBIDIUM	6.7420E-02		15.30%	
RON	1.8756E+01		. 80%	
ZINC	4.9523E-02		15.60%	
COBALT FANTALEM	2.1168E-04 9.8942E-04	2.1734E-02 1.2136E-03	1.40% 12.30%	
	••••••			
		OF DISCA	RDED PEAKS	*******
**************************************	0 —), 1 V			
208.40 ? L * - Peak i	s too wide, but	only one peak		
208.40 ? L * - Peak i ! - Peak i	s too wide, but s part of a mul	tiplet and this		
208.40 ? L * - Peak i ! - Peak i negati	s too wide, but s part of a mul ve during decon	tiplet and this		
208.40 ? L * - Peak i - Peak i negati ? - Peak i @ - Peak i	s too wide, but s part of a mul ve during decon s too narrow. s too wide at F	tiplet and this volution. W25M, but ok at	area went	
208.40 ? L * - Peak i - Peak i negati ? - Peak i @ - Peak i % - Peak (s too wide, but s part of a mul ve during decon s too narrow. s too wide at F ails sensitivit	tiplet and this volution. W25M, but ok at y test.	area went FWHM.	
208.40 ? L * - Peak i - Peak i negati ? - Peak i @ - Peak i % - Peak (\$ - Peak i	s too wide, but s part of a mul ve during decon s too narrow. s too wide at F ails sensitivit dentified, but	tiplet and this volution. W25M, but ok at y test. first peak of t	area went FWHM. his nuclide	
208.40 ? L * - Peak i - Peak i negati ? - Peak i 9 - Peak i % - Peak i % - Peak i failed	s too wide, but s part of a mul ve during decon s too narrow. s too wide at F ails sensitivit lentified, but one or more qu	tiplet and this volution. W25M, but ok at y test. first peak of t alification tes	area went FWHM. his nuclide ts.	
208.40 ? L * - Peak i negati ? - Peak i ? - Peak i ? - Peak i % - Peak c failed + - Peak a - Peak a	s too wide, but s part of a mul ve during decon s too narrow. s too wide at F ails sensitivit dentified, but one or more qu ctivity higher stivity lower t	tiplet and this volution. W25M, but ok at y test. first peak of t alification tes than counting un han counting un	area went FWHM. his nuclide	
208.40 ? L * - Peak i negati ? - Peak i @ - Peak i % - Peak c failed + - Peak a - Peak a - Peak a - Peak a	s too wide, but s part of a mul ve during decon s too narrow. s too wide at F ails sensitivit dentified, but one or more qu ctivity higher stivity lower t utside analysis	tiplet and this volution. W25M, but ok at y test. first peak of t alification tes than counting un energy range.	area went FWHM. his nuclide ts. ncertainty range. certainty range.	
208.40 ? L * - Peak i negati ? - Peak i @ - Peak i % - Peak i failed + - Peak a - Peak a - Peak a - Peak a - Peak a	s too wide, but s part of a mul ve during decon s too narrow. s too wide at F ails sensitivit dentified, but one or more qu ctivity higher stivity lower t utside analysis ated peak centr	tiplet and this volution. W25M, but ok at y test. first peak of t alification tes than counting un han counting un energy range. oid is not close	area went FWHM. his nuclide ts. ncertainty range. certainty range. e enough to the	
208.40 ? L * - Peak i negati ? - Peak i @ - Peak i % - Peak i failed + - Peak a - Peak a	s too wide, but s part of a mul ve during decon s too narrow. s too wide at F ails sensitivit dentified, but one or more qu ctivity higher stivity lower t utside analysis ated peak centr	tiplet and this volution. W25M, but ok at y test. first peak of t alification tes than counting un energy range. oid is not clos id for positive	area went FWHM. his nuclide ts. ncertainty range. certainty range.	