

Overview of USEPA's Ecological Risk Assessment for Pesticides

Kris Garber, Senior Science Advisor Environmental Fate and Effects Division Office of Pesticide Programs United States Environmental Protection Agency

Statutory Standards

• Federal Insecticide Fungicide Rodenticide Act (FIFRA)

"...will not generally cause unreasonable adverse effects on the environment." FIFRA defines the term "unreasonable adverse effects on the environment" to mean: any unreasonable risk to man or the environment, taking into account the economic, social, and environmental costs and benefits of the use of any pesticide

• Endangered Species Act (ESA)

S-P4

"...is not likely to jeopardize the continued existence of a listed species or result in the destruction or adverse modification of designated critical habitat." (Section 7(a)(2))

Ecological Risk Assessments

- Objective: To evaluate the impacts of pesticides on non-target organisms
- Risk involves comparison of estimated environmental exposures to levels where effects may occur
- Requires an understanding of:
 - Toxicity
 - Exposure
 - Risk
 - Regulatory context
- Evaluate risks to aquatic and terrestrial wildlife and plants

Ecological Risk Assessments

• Tiered

EPA

- Start out conservative and with lower effort
- Increase in complexity and effort as needed
- May address risks at different scales
 - Individual population species taxonomic group
 - Site-specific county-level nationwide
- Based on
 - Peer reviewed methods and models
 - Best available data
- Supports a regulatory decision
 - Registration Review
 - New chemicals
 - New uses of existing chemicals

FRAMEWORK FOR ECOLOGICAL RISK ASSESSMENT Integrate Available Information Source and Ecosystem Planning Ecological Exposure Potentially at PROBLEM (Risk Assessor/ Effects Characteristics Risk FORMULATION **Risk Manager Dialogue**) Assessment Conceptual Endpoints Model Analysis 1. Management Goals Plan 2. Management Options As 3. Scope, Complexity, Necessary and Focus 4. Resources 5. Scheduling **Characterization of Exposure Characterization of Ecological Effects** Acquire Data, Measures of Ecosystem Measures of Exposure Measures of Effect And Receptor Characteristics Iterate Process, ANALYSIS Monitor Exposure Analysis Ecological Response Analysis Results Stressor-Response Exposure Profile Profile Risk RISK Estimation CHARACTERIZATION Risk Description Communicating Results to the Risk Manager **Risk Management**

Similar in structure to a scientific publication:

- 'Problem
 Formulation' similar
 to 'Introduction'
 - 'Analysis' similar to 'Methods'

'Risk
 Characterization'
 similar to 'Results'
 and 'Discussion'

©EPA Problem Formulation

- Provides the foundation for the risk assessment
- Describes the federal action (proposed use)
 - Based on proposed or existing labels
- Articulates the purpose of the assessment
- Explains the conceptual model and risk hypotheses
- Defines degradates of concern

Problem Formulation

- Outlines a plan for analyzing risk, identifying:
 - Previous risk conclusions (if any)
 - Scope, complexity, and the focus of the assessment
 - Available data
 - Models

€EPA

- Data gaps
- Uncertainties

Exposure Characterization

Objectives

Sepa

- To characterize fate and transport of assessed pesticide in environment
- To quantify exposure of pesticide and degradates of concern to non-target organisms
- Identify major transport and exposure routes for non target organisms
 - Direct application to field, spray drift, runoff, leaching, volatilization, bioaccumulation
- Degradation
 - Abiotic (hydrolysis, photolysis)
 - Biotic (aerobic/anaerobic, soil, water, sediment)
 - Identify major (>10%) degradates

Conceptual Exposure Model

• Driving Factors

SEPA

- Application/agronomic practices
 - Rate, method, timing
- Environmental conditions
 - Weather, soil
- Pesticide properties
 - Physical-chemical
 - Environmental fate

EPA Analysis: Exposure

- Develop conceptual exposure model
- Identify residues and durations of exposure of concern
- Estimate exposure and characterize in a weight of evidence approach
 - Modeling (computer simulation derived concentrations)
 - Monitoring (measured environmental concentrations)

\$EPA

Exposure Models

- Terrestrial
 - Birds and mammals
 - T-REX model
 - Dietary exposure on field
 - Birds are surrogates for terrestrialphase amphibians and reptiles
 - Bees
 - BeeREX model
 - Dietary and contact exposure
 - Honey bees are surrogate for other species
 - Terrestrial and wetland plants
 - TerrPlant model

• Aquatic

- Fish, aquatic-phase amphibians, aquatic invertebrates, aquatic plants
 - Pesticide in Water Calculator
 - PFAM (rice and cranberry uses)
- Spray Drift
 - AgDRIFT
 - AgDISP

- Objective
 - Quantify magnitude of effect of pesticide on survival, growth and reproduction of animals and plants
- Relies upon test species that represent surrogates for groups of organisms (referred to as "taxa")
 - Terrestrial (birds, mammals, bees, plants)
 - Aquatic (fish, invertebrates, plants)

Effect Endpoints Represent

- Valued entity (the receptor; *e.g.*, a fish)
- Attribute or characteristic that is important to protect and is potentially at risk (*i.e.*, survival)
- Ecologically relevant
- Susceptible to potential stressor (pesticide)
- Relevant to risk management goals

Standard Endpoints: Animals

- Endpoints represent apical effects to non-target organisms
- Acute:

8-P4

- LD50 or LC50 or EC50 (lethal dose/concentration; 50%)
 - Based on survival or immobility
- Chronic:
 - NOAEL or NOAEC (no observed adverse effects level or concentration)
 - LOAEL or LOAEC (lowest observed adverse effects level or concentration)
 - Based on survival, growth (weight and/or length), and reproduction
- Effects on behavior, appearance, and/or developmental effects
 - e.g., malformations
 - Can be used for risk characterization

Standard Endpoints: Plants

Terrestrial

EPA

- IC₂₅ = concentration leading to 25% effect or decline in growth
- NOAEC
- Aquatic
 - IC50 = concentration leading to 50% effect or decline in growth
 - NOAEC
- Endpoints include and represent apical effects
 - Survival/Emergence (terrestrial)
 - Biomass
 - Terrestrial plants: length and/or dry weight
 - Aquatic plants: cell density, frond number, dry weight
 - Growth rate (aquatic)

EPA Incident Reports

- Incident = any exposure or effect from a pesticide's use that is not expected or intended
- Categories
 - Humans
 - Pet and Domestic Animals
 - Fish and Wildlife
 - Insect Pollinators
 - Plants
- Evaluated by OPP
 - Certainty category is assigned
 - Legality is described
 - Other pertinent details considered (*e.g.*, product applied, other active ingredients present)
- Discussed in risk characterization
 - Indicates that exposure pathway is complete
 - Line of evidence
 - Are effects observed consistent with other analyses?

©EPA Risk Characterization

- Risk Quotients = Exposure / Toxicity
 - Relies upon standard models and toxicity endpoints
 - Compared to Levels of Concern to determine if there is potential risk
- Tiered process
 - If RQ is below level of concern, risk is considered low
 - If RQ is above level of concern, additional refinement is carried out
 - Screening level is intentionally designed to be conservative
 - Refinements may include
 - Analysis of conservative assumptions and influence on risk conclusions
 - Probabilistic modeling
 - Field level exposure and effects data

Purpose of Screening Level Assessment

- The goal is to generate "reasonably conservative" estimates of pesticide exposures to organisms of interest
- Intended to distinguish between:
 - Pesticides that do <u>not</u> pose a risk and
 - Those that may need additional information
- Type I and II Errors
 - Tier I assessment should not conclude that there is no effect when there actually is (Type II)
 - It is more acceptable at the Tier I level to conclude that there is a potential effect when there is none (Type I)

SEPA Risk Characterization

- Starts with comparison of risk quotients to levels of concern
 - When RQs are above LOC, additional characterization is provided
- Evaluation of multiple lines of evidence
 - Quantitative and qualitative factors
- Discussion of assumptions and uncertainties and how they may impact risk conclusions
- Commonly evaluates alternative assumptions to inform risk mitigations
 - Aerial vs ground, application timing, drift buffers, etc.

Data Used in Ecological Risk Assessments

• Sources

EPA

- Registrant submissions of unpublished studies
 - Code of Federal Regulations specify data requirements to support registration
 - Follow standard test guidelines
- Open literature
- Data Review
 - EFED conducts independent reviews of unpublished and published studies
 - Statistical analysis of raw data
 - Evaluated according to Standard Evaluation Procedures (SEPs)
 - Completed Data Evaluation Record (DER)
 - Open literature is systematically reviewed for re-evaluation cases Open Lit Review Summaries (OLRS)

Quality Assurance/Quality Control

Models and Tools

FPA

- Based on best available science and data
- Undergo peer review
 - Internal EPA review by Senior Scientists
 - FIFRA Scientific Advisory Panel
- Ecological Risk Assessments
 - Written by EFED scientists
 - Reviewed by Senior scientists

Resources

- Overview Document (2004): <u>http://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/ecological-risk-assessment-pesticides-technical</u>
- Guidelines for Ecological Risk Assessment (1998): <u>http://www.epa.gov/risk/guidelines-ecological-risk-assessment</u>
- Protecting bees and other pollinators from pesticides: <u>https://www.epa.gov/pollinator-protection</u>
- Protecting Endangered Species from Pesticides: <u>https://www.epa.gov/endangered-species</u>
- Models: <u>https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/models-pesticide-risk-assessment</u>
- ECOTOX database: <u>https://cfpub.epa.gov/ecotox/</u>
- Standard test guidelines for fate: <u>https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-835-fate-transport-and-transformation-test</u>
- Standard test guidelines for ecological effects: <u>https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-850-ecological-effects-test-guidelines</u>
- EPA Handbook on Risk Characterization: <u>https://www.epa.gov/risk/risk-characterization-handbook</u>
- EPA Peer Review Handbook: https://www.epa.gov/osa/peer-review-handbook-4th-edition-2015