

Community Scale Toxics Ambient Air Monitoring in Louisville, Kentucky October 3, 2007

Louisville

Presented By Cynthia H. Lee

The Problem

Residents in west Louisville, KY were concerned that they were being exposed to unsafe concentrations of toxic air pollutants from local industries, area and mobile sources.

Louisville

The Decision

1996-2000 Task Force: Use data collected in a yearlong study to conduct a risk assessment to determine whether the residents were being exposed to unsafe levels of air toxics.

Monitoring Plan

Monitor for the most hazardous air pollutants listed in the Toxics Release Inventory database for the Rubbertown industrial complex for which there were standard sampling and analytical methods.

Monitoring Site Selection [Grant – Part 1]

≈ 25 Sites evaluated All sites visited by several members Public meetings to discuss and select sites — Used computer dispersion modeling Agreement on the need for: Background site Enceline sites Neighborhood sites Control site ☐ 12 sites chosen +1 colocated

The Monitoring Sites

Resources

 EPA - Community-Based Environmental Project (CBEP) funding, monitors, guidance, analytical work, modeling information
Kentucky DAQ - Funding, advice, guidance
University of Louisville -Analytical work and administrative support for Task Force
APCD - Set up monitoring sites, operated monitors, collected samples

West Louisville Air Toxics Study WLATS

— 1-Year Monitoring Study April 2000 to April 2001 Monitored 83 Volatile Organic Compounds (TO-15) a 63 Semi-Volatile Organic Compounds Formaldehyde, HCI, HF ≈ 20 Metals One-in-12 day sampling Required 75% data recovery IIST/I

Air Toxics in Louisville

2001-2002 - Sample analysis & Risk assessment work plan

2002 - EPA Region 4 relative risk screening analysis ranked Louisville as having the highest risk of exposure in the Southeast

2002-2003 - Risk management plan & Risk assessment report

West Louisville Air Toxics Study

Results released in 2003:
Greater than 1-in-one million cancer risk for 17 carcinogens
An unsafe level of noncancer effects for 1 chemical: Hazard Quotient (HQ) of 13.9

WLATS Study 2 4th Quarter 2001 through 2005

Differences from 1st Study:

△ 6 of original 12 monitoring sites

- Fenceline sites
- Neighborhood sites
- 🚗 Control site
- Monitoring for only TO-15 VOCs by University of Louisville

Of the original 17 carcinogens of risk > 10⁻⁶, 5 were not monitored: 4 metals and formaldehyde

WLATS Study 2 Results

Highest single-year cancer risk

Chemical Compound	Study 1	Study 2
Acrylonitrile	130	124
Benzene	32	21
Bromoform	13	<1
1,3-Butadiene	500	1370
Carbon Tetrachloride	14	12
Chloroform	77	45

WLATS Study 2 Results

Highest single-year cancer risk

	Chemical Compound	Study 1	Study 2	
	1,4-Dichlorobenzene	19	<1	
	Ethyl acrylate	33	6	
	Methylene Chloride	17	<1	
	Tetrachloroethylene	39	3	
	Trichloroethylene	16	<1	
	Vinyl Chloride	5	8	
ouisville				

WLATS Study 2 Results

Highest single-year risk

Chloroprene

Hazard Quotient (noncancer) 59.3 [97.3]*

* In Study 1, the reported HQ was 13.9, but the HEAST 7 ug/m³ RfC was used although the California 1 ug/m³ REL was higher in the stated hierarchy for references

Cancer Risk

Exceeded 10,000 in one million each year

Outcomes of Study 1

 2003-4: Drafting of toxics program with support from the Mayor and Board
Sept 2004: Draft regulations released to the public

-June 2005: Board adopts the STAR program

What makes STAR groundbreaking? Regulation 5.30

Stakeholder Group met for 1 year to determine:

 Environmental acceptability from mobile/nonroad, area and minor sources
Reg 5.30 addresses, uniquely, the *cumulative* cancer and noncancer risk goals from all sources large and small
@35 recommendations sent to APCB

The Plan of Action Recommended Reduction Strategies

Strategies for reducing actual emissions

Strategies for reducing exposure to emissions Instrumentation Purchases for Future Monitoring [Grant – Part 2]

One instrument does not fit all needs and desires:

Portability versus site establishment

Screening tools at high levels versus readings at levels that introduce >1-in-one million risk

Enforceability – what do you do with the numbers once you have them

Selection Process

Accumulated vendors' materials: UV, IR, portable GC/MS's, portable TEOMs, aethalometer, FLIR,

Discussed potential options with EPA and other States/Locals

Visited monitoring sites (Texas, Florida and Kentucky) with installed equipment other than Summa canisters

Selection Process

- 2006: EPA Region IV staff conducted a field investigation comparison
 of their Cerex UV Sentry and EPA Method TO-15
 Three 1-hour runs were
 - attempted at three sites

Sentry vs TO-15 Results

butadiene met this OAPP criterion Sentry detection limits much higher Raw data collected in the field were reprocessed off-site by Cerex Calibration of Sentry only with a sealed span check device called a "lollipop" that contains SO₂ and benzene

METRO

Cerex UV Sentry Study Conclusions

- Useful in determining temporal variations of a limited number of analytes
- Useful in determining potential area of highest concentrations and impact of a limited number of analytes
- Additional software development of real-time concentration values is needed rather than the necessity of post-processing

Needs to lower detection limits to sub-part-per-billion

Use of a reference method for QC confirmation needed, especially for enforceability

Instrument Capability Considerations

Can it perform fenceline monitoring for an extended period of time?

Can it provide near real-time data?

Are the field detection limits low enough to achieve risk-level measurements for a number of chemicals?

A METRO

How quickly can the instrument be set up if necessary in emergency settings?

Instrumentation Choice

Combination IR and UV systems
Stirling engine rather than liquid nitrogen
Portable trailer for mobility
On-site security remains an issue to be solved in the future

Cynthia Lee Environmental Manager Louisville Air Pollution Control District

cynthia.lee@louisvilleky.gov 502.574.7217 www.louisvilleky.gov/apcd

