Transportation Conformity Hot-spot Analyses

TRB Near-Road Air Quality Workshop January 16, 2020

Laura Berry

Transportation and Climate Division, Office of Transportation and Air Quality, U.S. EPA

Overview

- Background
 - Near-road health effects
 - EPA's hot-spot analysis requirements
 - CO and PM monitoring information
- Lessons learned and best practices for future research

Background

Public Health Concerns

- Populations living near roads have elevated rates of health problems, including
 - Pediatric asthma onset and symptoms
 - Pediatric leukemia
 - Impaired lung function growth
 - Cardiovascular disease
 - Premature mortality
- Enormous body of literature has required periodic expert reviews
 - HEI
 - In 2010, published expert panel report on literature published through mid-2008
 - Now engaging new panel to review post-2008 literature, to be complete in late 2020
 - CDC: 2014 meta-analysis on child leukemia
 - NTP: recently published review of traffic pollution and pregnancy-associated hypertension

Examples of Recent Research

Baldwin et al., 2015 – From mobile monitoring in Detroit, MI in Winter 2012

EPA's Hot-Spot Analysis Requirements

- CAA section 176(c) requires that federally supported transportation plans, transportation improvement programs (TIPs) and projects in nonattainment and maintenance areas cannot:
 - Cause or contribute to new air quality violations,
 - Worsen existing violations, or
 - Delay timely attainment of the national ambient air quality standards (NAAQS) or interim milestones
- Transportation conformity determinations are required for non-exempt projects that receive either FHWA or FTA funding or approval
- For project-level conformity determinations, sometimes a hot-spot analysis is required:
 - In PM_{2.5} and PM₁₀ areas, only for those projects with a significant number or a significant increase in diesel vehicles
 - All projects in CO areas need some type of hot-spot analysis

What is a hot-spot analysis?

The transportation conformity regulation (40 CFR 93.101) defines *hot-spot analysis* as an estimation of likely future localized pollutant concentrations and a comparison of those concentrations to the relevant NAAQS

PM Hot-spot Analyses to Date

- Requirement for quantitative hot-spot analyses in effect since 2012
- Since then, there have been about a dozen PM hot-spot analyses done for transportation conformity purposes
- Examples include
 - I-70 expansion in Denver;
 - Gordie Howe International Bridge in Detroit;
 - South Mountain Freeway in Phoenix;
 - I-69 Section 5 in Indianapolis

For More Information

- EPA web site for project-level conformity and hot-spot analyses:
 - <u>https://www.epa.gov/state-and-local-transportation/project-level-conformity-and-hot-spot-analyses</u>
- Includes links to:
 - PM Hot-spot Guidance
 - Guidance on Using MOVES for Project-level CO Analyses
 - FHWA's Categorical Hot-spot Finding (for CO)
 - Guidance on New R-LINE Additions to AERMOD
 - Hot-spot training information
 - FAQs

CO and PM Monitoring Information Key for next slides

https://www.epa.gov/air-trends/air-quality-trends-how-interpret-graphs

https://www.epa.gov/air-trends/carbon-monoxide-trends

https://www.epa.gov/air-trends/particulate-matter-pm10-trends

https://www.epa.gov/air-trends/particulate-matter-pm25-trends

Lessons Learned and Best Practices for Future Research

Lessons Learned to Date

- Model-to-monitor studies based on emissions from traffic are difficult to do well:
 - Since traffic data underlies the entire analysis, study should focus on obtaining detailed and accurate data
 - Analysis of data must be done appropriately, e.g., averaging data such as vehicle speeds, temperatures, or wind speeds not appropriate
- These studies are not conducted in same way or for same purpose as a hotspot analysis
- For advancing the science of modeling, the most useful research would focus on
 - traffic data and vehicle operating modes, and
 - tracer gas studies

Model-to-Monitor Studies

- These studies seek to compare model results with measured data
- Two main types, based on either
 - emissions from traffic, or
 - tracer gas
- Each of these types of studies has advantages and disadvantages
 - Important to consider before embarking on research

Model-to-Monitor Studies

Based on emissions from traffic:

- May be able to use data sources established for other purposes, e.g., near road monitoring data or traffic monitoring data
- Uncertainty about emissions: even with good data for speed and number of vehicles, usually need to make assumptions, e.g., vehicle types, ages, fuel used, drive cycles
- Uncertainty about background: even with a monitor representing background, there may be other sources influencing concentrations
- May need to match averaging periods when using traditional PM monitors

Based on tracer gas:

- Source emissions rate and other characteristics are known: reduces uncertainty in traffic, emissions, and background concentrations
- Usually more monitors deployed, so greater spatial coverage
- Limited by length of study, number of met conditions evaluated, and logistics of making sure wind is the "right" direction
- Expertise needed, e.g., outfitting vehicles to release tracer gas correctly

What can model-to-monitor studies inform?

- Studies based on traffic emissions:
 - Because of inherent uncertainty, not as well-suited for assessing model accuracy
 - May be more useful for evaluating gradients predicted, i.e., rate of decrease in concentration the model predicts over distance
 - May be more useful for evaluating what contributes to error: are errors larger in certain hours, under certain meteorological or traffic conditions?
 - May be useful for evaluating sensitivity to assumptions
- Studies based on tracer gas:
 - Can generate data either for model algorithm development or evaluation

Best Practices for Studies Based on Emissions from Traffic

- Robust traffic data collection is needed:
 - If the plan is to model each lane as a source, data by lane is necessary
 - Need to know not only counts, but vehicle types, speeds
 - Even when known, speed data does not reveal operating mode
- Ideally, use video and analyze it to obtain information about both vehicle type and activity
 - Activity should not be averaged: at any moment, some vehicles accelerating, some decelerating, some cruising
 - Hour by hour congestion will differ, which will affect vehicle numbers, speeds, and activity
- License plate studies, connected to VINs, would be helpful to characterize the fleet as accurately as possible
 - Could identify actual vehicle types and fuel type used (e.g., are some passenger cars diesel? Are some electric? Which trucks are gasoline vs. diesel? Etc.)
 - Could indicate whether high-emitters are present (one or two could skew results)
 - Would provide accurate age distribution
 - If not available, need to think carefully about whether county average is appropriate

Best Practices for Studies Based on Emissions from Traffic, continued

- High-resolution meteorological data is needed
 - On-site meteorological data is important: met data, such as wind speed and direction, can differ across small distances
 - Even hourly data may be too coarse: some hours may not be clearly upwind or downwind
 - Wind vectors should not be averaged across a day
- If upwind monitors are measuring higher concentrations than downwind monitors, these data should not be used in the comparison
 - "Downwind" monitors can be higher due to other sources around them
 - Dispersion models cannot produce negative numbers due to mass conservation

What type of research would be valuable?

- More research and data collection about traffic: composition, age, activity
 - Currently difficult to QA/QC traffic data
 - For hot-spot analysis, would be useful to have operating mode distributions for various types of traffic conditions
- More research about travel modeling: how well do these models predict future traffic volumes and speeds?
 - How can these models and their inputs be improved?
 - What are the best ways to communicate model choices transparently?
 - How can the features of the most accurate models be available to more agencies?
- Additional tracer gas studies
 - Producing independent data sets for use in developing model algorithms, or for evaluation of AERMOD algorithms still ALPHA or BETA