

Enhancements of the National Coastal Condition Assessment in the Great Lakes

David Bolgrien Great Lakes Toxicology & Ecology Division June 24, 2020

The Great Lakes are GREAT

Lake Superior

Lake

lichigan

10% of U.S. & 30% Canadian populations live in basin. 244k km² water (~area of UK) 522k km² basin (9 states, province) 17k km shoreline (half equator) 23k km³ water (21% global volume) 2,000 miles Duluth to Atlantic

Lake Huron

Lake Ontario

Lake Erie

Local social, regional environmental, and global economic power.

The Great Lakes management model is integrative, pro-active, adaptive, and science-based. It links ecosystem protection & remediation to the restoration of ecosystem services & human prosperity.

> That is a mouthful and rather boastful for the midwest. Good.

Where did such a wonderful model come from?

- Boundary Waters Treaty (1909)
 - International Joint Commission
- Great Lakes Water Quality Agreement (1972)
 - Research (CSMI) and management (LAMPS)
- Clean Water Act (1972)
 - Great Lakes water quality Research (Section 104)
- Great Lakes Compact (2008)
- Great Lakes Restoration Initiative (2009)
 - \$3.5 B (FY10-FY20)

All these are implemented with public, states, provinces, federal agencies, & universities.

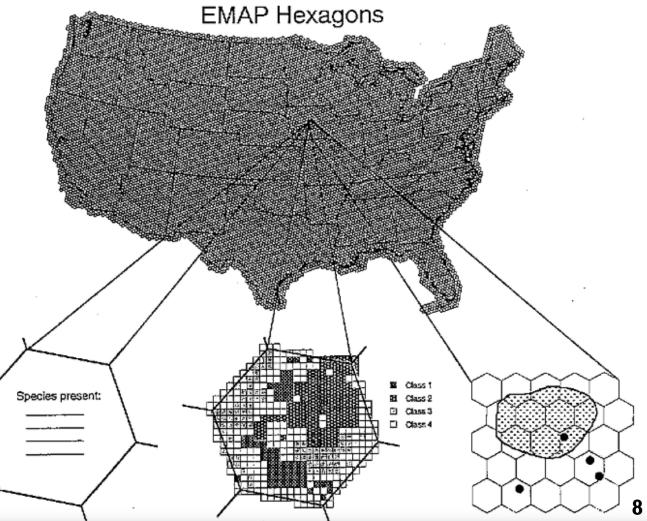
EPA ORD is delivering the innovations needed to meet the model's ambitions and stakeholders' needs via multiple RAPs.

SHC.9.1 SSWR.5.3. **SSWR.1.2** SSWR.5.4 SSWR.6 SSWR.4.3 SSWR.1.1 SSWR.1.5

But, in the beginning there was

Environmental Monitoring and Assessment Program (EMAP) Developing statistically-valid frameworks for status and trends in the condition of the nation's ecosystems

EMAP changed the "don't just stand there, measure something" approaches to environmental monitoring and assessment


- Targeted. Measure a few things at a few places
 - Site response
 - Biased and great for some questions
- Survey. Measure some things at a few places
 - Population response
 - unbiased and great for many questions
- Census. Measure something everywhere
 - Population and site response
 - unbiased and great for a few questions

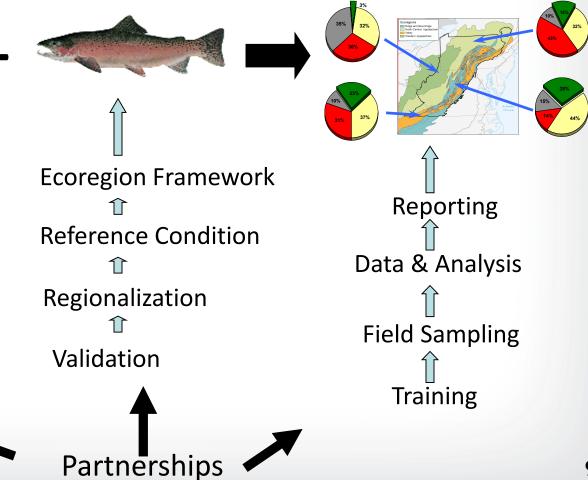
EMAP brought us Hexagons Across America!

Science and practice for national status & trends surveys of multiple resources.

- Statistically sound designs
- Management
 relevant
 indicators

EMAP (now NARS) Approach

Designs


⇒EPA

Assessments

Panel Rotation Panel Rotation Spatial Balance Variable Density Frame Development Population Definition

EMAP (now NARS) Question

What % (±error) of [resource] in [unit] is in [condition] according to [indicator] ?

Resource	Unit	Condition	Indicator	
coastal area wetland area estuary area streams length lakes (#)	U.S. State EPA Region Ecoregion Tribal lands	Good Fair Poor	Biotic integrity Water Quality Habitat integrity [Nutrient] [Contaminant]	
Challenges				
Relevancy Data limited	Sample density Funding	Thresholds standards	Relevancy Variability / robustness	

While this addresses mandates of GL model,

it is not everyone's question.

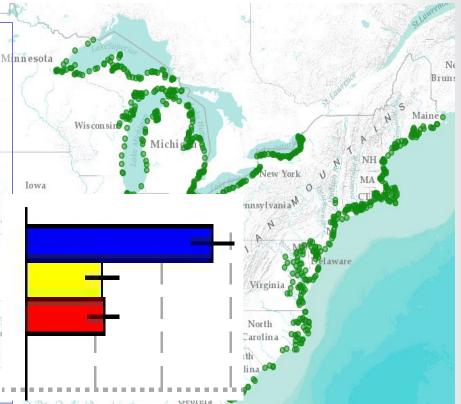
EMAP was a huge success.

- 100s of publications from data collected 1990-2006.
- Exemplary cooperative federalism & research-formanagement
- Science-based assessment approach for multiple resources
- Institutionalized by state and federal management agencies
- Adaptive and scalable to complement targeted programs
 AND
- It spawned National Aquatic Resource Surveys (NARS)

National Aquatic Resource Surveys (NARS)

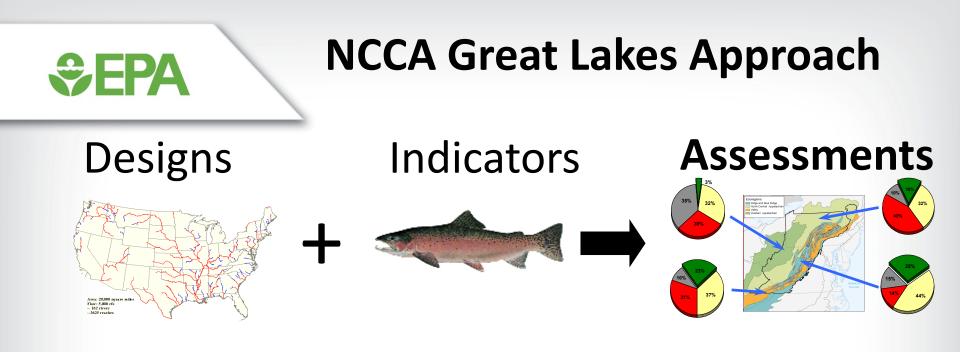
Nationwide state-partnered assessment program.

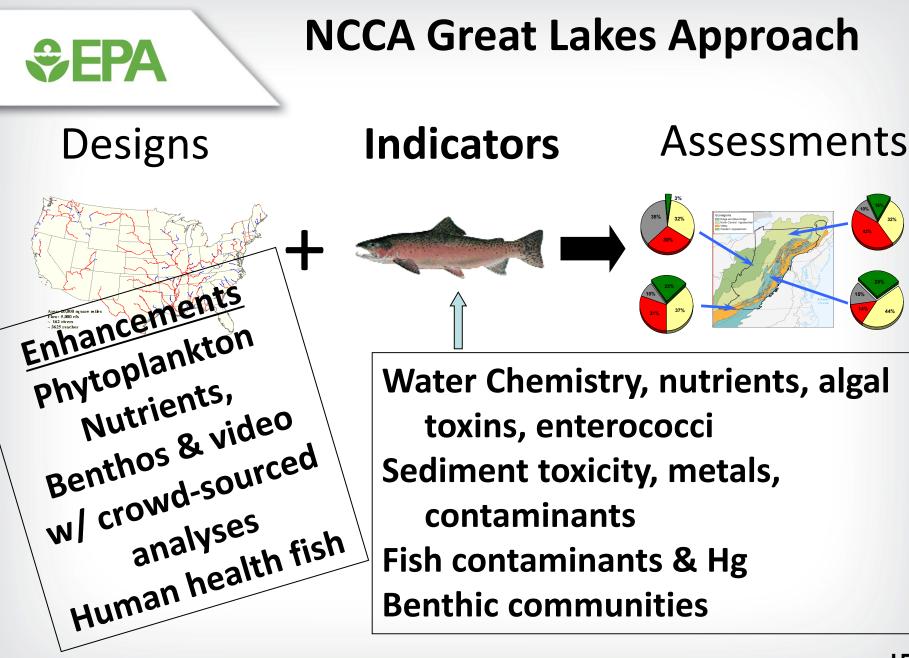
Nationally consistent designs & resource-specific indicators

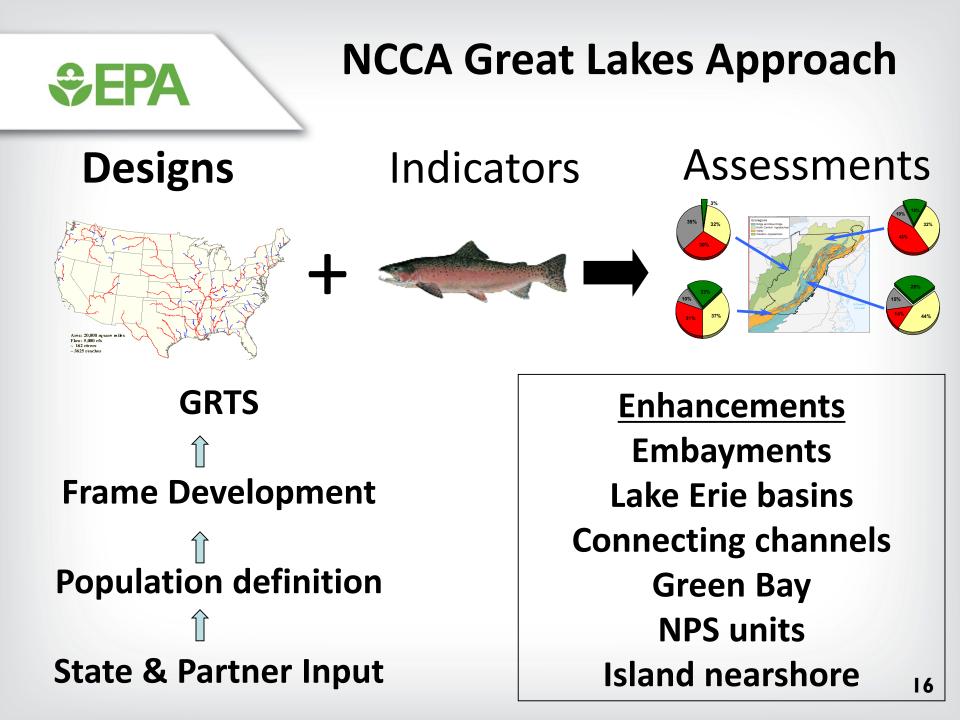

	2015	2016	2017	2018	2019	2020
Rivers/ Streams	Lab/Data Analysis	Lab/Data Analysis; Research	Report; Design	Field	Field	Lab/Data Analysis
Coastal	Field	Lab/Data Analysis	Report	Research	Design	Field
Wetlands	Design	Field	Lab/Data Analysis	Report	Research	Design
Lakes	Research	Design	Field	Lab/Data Analysis	Report	Research

National Coastal Condition Assessment

Originated in EMAP as National Coastal Assessment. NCCA since 2010.


Answers *The Question* for marine estuaries (by region) and Great Lakes nearshore waters (by lake + enhancements).


Sources: Esri.


In 2015, 57 (\pm 4)% of GL nearshore waters was in good condition for eutrophication.

Texas

State CWA Reports GLRI Reports GLWQA LAMPs National and Regional Reports Scientific literature Data Dashboards Research/science support (ORD) Training & Audits & QAPP Centralized Logistics, IM, sample tracking QAPP, Field & Lab Operations Manuals

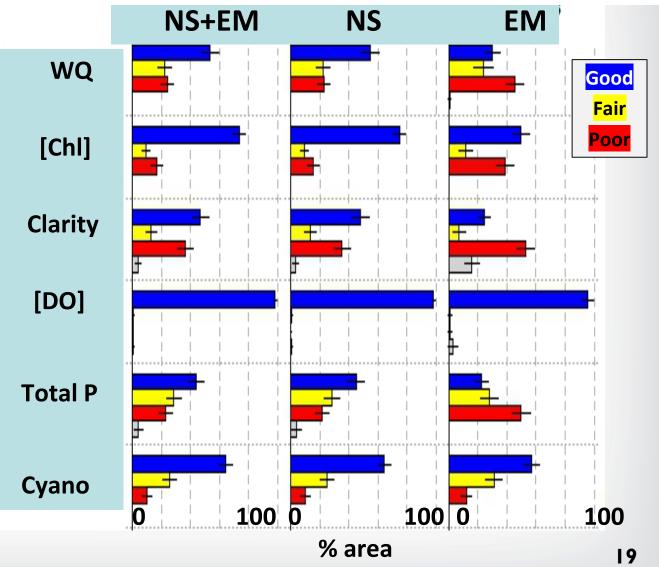
Enhancements complement base designs

Embayments (2010 & 2015) Conditions in "sentinel" resources differ from nearshore.

Lake Ontario Base sites (45 per lake) Enhancement (30 per basin)

Enhancements complement base designs

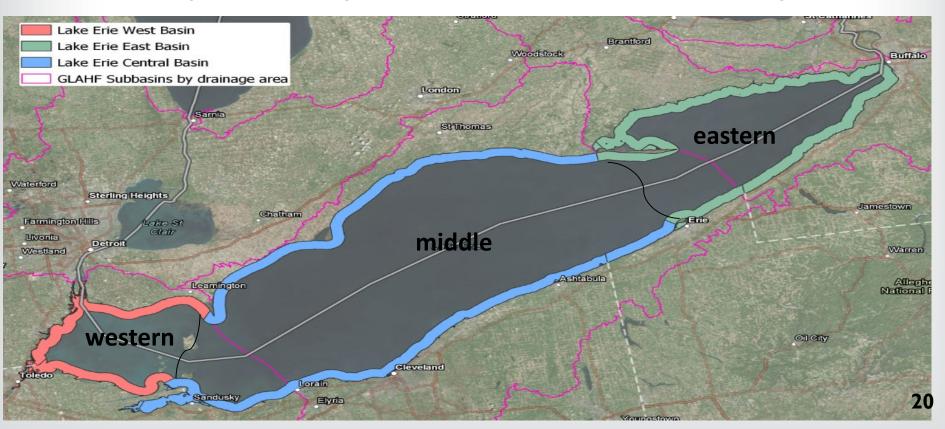
Embayments (2010 & 2015)


Conditions in "sentinel" resources differ from nearshore.

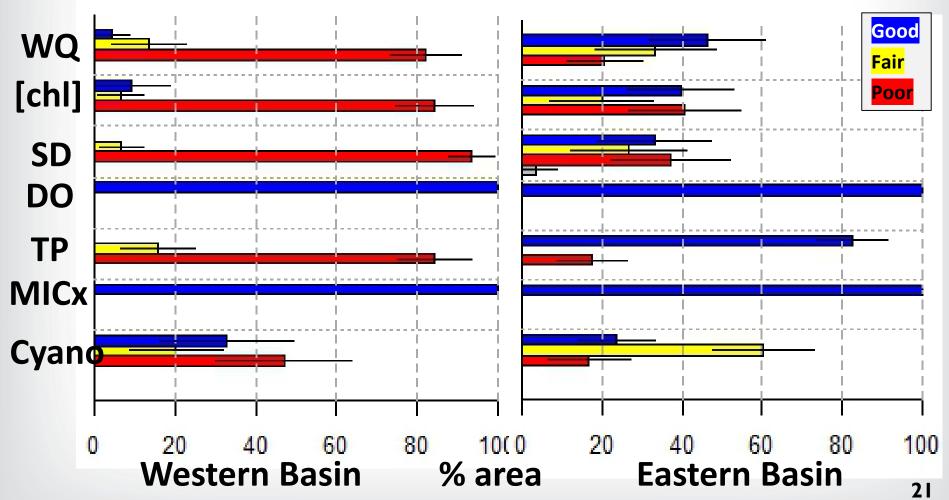
Indicator	All	LS	LM	LH	LE	LO	
Water clarity	\downarrow	$ $ \downarrow	\downarrow	\checkmark		1	
Depth	\checkmark	$ $ \downarrow	\downarrow	\checkmark	\checkmark	1	
[Dissolved oxygen]		$ $ \downarrow	\downarrow			1	
[Total phosphorus]		1	1			1	
[Chlorophyll a]		1				1	
[Cyanobacteria]		1				1	
Mean PECQ (metals, pesticides)	1	1	More or higher in EM than NS				
Benthic condition			↓ Less or lower in EM than NS ↓				

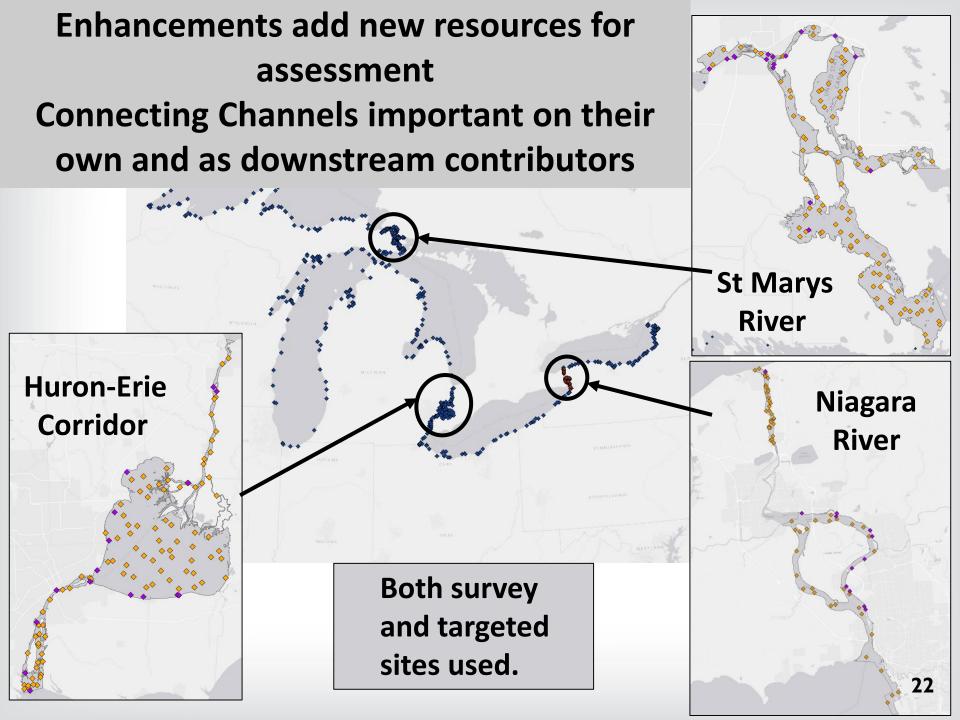
€ EPA

Enhancements complement base assessments


Enhancement does not change overall assessment because conditions not very different and only 5% of pop area. But gives context for management.

Enhancements adapt surveys for finer-scale assessments

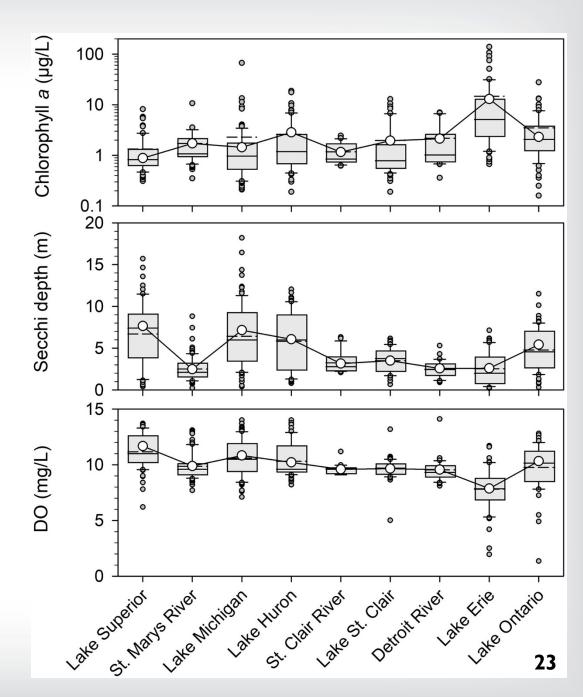

Lake Erie Basins (2015 & 2020) Algal blooms, some producing toxins, have basin-specific responses to conditions and impacts.



Enhancements adapt surveys for finer-scale assessments

Lake Erie Basins (2015 & 2020)

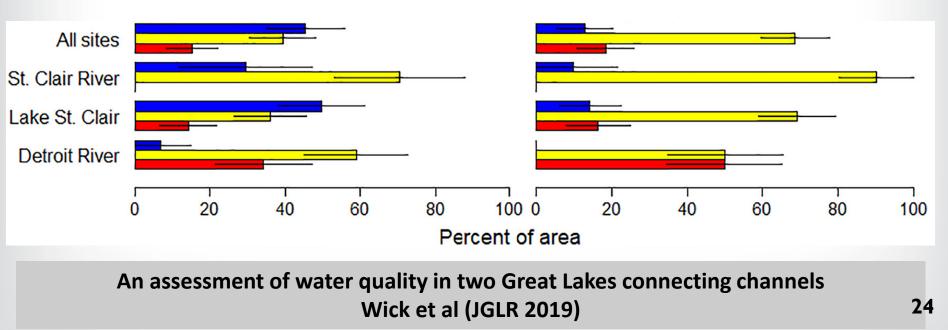
EPA



SEPA

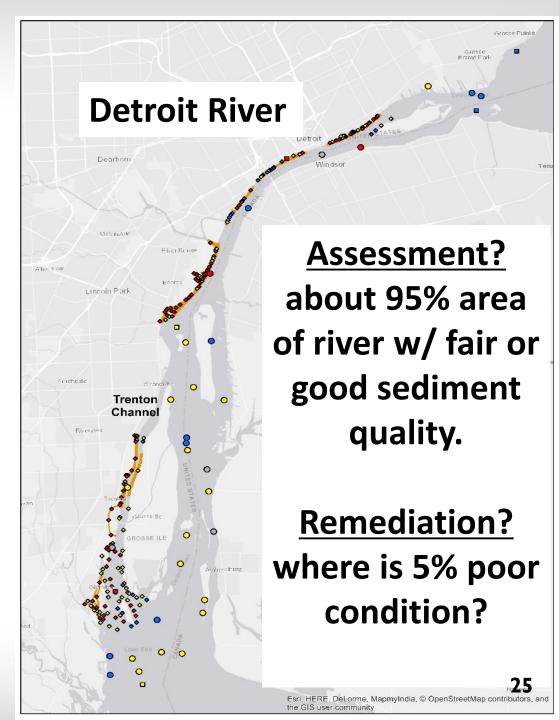
Enhancements reveal differences in conditions through the system but what about assessment?

An assessment of water quality in two Great Lakes connecting channels Wick et al (JGLR 2019)



Need coupled design and indicator enhancements

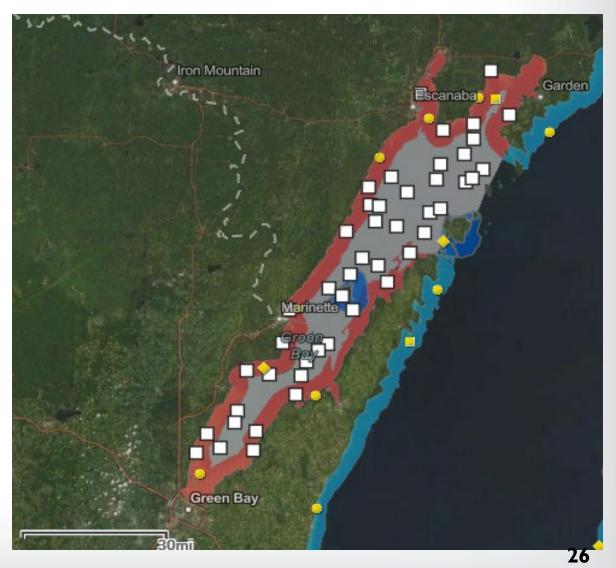
Assessment of Huron-Erie corridor varied with thresholds used (but same data)


WQ looks good using central Lake Erie thresholds. WQ looks fair using Lake Huron thresholds.

Set EPA

Enhancements provide system-wide context for targeted sampling programs.

Like embayments, important to know extent of stressors to target R2R2R efforts.


Set EPA

Enhancements create synergies with state programs

Region 5 & GLNPO solicited enhancement ideas from states.

WI and MI proposed "doing" all of Green Bay (2020).

OW base + GLRI supplement + ORD support + Region assessment

Enhancements create synergies for other agencies

€PA

Partnering with NPS to repeat 2010 survey of National Parks and Lakeshores in 2020 and 2021.

Base design supplemented with more sites. Hybrid of survey and targeted sampling.

SEPA Enhancements create opportunities for

new assessments.

There are 35k islands (<1 to 277k ha). Largest are managed for conservation and development.

WI and MI asked whether conditions differ from mainland coastal.

Designed for Lake Michigan islands >1000 ha

Wrap-up

Via EMAP, NARS, & NCCS, ORD has partnered to deliver science needed for a demanding GL management model.

Survey Design Enhancements

- Complement base designs and assessments
 - Allow finer-scale assessments to address finer-scale questions
 Create synergies with and context for targeted management programs
 Inform on high priority, under-assessed resources

Drive research on indicator thresholds.

Thank you to EMAP, NARS, and NCCA scientists, managers, and crews for giving us this view of the Great Lakes.

30

No.

Questions?

€PA