EPA's Data Analysis and Reporting Tool (DART)

Jennifer DeWinter, Hilary Hafner Sonoma Technology, Inc. Petaluma, CA

on behalf of the EPA OAQPS PAMS Program

National Air Toxics Workshop October 27, 2015

Acknowledgments

Kevin Cavender, EPA Jennifer DeWinter, STI Steve Brown, STI

With excellent feedback and ideas from NACAA Steering Committee

DART History

- Formerly VOCDat, a desktop software program
- Used by PAMS community to validate VOC data and prepare data for AQS submission
- Used to analyze carbonyls, air toxics, and speciated $\mathrm{PM}_{\mathrm{2.5}}$

What is DART Now?

- Web-based application for acquiring, analyzing and screening data
- Useful for all types of air quality data (criteria, VOCs, toxics, etc.)
- Available in AirNow-Tech

Meet DART

- Prepare data for AQS
- Upload data files •
- Request data from AQS •

+

- Convert units
- Aggregate data
- Create time series • and edit data
- Create scatter plots
- Create bar plots •
- Screen data •
- Export data and summary • statistics

DART Version 2.0 – New Features

- All-New Automated PAMS data screening
 - "One-click" auto-screening provides interactive tables and plots to evaluate PAMS data
 - Screening checks based on recommended procedures in PAMS Data Analysis Workbook
- Improved Data Imports
 - Improved status information for data uploads and AQS requests
 - Unit conversions and customization of units on graphics

General Workflow in DART

Time-Series Graphs

Time-series graphs are used to identify outliers, unusual data, trends, effects of meteorology in air quality, and changes in relationships among species

m/p-xylene is always > o-xylene in emissions and ambient air

Scatter Plots

Scatter plots are used to identify outliers outside of usual patterns in the data; some species have typical relationships based on meteorology and emissions

m/p-xylene is always > o-xylene in emissions and ambient air

Fingerprint Plots

Fingerprint plots are used to scroll through data sample by sample to visually identify sudden changes in data

Screening Checks (1)

- Use screening checks to identify and export sample records that don't meet your conceptual model of ambient air quality or your sites, or that are physically unrealistic
- For example, look for samples with
 - High unidentified fraction (possible error in GC column, or data reporting error)
 - O-xylene>m/p-xylene (physically unreasonable, likely error in species identification)
 - Carbon tetrachloride below global background levels (physically unreasonable, likely error in sampling)
 - Sulfate>3*sulfur (physically unreasonable, likely error on Nylon or Teflon filter)

Screening Checks (2)

- Species Threshold identify data values that exceed threshold criteria
- **Species Variability** identify data within a specified variability range
- Species Comparison compare data values between parameters according to defined criteria
- **Species Fraction** identify data values that are within a specified fraction of another data parameter value
- Multi-Condition create data screening queries that meet more than one condition

Automated Screening Checks (1)

- Run screening checks to identify problematic VOC data
- Review results in DART using interactive, linked tables and timeseries graphs

DART							Manag	e Explo	re Valio
Summary	LivermoreDS - PAMS Basic								
1 Abundant Species	Data Set	Site			Total Sa	mples	Passes	Missing	Failures
	Livermore1	LIVERMORE -	RINCON		713		0	610	639
2 TNMOC	- Summar	у							
3 Variability	Date Time (LST	n) 🔺	1	2	3	4	5	6	7
	06/01/2011 00:0	00	P	8	0				
4 Benzene:Toluene	08/01/2011 01:0	00		-					
5 Ethylene:Ethane	08/01/2011 02:0	00		-	•				
	08/01/2011 03:0	00			0				
6 Propylene:Propane	08/01/2011 04:0	00		0	-				
	08/01/2011 05:0	00			•				
7 O-Xylene:M/P Xylene	08/01/2011 08:0	00		-	•				
	08/01/2011 07:0	00		-					
8 Methylpentanes	06/01/2011 08:0	00		-	0				
	06/01/2011 09:0	00		-					
9 Undecane:Decane	08/01/2011 10:0	00		-	•				
	08/01/2011 11:0	00		-					
10 Olefins:Paraffins	08/01/2011 12:0	00		-	•				
	08/01/2011 13:0	00	•						
11 Carbon Tetrachloride	08/01/2011 14:0	00	P	•	•			•	
12 Formaldehyde	08/01/2011 15:0	00		-					
	08/01/2011 18:0	00		-	•				
	08/01/2011 17:0	00		-					

Automated Screening Checks (2)

Upcoming Features

- Customized automated data screening
 - Setup your own "One-click" auto-screening checks
- Secondary y-axis for time series
- Delete data sets

Future Feature Ideas

- Interactive map for Data Mart AQS requests
- Suite of automated screening checks for air toxics
- Compare site to national statistics
- New analyses and plot types
 - Plot concentrations and MDL values
 - Plot concentrations and annual averages
- Support for more import file formats

Summary

- DART is ready to use! Please let us know if you have questions or ideas for new features
- More new features to be deployed in November 2015
- After deployment, several webinars will be given
- Next phase of development to begin in 2016

sonomatech.com

Contact Us

Kevin Cavender

EPA PAMS Lead cavender.kevin@epa.gov

Jennifer DeWinter

Atmospheric Scientist jdewinter@sonomatech.com

Steve Brown

Senior Atmospheric Scientist sbrown@sonomatech.com

@sonoma_tech

Sonoma Technology, Inc. Environmental Science and Innovative Solutions

707.665.9900

sonomatech.com