

Data Analysis and Attainment Assessment

Twenty-Nine Palms Band of Mission Indians: Water Quality Management Program

Jose Mora

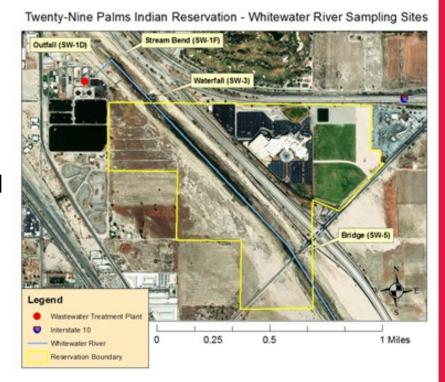
Twenty-Nine Palms Band of Mission Indians

Objectives

- To demonstrate how the Twenty-Nine Palms Band of Mission Indians manages and implements their Water Quality Management Program
- To illustrate how the Twenty-Nine Palms Band of Mission Indians uses its adopted Tribal Water Quality Standards to determine if water quality objectives are being met
- To show the tools that can be used to monitor surface water quality data

Background

- The Twenty-Nine Palms Band of Mission Indians (Tribe) is a federally recognized Tribe located in Southern California
- Descendants of the Chemehuevi Tribe



Background (cont.)

- The southern section of the Reservation is located near the city of Coachella, CA
- This section of the Reservation is located 15 miles upstream (northwest) of the Salton Sea and is central to the Salton Sea Watershed
- The Whitewater River is the primary surface water body on the Twenty-Nine Palms Reservation

Clean Water Act § 106 Water Quality Management Program

- The Tribe has been implementing their Water Quality Management Program since 1997.
- Since then, the Tribe has partnered with the U.S. EPA to develop a comprehensive water monitoring program which preserves and protects the water resources of the Tribe
- In 2015, the Tribe and the U.S. EPA Water Division formally adopted the Tribal Water Quality Standards
- The 29 Palms Laboratory has continued to build its capacity by becoming certified by the U.S. EPA Region 9 and the California Environmental Laboratory Accreditation Board for the analysis of Enteroccocus, total coliform, and E. Coli

Surface Water

- The Whitewater River is the primary surface water body in the Reservation
- The River is dry most of the year except during heavy rain events
- Wastewater treatment plant discharges treated water upstream of the Reservation creating perennial flow that ultimately discharges into the Salton Sea

Whitewater River/Coachella Valley Stormwater Channel

Whitewater River/Coachella Valley Stormwater Channel

Initial Water Quality Assessment

- In 2015, the Tribal EPA conducted an initial assessment of water quality on surface water resources located on the reservation following their Quality Assurance Project Plan (QAPP).
- Provided preliminary information that would be helpful for the development of the Tribal Water Quality Monitoring Program
- Results would be used to identify analytes to be monitored on a routine basis.

- Physical properties are relatively stable throughout the year
- Anions did not reach harmful levels
- Bacteria levels show slight spikes after heavy rainfall but return to normal for the next sampling event
- Although the river has elevated bacteria levels, it is not being degraded

Parameter	Results			
рН	6.95 - 7.75			
Conductivity	727 - 866 uS/cm			
TDS	489 - 589 mg/L			
Fluoride	0 - 1 mg/L			
Chloride	110 - 150 mg/L			
Enterococci	10 - 504 MPN/100mL			

- Physical properties are relatively stable throughout the year
- Anions did not reach harmful levels
- Bacteria levels show slight spikes after heavy rainfall but return to normal for the next sampling event
- Although the river has elevated bacteria levels, it is not being degraded

Parameter	Results			
рН	6.95 - 7.75			
Conductivity	727 - 866 uS/cm			
TDS	489 - 589 mg/L			
Fluoride	0 - 1 mg/L			
Chloride	110 - 150 mg/L			
Enterococci	10 - 504 MPN/100mL			

- Physical properties are relatively stable throughout the year
- Anions did not reach harmful levels
- Bacteria levels show slight spikes after heavy rainfall but return to normal for the next sampling event
- Although the river has elevated bacteria levels, it is not being degraded

Parameter	Results
рН	6.95 - 7.75
Conductivity	727 - 866 uS/cm
TDS	489 - 589 mg/L
Fluoride	0 - 1 mg/L
Chloride	110 - 150 mg/L
Enterococci	10 - 504 MPN/100mL

- Physical properties are relatively stable throughout the year
- Anions did not reach harmful levels
- Bacteria levels show slight spikes after heavy rainfall but return to normal for the next sampling event
- Although the river has elevated bacteria levels, it is not being degraded

Parameter	Results
рН	6.95 - 7.75
Conductivity	727 - 866 uS/cm
TDS	489 - 589 mg/L
Fluoride	0 - 1 mg/L
Chloride	110 - 150 mg/L
Enterococci	10 - 504 MPN/100mL

Historical information of the Whitewater River

- The River is part of the state of California's CWA 303 (d) list of impaired waters bodies
- Bacteria levels have been historically elevated
- E. coli and Enterococcus levels regularly exceed Tribal Water Quality Standards
- Bacteria can enter surface water from point and nonpoint sources
- The primary permitted point source is Valley Sanitary District

Water Quality Monitoring Program

Twenty-Nine Palms Tribal EPA List of Parameters of Analysis

- The initial assessment provided results to identify those analytes that would be monitored on a routine basis
- List of parameters is constantly changing
- No two programs are the same since each program has their own specific needs
- Tribes should base their water quality monitoring program on their surface water needs and budget

Parameter	Monitoring Frequency	Laboratory of Analysis
Ammonia, Nitrogen	Quarterly	A & R Laboratory
Nitrate, Nitrogen	Quarterly	A & R Laboratory
Nitrite, Nitrogen	Quarterly	A & R Laboratory
Nitrogen, Total Kjeldahl	Quarterly	A & R Laboratory
Bromide	Quarterly	A & R Laboratory
Chloride	Quarterly	A & R Laboratory
Fluoride	Quarterly	A & R Laboratory
Sulfate	Quarterly	A & R Laboratory
Orthophosphate Phosphorus	Quarterly	A & R Laboratory
Calcium	Quarterly	A & R Laboratory
Barium	Quarterly	A & R Laboratory
Magnesium	Quarterly	A & R Laboratory
Potassium	Quarterly	A & R Laboratory
Sodium	Quarterly	A & R Laboratory
Perchlorate	Quarterly	A & R Laboratory
Chromium VI	Quarterly	A & R Laboratory
Title 22 Metals	Annually	A & R Laboratory
Methylene Blue Active Substances	Annually	A & R Laboratory
Pesticides	Annually	A & R Laboratory
Temperature	Quarterly	29 Palms Laboratory and Field Measurement
pН	Quarterly	29 Palms Laboratory and Field Measurement
Dissolved Oxygen	Quarterly	29 Palms Laboratory and Field Measurement
Conductivity	Quarterly	29 Palms Laboratory and Field Measurement
Turbidity	Quarterly	29 Palms Laboratory and Field Measurement
Total Dissolved Solids	Quarterly	A & R Laboratories
Pharmaceuticals & Personal Care Products	Annually	Weck Laboratories
Per- and Polyfluoroalkyl Substances	Annually	Weck Laboratories

Water Quality Monitoring Program

Twenty-Nine Palms Tribal EPA List of Parameters of Analysis

- The initial assessment provided results to identify those analytes that would be monitored on a routine basis
- List of parameters is constantly changing
- No two programs are the same since each program has their own specific needs
- Tribes should base their water quality monitoring program on their surface water needs and budget

Parameter	Monitoring Frequency	Laboratory of Analysis
Ammonia, Nitrogen	Quarterly	A & R Laboratory
Nitrate, Nitrogen	Quarterly	A & R Laboratory
Nitrite, Nitrogen	Quarterly	A & R Laboratory
Nitrogen, Total Kjeldahl	Quarterly	A & R Laboratory
Bromide	Quarterly	A & R Laboratory
Chloride	Quarterly	A & R Laboratory
Fluoride	Quarterly	A & R Laboratory
Sulfate	Quarterly	A & R Laboratory
Orthophosphate Phosphorus	Quarterly	A & R Laboratory
Calcium	Quarterly	A & R Laboratory
Barium	Quarterly	A & R Laboratory
Magnesium	Quarterly	A & R Laboratory
Potassium	Quarterly	A & R Laboratory
Sodium	Quarterly	A & R Laboratory
Perchlorate	Quarterly	A & R Laboratory
Chromium VI	Quarterly	A & R Laboratory
Title 22 Metals	Annually	A & R Laboratory
Methylene Blue Active Substances	Annually	A & R Laboratory
Pesticides	Annually	A & R Laboratory
Temperature	Quarterly	29 Palms Laboratory and Field Measurement
pH	Quarterly	29 Palms Laboratory and Field Measurement
Dissolved Oxygen	Quarterly	29 Palms Laboratory and Field Measurement
Conductivity	Quarterly	29 Palms Laboratory and Field Measurement
Turbidity	Quarterly	29 Palms Laboratory and Field Measurement
Total Dissolved Solids	Quarterly	A & R Laboratories
Pharmaceuticals & Personal Care Products	Annually	Weck Laboratories
Per- and Polyfluoroalkyl Substances	Annually	Weck Laboratories

Water Quality Monitoring Program

Twenty-Nine Palms Tribal EPA List of Parameters of Analysis

- The initial assessment provided results to identify those analytes that would be monitored on a routine basis
- List of parameters is constantly changing
- No two programs are the same since each program has their own specific needs
- Tribes should base their water quality monitoring program on their surface water needs and budget

Parameter	Monitoring Frequency	Laboratory of Analysis
Ammonia, Nitrogen	Quarterly	A & R Laboratory
Nitrate, Nitrogen	Quarterly	A & R Laboratory
Nitrite, Nitrogen	Quarterly	A & R Laboratory
Nitrogen, Total Kjeldahl	Quarterly	A & R Laboratory
Bromide	Quarterly	A & R Laboratory
Chloride	Quarterly	A & R Laboratory
Fluoride	Quarterly	A & R Laboratory
Sulfate	Quarterly	A & R Laboratory
Orthophosphate Phosphorus	Quarterly	A & R Laboratory
Calcium	Quarterly	A & R Laboratory
Barium	Quarterly	A & R Laboratory
Magnesium	Quarterly	A & R Laboratory
Potassium	Quarterly	A & R Laboratory
Sodium	Quarterly	A & R Laboratory
Perchlorate	Quarterly	A & R Laboratory
Chromium VI	Quarterly	A & R Laboratory
Title 22 Metals	Annually	A & R Laboratory
Methylene Blue Active Substances	Annually	A & R Laboratory
Pesticides	Annually	A & R Laboratory
Temperature	Quarterly	29 Palms Laboratory and Field Measurement
pH	Quarterly	29 Palms Laboratory and Field Measurement
Dissolved Oxygen	Quarterly	29 Palms Laboratory and Field Measurement
Conductivity	Quarterly	29 Palms Laboratory and Field Measurement
Turbidity	Quarterly	29 Palms Laboratory and Field Measurement
Total Dissolved Solids	Quarterly	A & R Laboratories
Pharmaceuticals & Personal Care Products	Annually	Weck Laboratories
Per- and Polyfluoroalkyl Substances	Annually	Weck Laboratories

Tribal Water Quality Standards

- The Tribe and the U.S. EPA adopted the Tribal Water Quality Standards in 2015
- Standards consist of narrative and numerical objectives
- Provided a baseline that would allow the Tribe to make determinations of exceedances and decide appropriate action levels

Tribal Water Quality Standards List of Criteria*

Narrative Criteria

Category	Parameter	Water Quality Objective	Action Limit	Location(s) of Analysis
	Aesthetic Qualities	Free of nuisance deposits producing objectionable color, odor, taste, or turbidity.	Field observation of undesirable impacts.	Field
	Toxicity	Free of toxic substances in concentrations which are harmful to people, plants, fish and wildlife.	Field observation of death or illness to exposed organisms.	Field
	Suspended Solids	Discharges containing suspended solids shall not increase turbidity.	Observed spike in turbidity above baseline after a discharge.	Field and/or 29 Palms Laboratory
General	Total Dissolved Solids	Discharges shall not increase the total dissolved solids of receiving waters unless designated uses are not affected.	Field observation of loss of designated beneficial use.	Field
	Biostimulatory Substances	Water shall not contain biostimulatory substances in concentrations that promote nuisance aquatic growth.	Field observation of increase in nuisance aquatic growth.	Field
	Sediment	Sedimentary discharges shall not adversely affect beneficial uses.	Field observation of loss of	Field

designated

beneficial use.

Tribal Water Quality Standards

- The Tribe and the U.S. EPA adopted the Tribal Water Quality Standards in 2015
- Standards consist of narrative and numerical objectives
- Provided a baseline that would allow the Tribe to make determinations of exceedances and decide appropriate action levels

Tribal Water Quality Standards List of Criteria*

	Narrative Criteria							
Category	Parameter	Water Quality Objective	Action Limit	Location(s) of				
	Aesthetic Qualities	Free of nuisance deposits producing objectionable color, odor, taste, or turbidity.	Field observation of undesirable impacts.	Field				
	Toxicity	Free of toxic substances in concentrations which are harmful to people, plants, fish and wildlife.	Field observation of death or illness to exposed organisms.	Field				
	Suspended Solids	bisenarges containing suspended solids shall not increase turbidity.	in turbidity above baseline after a discharge.	Pieta and/or 29 Palms Laboratory				
General	Total Dissolved Solids	Discharges shall not increase the total dissolved solids of receiving waters unless designated uses are not affected.	Field observation of loss of designated beneficial use.	Field				
	Biostimulatory Substances	Water shall not contain biostimulatory substances in concentrations that promote nuisance aquatic growth.	Field observation of increase in nuisance aquatic growth.	Field				
	Sediment	Sedimentary discharges shall not adversely affect beneficial uses.	Field observation of loss of designated beneficial use.	Field				

Tribal Water Quality Standards

- The Tribe and the U.S. EPA adopted the Tribal Water Quality Standards in 2015
- Standards consist of narrative and numerical objectives
- Provided a baseline that would allow the Tribe to make determinations of exceedances and decide appropriate action levels

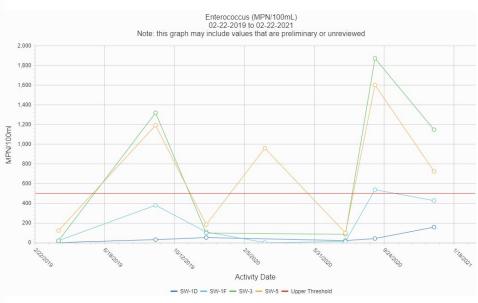
2	,	Numeric Criteria		2
Category	Parameter	Water Quality Objective	Action Limit	Location(s) of
Physical Properties	pН	pH shall range from 6.5-9.0	Field or lab monitoring outside numeric criteria limits	Field and/or 29 Palms Laboratory
30000 ◆ 0000 300000	Dissolved Oxygen	5.0 or above	Field monitoring results over 5.0	Field
	Enterococci	33 geometric mean	Laboratory Result exceedance	29 Palms Laboratory
Microbiology	E. coli	126 geometric mean	Laboratory Result exceedance	29 Palms Laboratory
	Bacteroides	15 Million Bacteroides Number	Laboratory Result exceedance	29 Palms Laboratory

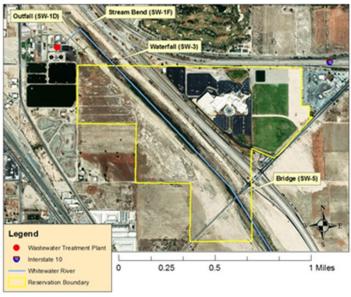
Whitewater River Surface Water Sampling

- The Tribe continuous to monitor the Whitewater River by conducting quarterly sampling events
- Parameters are analyzed quarterly or yearly depending on Quality Assurance Project Plan (QAPP)
- Results are compared to the Tribal Water Quality Standards to determine if the objectives have been met

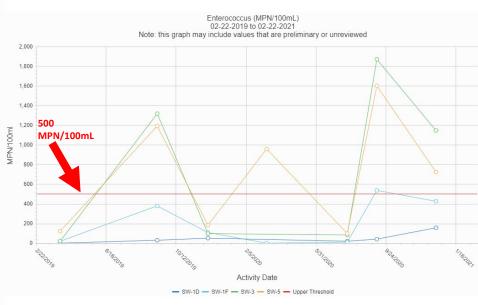
Whitewater River Surface Water Sampling

- Once the samples have been collected, they are transported to the 29 Palms Laboratory
- Microbiology samples are then diluted and analyzed for total coliform, E. Coli, and enterococci
- Other samples are distributed to the appropriate contracted laboratories for analysis

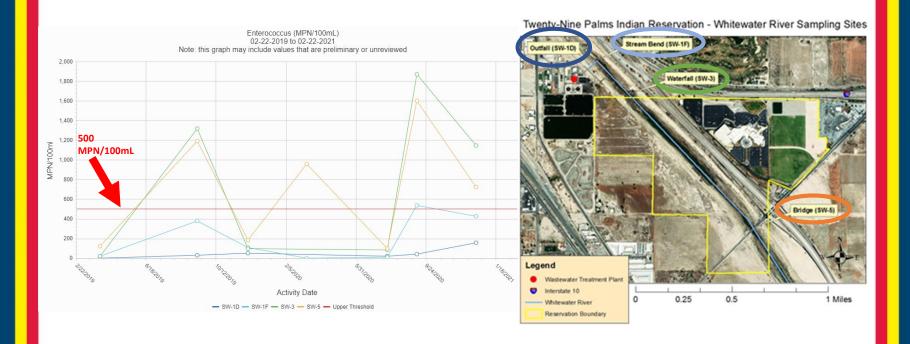


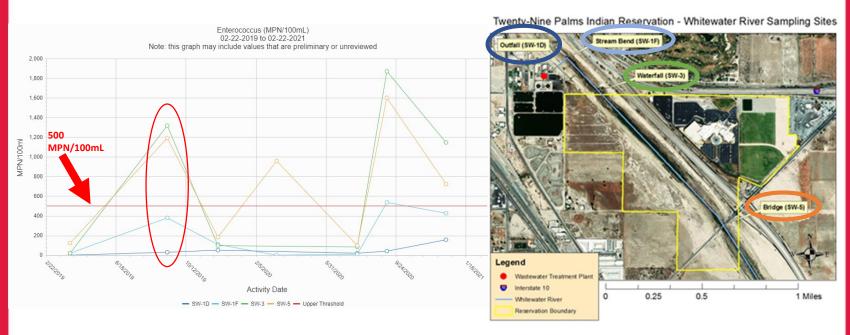


Twenty-Nine Palms Indian Reservation - Whitewater River Sampling Sites

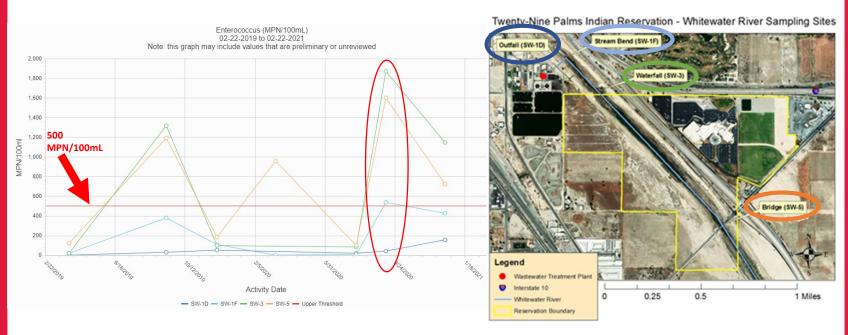


Twenty-Nine Palms Indian Reservation - Whitewater River Sampling Sites

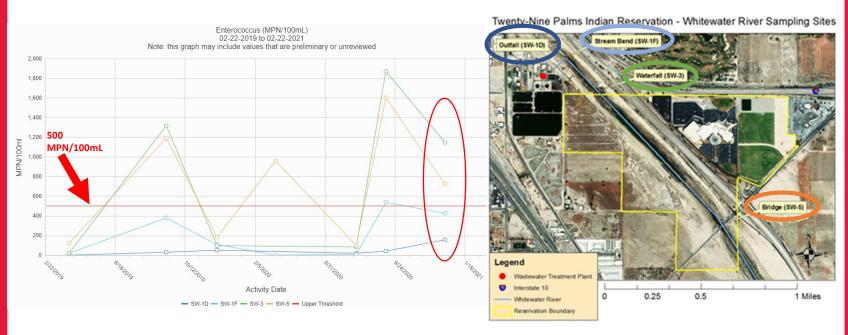




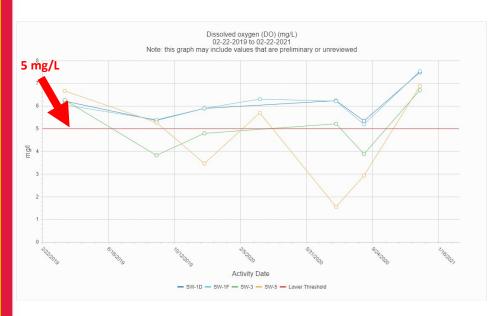
- Enterococcus sampling data illustrates a rise in bacteria in a downstream trend
- Enterococcus samples can range from 10 to 1870 MPN/100mL
- In the last 2 years, 7 samples have exceeded the Tribal Water Quality Standard



- Enterococcus sampling data illustrates a rise in bacteria in a downstream trend
- Enterococcus samples can range from 10 to 1870 MPN/100mL
- In the last 2 years, 7 samples have exceeded the Tribal Water Quality Standard

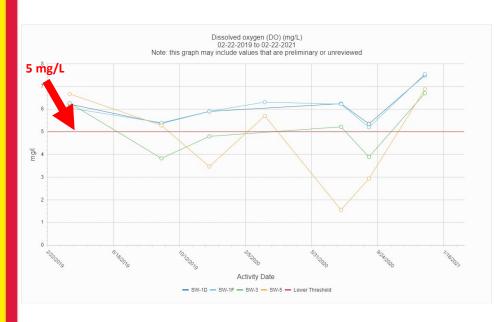


- Enterococcus sampling data illustrates a rise in bacteria in a downstream trend
- Enterococcus samples can range from 10 to 1870 MPN/100mL
- In the last 2 years, 7 samples have exceeded the Tribal Water Quality Standard



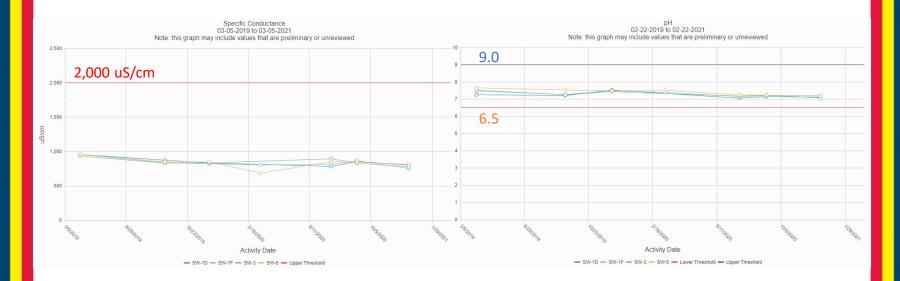
Dissolved Oxygen Analysis

Twenty-Nine Palms Indian Reservation - Whitewater River Sampling Sites



Dissolved Oxygen Analysis

- DO sampling data illustrates a decrease in DO concentration in a downstream trend
- DO concentration can be as low as 1.55 mg/L
- In the last 2 years, 6 samples have exceeded the Tribal Water Quality Standard, especially during the hot summer months

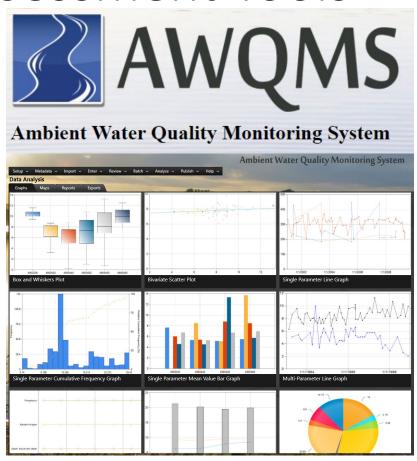


Physical Parameters Analysis

- Physical parameters have been consistent throughout the years
- Parameters, such as pH and conductivity, have been consistently within the Tribal Water Quality Standards

Mitigation Strategies

- Mitigation strategies can differ based on the parameter that exceeded the WQS
- If a contaminant is detected, does it exceed federal and Tribal WQS?
 - No, continue to monitor
 - Yes, notify the community, stakeholders, and U.S. EPA
- Can the source of pollution be determined?
 - No, continue to monitor
 - Yes, determine and implement best management plan (BMP) to mitigate the contaminant
- Was the BMP successful?
 - Yes, continue with monitoring program to detect future contamination
 - No, continue with minoring program and developing and effective BMP

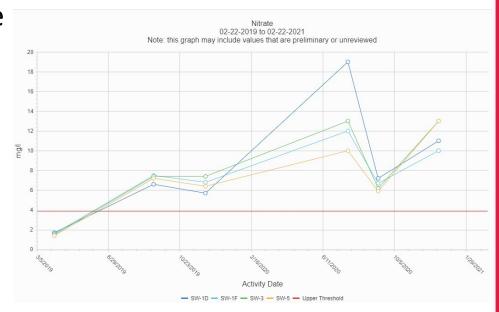


Water Quality Assessment Tools

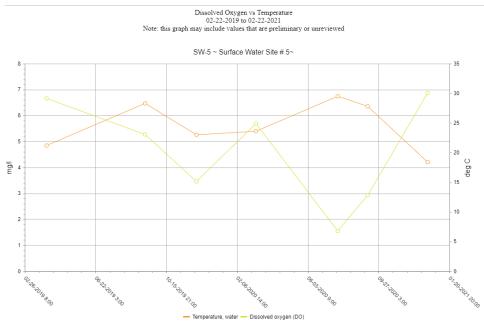
- Ambient Water Quality
 Monitoring System (AWQMS) is
 a paid web-based water quality
 data management system
- Provides a variety of tools that include data analysis, data visualization, data interpretation, QA/QC and more
- They work with almost 100
 Tribes across the country

- AWQMS allows you to import data as an excel file
- It provides QA/QC controls to verify the data being submitted
- Automatically imports data to WQX once you have reviewed and approved it

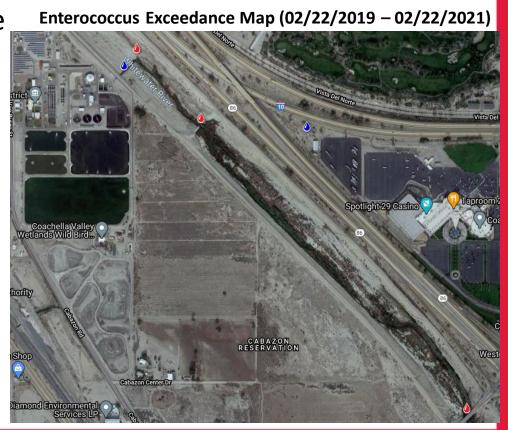
	- All-		Makeyet.	-	A SECOND	
Type of Data:	Results & Activiti	ies				
Import Configuration:	Levi Anderson ~	- Import 29 Palms Results ~ 2680		~		
Type of File:	Microsoft Excel	(xlsx) ~				
Worksheet(s) to Import:	5th	v (note: the "1st" workshe	et is the left-most tab of the Exce	el Workbook)		
	☑ Ignore First R	low of Import File?				
Generated Values		QC Checking is in place for this				
Element Value	Format	Review QC Parameters and Thresh Change Organization Preferences	<u>olds</u>			
Organization ID tepa29						
 This file contains new da 	ta only (i.e. not in AV	WQMS).				
O This file contains existing	data only (i.e. alrea	dy in AWQMS).				
O This file may contain nev	v and/or existing dat	ta.				
 Let me review my datase 	et in the staging area	before migrating.				
O Automatically migrate th	e data into AWQMS					
 I have a single file to imp 	port					
		ne same import configuration and ger	nerated values (above)			
O I have a batch of files to	import, which use th					



- The program can create multiple data analysis outputs including:
 - Single parameter line graphs
 - Multi-parameter line graphs
 - Box and Whiskers Plots
 - Sampling and Exceedance Maps



- The program can create multiple data analysis outputs including:
 - Single parameter line graphs
 - Multi-parameter line graphs
 - Box and Whiskers Plots
 - Sampling and Exceedance Maps



- The program can create multiple data analysis outputs including:
 - Single parameter line graphs
 - Multi-parameter line graphs
 - Box and Whiskers Plots
 - Sampling and Exceedance Maps

- The program generate reports including:
 - Single parameter reports
 - Exceedance reports
 - Statistical analysis report
 - Site specific detailed reports

Enterococcus Exceedance Report (02/22/2019 – 02/22/2021)

Date	Parameter	Fraction	Time Basis	Statistical Base	Value	Units	Lower Threshold	Upper Threshold	Diff	%Diff	Exceedance?
4/3/2019	Enterococcus	Total		MPN	20	MPN/100ml		500			No
9/11/2019	Enterococcus	Total		MPN	1317	MPN/100ml		500	817	163%	Yes
12/4/2019	Enterococcus	Total		MPN	97	MPN/100ml		500			No
7/22/2020	Enterococcus	Total		MPN	9.4	MPN/100m1		500			No
9/9/2020	Enterococcus	Total		MPN	1870	MPN/100ml		500	1370	274%	Yes
2/16/2020	Enterococcus	Total		MPN	1146	MPN/100ml		500	646	129%	Yes

Mean: 755.666667	Mean Exceedance Value: 1444.333333
Geometric Mean: 277.8319	Mean Exceedance Diff: 944.333333
	Mean Exceedance % Diff: 189%

Date	Parameter	Fraction	Time Basis	Statistical Base	Value	Units	Lower Threshold	Upper Threshold	Diff	%Diff	Exceedance
4/3/2019	Enterococcus	Total		MPN	122	MPN/100ml		500			No
9/11/2019	Enterococcus	Total		MPN	1191	MPN/100ml		500	691	138%	Yes
12/4/2019	Enterococcus	Total		MPN	183	MPN/100ml		500			No
3/10/2020	Enterococcus	Total		MPN	958	MPN/100m1		500	458	92%	Yes
7/22/2020	Enterococcus	Total		MPN	98	MPN/100m1		500			No
9/9/2020	Enterococcus	Total		MPN	1600	MPN/100ml		500	1100	220%	<u>Yes</u>
2/16/2020	Enterococcus	Total		MPN	723	MPN/100ml		500	223	45%	Yes

Summary		
Result Count: 7	Mean: 696.428571	Mean Exceedance Value: 111
Exceedance Count: 4	Geometric Mean: 433.7352	Mean Exceedance Diff: 618
Percent Exceedances: 57%	Mean Exceedance % Diff: 12	

Questions?

Contact Information:

Jose Mora, Twenty-Nine Palms Band of Mission Indians

jmora@29palmsbomi-nsn.gov, (760) 219 - 0661

