Performance Targets for Wearable PM_{2.5} Sensors in Epidemiological Studies (of Pediatric Asthma) Using Real-Time Enabled Informatics Platforms

Rima Habre, ScD

habre@usc.edu

Assistant Professor, Division of Environmental Health, University of Southern California Visiting Scientist, Harvard TH Chan School of Public Health EPA Air Sensors Conference, June 2018

Outline

- Setting the context
 - Personal exposure monitoring in environmental health sensor-based epidemiological studies (exposures to health effects)
 - Los Angeles PRISMS Center informatics platform for pediatric asthma
- PM_{2.5} measurement performance targets
 - Priority depends on research question
- Essential features and design recommendations for nextgeneration wearable $PM_{2.5}$ sensors for longitudinal epidemiological studies

Project 3, Real-Time Air Pollution and Asthma Study *Pls Habre and Gilliland*

The Los Angeles PRISMS Center

- Building a sensor-based informatics platform to measure personal exposures (low-cost sensors) and identify asthma triggers in children
- Individualized 'trigger discovery' at high time and space resolutions, looking at *multiple* environmental *exposures* (physical, chemical and biological - eg, mixtures), *behaviors* (eg, exercise, adherence to medication) and *psychological* (eg, stress) exposures *in context*
- Advance scientific understanding of relationship between environmental exposures and asthma exacerbations at short time scales

The Los Angeles PRISMS Center BREATHE Informatics Platform for Epidemiological Studies of Pediatric Asthma

Informatics Platform for Personal Air Pollution Monitoring in Children

Breathe Kit, Los Angeles PRISMS Center

BREATHE Kit: Biomedical REAI-Time Health Evaluation

Collect exposure and health data at high spatial and temporal resolutions and investigate acute asthma triggers

PM_{2.5} Sensors and Real-Time Enabled Informatics Platforms

- Retrieve, process and store data in real-time
- Integrate minute-level PM_{2.5} exposure with geolocation, microenvironment, time-activity, behaviors, wear compliance, etc..
- Context-sensitive data collection
- Real-time visualization and communication of data
 - Participant engagement
 - 'Actionable' information, decision-making
- PM_{2.5} sensor becomes <u>part of an informatics platform or system</u> collecting information on participants' behaviors, location, and exposures
- Enhances ability to research acute health effects in context (more representative of real life) and inform risk communication

Performance Targets for Wearable PM_{2.5} Sensors in Longitudinal Epidemiological Studies of Acute Outcomes

Parameter	Selection Criteria
	As close as possible to equivalent FRM/FEM
Accuracy and precision	±15% or less
Interferences	Minimal
Data collection, storage, and retrieval	Internal storage, wireless, secure and real-time communication
Energy consumption	Minimal: Battery life ~8-12 hrs and/or simple charging requirements
Participant burden	Low: Low weight, low noise, unobtrusive form factor, "wearable", flexible wear options
Durability, known performance	Consistent and proven performance, across microenvironments and mobility, low drift over time

Courtesy of Andrea Polidori and the SCAQMD AQ-SPEC Program, modified

Mobility Across Microenvironments

- Lab and stationary, field evaluations > mobile evaluations
 - Standardized, scripted scenarios?
 - Geographic differences?
 - Complicated but important
- Hours to months > 5 mins to 1 hr time integration
- Relative humidity interferences especially important

Example: Scripted Personal Exposure Scenarios

Highly variable concentrations across activities and microenvironments

Good collocated unit-to-unit agreement (Airbeam, 10-sec time resolution), highly variable by microenvironment (epi analysis implications?), also variable by particle size (data not shown)

Context-Sensitive Data Collection around Real-Time PM_{2.5} Measurements

- LA PRISMS example: Trigger survey 5 mins after detecting a PM_{2.5} 'primary combustion' peak
 - Identify transient sources
 - Capture outcome at proximal time, minimize recall bias, evaluate peaks and sources as potential acute asthma triggers
- Crucial parameters:
 - Sensor response time and accuracy (same peak definition across participants), real-time

What matters most? It depends on the research question...

Between-person

Other essential features and design recommendations...

Wearability/Usability

- User-centered design principles
- Desirable and comfortable to wear or carry, 'real-life compatible'
- Flexible wear options (gender and age compatible)
- Safety + battery life + charging options
- 'Smart' calibration kits or options (zero)

Data processing/communication

- Ability to communicate <u>securely</u> and in real-time
- Capture QA/QC metadata + GPS + RH/Temp + wear compliance
 - On-board data storage
 - Ideally basic processing too
- Capacity to store data for 1hr+ when connection lost
- 'Plug-and-play' ability, advertise MAC address etc...

Thank You

- Questions? <u>habre@usc.edu</u>
- Acknowledgements
 - The Los Angeles PRISMS Center team, led by Dr. Alex Bui (UCLA)
 - Majid Sarrafzadeh and Anahita Hosseini (P1)
 - Rose Rochio and the OIT Mobilize Team
 - Frank Gilliland, Sandrah Eckel, Genevieve Dunton and the USC P3 team
 - Sande Okelo and the UCLA Pediatric Pulmonology team
 - <u>http://www.mii.ucla.edu/research/projects/prisms/</u>
 - The NIH/NIBIB PRISMS Program: Pediatric Research Using Integrated Sensor Monitoring Systems
 - <u>https://www.nibib.nih.gov/research-funding/prisms</u>