



### Integrating Models at Multiple Scales for Transportation Energy and Emissions Assessment



CHANGING WHAT'S POSSIBLE



Georgia Institute of Technology School of Civil and Environmental Engineering

USEPA MOVES Review Workgroup Ann Arbor, MI October 9, 2019

#### Overview

- Modeling Tools
  - > MOVES-Matrix for energy and emissions
  - Georgia Tech Fuel and Emissions Calculator (FEC)
- > Application Linkages:
  - Travel demand and activity-based modeling (ABM)
  - ➤ Traffic simulation models (Vissim<sup>™</sup>, DTA, etc.)
  - Data-driven real-time simulation
  - Monitored corridor-level vehicle activity
  - Pollutant dispersion models (AERMOD, etc.)
- Ongoing modeling work (dissertations)



## **MOVES Modeling** $VSP = \left(\frac{A}{M}\right)v + \left(\frac{B}{M}\right)v^2 + \left(\frac{C}{M}\right)v^3 + \left(\frac{m}{M}\right)(a + g * \sin \theta)v$

- EPA's Motor Vehicle Emissions Simulator (MOVES)
- Emissions are defined as a function of speed and vehicle-specific power (VSP) to account for the impact of speed and acceleration on energy and emissions
- MOVES translates inputs into the VSP framework, processes the inputs, and translates results back into user-required outputs



### **13 MOVES Source Types**

| Source Type Name             | Source<br>Type ID |  |
|------------------------------|-------------------|--|
| Motorcycle                   | 11                |  |
| Passenger Car                | 21                |  |
| Passenger Truck              | 31                |  |
| Light Commercial Truck       | 32                |  |
| Intercity Bus                | 41                |  |
| Transit Bus                  | 42                |  |
| School Bus                   | 43                |  |
| Refuse Truck                 | 51                |  |
| Single-Unit Short Haul Truck | 52                |  |
| Single-Unit Long Haul Truck  | 53                |  |
| Motor Home                   | 54                |  |
| Combination Short Haul Truck | 61                |  |
| Combination Long Haul Truck  | 62                |  |

# Example CO<sub>2</sub> Emission Rates by VSP Bin for Passenger Trucks (2016MY in 2016)



#### **FTP Driving Cycle**



## **Traditional MOVES Modeling**

- Modeling of complicated and dynamic networks is tedious
   Requires generation of many link emission rates
  - Users often generate lookup tables to support modeling
- > GT Goal: Pre-run MOVES for all combinations of input data
  - Configure MOVES for distributed computing
  - Iterate runs across all input combinations
  - Compile emission rates into a multi-dimensional matrix



## **MOVES Runs per Region**

- > 30,429 MOVES on-road exhaust runs
  - > 21 calendar years
  - > 3 fuel months (summer, winter, transition)
  - > 23 temperature bins (5°F bins)
  - > 21 humidity bins (5% bins)
- > 20 minutes/core/run
  - Five days in PACE (80+ sustained cores assigned)
- 5,348,983,500 running emission rates per region
- > 121.2 Gb emission rate matrix per region
- > 1.2 millions of MOVES runs to date



#### Partnership for an Advanced Computing Environment (PACE)

- Partnership between Georgia Tech faculty, researchers, and the Georgia Tech Office of Information Technology
  - > 35,000 cores
  - > 90 terabytes memory
  - > 2 petabytes of storage



#### MOVES-Matrix Run Module: Developing On-Road Fleet Emission Rates



#### **MOVES vs. MOVES-Matrix Results**

#### Results are exactly the same as MOVES GUI results



#### **MOVES-Matrix 2.0**

- > MOVES-Matrix for regional inventory modeling
  - Start exhaust, truck hoteling, and evaporative emissions
- > Atlanta regional inventory case study
- MOVES-Matrix generates exactly the same results
- Provides tremendous flexibility for use in scenario analysis

Xu, X., H. Liu, H. Li, M.O. Rodgers, R. Guensler (2018). "Integrating Engine Start, Soak, Evaporative, and Truck Hoteling Emissions into MOVES-Matrix. "Transportation Research Record. Washington, DC. 2018. 12/4/2019



# Fuel and Emissions Calculator (FEC) http://fec.ce.gatech.edu/

- Originally transit-only, to help agencies assess and compare alternative transit vehicle technologies
  - Capital costs
  - > Operating/maintenance costs
  - Energy use and emissions
  - Includes hybrids and EVs
- Lifecycle analysis
  - On-road pump-to-wheel (PTW) from MOVES-Matrix
  - Upstream well-to-pump (WTP) from GREET



12/4/2019

QUICK LINKS School of Civil and Environmenta Engineering

OVERVIEW

The Eucl and Emissions Calculator (EEC) was originally developed to help public

transit agencies choose between alternative transit vehicles, including a variety of existing and anticipated electric vehicle options. The calculator makes it

easier for transit agencies to assess and compare the performance of alternative

costs, including energy/fuel efficiency, and the ability to reduce GHG emissions.

pollutants that contribute indirectly to global warming, and to reduced roadway (breathing zone) air pollutants. Attention was given to electric drive vehicles,

fleets. The spreadsheet-based calculator is made available through the Federal

Transit Administration (FTA) free of any charge to public agencies world-wide.

nplete analysis of alternative fleet vehicles, the calculator

vehicle technologies on the basis of purchasing, operating and maintenance

also provides support for user inputs related to the reduction of criteria air

including vehicles making use of wheel hub motor units, to enable transit agencies to assess the benefits of these vehicles as candidates for their vehicle College of Engineering Argonne National Laboratory MOVES (Motor Vehicle Emission Simulator)

Federal Transit Administration

NEWS

Aug 4, 2017 The website is being updated for new features. Check our latest spreadsheet tools and

## **MOVES-Matrix Applications**

- MOVES-Matrix can be applied at any spatial and temporal scale and can be linked with any model via Python scripts
  - > Regional travel demand models
  - Corridor/scenario analysis
  - ➤ Vissim<sup>™</sup> and other microscopic simulation models
  - Microscale pollutant dispersion modeling
  - > App-based vehicle energy and emissions modeling
  - The FEC and Cost Calculator can be applied in series



#### MOVES-Matrix 2.0 Travel Demand Model Connectivity

- > MOVES-Matrix 2.0
- Atlanta Regional Commission's (ARC's) regional activity-based travel demand model ABM
- Activity-based model (ABM) predicts trips (origin-destination) and link-level travel
  - ≻ 5,873 zones
  - > 74,469 network links



Source: Atlanta Regional Commission



#### Atlanta's Activity-Based Model (ABM) On-network and Off-network Emissions



#### ABM Activity-Based Model Inventory by Emissions Source



Xu, X., H. Liu, Y. Xu, M. Rodgers and R. Guensler (2018). Regional Emission Analysis with Travel Demand Models and MOVES-Matrix (18-05363). 97th Annual Meeting of the Transportation Research Board (presentation only, full paper review, extended abstract in proceedings). Washington, DC. January 2018.



## Vissim<sup>™</sup> Microscopic Simulation

- ➤ Automated linkage between Vissim<sup>™</sup> and MOVES-Matrix
- Python scripts
  - ➤ Run Vissim<sup>™</sup> microscopic simulation (defined network)
  - ➢ Retrieve vehicle trace data via Vissim<sup>™</sup> COM interface
  - > Assign source types
  - Process sec-by-sec trace data to VSP
  - > Match to MOVES-Matrix energy/emission rates
  - > Append energy/emissions to trace data

Xu, X., H. Liu, Y. Xu, M. Hunter, and R. Guensler (2016). "Estimating Project-level Vehicle Emissions using Vissim<sup>™</sup> and MOVES Matrix." DOI 10.3141/2570-12. Transportation Research Record. Number 2570. pp. 107-117. National Academy of Sciences. Washington, DC. 2016.



# Vissim<sup>™</sup> and MOVES-Matrix (Animation) Jimmy Carter Boulevard, Gwinnett, GA



#### Atlanta's North Avenue Smart Cities Real-time Corridor Simulation



Assess the benefits of using real-time data-driven simulation with dynamic traffic control



North Avenue Corridor Vissim™ Simulation Model

#### Real-world case study employs monitored and modeled data

Improve the quality of life for City of Atlanta stakeholders (residents, employees, employees, and visitors)





#### AERMOD Pollutant Dispersion Analysis

- > Air quality impact assessment screening
- Microscale pollutant concentrations at the regional scale
  - MOVES-Matrix for emission rates
  - > AERMOD for microscale dispersion
- > Outputs "worst case" pollutant concentrations
  - > Identify insignificant impacts
  - Identify potential hot-spots (for deeper investigation)

Liu, H., D. Kim, H. Lu, R. Wayson, M.O. Rodgers, and R. Guensler (2019). A Regional Air Quality Impact Assessment Screening Tool based upon MOVES-Matrix and AERMOD. Guidelines on Air Quality Models: Planning Ahead. AWMA 8th Specialty Conference on Air Quality Modeling. Durham, NC. March 19-21, 2019.



#### AERMOD Dispersion Modeling (Animation) Jimmy Carter Boulevard, Gwinnett, GA

- Hourly CO concentrations I-85 and Jimmy Carter Blvd.
- Winter weekday 2012
- Background excluded



Liu, H., X. Xu, M.O. Rodgers, Y. Xu, and R. Guensler (2017) MOVES-Matrix and Distributed Computing for Microscale Line Source Dispersion Analysis. Journal of the Air & Waste Management Assoc. 67(7):763-775.

### AERMOD-Grid Case Study for PM<sub>2.5</sub>

- > Atlanta Metropolitan Area
- > All highways (I-85, I-75, I-20, etc.)
- > 1,163 roadway miles
  - > 976 highway miles
  - > 189 ramp miles
- > 5,642 polygon link segments
- > 54,017 receptors
- > 7-day PACE modeling run

Results can be found at: http://movessensitivity.ce.gatech.edu/osm\_link\_emissions/outputs.html



#### **PM<sub>2.5</sub> Emissions and Dispersion Modeling** (Atlanta Regional Case Study)

## Atlanta freeway worst case AERMOD assessment Identifies areas for more refined modeling



#### RoadwaySim (Regional Roadway Simulator) TransitSim (Regional Transit Simulator)

- > Python-based shortest-path models
  - > 203,000-link road network
  - > 90+ MARTA bus/rail routes
  - > 23 GRTA Xpress Bus routes



- Users input origin-destination pair and departure time
- Simulators find shortest path trajectories through the STM
  Trajectories move through space and time
  - Accounts for congestion formation and dissipation

May contain trade secrets or commercial or financial information that 12/4/2019 is privileged or confidential and exempt from public disclosure

Georgia

## **Ongoing Work**

- New dissertations and theses:
  - Road grade integration into the modeling tools
  - > Autonomie-based, simulation-informed, VSP modeling of hybrid/electric vehicles
  - Transit fleet EV integration optimization model

#### > Forthcoming:

- > Distributive justice assessment tools for planning
- Pollutant exposure assessment tools for health effects



# Road Grade Development using the U.S. Geological Survey Digital Elevation Model



USGS DEM Cloud Point for Pittsburgh, PA Source: http://nationalmap.gov/elevation.html





#### Distance-Grade Profile (Measurement vs. Estimation)

#### RMSE:

0.5-0.58% on arterials



#### **Road Grade Map for Atlanta**

- 1,435 miles of freeways
- 7,493 miles of major arterials
- 11,935 miles other roads



Liu, H., H. Li, M.O. Rodgers, and R. Guensler (2018). Development of Road Grade Data Using the Georgia United States Geological Survey Digital Elevation Model. *Transportation Research Part C: Emerging Technologies*, 92, pp. 243-257.

28

#### **Road Grade Impact on On-road Operations**



#### Impact of Road Grade on Energy and Air Quality Modeling

#### **Absolute Difference Energy Rate (KJ/hour)** in Predicted PM<sub>2.5</sub> Concentration 65 mph Freeways - Passenger Cars 1000 Energy, speed: 65mph Grade = 0%500 400000 True n 12.5% 350000 Grade = 0% -500-100010.6% Independent Activity 300000 -4000-2000 0 2000 4000 8000 -60006000 1000 6 1% Independent Activity 91.2% 71.2% 51.4% 30.9% 14.0% 0.**0%%** 11 500 250000 0 KJ/h 200000 -500-1000150000 -6000 -4000-2000 0 2000 4000 6000 8000 1000 Considering grade and activity interaction 500 100000 0 50000 -500-1000-4000 -2000 0 2000 4000 6000 8000 ſ -6000က္ Ņ 0 $\sim$ $\mathcal{O}$ 4 S ç 4 $\overline{}$ grade category (%) 1.0 ug/m = 0.00.2 0.8 0.4 0.6 Georgia Liu, H. (2018). Modeling The Impact of Road Grade on Vehicle Operation, Vehicle Energy Consumption, and Emissions. Tech Dissertation. Georgia Institute of Technology, School of Civil and Environmental Engineering. Atlanta, GA.

# Simulation-Informed Energy Model for BEVs and Hybrids (with VSP Binning)

#### **Conceptual Vehicle Framework**

#### **Bayesian Network Energy Modeling**



Xu, X. (2019). Next Generation Electric Vehicle Energy Modeling In Transportation Networks. Dissertation. Georgia Institute of Technology, School of Civil and Environmental Engineering. Atlanta, GA. 12/4/2019



# Scalable Applications of the Energy Model for BEVs and Hybrids



Annual Percent Fuel Savings by Link Metro Atlanta 20-County Network Calendar Year 2024



#### Summary

MOVES-Matrix (brute-force cluster modeling with MOVES)
 Obtains exactly the same energy and emissions rates
 Can be applied at any spatial and temporal scale
 Regional, corridor case studies, simulations, apps, etc.
 Can link to dispersion modeling (AERMOD-Grid)
 Matrices are very large (Python scripts are required)
 Python, distributed computing, GIS, visualization, traditional modeling (regional, simulation, dispersion)
 Big data and deep learning applications are evolving