EPA Tools and Resources Webinar

Citizen Science at EPA

Jay Benforado
Chief Innovation Officer
US EPA Office of Research and Development

April 15, 2020
If you had 100,000 people to help you with your work, what would you do?
Citizen Science is . . .

- The involvement of the public in scientific research often in collaboration with professional scientists and scientific institutions.

- A transformational approach to environmental protection that engages volunteers, allowing large numbers of people to contribute to science.
Crowdsourcing and Citizen Science

In crowdsourcing, organizations submit an open call for voluntary assistance from a large group of individuals for online, distributed problem solving.

Charles Darwin
“The Original Crowd-Sourced Scientist”
Crowdsourcing example:

“Can Smart Thermometers Track the Spread of the Coronavirus?”

- *Kinsa Health* thermometers (internet-connected) are in a million U.S. households.

- Real-time data from these thermometers can identify unusual patterns of fever clusters.

- For several years, the company’s maps have accurately predicted the spread of flu about two weeks before CDC’s surveillance tool.

- Crowdsourced fever data may be an early warning system for potential COVID-19 spread.

NYTimes article by Donald McNeil Jr., March 18, 2020
There are Many Ways to Involve Volunteers in Scientific Research and Monitoring!

- Defining research questions
- Data collection
 - Observations
 - Photography
 - Sample/specimen collection
 - Geolocation
 - Measurement
 - Species identification

- Data processing
 - Image analysis
 - Transcribing data
 - Annotate text
 - Data entry
 - Classification or tagging

- Data analysis

- Disseminating results
Citizenscience.gov is an official government website designed to accelerate the use of crowdsourcing and citizen science across the U.S. government. The site provides a portal to three key assets for federal practitioners: a searchable catalog of federally supported citizen science projects, a toolkit to assist with designing and maintaining projects, and a gateway to a federal community of practice to share best practices.

Explore Projects

Plan Your Projects

Join Our Community

Did You Feel It?

USGS

mPING

NOAA
Volunteer Water Monitoring
Thousands of groups across the US monitor the condition of their local streams, lakes, estuaries, wetlands, and groundwater resources.
States & Tribal Leadership in Water Citizen Science

Georgia Adopt a Stream

Sitka Tribe in Alaska Shellfish and Toxins

Utah: Harmful Algal Bloom Response

Michigan: Micorps

Colorado River Watch

Lake Sampling Program
- MCorps CLMP
- Other Programs
- Lake has not been sampled
Many Uses of Citizen Science at EPA

- Work with communities to understand local problems
- Monitor the environment for environmental protection
- Engage volunteers in research relevant to EPA’s mission
- Educate the public about environmental issues
1. **Fill data gaps** and provide another means of identifying potential environmental problems.

2. **Improve public understanding** of environmental issues and actions that address them.

3. **Create inclusive, collaborative networks** of individuals and organizations dedicated to environmental problem solving.

4. **Yield cost savings and efficiency** in environmental monitoring and protection programs.
EPA Leadership in Citizen Science

Current Priorities

- A more comprehensive EPA vision and strategy for citizen science
- Increased institutional capacity for using citizen science in environmental programs
- Strengthening data management
- Technical support to build capacity on planning and documentation of data quality

Citizen Science Can Contribute to all EPA Work

Community Engagement: awareness, partnership, development, stakeholder engagement, public outreach

Case Studies:
- Citizen Science in Great Smoky Mountains National Park
- Environmental Health Organizing in El Paso, Texas

Condition Indicator: media campaign, cross-sector stakeholder involvement, request for further study or involvement by government agency and/or research institutions

Case Studies:
- Argentine/Turner Rail Yard Community Air Pollution Monitoring
- Southeast Alaska Tribal Toxins Partnership

Management decisions: remediation, restoration, community solution enactment

Case Studies:
- Canton Creek Snorkel Survey
- Composting Food Waste with Fermentation

Regulatory standard setting: new mandatory and voluntary standards, development of best practices, revision of prior standards, changes in methodologies for measuring compliance status

Case Study:
- The Dewey-Humboldt Arizona Garden Project

Education: Environmental and STEAM literacy, civic participation, stewardship

Case Studies:
- Ironbound Community Corporation Partnership
- Center in the Park’s Senior Environment Corps

Research: creating baseline datasets, identifying trends and hotspots in health and ecological change over time, filling gaps in datasets

Case Studies:
- Watershed Monitoring in the Mill (Otter) Creek Watershed
- Friends of the Shenandoah River

Regulatory decisions: permits, licenses, leases, environmental permits, zoning and rezoning, site plan approvals, mitigation requirements

Case Study:
- Aerial Imagery of the United Bulk Terminals in Plaquemines, Louisiana

Enforcement: launching of inspections; investigations; prosecution of administrative, civil or criminal violations; imposition of new permit conditions; liability

Case Study:
- Tonawanda Coke Air Monitoring

Environmental Protection Belongs to the Public: A Vision for Citizen Science at EPA (PDF)
Purpose is to help citizen science organizations select the appropriate level of QA and documentation to fit the intended use of the data.

Encourages preparation of a Quality Assurance Project Plan (QAPP) that provides information for data users to evaluate the quality of data collected by citizen scientists.

Recommends contacting federal, state, local, tribal or other organizations for more assistance or guidance.
How to Use the QA Handbook

Three parts

Handbook – Explains the purpose of each template
Template – Provides instructions, tables and questions
Examples – Specific examples of QA documentation
Key Idea: Plan for Intended Data Uses

<table>
<thead>
<tr>
<th>Categories of Data Use</th>
<th>Intended Project Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing public understanding</td>
<td>Community engagement</td>
</tr>
<tr>
<td></td>
<td>Education</td>
</tr>
<tr>
<td>Scientific studies and research</td>
<td>Environmental condition indicators (screening, exposure)</td>
</tr>
<tr>
<td></td>
<td>Studies and research</td>
</tr>
<tr>
<td>Legal and policy action</td>
<td>Regulatory decisions</td>
</tr>
</tbody>
</table>

Increasing levels of QA and documentation
QA Templates

EPA QAPP elements and QA templates recommended for citizen science projects.

Templates organized into 4 major QAPP elements listed in EPA guidance documents.

<table>
<thead>
<tr>
<th>Template</th>
<th>Increase Public Understanding</th>
<th>Science/Research</th>
<th>Legal/Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Managing the Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Title and Preparer Page</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2. Table of Contents</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3. Problem Definition, Background and Project Description</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4. Data Quality Objectives and Indicators</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5. Project Schedule</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Training and Specialized Experience</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7. Documents and Records</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B. Collecting the Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Existing Data</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9. Sampling Design and Data Collection Methods</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10. Sample Handling and Custody</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12. Analytical Methods</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>13. Field and Laboratory Quality Control</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>14. Data Management</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C. Assessing the Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Reporting, Oversight and Assessments</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>D. Reviewing the Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Data Review and Usability</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Managing the Project (continued)

<table>
<thead>
<tr>
<th>Template</th>
<th>Increase Public Understanding</th>
<th>Science/Research</th>
<th>Legal/Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Organization Chart</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>18. Project/Task Organization</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>19. Project Distribution List</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
EPA Citizen Science Activities

Some Examples

- CyanoScope
- Air Sensor Toolbox
- Air Sensor Loan Program
- Real-time Water Quality Monitoring
- Video Image Analysis
- Radon Crowd-Mapping
- Smoke Sense
Locating and Understanding Harmful Cyanobacteria

Three Coordinated Monitoring Projects

1. **BloomWatch App** – Crowdsourcing to find and report potential cyanobacteria blooms
2. **CyanoScope** – Mapping cyanobacteria one slide at a time
3. **Cyano Monitoring** – Professionals and trained citizen scientists monitor freshwater for cyanobacteria to determine environmental factors that cause blooms
CyanoScope
Mapping Cyanobacteria

First Steps
1. Join cyanoScope project at iNaturalist.org
2. Obtain sample collection and microscopy kit
3. Get training

How Volunteers contribute observations
1. Collect Cyanobacteria – Take a water sample with a net tow, prepare a microscope slide, and identify cyanobacteria in the sample.
2. Submit the Images – Take a photo of the Cyanobacteria found in the sample, and upload images and info on iNaturalist platform.
3. Interact Online – iNaturalist community can confirm type of cyanobacteria, you can view images from other volunteers, and everyone can explore the geospatial patterns of cyanobacteria.

http://cyanos.org/cyanoscope
iNaturalist Website Helps Identify the Type (Genus) of Cyanobacteria

The iNaturalist cyanoscope project https://www.inaturalist.org/projects/cyanoscope is a citizen science based program to photograph and identify cyanobacteria and other phytoplankton. This guide is a work in progress. ...more ↓

Tags:
- BMAA
- Cyanobacteria
- Microcystin
- Toxin

Taxonomy:
- Class Cyanophyceae
- Order Synechococcales

https://www.inaturalist.org/projects/cyanoscope
Audience:

- Citizen scientists
- Technology developers
- Researchers
- State/local/tribal agencies
- General public

http://www.epa.gov/heasd/airsensortoolbox
Information on Performance, Operation and Use of Air Sensors

Air Sensor Guidebook (2014) – guide for using air sensors to collect air quality measurements

The Air Sensor Guidebook is currently being updated!

https://www.epa.gov/air-sensor-toolbox
Helpful Tools for Data Analysis, Visualization and Communication

- **RETIGO** – Free web-based tool to explore environmental data
- **Macro Analysis Tool** – Free excel-based tool to compare air sensor and reference monitor data
- **Educational Videos** – Address how to use and communicate data from air sensors

RETIGO

- Free web-based tool
- To explore environmental data

Macro Analysis Tool

- Free excel-based tool
- To compare air sensor and reference monitor data

Educational Videos

- Just released on Feb 18th!
Understanding Sensor Data Readings

Potential for improved environmental awareness about local pollution levels through citizen-based monitoring

Data Collection

Analysis and Interpretation

Communication

https://www.epa.gov/air-sensor-toolbox
Air quality in the Los Angeles area has improved over the last 4 decades, but the area still struggles with air pollution. To meet requirements of the Clean Air Act, criteria air pollutants are monitored at a limited number of stations. New, lower cost air sensor technologies allow the public to measure air quality in more locations at the neighborhood or street level.

https://www.epa.gov/innovation/los-angeles-public-library-air-sensor-loan-program
Collaborative Project

Approach:
- Air sensors that measure fine particles (PM$_{2.5}$) will be available for checkout at select branches of the Los Angeles Public Library system.
- Three lesson plans with hands-on activities based on the sensor will be used.
- Libraries will host workshops on how to use the sensor using the lesson plan.
- Loan program will use the *AirBeam2 Sensor* which measures PM2.5, humidity & temperature.

Disclaimer: Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Anticipated Impacts

- Increase air quality awareness
- Educate and engage the community
- Help the public take actions to protect their health
- Develop transferable resources including air quality lesson plans for classroom instruction

Program will launch in Summer/Fall 2020!

http://aircasting.habitatmap.org/map
Goal of LA Library Loan Program: Demonstration and Replication

- **Learning** – How to train staff on use of air sensor equipment as part of an environmental education curriculum
- **Practical logistics** – Challenges for community equipment loan programs (maintenance, calibration etc.)
- **Knowledge Transfer** – “Best Practices” guide with lessons learned for implementing similar programs in other parts of the country

For more information: www.epa.gov/air-sensor-toolbox
New Technology for Water Quality Monitoring

Demonstration Project in Georgia
Low Cost Sensors for Real-Time Continuous Monitoring
Cooperative Project with Georgia’s Adopt-A-Stream Program

- Two day workshop trained 15 volunteer organizations to build and operate low-cost water quality sensors
- Built, programmed, and deployed 20 open source/low-cost sensor units
- Used publicly available sensors for key parameters (temperature, pH, dissolved oxygen, and specific conductance)
- 3-month field evaluation completed in June 2018 (collected 90 days of data)

https://www.epa.gov/innovation/low-cost-sensors-real-time-continuous-water-quality-monitoring
Results from Evaluation Study

Findings inform shift to advanced water quality monitoring

Low-cost sensors compared well to industry standard equipment under controlled laboratory conditions

Challenges with sensor systems deployed at field sites
- Frequent calibration drift
- Decreased life expectancy (pH probe)
- High power demand
- Susceptibility to damage

Lessons for future projects that utilize open source/low-cost sensor technology
- Field ruggedness
- Maintenance/calibration demand
- Technical learning curve
- Data quality objectives
Deep Lake Explorer: Using Citizen Science to Analyze Underwater Video in the Great Lakes

• Created a web application for citizen scientists to evaluate underwater videos of the Great Lakes

• 531 volunteers analyzed 746 video clips in 2 weeks for habitat characteristics and invasive species

https://www.zooniverse.org/projects/us.epa/deep-lake-explorer
Video Camera set up

Underwater Image
Project Compared Classifications by Experts vs Crowdsourced Volunteers

Types of Questions Asked

1. Is substrate mostly hard, soft, or mixed?
2. Is vegetation present?
3. Do you see fish?
4. If so, are they round gobies?
5. Do you see invasive mussels?
New Test Method for Community Mapping of Radon in Puerto Rico

https://www.epa.gov/innovation/region-2-new-test-method-community-mapping-radon-puerto-rico
Context & Background

- Large-scale wildfires are increasing in the western U.S.
- Wildfire smoke significantly impacts air quality - particle matter (PM)
- Exposure to PM is associated with a range of adverse health outcomes

SmokeSense

EPA app that leverages observations of wildfire smoke and health effects to increase participants’ understanding about smoke exposures.

- Large-scale wildfires are increasing in the western U.S.
- Wildfire smoke significantly impacts air quality - particle matter (PM)
- Exposure to PM is associated with a range of adverse health outcomes
Smoke Sense App
Innovative method for communication and data collection

Smoke Sense App has over 30,000 users!

https://www.epa.gov/air-research/smoke-sense-study-citizen-science-project-using-mobile-app
Citizen Science Contribution to EPA’s mission

- Enhanced scientific research and environmental monitoring
- STEM education
- Community-scale problem solving
- Stronger links to the public

Image: CROWD & CLOUD
Want to learn more?

Websites

- citizenscience.gov and epa.gov/citizen-science
- Citizen Science Association
- SciStarter – to find projects

Helpful reports and documents

- NACEPT reports about EPA’s citizen science
- Recent article in Nature magazine
- NAS report on Learning through Citizen Science
- Report to Congress on Citizen Science
Contacts

Jay Benforado
Chief Innovation Officer
US EPA Office of Research and Development
benforado.jay@epa.gov
202-564-3262

For more information about specific EPA citizen science projects:

- CyanoScope: Hilary Snook, snook.hilary@epa.gov
- Air Sensors Toolbox: Andrea Clements, clements.andrea@epa.gov
- Library Sensor Loan Program: Rachelle Duvall, duvall.rachelle@epa.gov
- Real-time Water Monitoring: Derek Little, little.derek@epa.gov
- Underwater Video Analysis: Mari Nord, nord.mari@epa.gov
- Community Radon Mapping: Ameesha Mehta-Sampath, mehta-sampath.ameesha@epa.gov
- Smoke Sense: Mary Clare Hano, hano.maryclare@epa.gov

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the US EPA.