

Detection Limits of Optical Gas Imaging

Presented by Yousheng Zeng and Jon Morris Providence Photonics

At

EPA Optical Gas Imaging Stakeholder Workshop November 9-10, 2020

Two Approaches to OGI Detection Limits (DL)

- DL measured as gas concentration integrated along the optical axis, commonly expressed as ppm-m (DL_{ppm-m})
 - It characterizes OGI camera's ability to detect gas plumes at pixel level
- DL measured as mass leak rate (or volumetric leak rate), e.g., detection limit in leak rate of grams per hour (DL_{gph})

Factors Affecting OGI DL

- ΔT (=Apparent T of background T of gas)
- Camera design
 - Sensor type (cooled vs. uncooled, sensor pitch, lens, etc.)
 - Bandpass filter
- Type of gas (IR spectrum, absorption coefficient)
- Distance
- Complexity/uniformity of background
- Dispersion conditions (wind, atmospheric stability, etc.)
- Additional factors with less impact to DL:
 - Plume polarity (absorptive vs. emissive)
 - Ambient T

DL_{ppm-m} for a Given OGI Camera

• For a given OGI camera, gas, and ΔT , DL_{ppm-m} at the pixel level can be expressed as Eq. (1)

 $DL_{ppm-m} = \alpha [|\Delta T|]^{\beta}$

Eq. (1)

Where

 $\Delta T = Background apparent temperature (T_B) - gas temperature (T_G)$ If $\Delta T > 0$, it's an absorptive plume (dark plume) If $\Delta T < 0$, it's an emissive plume (white plume) α and β : constant for a given OGI camera and gas. See Ref. for vales of α and β Ref. Y. 2 Op Temperature

Since DL_{ppm-m} is based on a single pixel, distance is not explicitly expressed in Eq. (1). However, distance can impact DL_{ppm-m} when the gas plume is smaller than the interpixel distance (i.e. when the plume is too small to "fill the pixel" at that distance) Ref. Y. Zeng and J. Morris; "Detection Limits of Optical Gas Imagers as a Function of Temperature Differential and Distance. *J. of Air & Waste Mgmt. Assoc.*, Vol. 69, No. 3, pp. 351-361

https://www.tandfonline.com/doi/full/10.108 0/10962247.2018.1540366

DL_{ppm-m} as a function of ΔT

- OGI's ability to detect a gas leak rapidly deteriorates (high DL_{ppm-m}) as ΔT approaches zero from either positive or negative side of the chart. The DL_{ppm-m} vs. ΔT curves become relatively flat when |ΔT| > ~5 °C.
- Propane is much easier to detect than methane (lower DL than methane).
- DL is slightly lower for emissive plume (negative ΔT) than absorptive plume.

FLIR GF320 Detection Limit as a function of ΔT

 ΔT_g – Temp change due to presence of gas plume

- The constants α and β in Eq. (1) will vary depending on what threshold is used for plume recognition. We have used 1% contrast as the threshold, i.e., gas plume pixels must have at least 1% contrast against background pixels to be discernable by an observer (~2-3 shades of a typical 256-gray scale B&W display).
- The 1% contrast in the image corresponds to certain temp difference, i.e., the temp difference caused by the same amount of gas that caused 1% contrast.

- ΔT_g is relatively constant (~200 mK corresponding to the 1% contrast) while amount of gas is dramatically different
- When $|\Delta T|$ is lower, more gas (higher ppm-m) is required to generate the same ΔT_g or the same contrast

How Does the 1% Contrast Threshold Compare to the Camera NETD?

- Noise Equivalent Temperature Difference (NETD)
 - Standard performance specification for IR cameras
 - Measure of the frame-to-frame variability due to sensor noise
- Theoretically, if $\Delta T_g > NETD$, gas plume should be detectable.
 - NETD for a FLIR GF320 is 15 mK
 - A 1% contrast corresponds to a ΔT_g around 200 mK for propane, an order of magnitude higher than the NETD.
- In practice, a ΔT_g higher than NETD is likely needed
 - How much higher?
 - We need to examine spatial variability we well

Camera Model	Camera Type	NETD (mK)
FLIR GF320/GFx320	Cooled, MWIR	15
FLIR GF620	Cooled, MWIR	20
FLIR GF77	uncooled, LWIR	50

Is the 1% Contrast Threshold Too High?

- An example take from a test at METEC
- Measured both temporal (11 sequential frames) and spatial variability (11 horizontal pixels in this case)
- Calculated Standard Deviation (SD) in 3 small areas in the image
- Small sample, but illustrative

- For the complex background (grass), temporal and spatial variability is comparable or higher than the variability caused by gas plume. A 1% contrast (or ΔT_g ~ 200 mK) will provide ~ 2x or 3x SD for plume recognition and it seems very reasonable
- For a uniform background (tank), a contrast threshold lower than 1% will likely allow for plume recognition.

DL_{ppm-m} Based on 1% Contrast vs. NETD

- NETD based DL is 1-2 orders of magnitude lower than 1% Contrast based DL. It may not be a realistic DL in many real-world cases. However, it is a useful benchmark for comparing OGI cameras.
- 1% Contrast based DL should be very robust even under challenging environmental conditions.
- DL_{ppm-m} is proportional to NETD or contrast threshold if all other conditions, such as ΔT, are the same

GF320 propane DL based on different thresholds $(\Delta T = 10 \text{ C})$

Threshold for Recognition	DL (ppm-m)	Conc (ppm) if L=0.1m	Corresponding ∆Tg (mK)
1% Contrast	160	1,600	225
0.5% Contrast	79	790	113
NETD	11	110	15

Camera Sensitivity and IR Spectrum Region

FLIR GF620

 FLIR GF620 has a higher pixel resolution than GF320 (640x480 vs. 320x240), but slightly lower NETD (smaller detector pitch, 15 μm vs. 30 μm). As a result, its DL_{ppm-m} is slightly higher than GF320.

FLIR GF77

- FLIR uncooled camera GF77 is less sensitive and it works in LWIR. Its NETD and DL_{ppm-m} are significantly higher.
- The effect on DL is due to both its NETD and IR spectrum region.

Camera Model	Camera Type	NETD (mK)	Propane DL @ ΔT=10C (ppm-m)
FLIR GF320/GFx320	Cooled, MWIR	15	11
FLIR GF620	Cooled, MWIR	20	14
FLIR GF77 (7-8.5)	Uncooled, LWIR	50	1,060

Methane Detection - Cooled vs. Uncooled Cameras

• We know an uncooled camera is less sensitive and has a higher DL, but why?

Can Uncooled Camera Be Used in Downstream Applications?

- Methane is not a primary concern in downstream applications, but other gases may be.
- Use ethylene as a case study for downstream applications

- For ethylene, an uncooled camera can achieve comparable sensitivity as a cooled camera at significantly lower cost
- Over 240 gases are expected to have better DL than ethylene. Many of these gases are commonly found in downstream facilities.
- Field changeable filters make gas-specific leak detection (and potentially quantification)

NETD-based DL_{ppm-m} vs. NECL

- Noise Equivalent Concentration Length (NECL) is proposed by FLIR (Sandsten et. al.).
- Both methods are measured as ppm-m.
- Both methods are based on ideal labcontrolled background conditions.
- NECL is a function of both ΔT and CL; and NECL at CL=0 ppm-m is recommended.
- NETD-based DL_{ppm-m} is derived from NETD, and it is a function of ΔT only.
- Based on published NECL data, the NETDbased DL is higher than NECL, but it is close to the NECL if NECL is based on CL=1000 (see Methane in the table).

NETD-based DL_{ppm-m} and NECL $(\Delta T = 10 \text{ C})$

Gas - Camera Model	DL (ppm-m)	NECL (ppm-m) @ CL=0 / [@ CL=1000]
Methane – GF320	33	13 [40]
Methane - GF77(7-8.5)	210	100
Propane – GF320	11	
Propane – GF77(7-8.5)	1060	400
Ethylene – GF320	65	
Ethylene – GF77(9.5-12)	71	20

Detection Limit in grams per hour (DL_{gph})

• For a given OGI camera and gas, DL_{gph} can be expressed as Eq. (2)

$$DL_{gph} = \mathbf{c} \cdot DL_{ppm-m} \cdot d^2 \cdot w \cdot \frac{P}{T} \cdot \frac{MW}{R}$$
 Eq. (2)

Where

- c = A constant specific to an OGI camera. The c values for FLIR GF300/320 and GFx320 cameras are listed in the table below
- w = A variable that is influenced by dispersion conditions (primarily wind speed and gas exit velocity from the leak point). For typical dispersion conditions, a default value 35 m³/l-hr is used.
- d = Distance from the camera to the gas plume, in meters
- P = Pressure of the gas in atm.
- T = Temperature of the gas in Kelvin
- MW= Molecular weight of the gas, g/gmol
- R = Ideal gas law constant, 0.08206 atm-l/gmol-K

The value of constant c for three lenses of FLIR GF300/320 camera

(based on 1% contrast detection threshold).

Lens	23 mm	38 mm	92 mm
С	6.17 x 10 ⁻⁵	2.25 x 10⁻⁵	3.86 x 10 ⁻⁶

Detection Limit in grams per hour (DL_{gph})

• Eq. (2) can be simplified to the following form:

$$DL_{gph} = \mathbf{a} \cdot |\Delta T|^{-b} \cdot d^2$$
 Eq. (3)

Where: a and b are constants for a given camera, lens, common wind conditions, and standard atmospheric conditions.

• OGI detection limit expressed as g/hr. (or lb/hr.) is a function of ∆T and distance, and both parameters are readily measurable!

DL_{gph} for Methane

- Chart based on Eq. (3) in previous slide
- Chart (a) in normal scale and Chart (b) in log scale
- DL_{gph} is a cluster of curves for different ΔT.
- At each ΔT , DL_{gph} is proportional to d^2 .

Data based on FLIR GF320

Derived DL_{gph} for Methane compared to other research

- Ravikumar, et. al. (2018), used an empirical method to determine detection limit and accounted for distance, but did not include ΔT.
- The detection limit equation empirically derived by Ravikumar, et. al. matches perfectly with Eq. (3) for ΔT = 8 °C.
- Significance:
 - Analytically derived Eq. (3) matches empirical work independently done by other researchers – a validation of the method
 - Without factoring ΔT, OGI detection capability can be off by an order of magnitude

Red dash line is based on work by Ravikumar, et. al. [Ravikumar, A.P.; J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, "Good versus Good Enough?" Empirical Tests of Methane Leak Detection Sensitivity of a Commercial Infrared Camera. *Environmental Science & Technology* 2018 52 (4), 2368-2374. DOI: 10.1021/acs.est.7b04945]

ERG Study for EPA

- In 2013-2014, ERG conducted a study for EPA in support of developing OGI protocol as Appendix K to 40 CFR Part 60 (<u>http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2010-0505-4949</u>)
- The ERG study included over a hundred tests on OGI detection capability under controlled test conditions. With a few exceptions, the tests were done at a distance of 1.9 m (6.32 ft.) and ΔT was about 2 °C. The dividing line between "detect" and "non-detect" fluctuated between 6.4 and 16 g/hr. of propane/butane mixture.
- When the distance (6.32 ft.) and ΔT (2 ^OC) of the ERG tests are applied to Eq. 3, we get a detection limit of **11.3 g/hr**., which fits right into the range determined empirically by ERG study (**6.4-16 g/hr**.)

Key Factors for OGI Leak Survey Protocol

Other factors

- Type of OGI camera Typically not a variable for a given camera
- Gas composition If a more refined approach is needed, use Response Factors
- Dispersion conditions Balancing the accuracy of the measurement and the challenge in measuring wind speed at extremely small spatial and temporal scales, a practical approach is to limit the leak survey conditions to exclude high wind conditions. Similar approaches have been used in Method 21.

Minimum ∆T and Maximum Distance d

- If a minimum detection level (g/hr) is set, the min. ΔT required and the max. distance (d) allowed can be established thru Eq. (3).
- An example chart shown on the right
- A higher ΔT will allow a greater distance while achieving the same desired detection limit.
- A shorter distance will allow a smaller
 ΔT for the same detection limit.

Tool to Ensure Minimum **DT** Requirement Is Met

- At a given distance, the OGI operator must ensure that the ΔT is >= the minimum ΔT required for desired detection limit (i.e. 30 g/hr).
- This can be easily accomplished for each background with a temperature-based screening tool
- Temperature screening addresses (and eliminates) the potential for a false negative result

Raw Image

Red areas below required ΔT at the given distance

Contribution of Equipment Leaks to Emission Inventory

- How do we quantify fugitive emissions for emission inventory or permitting when OGI is used as the sole leak detection method?
 - How do we estimate the contribution from the "non-detects"?
 - Issue: (Small leak rate per component) X (very large number of components) = fugitive emissions estimate
 - Current Method 21 based LDAR programs face the same issue. Industry is exploring similar approach for OGI, using emission factors for non-detect in OGI LDAR program.
 - In principle, a higher method $DL \rightarrow$ higher fugitive emission

$$DL_{gph} = \mathbf{a} \cdot |\Delta T|^{-b} \cdot d^2$$

- For OGI, changing the minimum ΔT and/or the maximum distance allowed can lower the detection limit, thereby lowering the non-detect emission factor (analogous to lowering the leak definition from 1000 ppm to 200 ppm in Method 21 based LDAR)
- The result may be that more leaks are detected, but the contribution from the "non-detect" will be lower, and the overall contribution from equipment leaks to the emission inventory will be lower.

Conclusions

- 1. Two methods are presented for determining the DL of an OGI camera at the pixel level:
 - a) NETD-based DL: ideal/lab-controlled conditions; suitable for camera spec comparison; impractical in most field conditions; analogous to "Instrument Detection Limit" (IDL)
 - b) DL based on a higher threshold (e.g., 1% contrast, 3xNETD, etc.) will be more suitable in field conditions; analogous to "Method Detection Limit" (MDL)
 - c) A DL_{ppm-m} based on a different threshold can be derived by a ratio method. For example:
 - Changing contrast threshold from 1% to 0.5% will yield a DL_{ppm-m} = (1% contrast-based DL_{ppm-m}) x (0.5%/1%)
 - ii. Changing threshold of $\Delta T_g = NETD$ to $\Delta T_g = 3xNETD$ will yield a $DL_{ppm-m} = (NETD-based DL_{ppm-m}) \times 3$
- 2. For a given OGI camera, OGI detection limit in terms of emission rate is influenced primarily by ΔT and distance

$$DL_{gph} = \mathbf{a} \cdot |\Delta T|^{-b} \cdot d^2$$

Conclusions

- **3.** OGI DL will affect its equivalency to current LDAR programs and emission inventories when OGI is solely used for fugitive emission sources (due to emission rate assigned to non-detects).
- For ~240 gases (many of them are common in downstream facilities), an uncooled OGI camera may be comparable to a cooled camera, but at lower cost.
- 5. OGI detection limits vary with environmental conditions and leak survey protocols. However, a combination of min. ΔT and max. distance will ensure that an LDAR program based solely on OGI will achieve the same or better results as a conventional LDAR program (Method 21)

Thank You!

Yousheng Zeng, PhD, PE | CEO youshengzeng@providencephotonics.com Jon Morris | CTO jonmorris@providencephotonics.com

<u>+1 833 746 8664 | WWW.PROVIDENCEPHOTONICS.COM</u>