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ABSTRACT:  The US Environmental Protection Agency (EPA) uses a water quality index (WQI) to 

estimate the benefits of proposed regulations. However, the existing WQI focuses mainly on 

metrics related to human use values, such as recreation, and fails to capture aspects important 

to nonuse values of aquatic ecosystems, such as existence values. Here, we identify an 

appropriate index of biological health for use in stated preference (SP) surveys that seek to 

quantify the nonuse value of streams and lakes anywhere within the conterminous US 

(CONUS). We used a literature review and focus groups to evaluate two aquatic indices that are 

regularly reported by the EPA’s National Aquatic Resources Surveys: (1) multimetric indices 

(MMIs) and (2) the observed-to-expected ratio of taxonomic composition (O/E). Focus group 

participants had difficulty interpreting the meaning of a hypothetical 5-point change in MMI 

values on a 100-point scale in response to changes in water or habitat quality. This difficulty 

arose because a 5-point change can occur due to many unique combinations of the individual 

metrics that compose an MMI. In contrast, participants found it easier to interpret loss in native 

taxa (O/E) as an index of biological condition. We chose the O/E index because of this superior 

interpretability when assessed against MMIs. In addition to index selection, we modeled and 

interpolated the values of O/E to 1.1 million stream segments and 297,071 lakes across the 

CONUS to provide data for SP studies at any scope or scale, from local watersheds to the entire 

lower 48 states. As part of this effort, we also modeled and interpolated the areas of streams 
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(m2) to place them in the same unit as lakes to describe the quantity of resources affected by 

policy scenarios. Focus groups found comparisons of management scenarios easier to interpret 

when aquatic resources were placed into the same units and especially when presented as 

percentages of area. Finally, we discuss future work to link O/E with water quality and habitat 

models that will allow us to forecast changes in the metric resulting from regulatory action. 
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1. Introduction 

The 1972 US Clean Water Act (CWA; 33 U.S.C. §1251 et seq.) mandates the maintenance and 

restoration of the chemical, physical, and biological integrity of US waters. The US 

Environmental Protection Agency (EPA) often quantifies the outcome of CWA regulations on 

aquatic resources with a water quality index (WQI; Brown et al. 1970). The WQI characterizes 

the suitability of surface waters for a range of human uses such as boating, fishing, and 

swimming with a unidimensional indicator comprised of multiple water quality parameters. Of 

these parameters, chemical indicators (e.g., nitrogen, phosphorous, and dissolve oxygen) are 

typically used, but physical (e.g., total suspended solids) and biological (e.g., fecal coliform and 

biological oxygen demand) indicators of water quality can also be used (Walsh and Wheeler 

2013). The WQI is the primary metric used by the EPA to value water quality changes in 

monetary terms.  

Over the past several decades, benefits analysis of significant surface water quality 

regulations have typically used meta-analyses of stated preference (SP) studies that estimate 

mailto:moore.chris@epa.gov
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economic value from responses to survey questions about peoples’ willingness to pay for (or 

accept) hypothetical changes in environmental quality (Johnston et al. 2017). The studies 

included in these meta-analyses either directly used the WQI in SP surveys or valued changes 

that were converted to WQI by EPA for inclusion in meta-analyses (USEPA 2015). However, the 

EPA’s reliance on the WQI to estimate the benefit of proposed policies fails to recognize a 

recent shift in how the Agency analyzes CWA regulations. Specifically, estimated benefits have 

expanded from primarily human health and recreational uses to include impacts on biological 

integrity, such as the composition of species within an ecosystem (Griffiths et al. 2012), for 

which the WQI can be a poor indicator. Thus, contemporary benefit-cost analysis of CWA 

regulations requires a metric that captures changes in ecological integrity beyond those that 

affect use values, such as recreation.  

Society’s value for environmental quality that is not driven by human uses is known as 

“existence value” (Madariaga and McConnell 1987, Larson 1993). Existence value is a 

component of nonuse value1 that is derived from the satisfaction that people get from 

stewardship of the environment even if they will never use the resource in question (see 

Crowards 1997). Importantly, values held by nonusers of a resource can be small per household 

but equal or exceed use-based value when aggregated across many households (Moore et al. 

2018). Thus, failure to account for this source of benefits may underestimate total benefits of 

CWA regulations. The only way to capture existence value is through SP studies, but even the 

best designed SP surveys can be cognitively challenging for respondents (Johnson and Mathews 

 
1 Other sources of nonuse value could include bequest and option values depending on how it is defined. See 
Larson (1993) for a discussion.  
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2001) and identifying indicators that avoid conflation or confusion between use and nonuse 

values is a major challenge.  

To more accurately capture the existence portion of total economic value, we are 

pursuing a dual-index approach to complement the WQI with a second indicator appropriate 

for SP surveys. Such a survey should transparently represent the WQI as an indicator of 

suitability for recreational activities and the complementary indicator would convey the 

biological integrity of aquatic resources. The purpose of the dual-index survey design is to 

collect valuation data that captures existence value and allow a more accurate estimation of 

total economic value by forecasting changes in two distinct dimensions of water quality. A 

suitable complementary metric for use in the SP surveys should be salient to survey 

participants, capture existence value of freshwater ecosystems, and avoid conflation with the 

use values captured by the WQI. Our search is limited to existing measures of biological 

condition that are routinely collected at a national scale by the EPA (i.e., USEPA 2009, 2016). 

We also limited our search to indicators of streams and lakes to match current work within EPA 

to apply scenario-based water quality modeling to a broad swath of these ecosystems within 

the US. We describe our process for selecting a metric of biological condition by subjecting 

candidate metrics to focus group research and evaluating them based on the Schultz et al. 

(2012) criteria of measurability, interpretability, applicability, and comprehensiveness. 

How to describe the quantity of surface water being improved is a less nuanced detail of 

SP study design, yet as important to benefits estimation as water quality. The measure must be 

applicable to large geographic areas and multiple waterbody types. It should be easily 

understood by survey respondents and have a consistent interpretation across respondents 
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and researchers. The SP literature contains various examples of surface water quantity metrics 

(e.g., Van Houtven et al. 2014 use of percent of lakes in a state) but, to our knowledge, there 

has not been a systematic comparison of alternatives, especially when multiple types of 

waterbodies are presented to survey respondents (e.g., lakes and streams). We explored this 

feature of SP study design with focus groups and identify a single measure of quantity that can 

be applied to both streams and lakes which substantially reduced the cognitive burden of focus 

group participants when considering the quality and quantity of differing waterbody types. 

The current condition of nearby waters can influence the willingness of survey 

respondents to pay for incremental improvements in water quality, often in a nonlinear fashion 

(Newbold et al. 2018). EPA’s recent analyses of CWA regulations estimate the willingness of 

representative households in each census block to pay for water quality changes within a 

specified radius (e.g., USEPA 2015). To do so nationally, while accounting for geographic 

variation in nearby biological condition, requires data on each stream segment and lake in the 

conterminous US (CONUS) to match with the locations of survey participants. However, existing 

observational datasets of biological condition collected by academic or government institutions 

are only available for a small subset of waterbodies. To account for geographic variation in 

biological condition and improve national benefits analysis, we have undertaken a modeling 

effort that will allow our selected metric of biological condition to be integrated into the 

geographic scope of EPA’s current valuation paradigm. Our current modeling effort seeks to 

spatially interpolate observed values of biological condition to unsampled streams and lakes 

and impart the coverage needed for a national analysis of CWA regulations. A parallel effort 

also seeks to model and interpolate our selected water quantity metric so that condition 
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estimates from streams and lakes can be placed into the same units. Upon completion, we plan 

to publish these interpolations for use in other analyses, including non-market valuation efforts. 

A publicly available national dataset of this kind could benefit resource economists by providing 

a consistent measure for comparing the nonuse benefits and costs of proposed policies among 

studies. Further, a dataset of interpolated conditions at this fine spatial scale is flexible and 

would allow resource economists to aggregate the measure of biological condition to any 

geographic resolution appropriate for their application (e.g., political or natural boundaries).  

The remainder of the paper is as follows. Section 2 describes how data on aquatic 

biological condition are collected by the EPA and the candidate metrics we considered for 

nonuse valuation. In Section 3, we describe our process and criteria for selecting metrics of 

both aquatic resource condition and quantity for use in a SP survey, including the outcome of 

focus groups that helped guide this selection.  Section 4 describes our initial methods and 

results for spatially interpolating observations of aquatic biological condition and quantity. In 

Section 5, we discuss future work, including possible approaches for linking biological condition 

to scenarios of water quality and habitat condition to complement WQI scenarios in analyses of 

CWA regulations, and Section 6 concludes.  

2. Available Data & Metrics on Aquatic Biological Condition  

The EPA’s National Aquatic Resource Surveys (NARS) program provides a unique set of spatially 

extensive data, including ecological indices, that we can test with focus groups as potential 

metrics to complement the WQI. The NARS program was designed to provide assessments of 

the Nation’s aquatic resources, including lakes, streams, wetlands, and coastal waters (Shapiro 

et al. 2008). The program does so through spatially balanced sampling of aquatic resources that 
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allows the EPA to compute summaries and make inferences of water quality status at both 

regional and national scales (Olsen et al. 1999, Stevens and Olsen 2004). As a part of NARS, 

about 2000 rivers and streams (henceforth streams) and 1200 lakes (Figure 1) are sampled 

every five years in collaboration with State and Tribal partners. These respective sampling 

efforts are called the National Rivers and Streams Assessment (NRSA) and the National Lakes 

Assessment (NLA). The target population of the NRSA is all CONUS streams with flowing water 

during the sample period (April-September). Likewise, permanent lakes, reservoirs, and ponds 

greater than one hectare in surface area make up the NLA target population (USEPA 2017). 

During both surveys, physical, chemical, and biological data are collected at each sample 

location, including counts of fishes (NRSA), diatoms (NRSA), benthic macroinvertebrates (NRSA 

and NLA), and zooplankton (NLA). From these biological data, ecological indicators are 

developed and made available to the public as reports and data.2 

Among candidate metrics collected by NARS, we chose to test quantitative measures of 

biological condition that can be estimated on continuous rather than nominal or ordinal scales. 

Early in the selection process, we ruled out qualitative descriptions of biological condition (e.g., 

poor, fair, and good) because they are problematic when applied to regulatory analysis. For 

example, if the valuation study only quantifies willingness to pay for water quality 

improvements that cross a threshold from one category to another, it is not obvious how to 

estimate benefits for improvements that do not cross one of these thresholds. Changes in 

pollutant levels or other ecosystem stressors were also ruled out early because survey 

respondents would be forced to speculate about the eventual outcome of such changes on the 

 
2 https://www.epa.gov/national-aquatic-resource-surveys 

https://www.epa.gov/national-aquatic-resource-surveys
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features of biological condition that they care about. Finally, pollutants may be redundant with 

indicators included in the WQI, which could lead respondents to conflate the selected metric 

with direct human use values.  

Initial filtering of candidates within the NARS left us with two potential companion 

metrics to the WQI: (1) multimetric indices (MMI; Karr 1981, 1991, 1999) and (2) observed-to-

expected (O/E) taxonomic composition (also called RIVPACS; Moss et al. 1987, Hawkins et al. 

2000). We considered these metrics because both are available for nationwide use in non-

market valuation since they are routinely collected and reported by NARS for several thousand 

streams and lakes across the CONUS. Additionally, both indicators are measured on continuous 

scales and designed to directly assess the biological condition of aquatic ecosystems, in contrast 

to indirect measures such as pollutants or the presence of aquatic stressors. Finally, both have 

undergone considerable development and testing over the last 40 years (Buss et al. 2014) and 

are accepted and widely used in state, regional, and national monitoring programs (e.g., Mazor 

et al. 2016, Larson et al. 2019). The detailed mechanics of MMIs and O/E approaches are 

beyond the scope of this paper, though a brief summary can help clarify the relative advantages 

of each when assessed with focus groups. Our description of each is tailored to their specific 

applications within the NARS, but there are numerous variations on these approaches available 

to practitioners.  

An MMI is designed to be a comprehensive index of ecological health through the 

aggregation of several individual metrics that are calculated from taxonomic data (e.g., fish 

counts or occurrences; Karr 1999). Dozens of potential metrics are available for inclusion in an 

MMI, each designed to capture specific aspects of the biological composition or function of 
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aquatic organisms. For the NRSA MMI, metrics were selected to represent six categories of 

biological information: (1) habitat preferences, (2) taxonomic richness, (3) pollution tolerance 

of collected taxa, (4) taxonomic composition , (5) taxonomic evenness/diversity , and (6) 

feeding groups (Stoddard et al. 2008). To choose final metrics for the NRSA MMI, candidate 

metrics were subjected to a series of tests, including reproducibility and responsiveness. Only 

one metric was chosen to represent each category. Values of the selected metrics across the six 

categories were rescaled and summed to produce an aggregated score of biological condition 

(see Stoddard et al. 2008 for details).  

In contrast to an MMI, an O/E index quantifies the loss of aquatic taxa due to human-

related stressors (Hawkins 2006). It does so by comparing the list of taxa observed (O) at an 

assessed site to the taxonomic composition that would be expected (E) in the absence of such 

stressors (Moss et al. 1987). To estimate E, several steps must be taken. First, a set of sample 

sites are identified to represent a regional benchmark against which assessed sites can be 

compared. These sites are typically selected to be minimally disturbed by human activity (also 

called “reference condition”; see definition below). Next, the selected sites are then clustered 

based on their observed taxonomic composition so that sites with many shared taxa are 

grouped together. These groupings represent the types of biological assemblages that would be 

expected in high quality streams. Next, the biological groups are then related to environmental 

variables (e.g., watershed area, soils, topography, and climate) with statistical modeling 

techniques, such as discriminant functions, that can estimate the probability of a new site’s 

membership in each of the identified biological groups based on its physical setting. In this way, 

a biological expectation can be made for a new site being assessed based on its physical 
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watershed characteristics. Finally, these estimated group probabilities are used with taxon-

specific occurrence frequencies to estimate the capture probabilities of each taxon and derive 

E. For example, if a taxon occurs frequently within a biological cluster of sites (e.g., occurs 

within 0.95 of sites within that group) and a new assessed site is estimated by the model to 

have a high probability of belonging to that group of sites (e.g., probability of class membership 

= 0.90), then the probability of capturing this taxon in this sample can be estimated by 

multiplying its frequency of occurrence in this biological group by the probability of the new site 

belonging to that group (i.e., 0.95 x 0.9 = 0.85). Additional calculations adjust for the possibility 

of site membership in more than one biological class (see Moss et al. 1987, Hawkins et al. 2000 

for details). Once adjusted, E for the assessed site is the sum of individual taxa capture 

probabilities and O is the sum of observed taxa (richness). Ideally, the ratio O/E at sites with no-

to-minimal human disturbance is 1, meaning all taxa that would be expected to occur under 

such conditions were observed. However, some variation above or below 1 is common due to 

sampling, laboratory, or modeling errors, as well as difficulties in identifying high-quality sites to 

set biological expectations. However, this variation can be quantified as model precision and 

accounted for when making assessments. Deviation from 1 at an assessed site indicates the loss 

of taxa from an ecosystem (e.g., O/E = 0.5 implies 50% of taxa have been lost) since E is ideally 

derived from a model of sites with minimal human-related disturbance (Hawkins 2006).  

Critical to the formulation of both MMI and O/E indices in NARS is the concept of 

reference condition. Reference condition refers to the benchmark against which assessed sites 

are compared (Hawkins et al. 2010). In the case of MMIs, scores at reference-condition and 

“worst-case” sites are compared to identify metrics that are sensitive to ecological impairment 
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(Stoddard et al. 2008). For O/E, E is modeled directly with reference-condition sites to establish 

an ecological benchmark against which O can be compared (Moss et al. 1987, Hawkins et al. 

2000). However, confusion about the meaning of reference condition is common even among 

environmental professionals (Stoddard et al. 2006), and the development and application of the 

concept has received much attention over the last several decades (Hawkins et al. 2010). 

Recognizing the need for a consistent definition, Stoddard et al. (2006) distinguished among 

several concepts for which the term “reference condition” was often used but which have 

substantially different meanings, including historical, pristine, minimally disturbed, and least 

disturbed conditions. Given that monitoring data do not exist for historical conditions (e.g., pre-

intensive agriculture) and that few truly pristine or minimally disturbed areas exist, biological 

assessment programs typically use sites in least-disturbed condition (i.e., best available among 

candidate sites) that can deviate substantially from natural conditions, especially in heavily 

impacted regions. For example, to retain enough reference sites for statistical comparisons, 

Herlihy et al. (2008) were forced to use substantially higher criteria for nitrogen and 

phosphorous to select reference sites in the Temperate and Southern Plains of the US 

compared with other ecoregions. This means that “good condition” is a relative measure, and 

that absolute condition cannot be compared between regions using these metrics. While SP 

survey respondents need not understand the mechanics of how reference sites are selected, it 

is critical that respondents, and research economists alike, understand the concept of reference 

condition. An understanding of the benchmark against which current conditions are compared 

is also important to prevent incorrect interpretation as being truly undisturbed because little is 
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known of how differing interpretations ecological benchmarks might affect SP survey 

outcomes. 

3. Selecting an Index of Aquatic Biological Condition and Units of Quantity  

Aquatic Biological Condition 

In searching for a metric to complement the WQI, the way we collect and use the valuation 

data has implications for characteristics that an appropriate metric must possess. Schultz et al. 

(2012) examined the representation of ecological outcomes in SP studies and identified four 

criteria that metrics should meet for valid benefit estimation, which we used to compare MMI 

and O/E indices. Ecological indicators used in an SP survey should be measurable. Schultz et al. 

(2012) describe a measurable index as one that has “a clearly stated relationship to ecological 

data or model results.” Subjective descriptions of outcomes such as “good” or “poor” often fail 

to meet this criterion. Interpretability is another necessary feature of ecological indicators that 

ensures different values of the metric have consistent meanings to survey respondents, subject 

experts, and resource managers. Thirdly, an indicator with applicability will be relevant to the 

management scenario that is the subject of the survey. For an indicator to be applicable, survey 

respondents must understand and have a clearly defined preference in its outcome under these 

management scenarios. An applicable indicator will aid in scenario acceptance by the SP survey 

respondent and is required for the SP survey results to be relevant to the benefit estimation 

effort. Finally, the comprehensiveness of an indicator reflects the degree to which all direct and 

indirect ecosystem impacts are described by the metric(s) and understood by the respondent.  

 We began assessing the measurability of MMI and O/E indices by examining the 

literature. The ability of these indicators to assess the biological condition of aquatic 



   
 

14 
 

ecosystems has been rigorously compared and refined over the last several decades (Hawkins 

et al. 2010, Buss et al. 2014). From this work, all aspects of their measurability (e.g., accuracy, 

precision, sensitivity and specificity to stressors) improved substantially. Improvements came 

principally through refinements in field and laboratory protocols (e.g., Vinson and Hawkins 

1996, Ostermiller and Hawkins 2004), statistical and other analytical approaches (e.g., Van 

Sickle et al. 2005, Cao et al. 2007, Van Sickle et al. 2007), as well as refinement and better 

application of such concepts as reference condition (e.g., Hughes et al. 1986, Stoddard et al. 

2006, Ode et al. 2016). Due to these improvements, MMI and O/E approaches can produce 

comparable regional assessments of aquatic condition (Hawkins 2006, Stribling et al. 2008). 

Therefore, we found no substantial difference in measurability between the candidate 

indicators for use in SP surveys.  

MMIs, by definition, are designed to be comprehensive measures of biological condition 

through the inclusion of carefully selected life history and behavioral traits (e.g., Stoddard et al. 

2008). The inclusion of these traits makes them more comprehensive than O/E indices. 

However, despite this comprehensiveness, MMIs may not capture the biotic response to all 

stressors. For example, an O/E index could detect the displacement of native taxa by invading 

taxa whereas an MMI may be insensitive to this stressor if invading taxa fill the ecological roles 

of the taxa they displace (Collier 2009 as cited in Mazor et al. 2016). Thus, the 

comprehensiveness of an index does not guarantee its sensitivity in all cases and was not, 

therefore, the primary criterion we used to select a complementary metric to the WQI.  

We could not assess the interpretability or applicability of MMI or O/E indices by 

examining the literature alone. To our knowledge, no study has compared the ability of the 
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public to understand or form preferences of ecological outcomes based on these indicators. 

Therefore, the EPA conducted a series of focus groups to evaluate MMI and O/E indices in a SP 

setting. A total of ten focus groups with eight to ten participants each were conducted in 

Washington DC; Chicago, IL; and Phoenix, AZ. Locations were chosen to work with participants 

that have a variety of experiences with, and interpretations of, water resource issues. 

Participants were selected to include equal numbers of men and women with a minimum of a 

high school diploma and to roughly match the general population with regards to race and 

income. We adopted an emergent design structure for the study, with early focus groups 

following a conversational format to identify dominant themes when considering 

environmental quality in aquatic environments (Morgan et al. 2008). As the study progressed, 

the discussions became more structured and considered topics such as how to convey scientific 

information to the general public and how to describe changes in our candidate metrics of 

biological condition.  

Focus group participants struggled with their interpretation of MMIs. Specifically, focus 

group participants had difficulty understanding how a 5-point increase in such an index would 

be different from, say, a 10-point increase. An increase in the value is clearly an improvement, 

but how much of an improvement and exactly what features of biological condition would 

improve remained elusive. Our focus group results suggested this was due, in part, to the 

aggregation of various metrics into a single index. When presented with an improvement in an 

MMI, respondents were unable to describe what these specific changes meant because MMIs 

are comprised of multiple sub-metrics that can vary independently of one another so that many 

unique combinations of scores can produce the same value. Asking participants to keep track of 
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the individual metrics that compose the MMI was too cognitively burdensome. Any measure 

that is designed to be comprehensive may suffer from this interpretability problem. In contrast, 

focus group participants more easily explained how a 5- or 10-point change in O/E related to 

loss of taxa. This may be because taxa are a salient “currency” of ecosystems (Zachos 2016) that 

are conceptually familiar to the public. So, while O/E may capture fewer dimensions of 

ecological health, it is one that focus group participants were already familiar with and could 

more easily understand.  

Applicability requires that the survey respondent be able to connect the index to the 

value of interest and form an opinion on its outcome under various management scenarios 

(Schultz et al. 2012). While participants found no major differences in applicability between 

MMI and O/E indices themselves, the focus groups were valuable in informing how to present 

index information to survey respondents. When describing an index to focus group participants, 

we found that it was important to emphasize its reliance on macroinvertebrates or plankton, 

rather than fish. Without that emphasis, participants tended to focus on higher order taxa, such 

as fish and birds, which have a more direct link to use values through activities, such as 

recreational hunting, fishing, and wildlife viewing. Although some anglers may make an indirect 

link between the biological condition of lower order taxa and improved fishing and hunting, we 

found that the use of these taxa allowed most respondents to consider and form opinions on 

the outcome of biological condition separately from recreational uses when considering the 

valuation task.  

Based on focus group results, we chose to pursue O/E as the measure of aquatic 

biological condition that will complement the WQI. On balance, we found little evidence for 
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substantial differences in measurability and applicability of MMIs and O/E indices. MMIs are 

more comprehensive but it was unclear how this comprehensiveness translated to a superior 

index for nonuse valuation in an SP survey. Ultimately, the success of the SP survey will depend 

on the ability of survey respondents to correctly interpret changes in the selected biological 

index presented to them. Due to this importance, we chose to weight interpretability above 

other criteria and the greater ability of focus group participants to interpret O/E indices over 

MMIs drove our final decision on index choice. Finally, by considering taxonomic levels other 

than fish (i.e., macroinvertebrates in streams and plankton in lakes), focus group participants 

were better able to draw a direct link between the biological index and existence value, thereby 

minimizing conflation and confusion with the WQI.  

Aquatic Ecosystem Quantity 

Stated preference studies may seek to quantify the willingness of the public to pay for 

improvements in the biological condition in both streams and lakes. When using SP to value 

water quality changes over large geographic regions, especially those with which respondents 

may be unfamiliar, the survey must describe the quantity of water or size of waterbodies that 

would improve under a given scenario. Doing so will require that these waterbodies be placed 

in the same units to facilitate their presentation to survey participants.  

Focus groups found that strictly visual representations did not include enough 

information to be interpreted consistently. Maps showing the land area over which 

improvements would occur did not convey the number or size of waterbodies included in that 

area. For example, a given area in the northeast US will generally have many more lakes and 

streams than the same area in the arid southwest. Further, we found that maps of water 
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features could present drastically different pictures depending on how they were created and 

were too difficult for focus group participants to consistently interpret as a meaningful quantity 

measure. Recognizing that lotic and lentic ecosystems could be valued differently by 

respondents (Johnston et al. 2017), we tested using linear metrics for streams and areal metrics 

for lakes, consistent with the NARS program reporting on the status of these resources. This 

proved to be too cognitively burdensome, because it effectively doubles the number of 

attributes respondents must consider when evaluating scenarios. Based on these findings, we 

narrowed the universe of metrics down to numeric descriptors that can place lakes and streams 

into like units to facilitate their combined presentation to survey respondents.  

One such measure that is currently used by EPA to transfer values from a meta-analysis 

of valuation studies (Corona et al. forthcoming) is shoreline length. Shoreline length measures 

the perimeter of freshwater lakes and reservoirs and the length of both banks of a stream. 

Satisfying the measurability and comprehensiveness criteria, this measure was received more 

favorably by focus group participants than visual representations. Some participants, however, 

pointed out that a narrow length of stream could have more shoreline length than a large lake. 

Others pointed out that, depending on how islands are treated in the calculation, lakes with 

more islands would have larger values using this metric, which led them to reject the measure 

as a meaningful indication of quantity.  

A second measure that may be robust to these issues identified by the focus group is 

water surface area. Focus group participants tended to agree that surface area is a more 

accurate reflection of quantity when assessing water quality improvements than the other 

candidates. The performance of this metric improved further when focus group participants 
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were told what percent of the total surface area in the CONUS the affected area represents. 

Based on these findings, we selected area (to be expressed as square miles to survey 

participants) as the common unit for expressing O/E values in streams and lakes due to the 

flexibility of also being able to express them as a percent of the total surface area within a 

region or the CONUS.  

Having chosen metrics for aquatic biological health and the amount of water 

experiencing an improvement, we can move into Phase 2 of the project to augment the 

observational NARS data with modeled values for sites that are not in the NARS sample. 

Generally, survey respondents’ willingness to pay for a given improvement will depend on 

current conditions of aquatic resources and we assume that they are aware of water quality 

conditions in local waterbodies. As such, we need current values for O/E in lakes and stream 

reaches in the CONUS to match with survey participants and their census blocks. Below, we 

describe our efforts to model and provide these measures at a geographic scope and 

granularity that is appropriate for integration in the current EPA paradigm for valuation of 

changes in surface water quality. 

4. Interpolating Resource O/E and Quantity 

Modeling O/E 

For modeling and interpolation, we used O/E scores of stream benthic macroinvertebrates from 

the 2013-14 NRSA and lake plankton from the 2007 NLA as the dependent variables (see 

Appendix S1 for data and model QA/QC procedures). These years were used to develop our 

modeling and interpolation methodology, but later model iterations could include additional 

survey years. Although we modeled different taxa in streams and lakes, O/E is a unitless 
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measure of ecological completeness that has a consistent meaning regardless of the taxonomic 

groups used in its derivation. Streams and lakes were modeled separately because some 

independent variables differed between them (see StreamCat and LakeCat descriptions below). 

Further, a model was created for each waterbody type for each of the three NARS ecoregions 

for a total of six models (Figure 1; Eastern Highlands: EHIGH; Plains and Lowlands: PLNLOW; and 

Western Mountains: WMTNS). We created regional models because these are the original 

regions used to develop the O/E assessments (Yuan et al. 2008) and Hill et al. (2017) found that 

creating regional models improved estimates of biological condition due to differences in the 

quality of reference sites among them; an issue that was not solved by including region as an 

independent variable in the models.  

 As independent variables in the models, we used watershed metrics to characterize the 

natural and anthropogenic setting of each stream or lake watershed (see Appendix S2 for a list 

of the predictor variables used to model O/E). To interpolate to unsampled streams, the same 

set of independent watershed variables must be available for model calibration and application 

to unsampled locations (e.g., Maloney et al. 2018). For example, Hill et al. (2017) interpolated 

probabilities of MMI class membership (i.e., good vs. poor condition) to 1.1 million stream 

segments by building and applying models with the EPA StreamCat dataset, which we also used 

here. StreamCat is an extensive dataset of landscape metrics for about 2.65 million stream 

segments and their associated watersheds within the CONUS (Hill et al. 2016). These data 

characterize both natural (e.g., soils, geology, and climate) and anthropogenic (e.g., 

urbanization and agriculture) landscape features within watersheds and have been frequently 

used as covariates for model development and application in recent years (e.g., Beck et al. 
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2019, Guillon et al. 2020, Maloney et al. 2020). However, our current objective to interpolate 

O/E scores to unsampled streams and lakes differs from Hill et al. (2017) in at least two ways. 

First, Hill et al. (2017) modeled MMI response classes (i.e., good vs. poor), whereas O/E scores 

must be modeled as a continuous measure to estimate benefits for improvements that do not 

cross a class threshold. Second, Hill et al. (2017) only interpolated conditions of streams, while 

our current objective also includes lakes. The subsequent development of the EPA LakeCat 

dataset (Hill et al. 2018) allows the application of these approaches to lentic ecosystems as 

well. However, some differences between StreamCat and LakeCat metrics precluded the 

development of a model of lakes and streams together. 

We used random forests to separately model O/E scores of streams and lakes. Random 

forest modeling is a non-parametric machine learning technique that builds many individual 

decision trees (Breiman et al. 1984) from randomized subsets of the original data (Breiman 

2001). Use of many randomized subsets of the data stabilizes model results and improves final 

model performance as measured with samples that are excluded from tree construction (also 

called "out-of-bag" samples; Cutler et al. 2007). To construct individual trees, splits of the 

response variable across values of the independent variables are tested. Optimal splits are 

identified as those that minimize the sums of squares of the response variable after splitting. 

Once individual trees are constructed, statistical predictions (i.e., spatial interpolations in our 

case) can then be made when independent variables (i.e., StreamCat and LakeCat) at 

unsampled locations are used as new input to the random forest trees. During model 

development, we did no variable selection because it is unnecessary for random forests when 

the principal purpose of the model is interpolation rather than interpretation (Fox et al. 2017). 
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Advantages of using random forest are that it makes no assumptions about the normality or 

independence of input variables, requires very little tuning, and captures non-linear 

relationships and interactions which other modeling techniques may not. These advantages are 

important because ecological data often violate statistical assumptions and exhibit non-linear 

interactions that can be accounted for with random forest. Furthermore, random forest models 

often outperform other modeling techniques (Prasad et al. 2006), especially when compared 

against linear techniques (Cutler et al. 2007).  

The models explained 25-30% of the variation in stream O/E scores and 13-36% of the 

variation in lake O/E scores (pseudo r-squared; Table 1). Model root mean squared errors 

(RMSE) were 0.25-0.27 (streams) and 0.22-0.25 (lakes) out of observed O/E scores of 0-1.6. 

Despite explaining a low percentage of the variation in O/E scores, model residual errors 

showed no spatial biases (i.e., clusters of over or under predictions) when plotted as maps (not 

shown here). Further, residual autocorrelation in NARS samples has been shown to be 

negligible due to the distance between sites and most sites have non-overlapping watersheds 

(Fox et al. 2020). Maps of interpolated O/E scores showed distinct shifts in values at ecoregion 

boundaries (Figure 2); a behavior that has been observed in previous model interpolations and 

attributed to differences in reference site quality among regions (Hill et al. 2017). For example, 

marked transitions are visible in interpolated lake O/E scores between the WMTNS and 

PLNLOW regions in the states of Montana and Wyoming (Figure 2C) and in streams between 

EHIGH and PLNLOW (Figure 2D). In addition to regional differences within lakes and streams, 

patterns of observed (cf. Figure 2A and B) and interpolated (cf. Figure 2C and D) O/E scores 

differed substantially between lakes and streams across the CONUS. This difference between 
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stream and lake O/E scores was most apparent in Montana and Wyoming where lake O/E 

scores were substantially lower than those observed in streams.  

Modeling Width 

Consistent with focus group findings, we sought to place both streams and lakes into areal 

units. Doing so will help to describe the amount of water being improved for each waterbody 

type (stream vs. lake) under a hypothetical policy. Further, areas can provide a weight for 

averaging ecological measures to policy-relevant regions for analysis of SP results. An area for 

each lake is available from the waterbodies layer of the National Hydrography Dataset Plus 

Version 2 (McKay et al. 2012). Unfortunately, the hydrography dataset only contains lengths for 

streams. To estimate area, we first modeled widths which we then multiplied by stream lengths 

to produce estimates of stream area. We modeled stream widths from field measurements of 

the 2008-09 and 2013-14 NRSA. Within these data, two width measurements were available: 

bankfull and wetted widths. We chose to model wetted width because it better replicates 

summertime low flow conditions when biological samples were taken, rather than the near-

flood conditions of bankfull width which typically occur at other times of the year. Wetted 

width was measured from water edge to edge at the time of sampling. As with O/E, we used 

random forest modeling with StreamCat data as independent predictors (Appendix S2). 

However, we found that regional models of width did not improve performance and a single 

CONUS model was constructed. Using this model, we multiplied estimated widths by the 

stream lengths of the hydrography data to calculate area for each stream segment in the 

CONUS.  
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The model explained a high proportion of the variation in measured stream widths (R2 = 

0.83) and did not exhibit spatial biases (mapped model residuals not shown here). Patterns of 

interpolated widths followed those expected for major river networks of the United States 

(Figure 3). Recognizing that survey respondents may value streams and lakes differently, we 

found it more informative to compare the relative areas of streams and lakes across hydrologic 

boundaries. By area, streams were the dominant water resource in 1.06 million local 

catchments (the finest spatial grain produced by this study) whereas lakes were dominant in 

only 312,739 catchments (Figure 5A). However, lakes progressively became the dominant 

waterbody feature within regions when areas were aggregated to increasingly coarse 

geographic units (Figure 5B-D). 

5. Discussion 

In this study, we outlined our strategy to improve the accuracy and completeness of aquatic 

resource valuation with a second indicator that can complement the WQI (Figure 1). The EPA’s 

historical reliance on the WQI for benefit-cost analyses of CWA regulations failed to capture the 

full suite of values the public derives from freshwater resources. Existence values are an 

important and possibly large (in aggregate) source of benefits that should be accounted for in 

benefit-cost analyses prepared to help to inform CWA policies. However, estimating the 

existence value of aquatic resources presents a major challenge for research economists, in 

part, because of potential confusion and conflation with the use-based values that are the 

primary focus of the WQI. A further challenge is estimating this complementary metric at a 

geographic scope that is relevant to resource valuation for national policy. Our results advance 

the state of valuation in at least two important ways. First, based on feedback from focus 
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groups, we identified an biological metric that met criteria for valid benefit estimation (Schultz 

et al. 2012) yet reduces conflation with the use-based WQI when collecting SP data and when 

forecasting aquatic conditions under counterfactual scenarios. Second, we developed 

preliminary models as a proof-of-concept for interpolating values of both the quality and 

quantity of stream and lake ecological conditions nationally. Here, we consider these 

advancements as well as further work that is needed to improve our model of biological 

integrity and link it to other EPA models of water quality.  

Selecting a Complementary Metric 

A critical step towards valuation of aquatic resources was identifying a complementary yet 

distinct metric to the WQI. We were able to evaluate MMIs and O/E indices for their 

measurability and comprehensiveness with existing literature because the merits of each were 

vigorously debated near the turn of the millennium (Hawkins et al. 2010). This debate improved 

both metrics greatly, and we found little evidence within the literature of differences in their 

measurability when compared as regional assessments (e.g., Hawkins 2006). While similar in 

measurability, MMIs are generally accepted as comprehensive indicators of ecological health, 

which is not the case for the O/E. However, it was unclear how this comprehensiveness 

translated into a clear benefit because of tradeoffs in sensitivity and specificity to 

environmental stressors that can exist between MMIs and O/E indices (Mazor et al. 2016).  

Focus groups were invaluable for assessing MMI and O/E indices and refining how 

researchers should present biological condition to SP survey respondents. It is critical for an SP 

survey that respondents be able to interpret the meaning of specific changes in an index value 

to produce accurate results, and on balance, interpretability outweighed considerations of 
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index comprehensiveness. Further, an index must be interpretable for it to be applicable. Index 

applicability depends on the ability of a respondent to draw a direct link to a benefit they value 

and to form an opinion on its outcome under management scenarios; tasks that would be 

impossible if a metric is not interpretable. Focus groups also refined our understanding of how 

different taxonomic groups in SP surveys may influence the interpretation of indices for nonuse 

valuation. The use of non-fish taxa, such as macroinvertebrates and plankton, helped 

respondents consider ecosystems and management scenarios independently of their impacts 

on recreation. This finding is important as the analysis of surface water regulations expands 

beyond human health and direct use values. For example, due to their diversity and 

responsiveness to stressors, benthic macroinvertebrates are one of the most commonly used 

taxonomic groups in freshwater bioassessments worldwide (Chessman et al. 2007, Buss et al. 

2014), making them good candidates for nonuse benefits studies globally.  

Modeling Resource Condition and Quantity  

The models of O/E and stream width illustrate how ecological health and quantity can be 

spatially interpolated for use in resource valuation. As with similar EPA efforts (Hill et al. 2017), 

the finalized interpolations will be made available for download by practitioners and 

researchers outside of the EPA for use in resource planning and valuation. Coupled with 

resource valuation functions and with ecological production functions, the interpolations of 

ecological health could provide valuable insight into the economic benefits offered by 

competing management and conservation scenarios. For example, the Center for Large 

Landscape Conservation recently used interpolated probabilities of good MMI condition 
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published by the EPA (Hill et al. 2017) in a tool3 designed to help prioritize conservation within 

the Missouri Headwaters Basin. Tools such as this could benefit greatly from valuation of 

competing conservation scenarios that this multi-phase project may provide.  

The fine spatial grain and near-continental extent of these interpolations has several 

advantages for SP survey analysis. First, this framework is flexible. Analysis of streams and lakes 

in tandem or in isolation is possible because each resource type was modeled separately. 

Second, interpolations can be spatially partitioned or aggregated to fit a variety of needs, such 

as valuation of resources within a political or management boundary or to match other EPA 

models and tools used for aquatic resource assessment and valuation, such as HAWQS and 

BenSPLASH (Corona et al. forthcoming). However, as illustrated above, care must be taken to 

understand how the dominance of resource type might vary as interpolated values are 

aggregated. Aggregation to coarser resolutions may weight lakes over streams due to their 

areal dominance when equal valuation may be desired. Yet the flexibility of the framework will 

allow users to return and examine data at their original resolution to understand how 

aggregation might affect analytical results. 

Currently, the models explain a low proportion of the variation in O/E, which could 

occur for several reasons. First, models with low r-squared values are common within ecology 

and our results may be in line with or better than many ecological models (Møller and Jennions 

2002). Second, values of E in the ratios are from previous modeling that include model error. 

Thus, future work could seek to improve interpolations by returning to the original taxonomic 

data to develop models of O and E separately. Finally, although values of O/E ranged between 0 

 
3 https://uppermissouriheadwaters.org/ 

https://uppermissouriheadwaters.org/
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and 1.6 due to field, laboratory, and modeling errors, O/E values >1 are not necessary to 

represent taxonomic completeness for a SP survey. We will explore whether limiting the range 

of O/E values to between 0 and 1 for modeling can improve out-of-sample fit. In addition to 

these improvements, we will also explore methods to minimize the observed transitions at 

ecoregional borders and explore other modeling techniques to improve interpolations. Despite 

the current limitations, this study shows promise for providing interpolated estimates of 

ecological health and quantity to complement the WQI.  

Linking Biological Integrity with Water Quality 

Ultimately, the purpose of this research is to provide resource economists with the data and 

tools they need to estimate changes in value in response to proposed management. It is 

unlikely that the models described here can provide this capability. Rather, their purpose is to 

interpolate current conditions to unsampled lakes and streams and help account for geographic 

variation in valuation of benefits. We achieved this through a machine learning algorithm. 

Further, we made direct relationships between both natural and human-related watershed 

features with biological condition. The large number of watershed variables (Appendix S2) and 

their use to directly model O/E make it difficult to infer the mechanistic pathways by which 

proposed policies would affect biological condition through improvements in water quality or 

habitat condition.  

To make the transition to a policy valuation tool, resource economists will need the 

means to forecast biological condition under baseline and regulatory scenarios. However, 

substantial work remains to build such forecasting capability. First, explicit linkages must be 

made between human-related watershed activity, instream water or habitat quality, and O/E 
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scores (i.e., watershed stressors → in situ water or habitat quality → in situ O/E scores). For 

example, to infer potential sources of impairment in Nevada, USA streams, Vander Laan et al. 

(2013) related macroinvertebrate O/E values to measurements of heavy metals as well as O/E 

ratios of total dissolved solids (TDS; measured as electrical conductivity). Values of TDS O/E 

were largely driven by agriculture, mining, and urbanization, thereby providing an indirect 

assessment of how major land uses influence biological condition through water quality. 

Second, we must use modeling approaches that can describe mechanistic linkages between 

management and biological condition. Schmidt et al. (2019) used structural equation modeling 

to link land use in Midwestern watersheds to instream habitat structure, temperature, and 

pesticide and nutrient concentrations. These parameters were, in turn, linked to algal and 

benthic macroinvertebrate MMIs. The use of structural equation modeling in this way could 

disentangle mechanistic pathways between human-related landscape stressors, in situ water 

and habitat quality, and O/E scores (Grace et al. 2010). However, doing so will require a model 

framework that sufficiently describes the hypothesized pathways between each watershed 

stressor and water quality parameter and, ultimately, O/E (Grace and Bollen 2005). Defining 

these pathways is a significant challenge given the many direct and indirect ways human 

activity can affect aquatic biota. Finally, the models described in this paper and in the examples 

above are spatial models, that is, the relationships explain differences among sample locations 

rather than changes due to management over time. Although there is some evidence to 

support space-for-time substitution in ecological models (Blois et al. 2013), such assumptions 

should be explicitly tested before being used for decision making.  
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Process-based models could provide management scenarios for some water quality 

parameters. This capability exists for the WQI through water quality assessment tools such as 

SWAT4 (Santhi et al. 2006) and SPARROW5 (Smith et al. 1997). Such models allow a researcher 

to enter location-specific changes in pollutant loadings and/or management practices and 

recover the downstream water quality values needed to calculate the WQI (e.g., dissolved 

oxygen, total suspended solids). However, work would still be needed to link these water 

quality outputs with outcomes of O/E. A further limitation is that process-based models would 

be difficult to implement broadly at a national scale, potentially limiting their development to 

specific watershed and, hence, their utility under the geographic scope of EPA’s current 

valuation paradigm. Finally, despite the process-based nature of these water quality models, 

the linkages to O/E values would still need to be made through spatial models due to the 

relative rarity of long-term biological datasets. Where they do exist, long-term biological 

datasets are often restricted to specific regions, making inference to other parts of the country 

difficult. Thus, a framework that comprehensively links management practices with biological 

condition for benefits valuations will be a major research challenge in the coming years.  

6. Concluding Remarks 

We reported on the results of the first two phases of a multi-phase project to improve the way 

EPA values aquatic resources: (1) identify a metric that satisfies important criteria for use in 

stated preference valuation and (2) interpolate observational data to achieve spatial resolution 

required to estimate the valuation equation. Focus groups were critical in evaluating several 

 
4 https://swat.tamu.edu/ 
5 https://www.usgs.gov/mission-areas/water-resources/science/sparrow-modeling-estimating-nutrient-sediment-
and-dissolved?qt-science_center_objects=0#qt-science_center_objects 

https://swat.tamu.edu/
https://www.usgs.gov/mission-areas/water-resources/science/sparrow-modeling-estimating-nutrient-sediment-and-dissolved?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/sparrow-modeling-estimating-nutrient-sediment-and-dissolved?qt-science_center_objects=0#qt-science_center_objects
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indices of aquatic biological condition and exposing a tension between index 

comprehensiveness and interpretability. In the end, concerns of interpretability outweighed 

those of comprehensiveness, and we found that O/E, while not perfect, satisfies the criteria 

best and suits our specific purpose of valuing water quality changes throughout the CONUS. We 

also reported on modeling to interpolate stream macroinvertebrate O/E values to streams 

across the CONUS. Our hope is that spatially explicit maps of ecological health can improve 

nonuse benefits estimation based on SP surveys. Although additional refinements are needed 

to improve model performance, a nationally consistent dataset of ecological condition could 

facilitate the acquisition of such data by research economists and help to improve 

comparability among studies of nonuse benefits. 
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Tables and Figures 

Table 1. Performances of preliminary random forest models of stream (NRSA 2013-14) and lake 

(NLA 2007) O/E scores. (see Figure 1 for regional boundaries). RMSE=Root Mean Square Error. 

Pseudo-R2 as defined in Liaw and Wiener (2002). 

Model Regions Psuedo-R2 RMSE 

NRSA 2013-14 Continental US 28 0.26 

 

Eastern highlands 25 0.26 

 

Plains and lowlands 25 0.27 

 

Western Mountains 30 0.25 

NLA 2007 Continental US 30 0.23 

 

Eastern highlands 13 0.23 

 

Plains and lowlands 36 0.22 

  Western Mountains 18 0.25 
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Figure 1. 2013-14 National Rivers and Streams Assessment (NRSA) and 2007 National Lakes 

Assessment (NLA) sample sites. The USEPA conducts surveys that include new sample locations 

on a 5-year cycle. Ecoregion abbreviations: Western Mountains (WMTNS), Plains and Lowlands 

(PLNLOW), and Eastern Highlands (EHIGH).  
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Figure 2. Distribution of sample sites with O/E scores from the (A) 2007 National Lakes 

Assessment (NLA) and (B) 2013-14 National Rivers and Streams Assessment (NRSA) and model 

interpolated O/E scores for (C) lakes and (D) streams. Separate O/E assessments for streams 

and lakes were developed within three ecoregions: Western Mountains (WMTNS), Plains and 

Lowlands (PLNLOW), and Eastern Highlands (EHIGH). Dark grey areas in (C) and (D) represent 

lakes or stream that are outside of the sampling frame of the EPA NLA or NRSA, respectively, 

and were excluded from model interpolation.  
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Figure 3. Stream widths (meters) interpolated to 1.1 million stream and river segments of the 

National Hydrography Dataset (version 2).   
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Figure 4. Dominant waterbody type by area within (A) NHDPlus catchments, (B) 8-digit HUCs, 

(C) 4-digit HUCs, and (D) 2-digit HUCs. Note that map (A) visually overrepresents the dominance 

of lakes in NHDPlus catchments because lakes are plotted on top of streams. Streams were 

dominant in 1.06 million catchments compared with 312,739 dominated by lakes. Grey areas in 

(A) and labeled “N/A” represent catchments that were excluded from model interpolations 

because they lacked lakes or streams within the NLA or NRSA sampling frames.   
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Appendix S1. QA/QC 

O/E Values and Stream Widths 

Data on the biological condition of streams and lakes and stream widths were obtained from the USEPA 

National Aquatics Resources Survey (NARS) program. This EPA program uses well established field, lab, 

and analytical procedures with documented QA/QC procedures. Data and complete documentation are 

available publicly via the NARS website: https://www.epa.gov/national-aquatic-resource-surveys. Data 

used in this analysis from the 2013/14 National Rivers and Streams Assessment are not yet available 

online, but were collected and analyzed with methods reported in the 2008/09 NRSA Technical 

Appendix (USEPA 2016). 

StreamCat and LakeCat Data 

This analysis used existing data from the StreamCat and LakeCat datasets (Hill et al. 2016, Hill et al. 

2018). These datasets are available to the public via: https://www.epa.gov/national-aquatic-resource-

surveys/streamcat-dataset and https://www.epa.gov/national-aquatic-resource-surveys/lakecat-

dataset. These data were developed under EPA-approved Quality Assurance Project Plans.  All data were 

processed using Python (including scripted ArcGIS tools) and R code to create national GIS layers if not 

already in that form and then summarized to National Hydrography Dataset version 2 catchments 

(McKay et al. 2012).  The processing was documented in Python or R scripts so that it is repeatable and 

available for review for QA purposes. 

All existing catchment attribute data were evaluated to ensure that each existing data source used was 

downloaded completely and without corruption of coordinates or attributes, including the following: 

• Projections:  Verify the geographic projections of all Landscape Layers (LLs) and that each 
existing data source has the correct input coordinate system information; e.g., convert to USGS 
Albers Equal Area Conic Projection.  

• Units:  Check the units of each LL with metadata. Convert to SI.  

• Data distribution:  Examine the range and distribution of values of each LL. Is the range realistic? 
Does the histogram have an odd distribution or outliers?  

• Visual inspection:  Visually inspect each LL. Are there strange gaps, edges, or other anomalous 
features within the raster?  

• No Data:  Verify how no-data values are represented in each LL. Are no-data locations 
represented by 0s or other numeric values (e.g., -9999)?  

• Combinations:  Check values of all second-order LLs, i.e., those that are based on 
manipulations/combinations of raw LLs.  

To ensure that subsequent processing was based on the correct input data, LLs were assessed against 

QA steps listed above and investigate data quality concerns. 

Models 

Statistical models were developed using NARS National Rivers and Streams Assessment (NRSA) and 

National Lake Assessment (NLA) data. All NARS data are collected under an approved NARS QA plan (see 

above).  Statistical model assessments were completed using out-of-bag data from the random forest 

models. Data used as model input was reviewed by comparing the results for consistency with the 

source data, completing range checks for each variable, and looking for multivariate outliers. All 

statistical models will be developed using existing R or Python software and packages.  The performance 

https://www.epa.gov/national-aquatic-resource-surveys
https://www.epa.gov/national-aquatic-resource-surveys/streamcat-dataset
https://www.epa.gov/national-aquatic-resource-surveys/streamcat-dataset
https://www.epa.gov/national-aquatic-resource-surveys/lakecat-dataset
https://www.epa.gov/national-aquatic-resource-surveys/lakecat-dataset
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of the statistical spatial predictions based on these models will be assessed using standard statistical 

methods, e.g., r-squared values and root mean squared error. 
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Appendix S1. Names and descriptions of StreamCat and LakeCat predictor variables used in random forest models of observed-to-2 

expected taxonomic composition models.   Mean values (SD) of predictor variables are provided for the three ecoregions within the 3 

conterminous US used for model development: EHIGH = Eastern Highlands, PLNLOW = Plains and Lowlands, and WMTNS = Western 4 

Mountains. Some variables are available for streams and lakes whereas others are only available for streams as indicated by the O/E 5 

Model column. A subset of StreamCat variables were also used to model wetted widths (WW) of streams; Y (yes) or N (no). 6 

    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

AgKffactWs Mean soil erodibility (Kf) factor 
(unitless) of soils within watershed on 
agricultural land. The Kf factor is used 
in the Universal Soil Loss Equation 
(USLE) and represents a relative index 
of susceptibility of bare, cultivated soil 
to particle detachment and transport 
by rainfall. 

0.06 
(0.06) 

0.11 (0.1) 0.01 
(0.03) 

  0.04 
(0.05) 

0.09 
(0.09) 

0.01 
(0.04) 

Streams, 
Lakes 

Y 

Al2O3Ws Mean % of lithological aluminum oxide 
(Al2O3) content in surface or near 
surface geology within watershed 

9.89 
(3.73) 

9.51 
(3.21) 

11.63 
(2.95) 

  10.58 
(3.95) 

10.29 
(3.32) 

11.45 
(2.76) 

Streams, 
Lakes 

N 

BFIWs Baseflow is the component of 
streamflow that can be attributed to 
ground-water discharge into streams. 
The Baseflow Index (BFI) is the ratio of 
baseflow to total flow, expressed as a 
percentage, within watershed. 

44.04 
(10.89) 

41.08 
(17.94) 

63.54 
(11.7) 

  44.39 
(11.66) 

42.68 
(19.65) 

61.54 
(14.05) 

Streams, 
Lakes 

Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

CanalDensWs Density of NHDPlus line features 
classified as canal, ditch, or pipeline 
within the upstream watershed (km/ 
square km) 

0 (0.01) 0.02 
(0.06) 

0.02 
(0.05) 

  0 (0) 0.02 
(0.12) 

0.04 
(0.15) 

Streams, 
Lakes 

Y 

CaOWs Mean % of lithological calcium oxide 
(CaO) content in surface or near 
surface geology within watershed 

7.57 
(7.58) 

8.99 
(8.38) 

6.67 
(4.49) 

  6.72 
(7.04) 

6.2 (8.22) 5.43 (4.2) Streams, 
Lakes 

N 

CatAreaSqKm Catchment area (square km) at 
NHDPlus stream segment outlet, i.e., at 
the most downstream location of the 
vector line segment 

2.66 (3.7) 4.94 
(11.52) 

6.39 
(49.45) 

  0 (0) 0 (0) 0 (0) Streams N 

CatAreaSqKmRp100 Catchment area (square km) within a 
100-m buffer of NHD streams 

0.33 
(0.33) 

0.5 (0.89) 0.48 
(0.93) 

  0 (0) 0 (0) 0 (0) Streams N 

CBNFWs Mean rate of biological nitrogen 
fixation from the cultivation of crops in 
kg N/ha/yr, within watershed 

2.64 
(4.47) 

10.82 
(14.1) 

0.81 
(2.23) 

  1.49 
(2.45) 

8.07 
(10.63) 

1.19 
(4.83) 

Streams, 
Lakes 

Y 

ClayWs Mean % clay content of soils (STATSGO) 
within watershed 

20.1 
(10.68) 

24.66 
(9.24) 

19.09 
(6.93) 

  19.67 
(11.57) 

22.28 
(11.22) 

18.04 
(8.87) 

Streams, 
Lakes 

Y 

CoalMineDensWs Density of coal mines sites within 
watershed (mines/square km) 

0.08 
(0.39) 

0.05 
(0.32) 

0.01 
(0.05) 

  0.04 
(0.18) 

0.01 
(0.14) 

0 (0) Streams, 
Lakes 

Y 

CompStrgthWs Mean lithological uniaxial compressive 
strength (megaPascals) content in 
surface or near surface geology within 
watershed 

103.75 
(35.45) 

50.13 
(39.63) 

100.15 
(33.81) 

  112.58 
(41.18) 

34.96 
(43.53) 

84.88 
(44.73) 

Streams, 
Lakes 

Y 

DamDensWs Density of georeferenced dams within 
watershed (dams/ square km) based on 
the National Inventory of Dams 
(https://catalog.data.gov/dataset/natio
nal-inventory-of-dams) 

0.02 
(0.06) 

0.02 
(0.04) 

0 (0.01)   0.11 
(0.26) 

0.05 
(0.15) 

0.05 
(0.24) 

Streams, 
Lakes 

Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

DamNIDStorWs Total possible volume of all reservoirs 
(NID_STORA in NID) per unit area of 
watershed (cubic meters/square km) 
based on the National Inventory of 
Dams 
(https://catalog.data.gov/dataset/natio
nal-inventory-of-dams) 

75705.09 
(152446.
23) 

57233.92 
(231998.
68) 

46878.1 
(113821.
07) 

  147727.6 
(217310.
06) 

124020.9
8 
(460555.
93) 

173688.7
6 
(461114.
03) 

Streams, 
Lakes 

Y 

DamNrmStorWs Normal (most common) volume of all 
reservoirs (NORM_STORA in NID) per 
unit area of watershed (cubic 
meters/square km) based on the 
National Inventory of Dams 
(https://catalog.data.gov/dataset/natio
nal-inventory-of-dams) 

42348.84 
(98735.7
3) 

23234.15 
(48809.2
2) 

41264.11 
(102988.
36) 

  83213.61 
(134198.
72) 

67317.06 
(330127.
2) 

148554.5
8 
(431422.
12) 

Streams, 
Lakes 

Y 

ElevWs Mean watershed elevation (m) 374.75 
(189.5) 

569.82 
(532.49) 

1847.16 
(728.15) 

  352 
(210.25) 

454.31 
(397.9) 

1776.78 
(925.33) 

Streams, 
Lakes 

Y 

Fe2O3Ws Mean % of lithological ferric oxide 
(Fe2O3) content in surface or near 
surface geology within watershed 

3.86 
(1.76) 

6.49 
(4.55) 

6.66 
(3.13) 

  4.18 
(2.57) 

8.77 
(6.89) 

8.44 
(5.14) 

Streams, 
Lakes 

N 

FertWs Mean rate of synthetic nitrogen 
fertilizer application to agricultural land 
in kg N/ha/yr, within watershed 

5.62 
(8.22) 

21.18 
(23.23) 

1.86 
(6.46) 

  3.71 
(7.58) 

16.82 
(17.76) 

1.78 
(8.96) 

Streams, 
Lakes 

Y 

HUDen2010Ws Mean housing unit density (housing 
units/square km) within watershed 

31.57 
(68.64) 

15.17 
(61.08) 

3.64 
(14.93) 

  38.17 
(97.5) 

33.7 
(102.63) 

17.68 
(95.4) 

Streams, 
Lakes 

Y 

HUDen2010WsRp100 Mean housing unit density (housing 
units/square km) within watershed and 
within a 100-m buffer of NHD stream 
lines 

30.62 
(68.24) 

13.43 
(51.26) 

3.59 
(15.97) 

  0 (0) 0 (0) 0 (0) Streams Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

HydrlCondWs Mean lithological hydraulic conductivity 
(micrometers per second) content in 
surface or near surface geology within 
watershed 

0.93 
(4.01) 

23.16 
(39.23) 

12.68 
(23.79) 

  1.93 
(13.81) 

39.01 
(69.12) 

24.2 
(50.01) 

Streams, 
Lakes 

Y 

InorgNWetDep_2008Ws Annual gradient map of precipitation-
weighted mean deposition for 
inorganic nitrogen wet deposition from 
nitrate and ammonium for 2008 in kg 
of N/ha/yr, within watershed 

4.21 
(0.89) 

3.92 
(1.53) 

1.75 
(0.81) 

  4.17 (1) 4.05 (1.4) 1.75 (1) Streams, 
Lakes 

N 

K2OWs Mean % of lithological potassium oxide 
(K2O) content in surface or near 
surface geology within watershed 

1.99 (0.8) 1.83 
(0.55) 

2.1 (0.65)   2.15 
(0.98) 

1.92 (0.6) 2.08 
(0.64) 

Streams, 
Lakes 

N 

KffactWs Mean soil erodibility (Kf) factor 
(unitless) of soils within watershed. The 
Kf factor is used in the Universal Soil 
Loss Equation (USLE) and represents a 
relative index of susceptibility of bare, 
cultivated soil to particle detachment 
and transport by rainfall. 

0.3 (0.06) 0.29 
(0.07) 

0.27 
(0.07) 

  0.29 
(0.07) 

0.27 
(0.09) 

0.28 
(0.08) 

Streams, 
Lakes 

Y 

ManureWs Mean rate of manure application to 
agricultural land from confined animal 
feeding operations in kg N/ha/yr, 
within watershed 

3.82 
(10.05) 

2.67 
(5.25) 

0.17 
(0.96) 

  2.39 (7.4) 1.73 
(4.89) 

0.19 
(0.79) 

Streams, 
Lakes 

Y 

MgOWs Mean % of lithological magnesium 
oxide (MgO) content in surface or near 
surface geology within watershed 

2.61 
(2.14) 

2.88 
(2.33) 

3.02 
(1.57) 

  2.76 
(2.66) 

2.03 
(2.01) 

2.53 
(1.78) 

Streams, 
Lakes 

N 

MineDensWs Density of mine sites within watershed 
(mines/square km) 

0 (0) 0 (0) 0 (0.01)   0 (0.02) 0 (0.02) 0 (0) Streams, 
Lakes 

Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

MineDensWsRp100 Density of mine sites within watershed 
and within 100-m buffer of NHD stream 
lines (mines/square km) 

0 (0) 0 (0.01) 0 (0)   0 (0) 0 (0) 0 (0) Streams Y 

Na2OWs Mean % of lithological sodium oxide 
(Na2O) content in surface or near 
surface geology within watershed 

1.4 (1.06) 1.08 
(0.56) 

1.98 
(0.96) 

  1.67 
(1.18) 

1.18 
(0.62) 

1.82 
(0.95) 

Streams, 
Lakes 

N 

NABD_DensWs Density of georeferenced dams within 
watershed (dams/ square km) based on 
the National Anthropogenic Barrier 
Dataset 
(https://www.sciencebase.gov/catalog/
item/56a7f9dce4b0b28f1184dabd) 

0.02 
(0.06) 

0.01 
(0.07) 

0 (0.01)   0.06 
(0.17) 

0.02 
(0.07) 

0.02 
(0.11) 

Streams, 
Lakes 

N 

NABD_NIDStorWs Total possible volume of all reservoirs 
(NID_STORA in NID) per unit area of 
watershed (cubic meters/square km) 
based on the National Anthropogenic 
Barrier Dataset 
(https://www.sciencebase.gov/catalog/
item/56a7f9dce4b0b28f1184dabd) 

80822.59 
(194162.
66) 

51461.74 
(117233.
53) 

43495.35 
(115151.
38) 

  125580.9
1 
(209343.
74) 

51742.3 
(224956.
31) 

1807737.
48 
(2422666
1.75) 

Streams, 
Lakes 

N 

NABD_NrmStorWs Normal (most common) volume of all 
reservoirs (NORM_STORA in NID) per 
unit area of watershed (cubic 
meters/square km) based on the 
National Anthropogenic Barrier Dataset 
(https://www.sciencebase.gov/catalog/
item/56a7f9dce4b0b28f1184dabd) 

48146.12 
(137703.
27) 

22717.79 
(51310.5
7) 

38127.67 
(105098.
11) 

  73403.44 
(134228.
48) 

23512.95 
(103148.
64) 

1454387.
3 
(1929335
3.75) 

Streams, 
Lakes 

N 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

NH4_2008Ws Annual gradient map of precipitation-
weighted mean deposition for 
ammonium ion concentration wet 
deposition for 2008 in kg of NH4/ha/yr, 
within watershed 

2.52 
(0.63) 

2.97 
(1.25) 

1.24 
(0.61) 

  2.5 (0.73) 3.05 
(1.16) 

1.23 
(0.75) 

Streams, 
Lakes 

N 

NO3_2008Ws Annual gradient map of precipitation-
weighted mean deposition for nitrate 
ion concentration wet deposition for 
2008 in kg of NO3/ha/yr, within 
watershed 

10 (2.2) 7.17 
(2.89) 

3.49 
(1.66) 

  9.9 (2.38) 7.45 
(2.83) 

3.51 
(2.04) 

Streams, 
Lakes 

N 

NPDESDensWs Density of permitted NPDES (National 
Pollutant Discharge Elimination System) 
sites within watershed (sites/square 
km) 

0 (0) 0 (0) 0 (0)   0 (0.01) 0 (0.01) 0 (0) Streams, 
Lakes 

N 

NPDESDensWsRp100 Density of permitted NPDES (National 
Pollutant Discharge Elimination System) 
sites within watershed and within 100-
m buffer of NHD stream lines 
(sites/square km) 

0 (0.01) 0 (0.01) 0 (0)   0 (0) 0 (0) 0 (0) Streams N 

NWs Mean % of lithological nitrogen (N) 
content in surface or near surface 
geology within watershed 

0.06 
(0.06) 

0.24 
(0.23) 

0.11 
(0.11) 

  0.06 
(0.06) 

0.24 
(0.22) 

0.17 
(0.16) 

Streams, 
Lakes 

N 

OmWs Mean organic matter content (% by 
weight) of soils (STATSGO) within 
watershed 

1.5 (1.55) 2.39 
(4.28) 

1.13 
(0.71) 

  1.81 
(2.56) 

2.75 
(4.32) 

1.1 (0.8) Streams, 
Lakes 

Y 

P2O5Ws Mean % of lithological phosphorous 
oxide (P2O5) content in surface or near 
surface geology within watershed 

0.16 
(0.08) 

0.18 
(0.11) 

0.18 
(0.06) 

  0.16 
(0.16) 

0.17 
(0.16) 

0.17 
(0.07) 

Streams, 
Lakes 

N 

PctAg2006Slp10Ws % of watershed area classified as ag 
land cover (NLCD 2006 classes 81-82) 
occurring on slopes greater than or 
equal to 10% 

3.57 
(4.77) 

1.15 
(3.88) 

0.26 
(2.05) 

  2.36 
(4.25) 

0.5 (1.59) 0.19 
(0.97) 

Streams, 
Lakes 

Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

PctAg2006Slp20Ws % of watershed area classified as ag 
land cover (NLCD 2006 classes 81-82) 
occurring on slopes greater than or 
equal to 20% 

0.53 
(1.12) 

0.07 
(0.37) 

0.06 
(0.58) 

  0.35 
(1.14) 

0.01 
(0.03) 

0.03 
(0.24) 

Streams, 
Lakes 

Y 

PctAgWs % of watershed area representing the 
sum of NLD PctCropWs and PctHayWs 
(NLCD 2006 or 2011) 

17.06 
(17.79) 

34.76 
(29.58) 

2.56 
(7.03) 

  11.38 
(13.65) 

29.4 
(26.72) 

2.81 
(9.36) 

Streams, 
Lakes 

Y 

PctAlkIntruVolWs % of watershed area classified as 
lithology type: alkaline intrusive 
volcanic rock 

0 (0) 0.02 
(0.17) 

0.78 
(5.37) 

  0 (0) 0 (0) 0.34 
(2.74) 

Streams, 
Lakes 

Y 

PctAlluvCoastWs % of watershed area classified as 
lithology type: alluvium and fine-
textured coastal zone sediment 

1.56 
(4.89) 

11.53 
(23.82) 

7.11 
(12.28) 

  0.46 
(2.87) 

12.15 
(29.89) 

12.05 
(25.78) 

Streams, 
Lakes 

Y 

PctBlWs % of watershed area classified as 
barren land cover (NLCD 2006 or 2011) 

0.32 
(0.93) 

0.33 (1) 2.1 (4.41)   0.4 (1.59) 0.25 
(0.93) 

3.98 
(11.32) 

Streams, 
Lakes 

Y 

PctBlWsRp100 % of watershed area classified as 
barren land cover (NLCD 2006 or 2011) 
within a 100-m buffer of NHD streams 

0.25 
(0.61) 

0.26 
(0.75) 

0.93 
(2.31) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctCarbResidWs % of watershed area classified as 
lithology type: carbonate residual 
material 

6.28 
(19.79) 

2.8 
(11.83) 

4.87 
(13.23) 

  5.8 
(20.77) 

1.04 
(8.98) 

3.7 
(12.96) 

Streams, 
Lakes 

Y 

PctCoastCrsWs % of watershed area classified as 
lithology type: coastal zone sediment, 
coarse-textured 

0 (0) 0.64 
(6.96) 

0 (0)   0 (0) 2.14 
(13.43) 

0.31 
(3.27) 

Streams, 
Lakes 

Y 

PctColluvSedWs % of watershed area classified as 
lithology type: colluvial sediment 

23.83 
(38.4) 

8.08 
(21.26) 

0.48 
(2.84) 

  22.44 
(39.64) 

4.33 
(18.05) 

0.29 
(2.69) 

Streams, 
Lakes 

Y 

PctConifWsRp100 % of watershed area classified as 
evergreen forest land cover (NLCD 
2001 class 42) 

9.42 
(10.5) 

6.88 
(12.48) 

48.86 
(27.31) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctCropWsRp100 % of watershed area classified as crop 
land use (NLCD 2006 or 2011) 

3.72 
(7.58) 

20.44 
(24.35) 

1.44 
(5.62) 

  0 (0) 0 (0) 0 (0) Streams Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

PctDecidWsRp100 % of watershed area classified as 
deciduous forest land cover (NLCD 
2006 or 2011) within a 100-m buffer of 
NHD streams 

42.08 
(22.24) 

14.63 
(17.17) 

3.58 
(8.49) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctEolCrsWs % of watershed area classified as 
lithology type: eolian sediment, coarse-
textured (sand dunes) 

0.04 
(0.76) 

2.77 
(11.19) 

0.26 
(1.17) 

  0.12 
(1.68) 

5.59 
(21.32) 

0.95 
(9.45) 

Streams, 
Lakes 

Y 

PctEolFineWs % of watershed area classified as 
lithology type: eolian sediment, fine-
textured (glacial loess) 

0 (0.1) 4.15 
(16.15) 

0.4 (3.32)   0 (0) 2.11 
(11.94) 

0.59 
(6.81) 

Streams, 
Lakes 

Y 

PctExtruVolWs % of watershed area classified as 
lithology type: extrusive volcanic rock 

0 (0.01) 0.01 
(0.19) 

3.43 
(12.17) 

  0 (0) 0.01 
(0.28) 

6.04 
(20.68) 

Streams, 
Lakes 

Y 

PctForestWs % of watershed area representing the 
sum of NLD PctDecidWs, PctMxFstWs, 
and PctConfirWs (NLCD 2006 or 2011) 

62.91 
(0.02) 

21.32 
(0.13) 

52.23 
(0.51) 

  63.65 
(20.91) 

17.63 
(22.07) 

45 
(29.42) 

Streams, 
Lakes 

Y 

PctFireLossSum2yrWs % Forest loss to fire (fire perimeter) 
between (2009-2010 or 2006-2007) 
within watershed 

0 (0.01) 0.01 
(0.17) 

0.14 
(0.48) 

  0.01 (0) 0 (0) 1.63 (0) Streams, 
Lakes 

N 

PctFireSum2yrWsRp100 % Forest loss to fire (fire perimeter) 
between (2009-2010 or 2006-2007) 
within watershed and within 100-m 
buffer of NHD stream lines 

0 (22.1) 0.01 
(21.75) 

0.12 
(25.77) 

  0 (0) 0 (0) 0 (0) Streams N 

PctFrstLossSum5yrWs % Average forest cover loss (Tree 
canopy cover change) for 5 years (2009 
- 2013 or 2003 - 2007) within 
watershed 

1.04 
(1.83) 

1.09 
(2.72) 

1.71 
(4.65) 

  1.14 
(2.05) 

0.65 
(2.16) 

1.45 
(2.85) 

Streams, 
Lakes 

Y 

PctFrstLossSum5yrWsRp
100 

% Average forest cover loss (Tree 
canopy cover change) for 5 years (2009 
- 2013 or 2003 - 2007) within 
watershed and within 100-m buffer of 
NHD stream lines 

0.74 
(1.54) 

0.78 (1.9) 1.35 
(4.68) 

  0 (0) 0 (0) 0 (0) Streams Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

PctGlacLakeCrsWs % of watershed area classified as 
lithology type: glacial outwash and 
glacial lake sediment, coarse-textured 

5.06 
(13.41) 

6.63 
(16.57) 

0.94 
(6.64) 

  5.39 
(17.18) 

11.73 
(27.29) 

2.85 
(14.04) 

Streams, 
Lakes 

Y 

PctGlacLakeFineWs % of watershed area classified as 
lithology type: glacial lake sediment, 
fine-textured 

1.59 (7.7) 1.84 
(8.55) 

0.24 
(1.79) 

  0.69 
(5.57) 

0.45 
(4.42) 

1.76 
(11.83) 

Streams, 
Lakes 

Y 

PctGlacTilClayWs % of watershed area classified as 
lithology type: glacial till, clayey 

1.69 
(10.07) 

2.97 
(13.72) 

0 (0)   0.64 
(4.99) 

3.46 
(16.8) 

0 (0) Streams, 
Lakes 

Y 

PctGlacTilCrsWs % of watershed area classified as 
lithology type: glacial till, coarse-
textured 

23.08 
(37.69) 

0.82 
(7.54) 

3.02 
(9.81) 

  28.84 
(42.68) 

1.82 
(13.06) 

5.66 
(15.56) 

Streams, 
Lakes 

Y 

PctGlacTilLoamWs % of watershed area classified as 
lithology type: glacial till, loamy 

16.68 
(31.76) 

23.46 
(35) 

0.5 (5.58)   13.42 
(32.51) 

33.9 
(43.61) 

3.11 
(15.88) 

Streams, 
Lakes 

Y 

PctGrsWs % of watershed area classified as 
grassland/herbaceous land cover (NLCD 
2006 or 2011) 

2.04 
(3.87) 

20.88 
(25.3) 

9.81 
(10.87) 

  1.98 
(4.31) 

20.26 
(27.1) 

8.5 
(13.36) 

Streams, 
Lakes 

Y 

PctGrsWsRp100 % of watershed area classified as 
grassland/herbaceous land cover (NLCD 
2006 or 2011) within a 100-m buffer of 
NHD streams 

1.76 
(3.53) 

21.06 
(25.32) 

8.39 
(10.41) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctHayWsRp100 % of watershed area classified as hay 
land use (NLCD 2006 or 2011) 

11.11 
(12.63) 

7.91 
(10.69) 

1.55 (2.9)   0 (0) 0 (0) 0 (0) Streams N 

PctHbWetWs % of watershed area classified as 
herbaceous wetland land cover (NLCD 
2006 or 2011) 

0.3 (0.46) 1.16 
(2.56) 

0.47 
(1.34) 

  0.38 
(0.96) 

2.08 
(3.58) 

0.6 (1.57) Streams, 
Lakes 

Y 

PctHbWetWsRp100 % of watershed area classified as 
herbaceous wetland land cover (NLCD 
2006 or 2011) within a 100-m buffer of 
NHD streams 

1.1 (1.69) 2.71 
(5.55) 

1.25 
(2.89) 

  0 (0) 0 (0) 0 (0) Streams Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

PctHydricWs % of watershed area classified as 
lithology type: hydric, peat and muck 

0.02 
(0.15) 

0.92 (5.8) 0 (0)   0.01 
(0.07) 

0.62 
(5.97) 

0 (0) Streams, 
Lakes 

  

PctIceWs % of watershed area classified as 
ice/snow land cover (NLCD 2006 or 
2011) 

0 (0) 0.02 
(0.19) 

0.45 (2.5)   0 (0) 0 (0) 0.28 
(1.54) 

Streams, 
Lakes 

Y 

PctIceWsRp100 % of watershed area classified as 
ice/snow land cover (NLCD 2006 or 
2011) within a 100-m buffer of NHD 
streams 

0 (0) 0.01 (0.2) 0.22 
(2.08) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctImpWs Mean imperviousness of anthropogenic 
surfaces (NLCD 2006 or 2011) within 
watershed 

2.12 
(4.43) 

1.45 
(4.18) 

0.39 
(1.03) 

  2.17 
(4.49) 

2.53 
(6.55) 

1.17 
(4.34) 

Streams, 
Lakes 

Y 

PctImpWsRp100 Mean imperviousness of anthropogenic 
surfaces (NLCD 2006 or 2011) within 
watershed and within a 100-m buffer of 
NHD stream lines 

1.8 (3.43) 1.01 
(2.96) 

0.48 
(1.26) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctMxFstWsRp100 % of watershed area classified as mixed 
deciduous/evergreen forest land cover 
(NLCD 2006 or 2011) 

8.8 
(10.98) 

2.12 
(5.25) 

1.76 
(5.58) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctNonAgIntrodManagVe
gWs 

% Nonagriculture nonnative introduced 
or managed vegetation landcover type 
reclassed from LANDFIRE Existing 
Vegetation Type (EVT), within 
watershed 

6.53 
(15.44) 

9.66 
(18.19) 

2.26 
(4.38) 

  1.61 
(5.91) 

4.8 
(10.75) 

2.26 (6.6) Streams, 
Lakes 

Y 

PctNonAgIntrodManagVe
gWsRp100 

% Nonagriculture nonnative introduced 
or managed vegetation landcover type 
reclassed from LANDFIRE Existing 
Vegetation Type (EVT), within 
catchment and within 100-m buffer of 
NHD stream lines 

5.52 
(13.39) 

7.99 
(15.55) 

2.56 
(5.07) 

  0 (0) 0 (0) 0 (0) Streams Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

PctNonCarbResidWs % of watershed area classified as 
lithology type: non-carbonate residual 
material 

11.71 
(27.03) 

29.6 
(38.1) 

33.56 
(34.41) 

  10.65 
(26.03) 

19.68 
(36.73) 

24.46 
(34.47) 

Streams, 
Lakes 

Y 

PctOwWs % of watershed area classified as open 
water land cover (NLCD 2006 or 2011) 

1.25 
(1.93) 

1.39 
(2.63) 

0.46 
(0.92) 

  6.7 (6.78) 10.72 
(12.57) 

6.22 
(9.52) 

Streams, 
Lakes 

Y 

PctOwWsRp100 % of watershed area classified as open 
water land cover (NLCD 2006 or 2011) 
within a 100-m buffer of NHD streams 

0.27 
(0.48) 

0.22 
(0.44) 

0.11 
(0.34) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctSalLakeWs % of watershed area classified as 
lithology type: saline like sediment 

0 (0) 0 (0.03) 0.13 (1)   0 (0) 0 (0.01) 1.43 (9.6) Streams, 
Lakes 

Y 

PctShrbWs % of watershed area classified as 
shrub/scrub land cover (NLCD 2006 or 
2011) 

2.58 
(3.52) 

8.08 
(14.34) 

28.45 
(23.03) 

  2 (4.88) 3.79 
(10.33) 

27.77 
(26.42) 

Streams, 
Lakes 

Y 

PctShrbWsRp100 % of watershed area classified as 
shrub/scrub land cover (NLCD 2006 or 
2011) within a 100-m buffer of NHD 
streams 

2.15 
(3.54) 

7.89 
(14.69) 

27.33 
(23.4) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctSilicicWs % of watershed area classified as 
lithology type: silicic residual material 

7.7 
(23.02) 

3.06 
(11.42) 

42.72 
(36.79) 

  11.27 
(30.07) 

0.36 
(3.37) 

35.77 
(39.89) 

Streams, 
Lakes 

Y 

PctUrbHiWsRp100 % of watershed area classified as 
developed, high-intensity land use 
(NLCD 2006 or 2011) within a 100-m 
buffer of NHD streams 

0.21 
(0.79) 

0.11 
(0.68) 

0.02 
(0.08) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctUrbLoWsRp100 % of watershed area classified as 
developed, low-intensity land use 
(NLCD 2006 or 2011) within a 100-m 
buffer of NHD streams 

1.98 
(3.56) 

1.23 
(3.76) 

0.46 (1.4)   0 (0) 0 (0) 0 (0) Streams Y 

PctUrbMdWsRp100 % of watershed area classified as 
developed, medium-intensity land use 
(NLCD 2006 or 2011) within a 100-m 
buffer of NHD streams 

0.91 
(2.33) 

0.4 (1.83) 0.17 
(1.09) 

  0 (0) 0 (0) 0 (0) Streams Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

PctUrbOpWs % of watershed area classified as 
developed, open space land use (NLCD 
2011 class 21) 

5.94 
(7.19) 

3.99 
(4.24) 

0.99 
(1.68) 

  6.56 
(8.23) 

5.31 
(5.23) 

1.74 
(3.82) 

Streams, 
Lakes 

Y 

PctUrbOpWsRp100 % of watershed area classified as 
developed, open space land use (NLCD 
2011 class 21) within a 100-m buffer of 
NHD streams 

6.47 
(7.12) 

3.65 
(4.58) 

1.47 
(2.56) 

  0 (0) 0 (0) 0 (0) Streams Y 

PctUrbWs % of watershed area representing the 
sum of NLD PctUrbLoWs, PctUrbMdWs, 
and PctUrbHiWs (NLCD 2006 or 2011) 

3.74 
(8.19) 

2.52 
(7.63) 

0.56 
(1.94) 

  3.91 
(8.42) 

4.73 
(12.34) 

2.08 
(8.57) 

Streams, 
Lakes 

Y 

PctWaterWs % of watershed area classified as 
lithology type: water 

0.39 
(1.23) 

0.29 
(1.06) 

0.25 
(0.76) 

  0.26 
(1.15) 

0.6 (3.99) 0.71 
(3.15) 

Streams, 
Lakes 

Y 

PctWdWetWs % of watershed area classified as 
woody wetland land cover (NLCD 2006 
or 2011) 

3.49 
(5.19) 

5.14 
(10.05) 

0.59 
(0.85) 

  3.04 
(5.22) 

5.83 
(10.11) 

1.03 
(2.43) 

Streams, 
Lakes 

Y 

PctWdWetWsRp100 % of watershed area classified as 
woody wetland land cover (NLCD 2006 
or 2011) within a 100-m buffer of NHD 
streams 

9.69 
(12.39) 

10.46 
(15.42) 

2.39 
(3.75) 

  0 (0) 0 (0) 0 (0) Streams Y 

PermWs Mean permeability (cm/hour) of soils 
(STATSGO) within watershed 

7.06 
(4.23) 

7.05 
(6.23) 

8.28 
(5.27) 

  7.15 
(4.76) 

9.58 
(9.67) 

9.27 
(6.91) 

Streams, 
Lakes 

Y 

Pestic97Ws Mean pesticide use (kg/km2) in yr. 
1997 within watershed 

19.61 
(39.09) 

58.34 
(84.62) 

22.99 
(163.31) 

  13.33 
(41.78) 

76.66 
(240.71) 

18.86 
(98.85) 

Streams, 
Lakes 

  

PopDen2010Ws Mean population density 
(people/square km) within watershed 

74.95 
(170.28) 

36 
(148.08) 

8.24 
(39.49) 

  86.44 
(215.77) 

75.83 
(227.49) 

35.45 
(195.47) 

Streams, 
Lakes 

Y 

PopDen2010WsRp100 Mean population density 
(people/square km) within watershed 
and within a 100-m buffer of NHD 
stream lines 

72.67 
(169.41) 

31.82 
(125.25) 

7.88 
(39.54) 

  0 (0) 0 (0) 0 (0) Streams Y 

Precip0809Ws PRISM climate data - Average mean 
precipitation (mm) within the 
watershed. Period: 2008 + 2009 

1303.96 
(203.42) 

906.13 
(386.73) 

857.16 
(559.28) 

  1340.88 
(186.73) 

904.58 
(347.5) 

798.95 
(494.09) 

Streams, 
Lakes 

Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

Precip8110Ws PRISM climate data - 30-year normal 
mean precipitation (mm): Annual 
period: 1981-2010 within the 
watershed 

1188.78 
(136.6) 

824.15 
(309.03) 

950.96 
(652.58) 

  1203.72 
(137.62) 

839.12 
(289.69) 

870.02 
(542.6) 

Streams, 
Lakes 

Y 

RckDepWs Mean depth (cm) to bedrock of soils 
(STATSGO) within watershed 

125.44 
(18.02) 

135.28 
(22.47) 

113.71 
(21.65) 

  123.29 
(21.7) 

141.53 
(20.46) 

120.46 
(25.3) 

Streams, 
Lakes 

Y 

RdCrsSlpWtdWs Density of roads-stream intersections 
(2010 Census Tiger Lines-NHD stream 
lines) multiplied by NHDPlusV21 slope 
within watershed 
(crossings*slope/square km) 

50.83 
(215.69) 

237.06 
(1347.74) 

145.51 
(538.94) 

  0 (0) 0 (0) 0 (0) Streams Y 

RdCrsWs Density of roads-stream intersections 
(2010 Census Tiger Lines-NHD stream 
lines) within watershed 
(crossings/square km) 

0 (0) 0 (0) 0 (0)   0.34 
(0.39) 

0.2 (0.3) 0.25 
(0.33) 

Streams, 
Lakes 

Y 

RdDensWs Density of roads (2010 Census Tiger 
Lines) within watershed (km/square 
km) 

2.01 
(1.46) 

1.52 
(1.17) 

1 (0.74)   2.28 
(1.76) 

1.93 
(1.76) 

1.36 (1.6) Streams, 
Lakes 

Y 

RdDensWsRp100 Density of roads (2010 Census Tiger 
Lines) within watershed and within a 
100-m buffer of NHD stream lines 
(km/square km) 

2.08 
(1.44) 

1.45 
(1.07) 

1.1 (0.78)   0 (0) 0 (0) 0 (0) Streams Y 

RunoffWs Mean runoff (mm) within watershed 563.15 
(135.74) 

219.22 
(170.33) 

439.96 
(574.2) 

  563.15 
(133.67) 

221.33 
(169.74) 

406.37 
(540.75) 

Streams, 
Lakes 

Y 

SandWs Mean % sand content of soils 
(STATSGO) within watershed 

31.46 
(11.79) 

32.83 
(18.9) 

38.73 
(11.52) 

  32.41 
(12.45) 

38.53 
(23.86) 

40.44 
(13.69) 

Streams, 
Lakes 

Y 

SiO2Ws Mean % of lithological silicon dioxide 
(SiO2) content in surface or near 
surface geology within watershed 

57.45 
(12.21) 

51.34 
(12.87) 

56.2 
(8.71) 

  58.51 
(12.57) 

52.65 
(13.47) 

55.23 
(9.55) 

Streams, 
Lakes 

N 

SLOPE NHD Flowline Slope 0.01 
(0.02) 

0 (0.01) -20.26 
(450.29) 

  0 (0) 0 (0) 0 (0) Streams Y 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

SN_2008Ws Annual gradient map of precipitation-
weighted mean deposition for average 
sulfur & nitrogen wet deposition for 
2008 in kg of S+N/ha/yr, within 
watershed 

594.55 
(118.81) 

448.37 
(189.25) 

179.33 
(82.51) 

  589.58 
(136.12) 

468.2 
(179.68) 

178.41 
(96.52) 

Streams, 
Lakes 

N 

SuperfundDensWs Density of Superfund sites within 
watershed (sites/square km) 

0 (0.03) 0 (0.01) 0 (0)   0 (0.02) 0 (0.02) 0 (0) Streams, 
Lakes 

N 

SuperfundDensWsRp100 Density of Superfund sites within 
watershed and within a 100-m buffer of 
NHD stream lines (sites/square km) 

0 (0.02) 0 (0) 0 (0)   0 (0) 0 (0) 0 (0) Streams N 

SWs Mean % of lithological sulfur (S) 
content in surface or near surface 
geology within watershed 

0.26 
(0.61) 

0.33 
(0.65) 

0.15 
(0.34) 

  0.17 
(0.23) 

0.29 
(1.05) 

0.11 
(0.17) 

Streams, 
Lakes 

Y 

Tmax8110Ws PRISM climate data - 30-year normal 
maximum temperature (°C): Annual 
period: 1981-2010 within the 
watershed 

15.91 
(3.79) 

16.73 
(4.91) 

12.61 
(3.71) 

  27.07 
(4.63) 

25.68 
(7.97) 

22.92 (6) Streams, 
Lakes 

Y 

Tmean0809Ws PRISM climate data - Average mean 
temperature (°C) within the watershed. 
Period: 2008 + 2009 

9.8 (3.48) 9.69 
(5.14) 

6.2 (3.47)   9.92 
(3.59) 

10.01 
(5.41) 

6.48 
(4.28) 

Streams, 
Lakes 

Y 

Tmean8110Ws PRISM climate data - 30-year normal 
mean temperature (°C): Annual period: 
1981-2010 within the watershed 

10.03 
(3.57) 

10.4 
(4.83) 

6.15 
(3.47) 

  10.14 
(3.69) 

10.68 
(5.01) 

6.49 
(4.36) 

Streams, 
Lakes 

Y 

Tmin8110Ws PRISM climate data - 30-year normal 
minimum temperature (°C): Annual 
period: 1981-2010 within the 
watershed 

-5.85 
(6.37) 

-8.03 
(7.92) 

-7.67 
(5.31) 

  -7.15 
(6.01) 

-4.5 
(8.61) 

-7.04 
(6.73) 

Streams, 
Lakes 

Y 

TRIDensWs Density of TRI (Toxic Release Inventory) 
sites within watershed (sites/square 
km) 

0.01 
(0.06) 

0.01 
(0.03) 

0 (0)   0.01 
(0.03) 

0.02 
(0.12) 

0 (0.01) Streams, 
Lakes 

N 
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    STREAMS   LAKES     

Predictor Variables Predictor Description EHIGH PLNLOW WMTNS   EHIGH PLNLOW WMTNS O/E 
Model 

WW 
Model 

TRIDensWsRp100 Density of TRI (Toxic Release Inventory) 
sites within watershed and within a 
100-m buffer of NHD stream lines 
(sites/square km) 

0.01 
(0.04) 

0.01 
(0.12) 

0 (0)   0 (0) 0 (0) 0 (0) Streams N 

WetIndexWs Mean Composite Topographic Index 
(CTI) [Wetness Index] within watershed 

751.55 
(78.65) 

868.05 
(109.26) 

688.42 
(73.83) 

  759.04 
(123.67) 

829.87 
(171.56) 

732.53 
(177.33) 

Streams, 
Lakes 

N 

WsAreaSqKm Watershed area (square km) at 
NHDPlus stream segment outlet, i.e., at 
the most downstream location of the 
vector line segment 

4174.57 
(16612.5
8) 

58951.73 
(297077.
06) 

15301.23 
(59097.4
6) 

  671.48 
(3491.53) 

764.62 
(5218.86) 

2317.24 
(14589.8
3) 

Streams, 
Lakes 

Y 

WsAreaSqKmRp100 Watershed area (square km)  within a 
100-m buffer of NHD streams 

670.48 
(2829.15) 

8978.64 
(47091.4
8) 

2195.9 
(8446.51) 

  0 (0) 0 (0) 0 (0) Streams Y 

WtDepWs Mean seasonal water table depth (cm) 
of soils (STATSGO) within watershed 

131.99 
(35.71) 

139.53 
(42.37) 

176.06 
(10.18) 

  133.93 
(35.7) 

134.19 
(39.01) 

171.57 
(21.93) 

Streams, 
Lakes 

Y 
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