# EPA Method TO-15A: Important Updates for the NATTS Network and Ambient Air Measurements

Douglas Turner turnerd@battelle.org Battelle June 3, 2020

# EPA Method TO-15A - Overview

Updates Related to Ambient Air Measurements

- Standards, Reagents, and Gases
- Sampling and Equipment
- Canister Media, Cleaning, and Qualification
- Break/Questions
- Calibration Standards
- GC/MS Instrumentation
- Calibration, Analysis, and Data Interpretation
- Method Detection Limits
- Open Discussion/Questions

Disclaimer: Use of trade names does not indicate endorsement or guarantee fitness for purpose.



https://www.nytimes.com/2018/08/20/opinion/trump-republican-truth-climatechange.html?action=click&pgtype=Homepage&clickSource=story-heading&module=opinion-c-col-left-region&region=opinionc-col-left-region&WT.nav=opinion-c-col-left-region



#### EPA Method TO-15A - Overview

- EPA Compendium TO-15A published September 2019
- <u>https://www.epa.gov/amtic/compendium</u> <u>-methods-determination-toxic-organic-</u> <u>compounds-ambient-air</u>
  - Summary table comparing criteria for TO-15A and NATTS TAD Revision 3 to be posted to AMTIC



3

## Acknowledgements

- Authors
  - Donald Whitaker, U.S. EPA ORD
  - Karen Oliver, U.S. EPA ORD
  - David Shelow, U.S. EPA OAQPS
  - Douglas Turner, Battelle, Columbus, OH
  - Ian MacGregor, Battelle, Columbus, OH
- Peer Reviewers
  - Janice Willey, U.S. Navy, NAVSEA Laboratory Quality and Accreditation Office
  - Doug Markle, 4D Innovations, Inc.
  - Peter Furdyna, New York State Department of Environmental Conservation
- User Community



#### EPA Method TO-15A - Overview

- EPA Office of Research and Development (ORD) led the development and rewrite of TO-15A
  - One of main goals of rewrite was to educate and inform Method users
  - Obsolete items removed and method wholly rewritten
  - Scope focus on ambient air
    - With some modification, also applies to source-level, vapor intrusion, exhaled breath, etc.
  - ORD and OAQPS communicated known needed updates
    - Many of the needed updates to Compendium Method TO-15 (1999) were included in NATTS TAD Revision 3 (October 2016)
      - Further updates from NATTS TAD Revision 3 in comparison table
  - Public comment period on 1999 document (TO-15)
  - Incorporated comments and aspects where supported by data and established methodology



5

#### EPA Method TO-15A - Overview

- Highlights of Major Updates from TO-15 (1999)
  - Canister Cleanliness Criteria reflect need to measure lower concentrations due to decreasing concentrations of VOCs
  - Canister and Instrument Qualification
  - Humidity Guidance
  - Modern Preconcentration and Measurement
    Instrument Components
  - Calibration Standard Range and Regression Modeling
  - Quality Control Criteria
  - Qualitative Identification Criteria
  - Method Detection Limits (MDLs)



Image courtesy of: https://gispub.epa.gov/air/trendsreport/2016/

#### EPA Method TO-15A – Major Takeaways

- Need to measure lower (decreasing) ambient air concentrations requires minimizing and characterizing background levels of VOCs
- Canister media, sampling instruments, diluent and reagent gases, and analytical systems are interrelated and contamination or problems with any portion will compromise data
- Updated method defines characterization approaches and acceptance criteria of each portion of the method



7

# Clean Gas and Diluent Gas

- < 20 pptv for each target volatile organic compound (VOC)
- Hydrocarbon free (HCF) Zero Air
  - Zero air generator
  - High pressure cylinders of "ultra" or "research-grade" zero air (< 0.05 ppm total hydrocarbons)
  - Hydrocarbon scrubber cartridges
  - Additional oxidation scrubbers
- Ultra-high purity (UHP) Nitrogen (N<sub>2</sub>)
  - High pressure cylinders
  - Headspace from liquid N<sub>2</sub> dewar (LN2)
- UHP N<sub>2</sub> is not permitted for:
  - Challenge gases for canisters, sampling units, and instruments
  - Method detection limit spike sample standards
- Both HCF zero air or UHP N<sub>2</sub> are permitted for:
  - Calibration standard diluent gas
  - Canister cleaning purge gas
  - Canister cleaning blank gas
  - Sample diluent gas
  - Method blank



#### Water for Humidification

- ASTM Type I or HPLC-grade recommended
  - Resistivity > 18 M $\Omega$ ·cm
- If contaminants are found:
  - Boil for 10 minutes
  - Sparge with UHP N<sub>2</sub> or He for 10 minutes
  - Store in sealed container



9

## Vacuum/Pressure Gauges/Transducers

- Field use accuracy ±0.25% full scale
  - Testing canister vacuum in the field
- NIST-traceable certified gauge
  - Range 0 to 30 psia and accuracy ±0.1% full scale
  - Maintain in laboratory and verify calibration of field gauges
  - Measure canister pressure on receipt
  - Measure static dilution pressures



#### Sampling Containers

- Stainless Steel Canisters (medium of choice)
  - Silicon-ceramic lined (e.g., Entech Silonite® or Restek Silco® Steel)
  - Electropolished (e.g., SUMMA passivated or Restek TO-Can®)
- Glass Bottles
  - Engineered and deactivated for VOCs collection
- Flexible (non-rigid) Containers
  - Not included in scope of method
  - Not suitable for NATTS network sampling
    - Tedlar<sup>®</sup> film bags
    - Mylar<sup>®</sup> or multi-layer films







https://www.entechinst.com/wp-content/ uploads/2015/09/29-BV250AS\_2019.png

#### **Canister Cleaning**

- Pre-evacuation recommended prior to connection to cleaning system
  - Evacuate to > 28 in Hg vacuum (oil-free rough pump)
  - Fill with clean purge gas
- Purge Gas (may be HCF zero air or UHP N<sub>2</sub>)
  - Humidify to ~50%
  - Ensure purge gas is < 20 pptv for target VOCs
- Canisters should be heated (80°C) in oven
  - Ovens heat canister and valve uniformly
  - Jackets may not heat valve sufficiently
    - allows high boiling point VOCs to deposit/accumulate in valve
  - Heating bands create hot spots and may not sufficiently heat valve
  - Heating silicon ceramic lined canisters > 80°C not recommended with HCF zero air purge gas – damages lining integrity







#### Canister Cleaning (continued)

- Minimum 5 cycles of evacuation (> 28 in Hg vacuum) and pressurization (no more than 30 psig)
  - More cycles (e.g., 20 cycles) may be needed for effective cleaning
  - Automated cleaning systems permit additional unattended cycles
- Final evacuation to  $\leq$  50 mTorr
  - Back diffusion (migration of VOCs back into canisters) possible if left at high vacuum on system for extended period – perform additional cycle
- Canisters may be stored with pressurized purge gas and evacuated just prior to deployment





#### Canister Cleaning - Verification

- Canister cleanliness batch defined as all canisters connected to manifold
- Prepare 1 verification blank for every 8 canisters cleaned
  - Recommend minimally 1/manifold
- Pressurize with clean humidified gas (HCF zero air or UHP N<sub>2</sub>), allow to equilibrate for 24 hours
- Verification blanks must be < 20 pptv at ambient pressure
  - NATTS TAD required < 200 pptv or 3xMDL, whichever was lower



#### Canister Qualification

- Canister Leak Check (< 0.1 psi/day)</li>
- Initially before use and every 3 years thereafter
- Humidified zero air (~40 to 50% RH) (UHP N<sub>2</sub> not permitted)
- Zero-air challenge
  - Initially 24 hours after filling
  - At a later timepoint typical holding time (i.e., 30 days)
  - Results < 20 pptv (at ambient pressure) at initial and later timepoints
  - NATTS TAD required < 200 pptv or 3xMDL, whichever is lower
- Known standard challenge
  - ~100 to 500 pptv
  - Initially 24 hours after filling
  - At a later timepoint typical holding time (i.e., 30 days)
  - Results within ±30% of theoretical at initial and later timepoints



#### Canister Qualification – Case Study



#### Canister Hygiene

- Eliminating sampling of particulate matter (PM) Required
  - PM in canisters is extremely difficult to remove
    - Not removed by typical pressurization/evacuation
  - Employ sintered stainless steel filters
  - Replace PM filters frequently
    - High PM areas
    - Heavy pollen
- Canister valve opening is to be capped with brass plug
  - Prevents introduction of PM
  - Brass caps will deform before valve threads
  - Stainless caps require care to avoid deforming threads
- Replace leaking valves
  - Perform canister qualification



# Sampling Inlet Probe

#### Inlet probes are project-specific

- Method includes details to avoid sampling bias
- Ambient air monitoring
  - Probe within breathing height
  - 2 to 6 m above ground level
  - Collocated probes within 12 inches vertically
- Probe material constructed of inert materials:
  - Chromatographic grade stainless steel
  - Borosilicate glass
  - Quartz glass
  - Minimize Viton<sup>®</sup>, PTFE, PFA
  - Do not use:
    - FEP Teflon<sup>®</sup>
    - Tygon<sup>®</sup>
    - Rubber
    - Copper
    - Brass
    - Aluminum



# Potential Sampling Interferences

- Leaks in flow path (may introduce shelter air)
- Particulate matter (PM)
  - Employ sintered stainless steel particulate filters (e.g., 2-μm)
  - Buildup of PM or biological growth can behave as sorbents
    - Algae, insect nests, spider webs
- Contamination from solvents
  - Stored in shelters (paints, adhesives, aerosol cans, etc.)
  - Nearby sources
  - Environmental laboratory (e.g., organic extraction use of dichloromethane)
- Sample carryover
  - Purge collection lines prior to starting sample collection



# Methods of Sample Collection

- Routine monitoring fixed monitoring sites (e.g., NATTS)
- Special investigations temporary monitoring (complaints, site evaluation)
  - Subambient sample
  - Pressurized sample collection
  - Grab sample collection



# Methods of Sample Collection (continued)

- Subambient sample collection
  - Ending pressure should be 1.5 to 3 psi below ambient pressure to ensure a constant sampling rate over the 24-hour period
    - Usually employs canister vacuum to drive flow
    - Use of sampling pumps not typical for subambient collection
    - Dependent on flow controller to ensure constant flow rate over collection period
- Pressurized sample collection
  - Strongly recommends sample collection pressure of ≤3 psig to limit condensation inside canister
  - Employs a pump to pressurize canister
- Canisters at ambient pressure should be considered suspect
  - Indicate a leak occurred
  - Exception for grab samples (not common for routine monitoring)



#### Sampling - Flow Control

- Mass flow controller (MFC) typical for routine monitoring
  - Subambient and pressurized sampling
- Mechanical flow controlling device (MFCD) not typical for routine monitoring
- Critical orifice not adjustable and not typical for routine monitoring



#### Sampling – Flow Rate Verification

- Flow rate depends on final desired collection pressure/vacuum and canister volume
- Flow control should be constant over the collection period
- Verify flow rate with calibrated flow standard
  - Ensure constant over desired collection duration





https://drycal.mesalabs.com/wpcontent/uploads/sites/5/2013/11/Defender-Series-Home-300x294.png

# Sampling Unit Bias Qualification

- Prior to initial deployment and annually thereafter
  - Following maintenance and calibration
    - Replace sintered stainless steel particulate filter
    - Calibrate/verify flow controller (absolute accuracy not critical)
    - Calibrate pressure gauge (if equipped)
- Collect samples of challenge gases
  - Upstream (reference sample)
  - Through the sampling unit (challenge sample)
- Zero Challenge
- Known Standard Challenge





# Sampling Unit Bias Qualification (continued)

- Humidify challenge gas (~40 to 50% RH)
- Zero challenge
  - HCF zero air (N<sub>2</sub> not permitted)
    - NATTS TAD permitted N<sub>2</sub>
  - All target VOCs < 20 pptv greater than reference sample
    - NATTS TAD required < 200 pptv or 3xMDL, whichever is lower
- Known standard challenge
  - HCF zero air as diluent
  - 100 to 500 pptv for each target VOC
  - All target VOCs within ±15% of the reference sample





#### BREAK

#### QUESTIONS AND OPEN DISCUSSION

???

#### Standard Gases

- High pressure cylinders
- Certificate of analysis (COA) with traceability information
  - Primary standard for calibration
  - Second source standard for independent verification
- Recommend ~100 ppbv to 1 ppmv
  - Custom blend
  - Readily stocked 65-component mix
- Recertification may extend expiration
  - Not typical for small lecture bottle standards



#### Standards Preparation

- Dynamic Dilution
  - Mass flow controller for diluent and each standard gas
  - Requires passivation time and constant gas flow
  - MFCs must be calibrated at the flow rates employed
    - Flows can be verified against a certified flow meter
- Static Dilution
  - Static dilution instrument (manifold)
  - Addition of gases by partial pressures (canister)
  - Pressure measurement sensitivity limits dilution factor capability
    - Serial dilution may be necessary to achieve desired concentrations
  - Vacuum gauges/pressure transducers must be calibrated





## Common Analysis Interferences

- Laboratory solvent vapors
- Carryover from high concentration standards or samples
- Impurities in humidification water
- Contaminants in internal standard gases
  - Dichloromethane and carbon disulfide are common
- Co-eluting interferences
  - Silanols from breakdown of silicon ceramic linings
  - Siloxanes from column stationary phase
  - Compounds with shared MS ion responses



#### Instrument Qualification

- Performed when instruments placed into service
- Zero air challenge
  - Analysis of HCF zero air humidified to ~40 to 50% RH
  - All target VOCs < 20 pptv
  - Should not show other significant non-target VOCs or baseline artifacts
- Known standard challenge
  - Replicate injections of a 100 to 500 pptv standard humidified to ~40 to 50% RH
  - Sufficient and consistent area response with repeated analysis
  - Missing or low response peaks should prompt troubleshooting





http://www.nutechins.com/public/upload/image/20200414/15868462708587.jpg

#### Autosampler Qualification

- Performed following instrument qualification and calibration, canister qualification
  - All ports employed for analysis must be evaluated
  - Repeat after replacing port connections and lines and after servicing switching valve
- Zero air challenge
  - Analysis of HCF zero air humidified to ~ 40 to 50% RH
  - All target VOCs < 20 pptv
  - Analysis of high concentration samples to verify absence of carryover
- Known standard challenge
  - Analysis of 100 to 500 pptv standard humidified to ~40 to 50% RH
  - All target VOCs within ±15% of theoretical concentration





#### Analysis - Preconcentration

- Manage (remove) water
- Allow bulk gases (O<sub>2</sub>, N<sub>2</sub>, CO<sub>2</sub>, and Ar) to pass through
- Multi-trap cryogenic
  - Employs empty or glass bead traps
  - Subsequent traps employ sorbent to retain VOCs
  - Heated desorption from sorbent to focusing trap and injection to GC
- Series of capillary columns
  - Trap VOCs and allow water and bulk gases through
  - Backflush VOCs for focusing and injection to GC







#### Analysis – GC Separation Columns

- Non-polar Stationary Phase dimethylpolysiloxane
  - E.g., HP-1, BP-1,
- Low Polarity Stationary Phase cyanopropylphenyl polydimethylsiloxane
  - E.g., DB-624
- Typical Specifications:
  - length 60-m
  - 1-um film (stationary phase) thickness
  - Internal diameter 0.25 to 0.32 mm



#### Analysis – Mass Spectrometer Detection

#### Mass Spectrometer (MS) Detection – typical configurations

- Linear quadrupole MS
  - Electron Ionization (EI) mode at ionization energy of 70 eV
  - Scan range 35 to 270 amu unless other range needed
  - m/z 28, 32, and 44 may see interferences due to N<sub>2</sub>, O<sub>2</sub>, and CO<sub>2</sub> respectively
  - Scan rate sufficient to provide 12 or more scans/peak (10 scans/peak is minimum)
  - Operate in SCAN mode, select ion monitoring (SIM) mode, or simultaneous SIM/SCAN
  - Bromofluorobenzene (BFB) tuning is no longer required
- Ion trap MS
  - Electron Ionization (EI) mode at ionization energy of 70 eV
  - Scan range 35 to 270 amu unless other range needed
  - Scan rate of 0.4 to at most 1 second/scan (faster scan rates provide better resolution)
  - Operate in selected ion storage (SIS) mode
- Time-of-Flight (TOF) MS
  - Electron Ionization (EI) mode at ionization energy of 70 eV
  - Ion source temperature 260°C
  - Spectral acquisition rate of 2 to 4 Hz or higher



ps://nemc.us/docs/2015/presentations/Wed-Air%20Methods%20&%20Monitoring-4.4-Whipple.pdf

#### Analysis – Internal Standards

#### Selection

- IS are deuterated or VOCs not expected in sample
- Minimally one IS compound required
- Three recommended to cover retention time range
  - Typical include: bromochloromethane, 1,4-difluorobenzene, and d<sub>5</sub>-chlorobenzene
  - Others: 1,2-dichloroethane-d<sub>4</sub>, hexane-d<sub>14</sub>, toluene-d<sub>8</sub>, and 1,2-dichlorobenzene-d<sub>4</sub>
- Qualify IS gas by analyzing increasing volumes and examining for concomitant proportional increases in area response of potential contaminants
  - Carbon disulfide
  - Dichloromethane



#### Analysis – Internal Standards

#### Use

- Select amount of IS to approximate target VOCs response in lower half of calibration curve
  - On scale
  - Not to exceed response of high calibration standard
- Inject the same amount of IS with every blank, standard, and sample injection
- Establish IS performance during initial calibration
  - Retention time (RT) window
  - Average area response
- With each injection:
  - Each IS must elute within ±2 seconds of the average RT from the ICAL
  - Each IS compound area response must be within ±40% of the average response from ICAL (preferably not exceed ±30%)



#### Analysis - Calibration

#### Initial Calibration (ICAL) – Concentration Levels

- Minimum of 5 concentration levels
  - Minimum of 8 levels if employing quadratic model
- Recommended range 20 to 5000 pptv (lower than NATTS TAD)
  - Half or more of levels in lower half of curve range
- Recommend triplicate measurement of each level
- Recommend zero concentration calibration point
  - May be useful for compounds with background
  - Not applicable for average relative response factor (RRF)

#### GC/MS Calibration - Conventions

- Individual Standards Method
  - Each concentration level is prepared in a canister
    - E.g., 20, 50, 100, 250, 1000, 2000, and 5000 pptv
  - Same volume injected for each standard level (typical analysis volume for standards and samples is 250 mL)
  - Consistent amount of water introduced
  - Must separately demonstrate preconcentrator can handle different amounts of water
- Effective Dilution Method
  - Inject differing volumes from two or more standard canisters
    - Errors in standard preparation will not be apparent with one canister
  - Prepare canisters at 250 pptv and 5000 pptv
  - Example: Typical sample analysis volume is 250 mL
    - Inject 20, 50, 100, and 250 mL from the 250 pptv canister
    - Inject 50, 100, and 250 mL from the 5000 pptv canister
  - Varies amount of water introduced to the preconcentrator

#### GC/MS Calibration – Regression Modeling

- Additional options than that included in NATTS TAD
  - Relative Response Factor (RRF)
  - Linear model (intercept and slope)
  - Quadratic model (intercept, slope, and quadratic term)
  - Considerations
    - Backcalculated concentration of each standard must be within ± 30% of the theoretical concentration
    - Only exclude standard levels when technically justified
      - Preparation error
      - Faulty injection
      - Obvious chromatography problem

#### Instrument Calibration – Regression Modeling

- Relative Response Factor (RRF)
  - Average RRF of all concentration levels employed for quantitation
  - Relative standard deviation (RSD) of RRF must be ≤ 30% for each target VOC
  - Assumes calibration curve passes through origin
  - May not represent compounds with background or non-linear behavior

| Metho<br>Metho<br>Title<br>Last<br>Respo | od Path : D:\msdchem<br>od File : T041117.M<br>:<br>Update : Wed Apr 1:<br>onse Via : Initial Co | \2\METH<br>2 07:30<br>alibrat | HODS\<br>6:22 20<br>tion | 017    |         |       |        |          |             |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|--------|---------|-------|--------|----------|-------------|--|
| Calib<br>2 =                             | oration Files<br>04111704.D 3 =042                                                               | 111705                        | .D 4                     | =041   | 11706.1 | D 5   | =04111 | .707.D 6 | =04111708.D |  |
|                                          | Compound                                                                                         | 2                             | 3                        | 4      | 5       | 6     | Avq    | %RSD     |             |  |
|                                          |                                                                                                  |                               |                          |        |         |       |        |          |             |  |
| 1)                                       | Bromochloromethan                                                                                | e                             |                          |        | ISTI    | )     |        |          |             |  |
| 2)                                       | propylene                                                                                        | 0.315                         | 0.317                    | 0.345  | 0.383   | 0.399 | 0.352  | 10.81    |             |  |
| 3)                                       | Freon-12                                                                                         | 2.236                         | 2.131                    | 2.023  | 1.884   | 1.747 | 2.004  | 9.68     |             |  |
| 4)                                       | methyl chioride                                                                                  | 0.623                         | 0.566                    | 0.527  | 0.521   | 0.516 | 0.550  | 8.15     |             |  |
| 5)                                       | Freon-114                                                                                        | 2.703                         | 2.492                    | 2.362  | 2.303   | 2.313 | 2.434  | 6.89     |             |  |
| 6)                                       | vinyi chioride                                                                                   | 0.975                         | 0.886                    | 0.821  | 0.810   | 0.807 | 0.860  | 8.39     |             |  |
| 7)                                       | methanol                                                                                         | 0.185                         | 0.167                    | 0.151  | 0.144   | 0.138 | 0.157  | 12.14    |             |  |
| 8)                                       | 1,3-Dutadiene                                                                                    | 1 1 1 5 4 0                   | 1 0(1                    | 0.526  | 0.519   | 0.520 | 1 022  | 1.79     |             |  |
| 10)                                      | athyl chlorido                                                                                   | 1.150                         | 1.061                    | 0.993  | 0.948   | 0.955 | 0 445  | 6.49     |             |  |
| 11)                                      | ethyr chioride                                                                                   | 0.494                         | 0.44/                    | 0.427  | 0.432   | 0.424 | 0.445  | 11 06    |             |  |
| 10)                                      | winul bromido                                                                                    | 1 020                         | 1 102                    | 1 0202 | 1 000   | 1 005 | 1 000  | 11.00    |             |  |
| 12)                                      | vinyi bromide                                                                                    | 0.205                         | 0.200                    | 1.030  | 0.201   | 1.025 | 1.082  | 0.27     |             |  |
| 14)                                      | actoren                                                                                          | 1 101                         | 0.209                    | 0.202  | 0.201   | 0.202 | 0.202  | 10.46    |             |  |
| 1 = )                                    | Record 11                                                                                        | 2 160                         | 0.952                    | 1 050  | 1 040   | 1 024 | 1 042  | 7 20     |             |  |
| 10)                                      | freon-11                                                                                         | 2.109                         | 2.002                    | 1.059  | 1.040   | 1.034 | 1.942  | 7.59     |             |  |
| 16)                                      | isopropyi alconoi                                                                                | 0.716                         | 0.703                    | 0.720  | 0.718   | 0.708 | 0.713  | 0.99     |             |  |
| 10)                                      | 1 1 dishlement                                                                                   | 0.561                         | 0.621                    | 0.707  | 0.792   | 0.811 | 0.698  | 15.40    |             |  |
| 10)                                      | n, 1-ulchioroet                                                                                  | 1 110                         | 0.795                    | 0.839  | 0.904   | 0.922 | 0.000  | 22.07    |             |  |
| 20)                                      | Eroop 112                                                                                        | 1 5 2 0                       | 1 407                    | 1 264  | 1 201   | 1 400 | 1 410  | 22.72    |             |  |
| 20)                                      | Freon-115                                                                                        | 1.520                         | 1.407                    | 1.364  | 1.301   | 1.409 | 1.410  | 4.55     |             |  |
| 21)                                      | carbon disulfide                                                                                 | 2.361                         | 2.100                    | 2.064  | 2.120   | 2.136 | 2.156  | 5.44     |             |  |
| 22)                                      | trans-1,2-dich                                                                                   | 0.667                         | 0.613                    | 0.651  | 0.701   | 0.740 | 0.675  | 7.16     |             |  |
| 23)                                      | 1,1-dichioroet                                                                                   | 1.193                         | 1.129                    | 1.093  | 1.115   | 1.141 | 1.134  | 3.33     |             |  |
| 24)                                      | methyl tert-bu                                                                                   | 1.227                         | 1.277                    | 1.426  | 1.581   | 1.628 | 1.428  | 12.46    |             |  |
| 25)                                      | vinyl acetate                                                                                    | 1.185                         | 1.206                    | 1.259  | 1.388   | 1.399 | 1.287  | 7.82     |             |  |
| 26)                                      | 2-butanone                                                                                       | 0.934                         | 1.012                    | 1.029  | 1.102   | 1.117 | 1.039  | 7.12     |             |  |
| 27)                                      | cis-1,2-dichlo                                                                                   | 0.648                         | 0.644                    | 0.688  | 0.771   | 0.794 | 0.709  | 9.79     |             |  |
| 28)                                      | ethyl acetate                                                                                    | 0.118                         | 0.144                    | 0.170  | 0.186   | 0.160 | 0.156  | 16.49    |             |  |
| 29)                                      | hexane                                                                                           | 0.844                         | 0.834                    | 0.867  | 0.912   | 0.912 | 0.874  | 4.22     |             |  |
| 30)                                      | chloroform                                                                                       | 1.729                         | 1.619                    | 1.544  | 1.545   | 1.542 | 1.596  | 5.10     |             |  |
| 31)                                      | tetrahydrofuran                                                                                  | 0.402                         | 0.460                    | 0.520  | 0.588   | 0.616 | 0.517  | 17.12    |             |  |
| 32)                                      | 1,2-dichloroet                                                                                   | 0.861                         | 0.823                    | 0.789  | 0.773   | 0.797 | 0.808  | 4.25     |             |  |
| 33)                                      | 1,4-difluorobenze                                                                                | ne                            |                          |        | ISTI    | D     |        |          |             |  |
| 34)                                      | 1.1.1-trichlor                                                                                   | 0.431                         | 0.418                    | 0.402  | 0.408   | 0.420 | 0.416  | 2.68     |             |  |
| 35)                                      | benzene                                                                                          | 0.489                         | 0.499                    | 0.540  | 0.582   | 0.592 | 0.540  | 8.64     |             |  |
| 36)                                      | carbon tetrach                                                                                   | 0.494                         | 0.456                    | 0.441  | 0.461   | 0.473 | 0.465  | 4.26     |             |  |
| 37)                                      | cvclohexane                                                                                      | 0.220                         | 0.225                    | 0.242  | 0.259   | 0.264 | 0.242  | 7.99     |             |  |
| 38)                                      | 1.2-dichloropr                                                                                   | 0 198                         | 0 191                    | 0 188  | 0 196   | 0 203 | 0 195  | 3 01     |             |  |
| 39)                                      | bromodichlorom                                                                                   | 0.467                         | 0.451                    | 0.447  | 0.457   | 0.465 | 0.457  | 1.89     |             |  |
| 40)                                      | trichloroethene                                                                                  | 0.270                         | 0.280                    | 0.301  | 0.322   | 0.328 | 0.300  | 8.52     |             |  |
| 41)                                      | 1.4-dioxane                                                                                      | 0.089                         | 0.108                    | 0.120  | 0.117   | 0.124 | 0.112  | 12.51    |             |  |
| 42)                                      | methyl methacr                                                                                   | 0.153                         | 0.165                    | 0.182  | 0.198   | 0.202 | 0.180  | 11.62    |             |  |
| 43)                                      | hentane                                                                                          | 0 182                         | 0 176                    | 0 199  | 0 209   | 0 211 | 0 195  | 7 92     |             |  |
| 44)                                      | cis-1 3-dichlo                                                                                   | 0 249                         | 0 254                    | 0 303  | 0 332   | 0 346 | 0 294  | 15 00    |             |  |
| 45)                                      | methyl igobuty                                                                                   | 0 122                         | 0 129                    | 0 144  | 0 157   | 0 150 | 0 142  | 11 76    |             |  |
| 46)                                      | trang_1 3_dich                                                                                   | 0 224                         | 0 235                    | 0 279  | 0 307   | 0 322 | 0 274  | 15 57    |             |  |
| 47)                                      | 1.1.2-trichlor                                                                                   | 0.236                         | 0.211                    | 0.210  | 0.220   | 0.221 | 0.220  | 4.83     |             |  |
| 1 ÷ 1 /                                  |                                                                                                  | ~~~~                          | ~. ~ + + +               |        | v U     | ~     | v.22V  | 4.00     |             |  |

#### GC/MS Calibration – Regression Modeling

- Linear model
  - Unweighted
  - Weighted (e.g., 1/concentration, 1/concentration<sup>2</sup>)
- Quadratic model
  - May better represent calibrations covering a large dynamic range for analytes with a non-linear response
  - Caution recommended
    - Non-linear behavior may be due to standards preparation error
    - Background contamination
    - Weighting schema for linear modeling applies



#### Analysis – Compound Identification

- All four criteria must be met for positive identification
  - Retention time (RT) [A]
  - Qualifier ion abundance ratios [B]
  - Signal-to-noise ratio (S:N) [C]
  - Target and qualifier ion peaks must be co-maximized [D]



Figure 16-1: Qualitative identification of GC-MS target analytes.

- Retention time (RT) [A]
  - Within ±2 seconds (±0.033 min) of the average RT from the ICAL
    - NATTS TAD specified ±0.06 relative retention time (RRT) units
  - Update with each new ICAL
  - Chromatography data system (CDS) can flag when RTs outside this window



Figure 16-1: Qualitative identification of GC-MS target analytes.

- Qualifier ion abundance ratios [B]
  - Minimally one qualifier ion must be within ±30% of the average <u>relative</u> abundance ratio established from the ICAL
    - NATTS TAD did not specify relative abundance
    - Assigning as absolute abundance will result in overly narrow or wide acceptance windows (false positive or false negative)
  - Update ratios with each new ICAL
  - CDS can be programmed to flag compounds when this criterion is exceeded



Figure 16-1: Qualitative identification of GC-MS target analytes.

- Signal-to-noise ratio [C]
  - S:N should be > 3:1, preferably > 5:1
  - Simplest to measure noise height and peak height
  - May also use area ratios
  - CDS may include S:N calculators



- Target and qualifier (Q1 and/or Q2) ion peaks must be co-maximized [D]
  - Peak apexes preferably within one scan
  - Experienced analyst interpretation should weigh heavily





#### Analysis – Ambient Air Check

- Chlorofluorocarbons are ubiquitous
  - Should be detected in every ambient sample
  - Trichlorofluoromethane (Freon 11)
  - Dichlorodifluoromethane (Freon 12)
  - Carbon tetrachloride
  - 1,2-dichloro-1,1,2,2-tetrafluoroethane (Freon 114)
- Qualitative check on ambient air collection and analysis
  - Should not alone be rationale for data invalidation
- https://www.esrl.noaa.gov/gmd/hats/



https://www.esrl.noaa.gov/gmd/hats/about/cfcs.png

#### Analysis – Method Detection Limits

Method Detection Limits (MDLs)

- Performed per MDL Method Update Rule (MUR) in 40 CFR Part 136 Appendix B
- Determined initially and annually thereafter
- MDL MUR prescribes determination of MDLs
  - Spiked samples (MDL<sub>sp</sub>)
  - Method blank samples (MDL<sub>b</sub>)

|                                                                                    | <del>O</del> -CER                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Home                                                                               | Electronic Code of Federal Regulations<br>e-CFR data is current as of May 20, 2020                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| gpo.gov<br>govinfo.gov                                                             |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Browse / Search Previous                                                           | Tel: (0 Constant) - Colorbarra D Der 135 - Assessedier                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| e-CER Navigation Aids                                                              | Title 40 → Chapter 1 → Subchapter D → Part 135 → Appendix                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Browse                                                                             | Browse Previous   Browse Next                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Simple Search                                                                      | Title 40: Protection of Environment                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Advanced Search<br>— Boolean                                                       | PART 136-GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| - Proximity                                                                        | Annual Rise Dury 126 Distances up Description of the Distances of the Mature Distances Line - Research                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Search History                                                                     | APPENDX B TO PART 150-DEPARTION AND PROCEDURE FOR THE DETEXTION OF THE INTELLION DETECTION DETECTION DETECTION                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Search Tips                                                                        | Definition                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Latest Updates                                                                     | The method detection limit (MDL) is defined as the minimum measured concentration of a substance to<br>can be reported with 90% confidence that the measured concentration is distinguishable from method black.                                                                                                                                                                       |  |  |  |  |  |
| User Info<br>FAQs                                                                  | results.                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Agency List<br>Incorporation By Reference                                          | I. Scope and Application                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Electronic Code of Federal Regulations                                             | (1) The MDL procedure is designed to be a straightforward technique for estimation of the detection lin<br>a broad variety of physical and chemical methods. The procedure requires a complete, specific, and well-de<br>analytical method. It is essential that all sample processing steps used by the laboratory be included in the<br>determination of the method detection limit. |  |  |  |  |  |
| Related Resources                                                                  |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| The Code of Federal Regulations (CFR)<br>annual edition is the codification of the | (2) The MUL procedure is not applicable to methods that do not produce results with a continuous<br>distribution, such as, but not limited to, methods for whole effluent toxicity, presence/absence methods, a                                                                                                                                                                        |  |  |  |  |  |
| general and permanent rules published<br>In the Promy, Browthe by the departments  | microbiological methods that involve counting colonies. The MDL procedure also is not applicable to                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| and agencies of the Federal Government                                             | measurements such as, but not limited to, blochemical oxygen demand, color, pH, specific conductance, r<br>titration methods, and any method where low-level spiked samples cannot be prepared. Except as describ                                                                                                                                                                      |  |  |  |  |  |
| Register (OFR) and the Government                                                  | the addendum, for the purposes of this procedure, "spiked samples" are prepared from a clean reference                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Publishing Office.                                                                 | such as reagent water, spiked with a known and consistent quantity of the analyte. MDL determinations u                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                                    | spixed samples may not be appropriate for all gravimetric methods (e.g., residue or total suspended solid                                                                                                                                                                                                                                                                              |  |  |  |  |  |

#### Preparation of method blanks and spikes

- Minimum of 7 each in separate canisters
- Prepared on three separate dates (preferably non-consecutive)
- Must include all aspects of the method (e.g. humidity)
- Each VOC is considered uniquely

Preparation of MDL Spikes (MDL<sub>sp</sub>)

- Must be in HCF zero air
- Spike concentration for each VOC:
  - Equivalent to S:N of 3:1 to 5:1
  - At which qualitative identification criteria are lost
  - Estimate of 3-fold standard deviation of area response of minimally 3 method blanks
  - From previous acceptable MDLs

Preparation of Method Blanks (MDL<sub>b</sub>)

• Routine method blanks (HCF zero air or UHP N<sub>2</sub>)



#### Calculating $MDL_{sp}$

- Calculate standard deviation for each target VOC (s<sub>sp</sub>)
- Multiply the standard deviation by the appropriate Student's *t*-value (*t*)
  - Student's t-value for the single-tailed 99<sup>th</sup> percentile t-statistic and a standard deviation estimate with n-1 degrees of freedom

$$MDL_{sp} = t_{(n-1,1-\alpha=0.99)} \cdot s_{sp}$$

- MDL<sub>sp</sub> must be between 10 and 100% of the spiked concentration
- If outside these criteria, adjust spiking level and repeat MDL<sub>sp</sub>
  - Relative abundance and S:N criteria may be waived for MDL spike samples

#### Calculating $MDL_b$

- If MB concentrations are ND, the MDL<sub>b</sub> does not apply
- If some, but not all, MBs have numerical results (are not ND), MDL<sub>b</sub> = highest of MB concentrations
  - Exception if n > 100, then 99<sup>th</sup> percentile value
- If all concentrations are numerical
  - Calculate average  $(\bar{x}_b)$  for each target VOC in the method blanks
    - If  $\bar{x}_b < 0$ , let  $\bar{x}_b = 0$
  - Calculate standard deviation  $(s_b)$  for each target VOC in the method blanks
  - Multiply the blank standard deviation  $(s_b)$  by the appropriate Student's t-value (t) and add this to the average blank value  $(\bar{x}_b)$

$$MDL_{b} = (t_{(n-1,1-\alpha=0.99)} \cdot s_{b}) + \bar{x}b$$

Determining the Reported MDL

- Compare MDL<sub>b</sub> and MDL<sub>sp</sub>
- Whichever is larger is the reported MDL for that VOC
- If MDL<sub>sp</sub> is higher, optionally confirm MDL
  - Prepare one or more spikes at 1- to 5-fold the MDL<sub>sp</sub>
  - Analyze and evaluate recovery
    - Suggested recovery criteria are 40 to 160%
    - If outside these criteria, examine determined MDL for reasonableness
    - Typical MDLs should be in the low single-digit or tens of pptv

#### QUESTIONS AND OPEN DISCUSSION

???

# Thank you

Work conducted under Contract EP-D-13-005 Work Assignment 5-04 Amendment 4 <u>turnerd@battelle.org</u>

614-424-3112