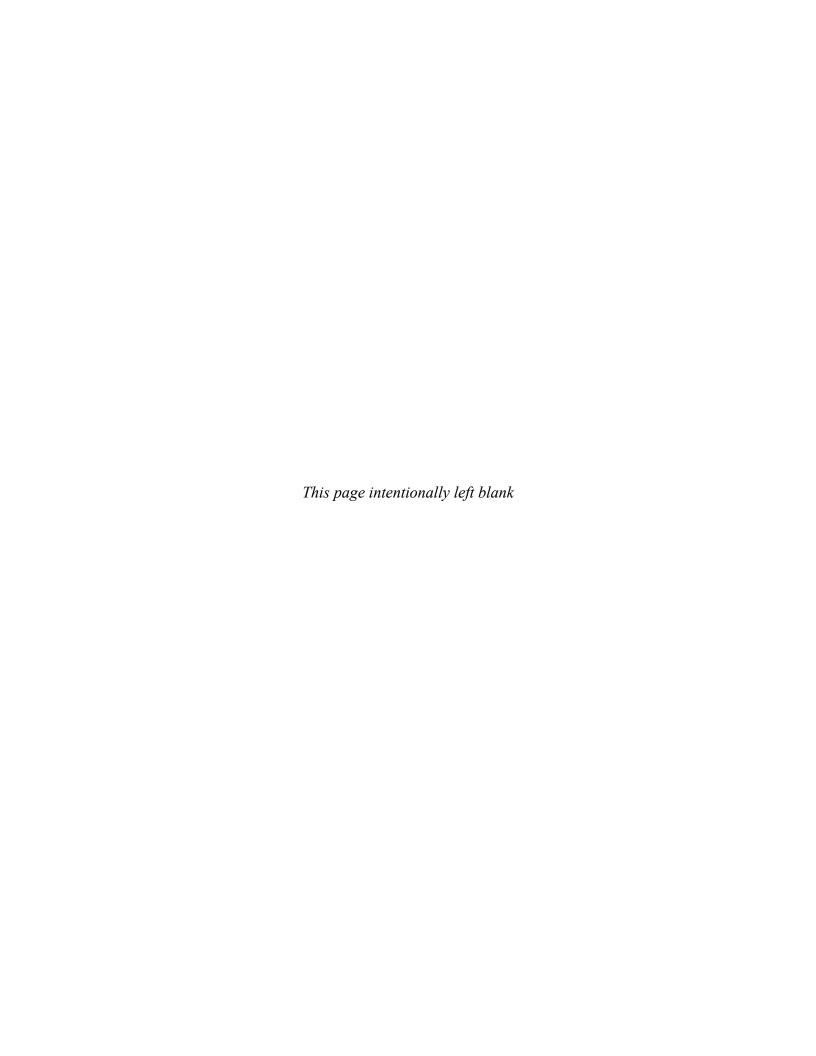


Final Assessment of Contaminated Sediments Harbortown Upstream Area Site Characterization Report

Detroit River Area of Concern, Detroit, Michigan


Great Lakes Architect-Engineer Services Contract: EP-R5-11-10

Prepared for
U.S. Environmental Protection Agency
Region 5
77 West Jackson Boulevard
Chicago, Illinois 60604-3507

Prepared by
EA Engineering, Science, and Technology, (MI) PLC
and Its Affiliate EA Science and Technology*
5918 Meridian Boulevard, Suite 4
Brighton, Michigan 48116

June 2019 Revision: 00 EA Project No. 62561.36

* EA Engineering, Science, and Technology, (MI) PLC is affiliated with EA Engineering, Science, and Technology, Inc., PBC who does business as EA Science and Technology in the State of Michigan.

CONTENTS

				<u>Page</u>
LIST	OF TAI	BLES		vi
LIST	OF FIG	URES .		vii
LIST	OF ACI	RONYN	MS AND ABBREVIATIONS	X
EXEC	UTIVE	SUMN	MARY	1
	ES.1 ES.2 ES.3 ES.4	EQUI UNIT SPAT	MENT CHEMISTRY RESULTS LIBRIUM PARTITIONING SEDIMENT BENCHMARK TOXICIT S AND PROBABLE EFFECTS CONCENTRATION QUOTIENTS. IAL ANALYSIS	Y 5
1.	INTRO	ODUCT	TION	1-1
	1.1	WOR	K SCOPE AND OBJECTIVES	1-1
		1.1.1 1.1.2	Project Objectives Objectives of the Site Characterization Report	
	1.2	SITE	LOCATION AND HISTORY	1-1
2.	HARE	BORTO	WN UPSTREAM AREA SITE INVESTIGATION	2-1
	2.1	SAMPLING PROGRAM DESIGN AND RATIONALE		2-1
		2.1.1 2.1.2	Sample Locations Number of Samples	
	2.2 2.3		GATION AND SURVEYMENT SAMPLING	
		2.3.1 2.3.2 2.3.3	Vibracore Sampling Ponar Grab Sampling Sediment Core Processing	2-3
	2.5 SAMPLE HANDLING,		LYTICAL PROGRAMPLE HANDLING, CHAIN-OF-CUSTODY, AND QUALITY RANCE/QUALITY CONTROL	
		2.5.1 2.5.2	Sample Handling, Chain-of-Custody, and Documentation	

	2.6	DECC	NTAMI	NATION	2-5		
	2.7		INVESTIGATION-DERIVED WASTE				
	2.8			FROM THE QUALITY ASSURANCE PROJECT PLAN A			
		FIELD) SAMPL	ING PLAN	2-6		
		2.8.1	Samplin	g Locations	2-6		
		2.8.2		Recovery			
		2.8.3	_	Processing and Analytical Program			
3.	RESU	JLTS			3-1		
	3.1	DATA	A EVALU	ATION	3-1		
		2 1 1	C		2 1		
		3.1.1	-	ison to Sediment Quality Guidelines	3-1		
		3.1.2		ion of Total Polycyclic Aromatic Hydrocarbons and Total	2.2		
		2 1 2	-	orinated Biphenyls			
		3.1.3		Simultaneously Extracted Metals to Acid Volatile Sulfide			
		3.1.4		ium Partitioning Sediment Benchmark Toxic Units			
		3.1.5	Probable	Effects Concentration Quotients	3-3		
	3.2	.2 RESULTS FROM THE HARBORTOWN UPSTREAM AREA SEDIM					
		INVESTIGATION					
		3.2.1	Sample	Recovery	3-4		
		3.2.2		<u> </u>			
		Bulk S	Results	3-5			
			3.2.2.1	Grain Size, Particle Size, and Density	3-6		
			3.2.2.2	Polychlorinated Biphenyl Aroclors			
			3.2.2.3	Polycyclic Aromatic Hydrocarbons			
			3.2.2.4	Total Organic Carbon			
			3.2.2.5	Metals	3-7		
			3.2.2.6	Ratio of Simultaneously Extracted Metals to Acid Volatile			
				Sulfide	3-12		
			3.2.2.7	Petroleum Hydrocarbons	3-12		
			3.2.2.8	Cyanide			
4.	EQU	EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARKS					
	4.1	POLY	CYCLIC	AROMATIC HYDROCARBONS	4-1		
	4.2 METALS						
5.	PROI	BABLE	EFFECTS	S CONCENTRATION QUOTIENTS	5-1		
6.		SPATIAL ANALYSIS TO DETERMINE HOT SPOTS WITHIN THE HARBORTOWN					

	6.1 6.2		HODOLOGYEL RESULTS FOR ALL PROBABLE EFFECT CONCEN	-
		CONS	TITUENTS IN THE HARBORTOWN UPSTREAM ARI	EA6-1
	6.3	EQUII	EL RESULTS FOR POLYCYCLIC AROMATIC HYDROLIBRIUM PARTITIONING SEDIMENT BENCHMARK THE HARBORTOWN UPSTREAM AREA	TOXIC UNITS
		6.3.1	Spatial Analysis for Polycyclic Aromatic Hydrocarbon E Partitioning Sediment Benchmark Toxic Units in Harbor Area	town Upstream
	6.4		EL RESULTS FOR PROBABLE EFFECTS CONCENTR TIENTS FOR THE HARBORTOWN UPSTREAM AREA	
		6.4.1	Spatial Analysis for Probable Effects Concentration Quo Harbortown Upstream Area	
	6.5		SIFICATION OF HOT SPOTS BASED ON ALL KRIGI HARBORTOWN UPSTREAM AREA	
		6.5.1 6.5.2	Level 1 Hot SpotsLevel 2 Hot Spots	
			6.5.2.1 Harbortown Upstream Hot Spot 1	6-7
		<u>6.5.3</u>	Level 3 Hot SpotsError! Bookn	nark not defined.
			6.5.3.1 Harbortown Upstream Hot Spot 2	
	6.6	ASSES	PARISON OF HARBORTOWN UPSTREAM AREA HO SSMENTS FOR OTHER SECTIONS OF THE DETROIT DNCERN	RIVER AREA
7.	CONC	LUSIO	NS	7-1
3.	REFEI	RENCE	ES	8-1
APPE APPE	NDIX A NDIX E NDIX C NDIX I	B: LI' C: PH	ELD LOGBOOKS AND DATA COLLECTION FORMS THOLOGIC CORE LOGS IOTOGRAPHIC RECORD ARTICLE SIZE GRAPHS	

Revision: 00 Page vi June 2019

LIST OF TABLES

<u>Number</u>	<u>Title</u>
2-1	Harbortown Upstream Area Site Characterization Core Sample Coordinates and Field Notes
2-2	Harbortown Upstream Area Site Characterization Surface Sample Coordinates and Description
2-3	Harbortown Upstream Area Site Characterization Core Data
2-4	Harbortown Upstream Area Site Characterization Actual Analytical Program
3-1	Summary of Exceedances, HT
3-2	Sediment Results for Grain Size, HT
3-3	Sediment Results for PCB Aroclors, HT
3-4	Sediment Results for PAHs, HT
3-5	Sediment Results for Metals and TOC, HT
3-6	Sediment Results for SEM/AVS, HT
3-7	Sediment Results for TPHs, HT
3-8	Sediment Results for Cyanide, HT
4-1	ESBTUs for PAHs, HT
4-2	ESBTUs for SEM/AVS Metals, HT
5-1	PEC-Qs, HT
6-1	Harbortown Upstream Hot Spot PECs
6-2	Harbortown Upstream Hot Spot PAH ESBTUs
6-3	Harbortown Upstream Hot Spot PEC-Os

LIST OF FIGURES

<u>Number</u>	<u>Title</u>
1-1	Project Site Location
1-2	Harbortown Upstream Area
1-3	Combined Sewer Overflows and Industrial Outfalls in the Harbortown Upstream Area
2-1	Sample Locations
3-1	Total PCB Aroclor (ND = 0) Concentrations ($\mu g/kg$) – Harbortown Upstream Assessment of Contaminated Sediments
3-2	Total 17 PAHs (ND = $\frac{1}{2}$ RL) Concentrations (μ g/kg)– Harbortown Upstream Assessment of Contaminated Sediments
3-3	Arsenic Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-4	Cadmium Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-5	Chromium Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-6	Copper Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-7	Iron Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-8	Lead Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-9	Mercury Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-10	Nickel Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-11	Silver Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments

3-12	Zinc Concentrations (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-13	Total Petroleum Hydrocarbons (∑DRO+ORO) (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-14	Diesel Range Organics (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
3-15	Oil Range Organics (mg/kg) – Harbortown Upstream Assessment of Contaminated Sediments
4-1	ESBTUs for PAHs – Harbortown Upstream Assessment of Contaminated Sediments
5-1	PEC-Qs – Harbortown Upstream Assessment of Contaminated Sediments
6-1	Spatial Analysis for All Constituents – Harbortown Upstream Assessment of Contaminated Sediment Overview
6-2	Spatial Analysis for All Constituents- Harbortown Upstream Assessment of Contaminated Sediment
6-3	Spatial Analysis for PAH ESBTUs – Harbortown Upstream Assessment of Contaminated Sediment
6-4	Spatial Analysis for Mean PEC-Qs – Harbortown Upstream Assessment of Contaminated Sediment

Revision: 00

Page ix June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

This page intentionally left blank

Revision: 00

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Page x
June 2019

LIST OF ACRONYMS AND ABBREVIATIONS

°C Degree Celsius

μg/kg Microgram(s) per kilogram

μmol Micromole(s)

μmol/g_{oc} Micromole(s) per gram organic carbon

AOC Area of Concern

APTIM APTIM Federal Services, LLCAVS Acid volatile sulfide

COC Contaminant of concern CSO Combined sewer overflow

cy Cubic yard(s)

DRO Diesel range organics

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate

EA Science and Technology

EGLE Michigan Department of Environment, Great Lakes, and Energy

EPA U.S. Environmental Protection Agency

ESB Equilibrium Partitioning Sediment Benchmarks

ESBTU Equilibrium Partitioning Sediment Benchmarks Toxicity Unit

FD Field duplicate

foc Fraction of organic carbon in sediment

FSP Field Sampling Plan

ft Foot (feet)

GLNPO Great Lakes National Program Office

GPS Global Positioning System

K_{oc} Sediment organic carbon/water partition coefficient

K_{ow} Octanol-water partition coefficient

LRROC Lower Rouge River Old Channel

MDNR Michigan Department of Natural Resources

mg/kg Milligram(s) per kilogram

MS Matrix spike

MSD Matrix spike duplicate

ND Not detected or non-detect

ORO Oil range organics

Revision: 00 Page xi June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

PAH Polycyclic aromatic hydrocarbon

PCB Polychlorinated biphenyl
PEC Probable effects concentration

PEC-Q Probable effects concentration quotient

PRG Preliminary remediation goal

QAPP Quality Assurance Project Plan

RAP Remedial Action Plan

RCRA Resource Conservation and Recovery Act

RL Reporting limit
RTK Real time kinematic

SCBA Sediment Contaminant Bioavailability Alliance

SEM Simultaneously extracted metals
SOP Standard operating procedure
SQG Sediment Quality Guideline

SSRSL Sample-Specific Risk Screening Level

TEC Threshold effects concentration

TOC Total organic carbon

TPH Total petroleum hydrocarbons (sum of ORO and DRO)

WAD Weak acid dissociable

WDNR Wisconsin Department of Natural Resources

Revision: 00
Page ES-1
June 2019

EXECUTIVE SUMMARY

This report presents the characterization of contaminated sediments for the Harbortown Upstream Area (site), located within the Detroit River Area of Concern (AOC), Detroit, Michigan. This work was conducted by EA Engineering, Science, and Technology, (MI) PLC and its affiliate EA Science and Technology (EA) for the U.S. Environmental Protection Agency's (EPA's) Great Lakes National Program Office (GLNPO) in accordance with the Quality Assurance Project Plan and Field Sampling Plan for the Harbortown Upstream Area Site Characterization, Detroit River AOC, Detroit, Michigan (EA 2018), finalized in October 2018. To address the delisting criteria and allow for the eventual removal of the Degradation of Benthos beneficial use impairment, EPA's GLNPO, Michigan Department of Environmental Quality, Detroit River Public Advisory Committee, and Friends of Detroit River initiated an effort in 2012 to define the "known contaminated sediment sites" in the Detroit River. The partnership conducted a content analysis of a number of contaminant studies and established six sediment target sites. The Harbortown Upstream Area is an extension of the Harbortown sediment site, which is one of the six target areas.

The purpose of this field investigation was to determine the nature and extent of chemical contamination in the areas of soft sediment deposition. This Site Characterization Report summarizes the findings from the field investigation, including data tables and maps, data interpretations, and conclusions of the investigation. The overall objective of this report is to identify priority areas within the Harbortown Upstream site at which remediation efforts might be warranted or where further investigation should be conducted. This Executive Summary provides a synopsis of the findings of the Site Characterization Report. Details on the site background and methodology, and further detail on the findings and conclusions are presented in Chapters 1 through 8 of the report.

ES.1 SEDIMENT CHEMISTRY RESULTS

Sampling was conducted to delineate the nature and extent of sediment contamination in the Harbortown Upstream Area of the Detroit River AOC. Thirty samples from locations HT18-01 through HT18-32 were collected from the surface interval to a depth of ten feet. Sampling extended from upstream location HT18-01, located southeast of the Keelson Road Canal, to location HT18-30, the furthest downstream location, just off the shore of Gabriel Richard Park east of the MacArthur Bridge. Two locations (HT18-31 and -32) were located in the center of the channel between Belle Isle and US mainland, and HT18-03 was located within Connor Creek by the request of EPA.

Constituent concentrations detected in sediment samples were compared to various sediment quality metrics including threshold effects concentrations (TECs), probable effects concentrations (PECs), Equilibrium Partitioning Sediment Benchmark Toxicity Units (ESBTUs), Probable Effects Concentration Quotients (PEC-Qs), and Sample-Specific Risk Screening Levels (SSRSLs). TECs typically represent concentrations below which adverse biological effects are unlikely to be observed, while PECs typically represent concentrations above which adverse effects are likely to be observed (MacDonald et al. 2000). Concentrations that are between the

Revision: 00 Page ES-2 June 2019

TEC and PEC represent the concentrations at which adverse biological effects occasionally occur. Total petroleum hydrocarbon (TPH) (diesel range organics [DRO] + oil range organics [ORO]) results were compared to SSRSLs as a PEC has not been developed for DRO and ORO. ESBTUs were calculated to estimate whether there is potential ecological risk associated with exposure to pore water that is in equilibrium with a measured concentration of the contaminant in the sediment. PEC-Qs are used to evaluate the combined effects of chemical mixtures on the toxicity of sediments to benthic organisms against recommended benchmarks including mean PEC quotients of 0.1, 0.5, 1, and 5 (Ingersoll et al. 2001).

Bulk Chemistry

Total polychlorinated biphenyl (PCB) concentrations (not detected [ND]=0) exceeded the TEC in five of the 29 surface grab samples in the Harbortown Upstream Area and no concentrations exceeded the PEC. In the core samples, total PCB concentrations exceeding the PEC were detected in at least one depth interval at four locations. The maximum total PCB concentration was detected at HT18-06.

For total 17 polycyclic aromatic hydrocarbons (PAHs) (ND=1/2 reporting limit [RL]), 22 surface grab samples had a maximum concentration between the TEC and PEC and no samples exceeded the PEC. In the core samples, 15 locations had a maximum total 17 PAHs concentration in at least one depth interval that was between the TEC and PEC; two locations had a maximum total 17 PAHs concentration in at least one depth interval that was between one and two times greater than the PEC; and four locations had a maximum total 17 PAHs concentration in at least one depth interval that exceeded three times the PEC. The maximum total 17 PAHs concentration in a surface sample and a subsurface sample were both detected at HT18-25.

For arsenic, two surface grab samples had a maximum concentration between the TEC and PEC and no samples exceeded the PEC. In the core samples, 12 locations had a maximum arsenic concentration in at least one depth interval that was between the TEC and PEC. One location had a maximum arsenic concentration in at least one depth interval that was between one and two times greater than the PEC. The maximum total arsenic concentrations in surface samples were detected at HT18-01 and HT18-05, and the maximum subsurface sample concentration was detected at HT18-08.

For cadmium, six surface grab samples had a maximum concentration that was between the TEC and PEC and one surface grab sample had a maximum cadmium concentration between one and two times greater than the PEC. In the core samples, five locations had a maximum cadmium concentration in at least one depth interval that was between the TEC and PEC. Seven locations had a maximum cadmium concentration in at least one depth interval that was one to two times greater than the PEC; and four locations had a maximum cadmium concentration in at least one depth interval that exceeded three times the PEC. The maximum cadmium concentrations in a surface grab sample and a subsurface were detected at HT18-03.

For copper, 17 surface grab samples had a maximum concentration that was between the TEC and PEC and no surface samples had maximum concentrations exceeding the PEC. In the core

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Revision: 00 Page ES-3 June 2019

samples, 12 locations had a maximum copper concentration in at least one depth interval that was between the TEC and PEC. Five locations had a maximum copper concentration in at least one depth interval that was between one and two times greater than the PEC, and one location had a maximum copper concentration in at least one depth interval that exceeded two times the PEC. The maximum surface grab sample copper concentration was detected at HT18-03 and maximum subsurface concentration was detected at HT18-18.

For iron, 11 surface grab samples had a maximum concentration that was between the TEC and PEC and no surface grab samples had maximum iron concentrations that exceeded the PEC. In the core samples, 15 locations had a maximum iron concentration in at least one depth interval that was between the TEC and PEC, and no subsurface samples had maximum iron concentrations that exceeded the PEC. The maximum surface grab sample iron concentration was detected at HT18-30 and maximum subsurface concentration was detected at HT18-09.

For lead, 15 surface grab samples had a maximum lead concentration that was between the TEC and PEC and one surface grab sample had a maximum lead concentration that exceeded two times the PEC. In the core samples, eight locations had a maximum lead concentration in at least one depth interval that was between the TEC and PEC. Eight locations had a maximum lead concentration in at least one depth interval that was one to two times greater than the PEC; and five locations had a maximum lead concentration in at least one depth interval that exceeded three times the PEC. The maximum surface grab sample lead concentration was detected at HT18-16 and the maximum subsurface concentration was detected at HT18-19.

For mercury, four surface grab samples had a maximum mercury concentration that was between the TEC and PEC. One surface grab sample had a maximum mercury concentration that was between one and two times greater that the PEC; and one surface grab sample had a maximum mercury concentration that exceeded two times the PEC. In the core samples, ten locations had a maximum mercury concentration in at least one depth interval that was between the TEC and PEC. Four locations had a maximum mercury concentration in at least one depth interval that was greater than the PEC; and three locations had a maximum mercury concentration in at least one depth interval that exceeded three times the PEC. The maximum surface grab sample mercury concentration was detected HT18-18.

For nickel, fifteen surface grab samples had a maximum nickel concentration that was between the TEC and PEC and two surface grab samples had a maximum nickel concentration that was between one and two times greater that the PEC. In the core samples, 13 locations had a maximum nickel concentration in at least one depth interval that was between the TEC and PEC. Seven locations had a maximum nickel concentration in at least one depth interval that was between one and two times greater than the PEC and one location had a maximum nickel concentration in at least one depth interval that exceeded two times the PEC. The maximum surface grab sample nickel concentration and subsurface sample nickel concentration were both found at location HT18-03.

Revision: 00 Page ES-4 June 2019

For silver, none of the surface grab sample silver concentrations exceeded the TEC. In the core samples, two locations had a maximum silver concentration in at least one depth interval that was between the TEC and PEC. Four locations had a maximum silver concentration in at least one depth interval that was between one and two times greater than the PEC; and one location had a maximum nickel concentration in at least one depth interval that was between two and three times greater than the PEC. The maximum surface grab sample silver concentration and subsurface silver concentration were both found at location at HT18-03.

For zinc, 14 surface grab samples had a maximum zinc concentration that was between the TEC and PEC and one surface grab sample had a maximum nickel concentration that was between one and two times greater that the PEC. In the core samples, three locations had a maximum zinc concentration in at least one depth interval that was between the TEC and PEC. Nine locations had a maximum zinc concentration in at least one depth interval that was between one and two times greater than the PEC and one location had a maximum zinc concentration in at least one depth interval that exceeded two times the PEC. The maximum surface grab sample zinc concentration and subsurface sample zinc concentration were both found at location HT18-03.

The ratio of simultaneously extracted metals (SEM) to acid volatile sulfide (AVS) was calculated for all surface grab samples. Three samples had an SEM/AVS ratio greater than or equal to one (HT18-10, -17, and -19). This indicates that metals may be bioavailable and there is potential for toxicity to benthic organisms.

The highest concentration of DRO (C_{10} - C_{20}) was detected in the surface grab sample from location HT18-03 (930 milligrams per kilogram [mg/kg]). The highest concentration of ORO (C_{20} - C_{36}) was also detected in the surface grab sample from HT18-03 (1,300 mg/kg). DRO (C_{10} - C_{20}) and ORO (C_{20} - C_{36}) concentrations were summed (by location) to create a TPH concentration (TPH [DRO+ORO]) for each location. DRO and ORO results were compared to SSRSLs as TEC and PECs have not been developed for TPH (DRO + ORO). Twelve locations had DRO concentrations exceeding the SSRSL. Three locations had DRO concentrations that were between three and four times the respective SSRL; four locations had DRO concentrations that were between two and three times the respective SSRL; and five locations had DRO concentrations that ORO concentrations exceeding the SSRSL. Five locations had DRO concentrations that were between two and three times the respective SSRL and four locations had DRO concentrations that were between one and two times the respective SSRL.

There were no locations with TPH values greater than 5,000 mg/kg; HT18-03 was the only location with a TPH (DRO+ORO) value between 1,000 and 5,000 mg/kg; 21 locations had TPH values between 100 and 1,000 mg/kg; and seven locations had a TPH value less than 100 mg/kg.

For cyanide, five samples had concentrations that exceeded the EPA Region 5 Resource Conservation and Recovery Act (RCRA) screening value for weak acid dissociable (WAD) cyanide at 0.1 mg/kg, and three samples had concentrations that exceeded the EPA Region 5 RCRA screening value for total cyanide at 0.1 mg/kg. The maximum WAD cyanide

Revision: 00 Page ES-5 June 2019

concentration was detected at location HT18-03 and the maximum total cyanide concentration was detected at HT18-06.

ES.2 EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARK TOXICITY UNITS AND PROBABLE EFFECTS CONCENTRATION QUOTIENTS

ESBTUs were calculated to estimate whether there is potential for ecological risk associated with exposure to pore water that is in equilibrium with a measured concentration of contaminant in the sediment.

Typically, a PAH ESBTU less than or equal to 1 indicates that benthic organisms are not expected to be harmed by contamination present in the sediments (EPA 2003a). The samples with PAH ESBTUs greater than 1 may be toxic to aquatic life. In the Harbortown Upstream area, three surface grab sample locations had PAH ESBTU between 1 and 7.5, and all the remaining surface grab sample locations had PAH ESBTU values that were less than 1. In the core samples, 18 locations had a subsurface sample PAH ESBTU greater than 1 in at least one core depth interval. At HT18-19, the maximum PAH ESBTU value was greater than 10 in at least one subsurface depth interval; and at 17 locations, the maximum PAH ESBTU value was between 1 and 7.5 in at least one depth interval.

ESBTU results for metals did not exceed 130 micromoles per organic compound (μ mol/goc) in any surface grab samples in the Harbortown Upstream Area.

PEC-Qs are used to evaluate the combined effects of chemical mixtures on the toxicity of sediments to benthic organisms against recommended benchmarks including mean PEC quotients of 0.1, 0.5, 1, and 5 (Ingersoll et al. 2001). Consensus-based freshwater sediment quality guidelines (SQGs) are used to calculate concentration quotients (or hazard quotients), defined as measured sediment concentrations divided by the specific SQG for that particular chemical or metal. The principle of PEC-Qs is to calculate the geometric mean of all quotients for a particular sediment sample, including those for metals, PAHs, and PCBs.

Ingersoll et al. demonstrated a relationship between the mean PEC-Q and sediment toxicity. This work showed that when the geometric mean PEC-Q was regressed with the percent toxicity found in a sample (typically growth or mortality), and the geometric mean of the PEC-Qs was approximately 1, between 30 and 50 percent of the organisms showed a toxic effect. This result implied that between 50 and 70 percent of the organisms should not show an effect when the PEC-Q is 1. The proportion of organisms that showed a toxic effect was in the range of 6 to 35 percent when the geometric mean of the PEC-Q of 0.5 was used, meaning that between 65 and 94 percent of organisms would not be expected to show a toxic effect when the PEC-Q was 0.5 (Ingersoll et. al. 2001).

A single PEC-Q was determined for each sediment sample (determined by the mean PEC-Q) to provide an overall measure of chemical contamination and to support an evaluation of the combined potential effects of multiple constituents in the sediment collected from the site (EPA 2000). The mean PEC-Qs in the Harbortown Upstream area ranged from 0.03 to 3.41. The

Revision: 00
Page ES-6
June 2019

mean PEC-Q for each sediment sample was compared to benchmarks of 0.5, 1, and 5. In the surface grab samples, all the locations had mean PEC-Q values between 0 and 0.5. In the core samples, eight locations had a PEC-Q in at least one depth interval that was between one and five; five locations had a maximum PEC-Q value in at least one depth interval that was between 0.5 and 1; and the remaining locations had subsurface samples with PEC-Q values between 0 and 0.5.

ES.3 SPATIAL ANALYSIS

To determine the location of hot spots within the Harbortown Upstream Area, all individual constituents with concentrations exceeding their respective PEC in sediment samples, calculated PAH ESBTUs, and the calculated PEC-Qs were spatially interpolated using the kriging method. Although ESBTUs were also calculated for metals, these data were not included in the model inputs for the spatial analysis because only three results exceeded the relevant thresholds and these results occurred within the hot spots that were otherwise identified.

Determination of hot spots allows priority areas to be targeted for further investigation or remediation. Five hot spots in the study area where identified where one or more analytes were present at concentrations exceeding the PEC. The five identified hot spot areas were prioritized for further investigation and potential remediation efforts by taking into consideration the results of the spatial analysis of PAH ESBTUs and PEC-Qs.

Hot spots were categorized as Levels 1, 2, or 3, consistent with previous characterizations in the Detroit River AOC. Level 1 hot spots are recognized as those having the highest impact, Level 2 the impact is lower, and Level 3 hot spots are identified as having the lowest impact and lowest priority for further investigation. To be considered Level 1, hot spots must have a contaminant result that is equal to or greater than three times the respective PEC, a PEC-Q value equal to or greater than 5, or an ESBTU equal to or greater than 7.5. To be considered Level 2, hot spots must have a contaminant result that is equal to or greater than three times the respective PEC, a PEC-Q value equal to or greater than 1, or an ESBTU equal to or greater than 7.5. To be considered Level 3, hot spots must have a contaminant result that is equal to or greater than three times the respective PEC, a PEC-Q value equal to or greater than 0.5, or an ESBTU equal to or greater than 1.

Harbortown Upstream Hot Spots 1, 3, and 4 each have at least one contaminant of concern (COC) result that is equal to or greater than three times the respective PEC and PEC-Q values greater than 1, therefore, meeting the Level 2 criteria. Harbortown Upstream Hot Spots 2 and 5 each have at least one contaminant of concern (COC) result that is equal to or greater than three times the respective PEC, PEC-Q values greater than 0.5, and ESBTU values greater than 1, therefore, meeting the Level 3 criteria.

Harbortown Upstream Hot Spot 1 contains seven sample locations (HT18-03, -04, -05, -06, -07, -08, and -09). The COCs for this hot spot area include total PCBs, total 17 PAHs, and nine metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc). The predominant constituents contributing to the elevated concentrations are total PCBs (HT18-03

Revision: 00 Page ES-7 June 2019

and -06), total 17 PAHs (HT18-08), cadmium (HT18-03 and 07), and lead (HT18-03, -05, and -06), which all exceed three times the PEC. Five sample locations in Hot Spot 1 had PAH ESBTUs between 1 and 7.5. All seven sample locations had metal ESBTUs less than 130 μ mol/goc. Four sample locations in Hot Spot 1 had PEC-Q values between one and five, and one sample location had PEC-Q values between 0.5 and 1.

Harbortown Upstream Hot Spot 2 contains three sample locations (HT18-12, -13, and -14). The COCs for this hot spot area include total 17 PAHs and five metals (cadmium, copper, lead, nickel, and zinc). The predominant constituent contributing to the elevated concentrations is cadmium (HT18-13), which exceeded three times the PEC. All of the sample locations in Hot Spot 2 have PAH ESBTUs between 1 and 7.5 and all of the sample locations have metal ESBTUs less than 130 μ mol/goc. Two sample locations have PEC-Q values between 0.5 and 1.

Harbortown Upstream Hot Spot 3 contains five locations (HT18-16, -18, -19, -20, and -21). The COCs for this hot spot area include total 17 PAHs and six metals (cadmium, copper, lead, mercury, silver, and zinc). The predominant constituents contributing to the elevated concentrations are total 17 PAHs, lead, and mercury, which all exceed three times the PEC in HT18-18 and -19. One sample location (HT18-20) in Hot Spot 3 had PAH ESBTUs between 1 and 7.5 and one sample location (HT18-19) had PAH ESBTUs exceeding 10. No sample locations had metal ESBTUs greater than 130 μmol/goc and two sample locations had PEC-Q values between one and five.

Harbortown Upstream Hot Spot 4 contains two locations (HT18-24 and -25). The COCs for this hot spot area include total 17 PAHs and six metals (cadmium, copper, lead, mercury, silver, and zinc). The predominant constituents contributing to the elevated concentrations are total 17 PAHs, lead, and mercury, which all exceed three times the PEC in HT18-25. HT18-25 in Hot Spot 4 had PAH ESBTUs between 1 and 7.5 and both sample locations had metal ESBTUs less than 130 μmol/goc. HT18-25 samples had a PEC-Q value between one and five.

Harbortown Upstream Hot Spot 5 contains three locations (HT18-28, -29, and -30). The COCs for this hot spot area include total 17 PAHs and six metals (cadmium, copper, lead, mercury, nickel, and zinc). The predominant constituent contributing to the elevated concentrations is cadmium, which exceeds three times the PEC in HT18-30. All three sample locations in Hot Spot 5 had PAH ESBTUs between 1 and 7.5 and each location had metal ESBTUs less than 130 μ mol/goc. One sample in Hot Spot 5 had PEC-Q values between 0.5 and 1.

ES.4 CONCLUSIONS

Based on the data collected during the Harbortown Upstream Area sediment characterization, there are no Level 1 high impact hot spots. The Level 2 hot spot areas with elevated concentrations of constituents are: Harbortown Upstream Hot Spots 1, 3, and 4. These Level 2 hot spots have an estimated total of approximately 466,194 cubic yard (cy) of sediment with constituent concentrations meeting the Level 2 criteria.

Revision: 00 Page ES-8 June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

The Level 3 hot spot areas with elevated concentrations of constituents are: Harbortown Upstream Hot Spots 2 and 5. These Level 3 hot spots have an estimated total of approximately 368,345 cubic yard (cy) of sediment with constituent concentrations meeting the Level 3 criteria.

The five hot spots identified in the Harbortown Upstream Area were determined to be Level 2 or 3 hot spots and should be considered for further investigation. Model results indicated that three of these five areas have (Level 2) a large volume of sediment with elevated concentrations of constituents exceeding three times respective PECs and elevated PAH ESBTUs and PEC-Qs. There is a possible correlation of elevated concentrations being associated with soft sediment; cores that were comprised primarily of fat, gray clay had fewer to no exceedances. Further delineation of the extent of sediment with elevated concentrations of constituents is recommended.

The modeling results for all constituents exceeding two or three times the PEC, the PAH ESBTUs, and the PEC-Qs suggest that the hot spot areas should be considered for further investigation and potential remediation within the Harbortown Upstream Area. However, it should be noted that the limited number of samples results in significant uncertainty of the volume of sediment with elevated concentrations of constituents in the hot spot areas.

Revision: 00 Page 1-1 June 2019

1. INTRODUCTION

This report presents the characterization of contaminated sediments for the Harbortown Upstream Area (site), located within the Detroit River Area of Concern (AOC), Detroit, Michigan. (Figure 1-1). This work was conducted by EA Engineering, Science, and Technology, (MI) PLC and its affiliate EA Science and Technology (EA) for the U.S. Environmental Protection Agency's (EPA's) Great Lakes National Program Office (GLNPO) in accordance with the Quality Assurance Project Plan (QAPP) and Field Sampling Plan (FSP) for the Harbortown Upstream Area Site Characterization, Detroit River AOC, Detroit, Michigan, which was finalized in October 2018 (EA 2018).

1.1 WORK SCOPE AND OBJECTIVES

1.1.1 Project Objectives

The purpose of the field investigation was to obtain the data necessary to define the spatial (horizontal and vertical) nature and extent of chemical contamination in the areas of soft sediment deposition—using the kriging method to model—in the Harbortown Upstream Area. The primary objectives of the field investigation were collection and chemical and physical analysis of surface and subsurface sediment from locations in the Harbortown Upstream Area to characterize the contaminated sediments as a basis for identifying possible areas of focus, for further evaluation and/or remediation, in the Detroit River.

1.1.2 Objectives of the Site Characterization Report

This Site Characterization Report summarizes the findings from the field investigation, including data tables and maps, data interpretation, and conclusions of the investigation. The results of this site characterization were evaluated to assess the sediment quality of the Harbortown Upstream Area. The overall objectives of this report are to define the spatial extent of constituents and soft sediment, develop a preliminary estimate of volume of sediment with elevated concentrations of constituents, and identify priority areas within the Harbortown Upstream Area where remediation efforts might be warranted.

1.2 SITE LOCATION AND HISTORY

The Detroit River is a 32-mile strait from Lake St. Clair to Lake Erie, forming the international boundary between the Province of Ontario, Canada, and the State of Michigan (Michigan Department of Environment, Great Lakes, and Energy [EGLE] 2008). The Detroit River flows in a southerly direction and connects the upper Great Lakes to Lake Erie. Although the Detroit River has five tributaries, more than 95 percent of its total flow comes from Lake Huron via the St. Clair River and Lake St. Clair (EPA 2015). The Detroit River AOC is 807 square miles and includes the areas that drain directly to the river, the drainage area of its tributaries in Michigan and Ontario (700 square miles of land), and a 107-square mile area of the City of Detroit sewershed. The Detroit River AOC and the Harbortown Upstream project area are shown on Figure 1-1. Approximately 75 percent of the total land area of the watershed is in Michigan

Revision: 00 Page 1-2 June 2019

(607.7 square miles) (MDNR1996). The mean discharge of the Detroit River into Lake Erie is 185,000 cubic feet (ft) per second. Its velocity is 1–3 ft per second, and the average time for water to pass through the river is approximately 21 hours. The project location includes the Harbortown Upstream Area, which is one of six target areas in the Detroit River AOC. The Harbortown Upstream Area is an approximately 3-mile stretch of the upper Detroit River beginning at AB Ford Park and extending to the MacArthur Bridge to Belle Isle. This area is upstream and contiguous with the Detroit River AOC Harbortown Upstream target sediment site (Figure 1-2). Within the Harbortown Upstream Area, there are 10 known combined sewer overflows (CSOs) (Figure 1-3); further details are provided in Section 3.2.

The Detroit River has a past and present use as an industrial and drinking water source. Very little historical information exists documenting the nature and extent of contamination. The river is heavily industrialized and has been for nearly 100 years. Under the Great Lakes Water Quality Agreement, a Detroit River Stage 1 Remedial Action Plan (RAP) was completed in 1991. The Stage 1 RAP described the river's use and conditions and identified 11 beneficial use impairments for the Detroit River AOC (Michigan Department of Natural Resources [MDNR] 1991). Known causes of the impairments include urban and industrial development in the watershed, bacteria, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), metals, and oils and greases. CSOs and municipal and industrial discharges are major sources of contaminants within the AOC. Stormwater runoff and discharge from tributaries in Michigan are also major sources of contaminants. The following beneficial use impairments were identified in the Stage 1 RAP:

- Restrictions on fish and wildlife consumption
- Tainting of fish and wildlife flavor
- Restrictions on drinking water consumption, or taste and odor
- Degradation of fish and wildlife populations
- Beach closings
- Fish tumors or other deformities
- Degradation of aesthetics
- Bird or animal deformities or reproduction problems
- Degradation of benthos
- Restriction on dredging activities
- Loss of fish and wildlife habitat.

At the time the Stage 1 RAP was drafted, six municipal drinking water intakes serving approximately 4.1 million people in nearly 100 communities, and approximately 25 industries, withdrew water from the Detroit River. As a receiving water, approximately 30 industries and power plants discharged cooling water and/or process water, and 10 municipal wastewater treatment plants discharged industrial and domestic wastewater. The principal industrial discharges were on the Michigan shoreline along the lower 15 miles of the river from Zug Island downstream through the Trenton Channel to the mouth of Lake Erie. Major industries included steel mills, petroleum refineries, electrical power generating plants, chemical manufacturing plants, and automotive part manufacturers. The largest discharger to the river was the Detroit

Revision: 00 Page 1-3 June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Water and Sewerage Department, which discharged an average of 715 million gallons per day, including waste from more than 700 industrial users. An additional 46 facilities discharged to Detroit River tributaries. The river also received urban and industrial runoff directly and through its tributaries and storm sewer systems (MDNR 1991).

Use of the river today is similar to 1991 except that there are fewer industries and wastewater treatment plants. In the Michigan portion of the AOC, there are currently four municipal drinking water intakes serving approximately 4.2 million people in nearly 127 communities. Approximately 20 industries and power plants discharge cooling water and/or process water to the river, and approximately 29 additional facilities discharge to the tributaries. There are five municipal wastewater treatment plants. The Detroit Water and Sewerage Department is still the largest discharger, discharging an average of 1.3 billion gallons per day, including waste from approximately 400 significant industrial users (EPA 2015).

The Stage 1 RAP and subsequent studies found that sediment contaminant concentrations in the Detroit River are generally much greater along the Michigan shoreline compared to the mid-river and Ontario shoreline (EPA 2015). The Michigan shoreline from the Rouge River downstream through the Trenton Channel appears to be the most impacted. Contaminant distributions in sediment reflect a combination of historical point sources and hydrological effects. Because there is little lateral mixing in the Detroit River, contaminants in sediment are believed to deposit according to longshore water flow following a longitudinal vector. This has resulted in high contaminant levels in near-shore zones, particularly downstream of point sources and tributaries, while large areas of the Detroit River exhibit moderate to low levels of contamination further away from the Michigan shore (MDNR 1991).

Within the Harbortown Upstream Area, there are 10 known CSOs (Figure 1-3). Elevated PCBs in the upper Detroit River are believed to be associated with discharge from some of these CSOs (Kenaga and Crum 1987). Historically, U.S. Rubber and Parke Davis operated industrial facilities within the Harbortown Upstream Area, which discharged to the Detroit River from five or six outfalls (Figure 1-3). These outfalls are believed to be currently inactive (EPA 2015).

Revision: 00 Page 1-4 June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

This page intentionally left blank

Revision: 00 Page 2-1 June 2019

2. HARBORTOWN UPSTREAM AREA SITE INVESTIGATION

The Harbortown Upstream Area site characterization was conducted in coordination with EPA. The investigations, including all sampling activities and analytical testing methods, were carried out in accordance with procedures outlined in the Harbortown Upstream FSP and QAPP (EA 2018).

2.1 SAMPLING PROGRAM DESIGN AND RATIONALE

The site-specific QAPP details the project data quality objectives and outlines how the sample collection program fulfills the project objectives (EA 2018). Sampling was conducted to delineate the nature and extent of sediment contamination in the Harbortown Upstream Area of the Detroit River AOC. Thirty samples from locations HT18-01 through HT18-32 were collected using a vibracoring system and ponar grab sampler provided and operated by Cetacean Marine from onboard the *R/V Mudpuppy* II that was operated by Cetacean Marine.

2.1.1 Sample Locations

Sample Locations were selected in consultation with EPA and EGLE based on historical sampling data, location of historical and current outfalls (Figure 1-3), water depth, and proximity to the navigation channel. The locations HT18-31 and 32 were identified for sediment sampling by EPA during the field event and were located upstream of the MacArthur Bridge in the center of the channel between Belle Isle and the US mainland side of the Detroit River. Ponar grabs and sediment cores were successfully collected from 29 of the 32 targeted locations. Collection of one core and one ponar surface sample for physical and chemical analysis was attempted at each location, with the exception of HT18-16 where only a ponar sample was taken, and HT18-27 where only a core sample was taken as described in Section 2.3.

Figure 2-1 presents the actual locations sampled in the Harbortown Upstream Area. Variance between the actual and target coordinates was calculated and documented and is provided in Table 2-1. Surface sample coordinates are provided in Table 2-2. Sample locations moved or abandoned in the field are described in Section 2.8.

2.1.2 Number of Samples

Sediment core samples and ponar grabs were successfully collected from 29 of the 32 sample locations in the Harbortown Upstream Area. Sediment core intervals were defined by observable lithological changes and sediment recovery and varied from 1.1 to 9.7 ft (Table 2-3). From the cores collected in the Harbortown Upstream Area, 142 sediment samples and 15 field duplicates (FDs) were submitted for analysis (Table 2-4). Tables 2-2 and 2-3 provide details of the sediment cores collected and analytical samples submitted.

A ponar grab sampler was used to collect sample volume from the top 6 inches (0-0.5 ft) of sediment at the 30 sample locations to support analysis of the uppermost interval. Sufficient

Revision: 00 Page 2-2 June 2019

volume for analysis of the surface sample was collected at 29 of the 32 sample locations and a total of 29 surface grab samples and three FDs were submitted for analysis.

2.2 NAVIGATION AND SURVEY

Cetacean Marine used an onboard real time kinematic (RTK) Global Positioning System (GPS) receiver—with a geodetic accuracy of 10 centimeters in the horizontal and two centimeters in the vertical planes at an update frequency of 1 hertz—with a preloaded base map identifying target sample locations to navigate to sample locations HT18-01 through HT18-30. Locations 18-31 and 18-32 were identified in the field by EPA.

The unit was checked for accuracy prior to use in accordance with EPA's Interim Guidance for Developing GPS Data Collection Standard Operating Procedures (SOPs) and QAPPs (EPA 2008) and the procedures outlined in the Harbortown Upstream Area site characterization QAPP (EA 2018). Once the vessel had navigated to a sample location, the sampling team visually confirmed that the proximal location or surroundings matched the proposed location as shown on the proposed sample location map in the QAPP (EA 2018) prior to sampling. Actual sample location coordinates were recorded on the field data sheets and stored in the RTK GPS unit at the time of sampling. Target and actual sample location coordinates are presented in Table 2-1.

2.3 SEDIMENT SAMPLING

Mobilization for the Harbortown Upstream Area sediment sampling effort commenced on 22 October 2018. Sample collection was initiated on 22 October 2018, and continued through 30 October 2018. Staging for the Harbortown Upstream Area field investigation took place at the historical stables in Belle Isle Park in Detroit, Michigan. Level D personal protective equipment (i.e., safety glasses, work boots, and nitrile gloves) were worn during core collection as necessary (EA 2018). EA's SOPs 016 and 059 for maintaining field logbooks (Attachment A of the FSP) were followed throughout sample collection and processing.

2.3.1 Vibracore Sampling

Cetacean Marine used vibracore technology to retrieve a total of 29 sediment cores from 32 locations for sediment sampling. Cores were retrieved as described in SOP MP103 (EA 2018). The vibracoring system consisted of the vibracore head, and control box located between the underwater cable and the power source. The vibracore head had a core tube clamp and an internal vibrator motor. The vibracorer applied thousands of vibrations per minute to help penetrate the sediment. The vibracorer was lowered to one ft above the water body and then turned on when the core tube extending below it made contact with the sediment surface. The vibracore system on board the *R/V Mudpuppy II* was a Rossfelder P3C Vibracore. The core barrel was fitted with polycarbonate 4-inch diameter core tubes for sample collection.

After retrieval, each core tube was capped at both ends, sealed, and measured. Each core tube was also labeled with the location number, direction of top and bottom of core, and date and time of retrieval. All sediment cores were stored upright on the *R/V Mudpuppy II*. At the end of each

June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

day, sediment cores were transferred to a refrigeration truck (cooled to 4 degrees Celsius [°C]) at the onshore staging areas. The cores were stored upright in the secured refrigeration truck until they could be processed. Appropriate holding times were maintained for all samples. Field books and sample collection data sheets were prepared in accordance with the procedures outlined in the FSP (EA 2018). A log of coring activities, sampling locations, water depths, and core recoveries was recorded in a permanently bound logbook in indelible ink. Personnel names, local weather conditions, and other information that impacted the field sampling program were also recorded. Each page of the logbook was numbered and dated by the personnel entering information. Copies of the field logbooks are provided in Appendix A.

2.3.2 Ponar Grab Sampling

A total of 29 surface sediment samples from locations HT18-01 through HT18-32 were successfully collected using a ponar sampler onboard the *R/V Mudpuppy II* and are included in this Site Characterization Report. The procedure included deploying the sampler off the *R/V Mudpuppy II* using a winch to deploy and retrieve the sampler to the deck, decanting water at the top of the sampler and transferring the sediment into a disposable aluminum tray. Multiple deployments were sometimes necessary to collect sufficient volume.

For each field effort, after ponar samples were retrieved, sediment for analysis of the ratio of simultaneously extracted metals (SEM) to acid volatile sulfide (AVS) was placed into a jar directly after sufficient volume for the surface sample was collected, and prior to homogenization of the material to minimize aeration of the sample. Samples for SEM/AVS analysis were filled with no headspace. Following collection of sediment for SEM/AVS, the remaining sediment for all other analyses was thoroughly homogenized and then transferred directly into laboratory-approved, labeled sample containers onboard the vessel. The surface samples were stored in a cooler with ice onboard the barge until they were transferred to the sample processing areas onshore and stored in a refrigeration truck (cooled to 4°C) until transit to laboratory facilities.

2.3.3 Sediment Core Processing

Sediment core sample processing was performed at a temporary staging location at the historical stables in Belle Isle Park in Detroit, Michigan. At the processing facility, cores were split lengthwise, photographed, and lithologically logged and sampled at depth intervals as described in the FSP and QAPP (EA 2018), unless otherwise noted. Sediments were classified in general accordance with the Unified Soil Classification System under ASTM International Standard D2487-11. Sediment logging activities were performed in accordance with SOP 016 (Attachment A of the FSP [EA 2018]).

After photographing and completing the core's lithologic log, interval-dedicated decontaminated spatulas or spoons were used to remove sediment from the designated sample intervals within a core and placed in clean, disposable aluminum trays. Prior to sample collection, sample interval material was homogenized by mixing until consistency was uniform. Cores were generally sampled at two-ft intervals. This was altered if there was a distinct change in lithology or there

was visible contamination. Sediment samples were packaged and shipped in accordance with EA SOPs (EA 2018). Re-used equipment (e.g., cutting tools, broad knife, spatula, etc.) was decontaminated in accordance with the decontamination procedures described in Section 2.6. Lithologic and photographic logs of sediment cores are provided in Appendixes B and C, respectively.

2.4 ANALYTICAL PROGRAM

The analytical program is summarized in Table 2-4. With a few exceptions due to inadequate sample volume (as detailed in Section 3.2.1), Harbortown Upstream Area sediment samples underwent the following analyses:

- PCBs (Aroclors)
- 34 PAHs
- Michigan 10 metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc) plus iron and nickel
- Total organic carbon (TOC)
- Percent solids/moisture.

In addition to the above analytical parameters, surface sediment samples (0- to 0.5-ft interval) were analyzed for:

- SEM/AVS
- Diesel range organics (DRO)
- Oil range organics (ORO)
- Grain size
- Cyanide.

These additional analyses were performed on the surface sediment samples because the data they yield are useful for assessing toxicity to organisms that typically contact only the surface sediments. Matrix spike (MS)/matrix spike duplicate (MSD) samples were not collected for percent solids or grain size.

2.5 SAMPLE HANDLING, CHAIN-OF-CUSTODY, AND QUALITY ASSURANCE/QUALITY CONTROL

2.5.1 Sample Handling, Chain-of-Custody, and Documentation

Sediment samples analyzed for PCBs (Aroclors), 34 PAHs, total Michigan metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc) plus iron and

Revision: 00 Page 2-5 June 2019

nickel, TOC, percent solids, SEM/AVS, DRO, ORO, grain size, and cyanide were picked up from the site sample processing facility by TestAmerica's courier and shipped to TestAmerica's laboratory in Burlington, Vermont. Samples were placed in the appropriate sample containers (obtained from TestAmerica), preserved, and labeled in accordance with the QAPP/FSP (EA 2018). With exception given to sediment collected for SEM/AVS analysis, sediments within an interval were mixed to uniform consistency to homogenize prior to placing in jars. Sediment sampled for SEM/AVS analysis was placed directly into jars after sufficient surface sample volume was collected, prior to homogenization. SEM/AVS samples were filled without headspace. In preparation for shipment to the laboratories, all samples were packaged in accordance with the procedures outlined in the FSP (EA 2018).

Sample labeling was performed in accordance with SOP 001 (Attachment A of the FSP [EA 2018]). Individual sample containers were labeled with a unique designation that corresponded to the specific geographic location, year of collection, and subsample depth interval. The FSP (EA 2018) outlines the specific sample identification procedures that were implemented. Sample identifications included the location (HT for Harbortown Upstream), the year of sampling (18 for 2018), the location number, and either "-SURF" for surface samples or the interval from the core in feet. An example of a sample identifier is "HT18-22-3050," which describes a sample collected from the Harbortown Upstream Area in 2018 at location 22 at the depth interval of 3-5 ft below sediment surface. Sample intervals within the core were determined based on lithological features, visual or olfactory signs of contamination, and guidance from EPA. FDs were designated by adding "FD" to the end of the sample identifier. MS/MSDs were designated by adding "MS" or "MSD" to the end of the sample identifier. For example: HT18-23-1030-FD or HT18-12-SURF-MS.

Chain-of-custody forms were completed and used to track samples from the time of sampling to the arrival of samples at the laboratory. Completed chain-of-custody forms are provided in Appendix A (available electronically) of the Data Usability Assessment Report (EA 2019).

2.5.2 Quality Control

Throughout the project, various measures were implemented to help facilitate the overall quality and usability of the collected data. The field investigation activities included collection of additional quality control samples (e.g., duplicates, MS/MSD, etc.) sufficient to meet the requirements of the data quality objectives as defined in Section A.7 of the QAPP (EA 2018). Duplicate samples were submitted as described in the FSP, and field and laboratory quality control requirements were completed in accordance with Section B.5 of the QAPP (EA 2018). Deviations from the QAPP/FSP can be found in Section 2.8.

2.6 DECONTAMINATION

Decontamination procedures were implemented during the field investigation to prevent crosscontamination between sampling locations. During sampling activities, disposable or dedicated sampling tools and materials were utilized whenever possible to minimize the decontamination

Revision: 00 Page 2-6 June 2019

effort. Decontamination procedures were carried out in accordance with the SOPs presented in Attachment A of the FSP (EA 2018).

2.7 INVESTIGATION-DERIVED WASTE

Following collection of the sediment samples, investigation-derived waste was managed in accordance with the procedures described in the SOPs presented in Attachment A of the FSP (EA 2018). In general, residual sediments and decontamination water were collected, drummed, and disposed of offsite in accordance with the EA SOPs. Water used for decontamination of the sampling equipment on the *R/V Mudpuppy II* was allowed to drain back into the river at each respective sampling location. Disposable materials and personal protective equipment that came into contact with site sediments were bagged and disposed of as general municipal waste.

2.8 DEVIATIONS FROM THE QUALITY ASSURANCE PROJECT PLAN AND FIELD SAMPLING PLAN

2.8.1 Sampling Locations

Thirty sample locations within the Harbortown Upstream Area were originally chosen based on historical sampling data, location of historic and current outfalls, water depth, and input from EGLE. Two additional samples were added at locations determined by EPA during the field event (Table 2-1).

Of the 32 actual sample locations in the Harbortown Upstream Area, 26 were more than 10 ft from the target sample location (Table 2-1). Per the QAPP, sample locations could be adjusted up to 33 ft (10 meters) to allow for accessibility. Of the 26 locations that were more than 10 ft from the target sample location, 19 locations were moved more than 33 ft from the target sample location (HT18-01, -02, -03, -04, -05, -09, -10, -11, -13, -15, -17, -18, -19, -20, -21, -24, -25, -27, and -30); EPA was aware of and approved these location moves.

Nine locations (HT18-01, -09, -10, -18, -19, -21, -24, -25, and -27) were shifted due to weather/wind and current conditions that affected anchoring placement at the time of core retrieval. Five locations (HT18-04, -13, -17, -20, and -30) were moved per EPA's request with concern for location in proximity to the shore or the MacArthur Bridge. Two locations (HT18-02 and HT18-15) were moved to avoid structures such as rip rap, pipeline, and large rocks. Two locations (HT18-03 and -05) were moved closer to the mouth of Connor Creek and within Conner Creek to follow expected contamination and HT18-11 was moved to avoid close proximity of a burned Bolbo boat. HT18-30 was shifted approximately 100 ft upstream from the MacArthur Bridge during the field effort; however, the coordinates in this report are estimated due to an error with GPS coordinates. Table 2-1 presents coordinates for the target and actual locations, as well as the distance between the actual and target locations.

Revision: 00 Page 2-7 June 2019

2.8.2 Sample Recovery

Sediment penetration and recovery of the cores, as observed through the clear core liner, were recorded on a field data collection form for each location. The recovery value was also verified immediately prior to processing to ensure sediment had settled in core tubes that were partially full. Sediment penetration and recovery of the cores used for chemical analysis are presented in Table 2-3. Per the QAPP, if sufficient core recovery (60 percent) is not achieved in during core collection, up to three attempts can be made at that sample location.

Cores were not recovered from three locations: HT18-16, -22, and -28 (Table 2-3). Stations HT18-22 and HT18-28 were abandoned as per instruction of EPA in favor of HT18-31 and HT18-32, while three attempts were made at HT18-16 with little to no recovery before this location was abandoned per EPA's request. Boring depths ranged from 2 ft (HT18-10 and HT18-21) to 10 ft (HT18-02, -06, -07, -08, -09, -11, -12, -13, -23, -25, -26, and -30). In four locations (HT18-14, -21, -24, and -27), two attempts were completed to collect a core that had 60 percent or more recovery; and in location HT18-23, three attempts were completed to collect a core with over 60 percent recovery. The number of attempts at each location is included in the field logbook and field data sheets in Appendix A. Details of the cores that were processed and submitted for analysis are presented in Table 2-3.

Surface samples were collected at 29 of the 32 sample locations (Tables 2-2 and 2-3). No surface sediment was retrieved at locations HT18-22 and 28, as these stations were abandoned per instruction of EPA in favor of locations HT18-31 and 32. After six ponar attempts, HT18-27 was abandoned per instruction from EPA. In four locations (HT18-10, -14, -19, -26), two ponar attempts were consolidated to achieve the needed volume for grab sample analysis; in location HT18-29, three attempts were consolidated; and in location HT18-21, four ponar attempts were consolidated. The number of attempts at each location is included in the field logbook and field data sheets in Appendix A, and details of the cores that were processed and submitted for analysis are presented in Table 2-2.

2.8.3 Sample Processing and Analytical Program

In accordance with the QAPP, sediment core intervals were defined by observable lithological changes. Per EPA's direction during the field investigation, sediment core intervals were also observed for visible or olfactory signs of contamination (e.g., non-aqueous phase liquid, sheen, hydrocarbon odor). Table 2-4 presents the actual analytical program, including the start and end of each sample interval. Sediment intervals are documented in the field data collection forms (Appendix A), lithologic logs (Appendix B), and the photographic log (Appendix C).

Revision: 00

Page 2-8 June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

This page intentionally left blank

Revision: 00 Page 3-1 June 2019

3. RESULTS

3.1 DATA EVALUATION

The overall data quality objective for the project was to provide data of known and documented quality to characterize current site conditions in the Harbortown Upstream Area. Data collected from the Harbortown Upstream Area were validated by evaluating the completeness, correctness, and conformance of the data set against the method, SOP, or contract requirements documented in the QAPP/FSP (EA 2018). The data review and validation achieved the project goals. The overall data review and validation program attained the project objectives with no adverse effects on data quality or usability (EA 2019).

To address the goals of this assessment, the validated data collected under this investigation were compared to the consensus-based threshold effects concentrations (TECs) and the probable effects concentrations (PECs) of the Sediment Quality Guidelines (SQGs) where available (MacDonald et al. 2000; Persaud et al. 1993; EPA 2003b, 2005; Wisconsin Department of Natural Resources [WDNR] 2003). A PEC has not been developed for total petroleum hydrocarbon (TPH) (DRO + ORO); however, the DRO and ORO results were compared to Sample-Specific Risk Screening Level (SSRSLs). Equilibrium Partitioning Sediment Benchmarks Toxicity Units (ESBTUs) were calculated to estimate whether there is potential ecological risk associated with exposure to pore water that is in equilibrium with a measured concentration of the contaminant in the sediment. Probable effects concentration quotients (PEC-Qs) are used to evaluate the combined effects of chemical mixtures on the toxicity of sediments to benthic organisms against mean PEC quotients or benchmarks (mean quotients of 0.1, 0.5, 1, and 5) (Ingersoll et al. 2001). Contaminant concentrations exceeding the applicable SQGs, SSRSLs, ESBTUs, or PEC-Qs were identified. Figures have been prepared to visually present contaminant concentrations and identify potential hot spots or focus areas within the study area.

Detected values equal to or greater than the method detection limit, but less than the laboratory reporting limit (RL), were J-qualified and are estimated. Analytes that were not detected were U-qualified. Field duplicate results are presented in the analytical tables but are not included in the bulk sediment results figures and discussion.

3.1.1 Comparison to Sediment Quality Guidelines

The SQGs were developed as informal (non-regulatory) guidelines for use in interpreting chemical data from analyses of sediments. Several biological-effects approaches have been used to assess freshwater sediment quality relative to the potential for adverse effects on benthic organisms, including the TEC/PEC (MacDonald et al. 2000) approach. The TEC and PEC levels were derived using concentrations with both effects and no observed effects (MacDonald et al. 2000). TECs typically represent concentrations below which adverse biological effects are unlikely to be observed, while PECs typically represent concentrations above which adverse effects are likely to be observed (MacDonald et al. 2000). Concentrations that are between the TEC and PEC represent the concentrations at which adverse biological effects occasionally

Revision: 00 Page 3-2 June 2019

occur. TEC and PEC levels for iron were not available from the MacDonald et al. document, and only a TEC value was provided for silver. Therefore, iron concentrations in sediment from the Harbortown Upstream Area were compared to the TEC and PEC values for iron documented in the Ontario effect-based freshwater SQGs (Persaud et al. 1993), and silver concentrations were compared to TEC and PEC values for silver documented in draft criteria for managing contaminated sediment in British Columbia (MacDonald and MacFarlane 1999). These iron and silver benchmarks were recommended for use by EGLE and EPA, and they also appear in guidance from the WDNR (WDNR 2003).

3.1.2 Calculation of Total Polycyclic Aromatic Hydrocarbons and Total Polychlorinated Biphenyls

When calculating total 17 PAHs, results that were J-qualified were calculated using the result value, and results that were U-qualified were calculated using one-half the RL. Substituting one-half the RL (not detected [ND] = ½ RL) for each ND provides a conservative estimate of the concentration. This method, however, tends to produce results that are biased high, especially in data sets where many samples are NDs. This overestimation is important to consider when comparing calculated total values to guidelines. Total PCB results often have a significant number of NDs. Additionally, individual PCB Aroclors represent mixtures of PCB congeners, creating the potential for double counting. For these reasons, total PCB concentrations were calculated by summing the concentrations of each PCB Aroclor with NDs set equal to zero (ND = 0) to reduce the potential for overestimation.

3.1.3 Ratio of Simultaneously Extracted Metals to Acid Volatile Sulfide

The bioavailability of divalent metals to aquatic organisms is influenced by the presence of AVS. In low oxygenated (anaerobic) environments, divalent metals precipitate as metal sulfides, making them unavailable for uptake by aquatic organisms. Using this method, six metals (cadmium, copper, lead, nickel, mercury, and zinc) were extracted, measured, converted to units of micromoles per gram and added together (including any values that were J-qualified) to determine the amount of SEM. If a metal was not detected, it was considered a zero in the calculation. SEM was then compared to the amount of AVS detected (units of micromoles per gram) in the same sediment sample. If AVS was not detected in the sample, the SEM/AVS ratio was not calculated.

An SEM/AVS ratio less than 1 indicates a high degree of probability that the metals are bound as metal sulfides and not bioavailable to aquatic organisms. If the SEM/AVS ratio is greater than 1, then the metals in sediment exceed the sulfide binding ability and have a higher probability of being bioavailable to aquatic organisms.

While the SEM/AVS ratio provides information on bioavailability, it does not always inform toxicity. Metal toxicity is evaluated through an indirect estimate of bioavailability based on the concentrations of AVS and SEM, as well as TOC in the sediments. Metal ESBTUs were calculated following the methods outlined in Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal

Revision: 00 Page 3-3

June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc) (EPA 2005). The molar concentration of AVS was subtracted from the molar concentration of the sum of the SEM measured in each sediment sample, and the result was divided by the fraction of organic carbon, accounting for preferential sorption of metals to organic carbon. It should be noted that if the particular sample has excess AVS such that all SEM is accounted for, this value can be negative.

As presented in the EPA 2005 guidance, when metals ESBTUs are calculated using this method, a value less than 130 micromoles (μ mol) of residual SEM per gram organic carbon (g_{oc}) indicates that the sediment poses a low risk of adverse biological effects associated with metals. Values between 130 and 3,000 μ mol/ g_{oc} may have adverse effects, and values greater than 3,000 μ mol/ g_{oc} are expected to be associated with adverse effects. Details of the metals ESBTU calculation and results are presented in Chapter 4.

3.1.4 Equilibrium Partitioning Sediment Benchmark Toxic Units

ESBTUs were used to estimate if a potential ecological risk exists associated with exposure to pore water that is in equilibrium with a measured concentration of a contaminant in the sediment. Typically, a PAH ESBTU less than or equal to 1 indicates that benthic organisms are not expected to be harmed by contamination present in the sediments (EPA 2003a). The PAH ESBTU benchmark of 7.5 is based on the preliminary remediation goal (PRG) for PAHs developed for the Lower Rouge River Old Channel (LRROC) Great Lakes Legacy Act site, which is also located within the Detroit River AOC (AMEC et al. 2013). The LRROC PRG is based on the Sediment Contaminant Bioavailability Alliance (SCBA) dataset (Geiger 2010), which is a widely accepted sediment assessment tool comprised of over 250 samples from 18 sediment sites where PAHs were the source of contamination. The dataset was used to evaluate risk to sensitive species (*Hyalella azteca*, freshwater amphipod) in the benthic community based on pore water exposure. The LRROC PRG was used for comparison based on guidance provided by EGLE and EPA.

Eighty percent survivability is a typical level of acceptability for benthic organisms exposed to pore water from contaminated sediments. The LRROC PRG was established at 85 percent survivability based on SCBA toxicity results from the 28-day *Hyalella* test. Based on a correlation using the SCBA dataset, 85 percent survivability correlated with a level of 5 toxic units; however, most sediment chemistry samples are based on analysis of bulk sediments. For the LRROC site, in order to arrive at a bulk sediment toxic unit equal to 5 toxic units in pore water, a relationship was established between pore water and bulk sediment based on site-specific PAH samples. The result was that a toxic unit of 7.5 in bulk sediments was found to be equal to 5 toxic units in pore water. Details of the ESBTU calculations and results are presented in Chapter 4.

3.1.5 Probable Effects Concentration Quotients

PEC-Qs were used to evaluate the combined effects of chemical mixtures on the toxicity of sediments to benthic organisms against mean PEC quotients or benchmarks (mean quotients of 0.1, 0.5, 1 and 5) (Ingersoll et al. 2001). The PEC-Qs combine data from multiple constituents in

Revision: 00 Page 3-4 June 2019

sediments into one unit-less index, and thus are useful in comparing the quality of sediments from different locations and at different times (EPA 2000). A benchmark PEC-Q of 0.5 was used because the proportion of organisms that show toxic effect drops to 6–35 percent when a geometric mean of the PEC-Q of 0.5 is used, meaning that between 94 and 65 percent of organisms do not show a toxic effect when the PEC-Q is 0.5 (Ingersoll et. al. 2001). Details of the PEC-Q calculations and results are presented in Chapter 5.

3.2 RESULTS FROM THE HARBORTOWN UPSTREAM AREA SEDIMENT INVESTIGATION

Due to the close proximity of the sample locations within the Harbortown Upstream Area, there was no division of this area needed for reporting and visual presentation. HT18-01 was the sampling location furthest upstream and was located off southeast of the Keelson Road canal. HT18-30 was the sampling location furthest downstream and was located off the shore of Gabriel Richard Park just east of the MacArthur Bridge. Two locations (HT18-31, and -32) were located in the center of the channel between Belle Isle and US mainland, and HT18-03 was located within Connor Creek by the request of EPA.

3.2.1 Sample Recovery

One core was collected and processed from 29 of 32 locations during the 2018 Harbortown Upstream field effort. Cores were not collected from three locations (HT18-16, -22, and -28). Core recovery did not meet or exceed 70 percent after at least three attempts at HT18-16 (no recovery) while HT18-22 and HT18-28 were abandoned per EPA's request in favor of alternate locations. Ponar surface samples were collected at 29 of 32 sample locations. No surface sediment was retrieved at locations HT18-22, -27, and -28. HT18-27 had little to no recovery after six ponar grab attempts, while HT18-22 and HT18-28 were abandoned per EPA's request in favor of locations HT18-31 and HT18-32.

Core collection attempts were targeted to reach a depth of 10 ft or clay, whichever occurred first. Sediment recovery ranged from 1.2 ft (HT18-29) to 9.7 ft (HT18-12) (Table 2-3). Detailed lithographic descriptions of the 29 collected cores are presented in Appendix B.

3.2.2 Lithology

The sediment cores collected within the Harbortown Upstream Area demonstrated core profiles containing sediment types consistent with a fluvial system with a strong current. A majority of the cores were comprised of a sandy silt mixture with bands on clay running through them. Native and non-native material such as shells, roots, organic material, and organic/hydrocarbon odors were observed within various sediment types and depths. Complete core logs and photographs are provided in Appendixes B and C, respectively. A general description of cores collected during the investigation is included in the text that follows.

A total of 30 cores were collected in the Harbortown Upstream Area. Starting upstream of the sample area, HT18-01 off the shore southeast of Keelson Road Canal and ending HT18-30 just

Revision: 00 Page 3-5

June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

east of the MacArthur Bridge off the shore of Gabriel Richard Park. Cores collected in the sample area had varying lithology; however, a majority of them included layers of silt, sand, and clay.

Starting in the upstream area, cores HT18-01 and -02 were comprised of a fine-grained silt/sand mixture imbedded with stiffer clay nodules and layers intermixed lower in the core. HT18-03 was collected within Connor Creek and also contained soft, silt layers imbedded with stiff clay and sand lower in the core. HT18-04 through -09 contained soft, silty sediment layers near the top of the core underlain by sandy silt layered with sand and some clay. HT18-10 was collected upstream of the St. Jean Boat Launch, and it was comprised mainly of clean medium-grained sand. HT18-11 and HT18-12 both contained wet, soft, silty top layers underlain by silty sand with HT18-12 having interbedded clay mixed throughout the silty sand within deeper layers. HT18-13 through -17 had sandy tops underlain by silty clay. HT18-18 and -19 had silty tops with HT18-18 having clay and sand in the deeper layers while HT18-19 had a coarse sand underlayment. Both HT18-20 and -21 had sandy tops while HT18-20 had a stiff clay underlayment. HT18-23 through-26 had a fine, sandy/silty top with sand and clay underlayment. HT18-27 and -29 both had a gravely top with HT18-27 having a stiff clay underlayment. HT18-30 was composed of uniform clayey silt. HT18-31 and -32 both had a sandy top with a layered sand and clay underlayment.

Many of the cores in the Harbortown Upstream Area had pebbles and cobbles in the soft sediment. Hydrocarbon odors were observed in the following cores: HT18-03, -06, -07, -08, 09, -12, -13, -18, -19, -25, and -30. A sheen from non-aqueous phase liquid was observed at on HT18-18 and HT18-19. The core colors ranged from gray, dark gray, very dark gray, black, blueish black, and dark greenish gray. Construction and cultural debris were found in HT18-02, -06, -14, -21, and -29. Peat and organic silt were found in HT18-31.

Bulk Sediment Results

From the 32 sample locations, 15 FDs and 142 sediment samples were submitted for PCB Aroclors, 34 PAHs, total Michigan metals plus iron and nickel, , and TOC analyses; 142 sediment samples and 15 FDs were submitted for percent moisture analysis; 29 sediment samples and three FDs were submitted for SEM/AVS, DRO, ORO, grain size, and cyanide analyses (Table 2-4). A summary of the screening criteria, number of exceedances, and maximum values for each constituent is provided in Table 3-1.

The APTIM Federal Services, LLC (APTIM) Quality Assurance Technical Support Program was subcontracted by EPA to conduct a 100 percent Tier I and 20 percent Tier II data validation verification check for this project. The Tier I and Tier II reviews were performed according to the National Functional Guidelines for Superfund Organics Method Data Review (EPA 2014a) and National Functional Guidelines for Inorganic Superfund Data Review (EPA 2014b). Electronic data validation was performed within GLNPO's exchange and Evaluation System prior to review by APTIM's Quality Assurance Technical Support Program (EA 2018). To assess compliance with the Laboratory Statement of Work, data validation included completeness and compliance checks, data assessment, and validation at Stage 2 following

Page 3-6 June 2019

Revision: 00

Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA 2009).

3.2.2.1 Grain Size, Particle Size, and Density

Analytical results for grain size, particle size, and density are presented in Table 3-2. These results provide additional data for characterizing sediments that can be useful in subsequent investigations or to support potential remediation efforts. A total of 32 surface (0-0.5 ft) samples (including FDs) were submitted for grain size analysis. Of the total samples, 21 (67 percent) were composed primarily (greater than 50 percent) of silt and clay. Silt and clay content in samples ranged from 4.2 percent (HT18-10) to 95.2 percent (HT18-09).

Four of the surface grab samples were comprised of at least 65 percent sand (HT18-10, -15, -17, and -19,), with the highest percentage (86.7 percent) at HT18-10. HT18-14 had the highest percentage of gravel in the surface grab sample (55.8 percent). The surface grab sample with the highest percentage of silt and clay was collected at location HT18-10 (95.2 percent). Particle size distribution graphs for each sample are presented in Appendix D.

3.2.2.2 Polychlorinated Biphenyl Aroclors

PCB Aroclors data and total PCB (ND = 0) concentrations are presented in Table 3-3. Figure 3-1 shows the distribution of total PCB SQG exceedances (TEC is 59.8 micrograms per kilogram [μ g/kg]; PEC is 676 μ g/kg) in the sampling area. Results from the surface grab samples (0- to 0.5-ft interval) are shown on the aerial photo and results from the core depth intervals are shown on the associated graphs. The most frequently detected Aroclors were Aroclor 1254 (64 detections in 157 samples, 41 percent), Aroclor 1242 (43 detections in 157 samples, 27 percent), and Aroclor 1260 (28 detections in 157 samples, 18 percent).

In the Harbortown Upstream Area, a total of five surface grab samples had PCB concentrations greater than the TEC values and no samples above the PEC (HT18-03, -05, -06, -07, and -12). The remaining locations had total PCB concentrations in the grab surface samples that were less than the TEC. The highest total PCB concentration in a surface grab sample was detected in location HT18-03 (220 $\mu g/kg$).

In the core samples, eight locations had a maximum total PCB concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-01, -08, -09, -12, -13, -14, -20, and -30). Three locations had maximum total PCB concentrations in at least one depth interval that were greater than two times the PEC (HT18-03, -05, and -07); one location had a maximum total PCB concentration in at least one depth interval that was greater than three times the PEC (HT18-06). The remaining locations had total PCB concentrations in the subsurface intervals that were each below the TEC. The highest total PCB concentration in a subsurface sample was detected in location HT18-06 within the 7.1- to 8.1-ft interval (6,000 μg/kg).

Revision: 00 Page 3-7 June 2019

3.2.2.3 Polycyclic Aromatic Hydrocarbons

PAH data, total 17 PAHs (ND = $\frac{1}{2}$ RL), and total 34 PAHs (ND= $\frac{1}{2}$ RL) are presented in Table 3-4. Total 17 PAHs were calculated using both 17 individual PAHs and 34 individual PAHs; however, the total 17 PAHs were used as a comparison threshold to be consistent with the derivation of the TEC/PEC values. Figure 3-2 shows the distribution of total 17 PAHs SQG exceedances (TEC is 1,610 μ g/kg; PEC is 22,800 μ g/kg) in the Harbortown Upstream Area. Results from the surface grab samples (0- to 0.5-ft interval) are shown on the aerial photo, and results from the core depth intervals are shown on the associated graphs.

In the Harbortown Upstream Area, a total of 22 surface grab samples had total 17 PAHs concentrations between the TEC and PEC and no samples were above the PEC (HT18-01, -02, -03, -05, -06 -08, -09, -10, -11, -12, -14, -15, -16 -18, -19, -20, -21, -22, -24, -25, -26 and -29). The highest total 17 PAHs concentration in a surface grab sample was detected in location HT18-19 (14,015 μ g/kg).

In the core samples, 15 locations had a maximum total 17 PAHs concentrations in at least one depth interval that was greater than the TEC and below the PEC (HT18-01, -02, -03, -05, -06, -07, -09, -11, -12, -13, -20, -24, -26, -29, and -30). Two locations had a maximum total 17 PAHs concentration in at least one depth interval that was between one and two times greater than the PEC (HT18-14 and -27); and four locations had a maximum total 17 PAHs concentration in at least one depth interval that was greater than three times the PEC (HT18-08, -18, -19, and -25). The highest total 17 PAHs concentration in a subsurface sample was detected in location HT18-25 within the 0- to 1-ft interval (117,500 μ g/kg).

3.2.2.4 Total Organic Carbon

TOC results are provided in Table 3-5. In addition to providing additional data for characterizing sediments, TOC results are utilized in the calculation of metals ESBTUs, as discussed in Section 4.2. In the surface grab samples, TOC ranged from 2,340 mg/kg (0.23 percent) at HT18-10, to 53,100 mg/kg (5.31 percent) at location HT18-03. For the core samples, TOC ranged from 2,180 mg/kg (0.22 percent) at HT18-31 in the 2.6- to 5.7-ft interval, to 113,000 mg/kg (11.3 percent) at HT18-01 in the 5- to 7-ft interval.

3.2.2.5 Metals

Metal results were compared to respective TEC and PEC values and are presented in Table 3-5 (MacDonald et al. 2000; WDNR 2003). Of the 12 analyzed metals, two (barium and selenium) do not have TEC or PEC values; therefore, these metals are not discussed in this section and were not included in the spatial analysis for the site (Chapter 6).

The detected concentrations for each metal compared with TEC/PEC values at each location are displayed in the following figures: Figure 3-3 (arsenic), Figure 3-4 (cadmium), Figure 3-5 (chromium), Figure 3-6 (copper), Figure 3-7 (iron), Figure 3-8 (lead), Figure 3-9 (mercury), Figure 3-10 (nickel), Figure 3-11 (silver), and Figure 3-12 (zinc). Results from the surface grab

Revision: 00 Page 3-8 June 2019

samples (0- to 0.5-ft interval) are shown on the aerial photo and results from the sonic core depth intervals are shown on the associated graphs.

Arsenic

Figure 3-3 shows the distribution of arsenic SQG exceedances (TEC is 9.79 mg/kg; PEC is 33 mg/kg) in the Harbortown Upstream Area. Each surface grab sample at the site had a total arsenic concentration below the TEC with the exception of HT18-01 and -05, both of which had a concentration between one and two times greater than the TEC and below the PEC (10.1 and 10.1 mg/kg, respectively). HT18-01 and -05 had the highest surface sample arsenic concentrations detected in the Harbortown Upstream Area (10.1 and 10.1 mg/kg, respectively).

For the core samples, 12 locations had a maximum arsenic concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-03, -05, -06, -09, -12, -13, -15, -18, -19, -25-, -30, and -31). One location had a maximum arsenic concentration in at least one depth interval that was between one and two times greater than the PEC (HT18-08). The maximum subsurface arsenic concentration detected in the Harbortown Upstream Area was at HT18-08 in the 2.3- to 4.6-ft depth interval (34.1 mg/kg).

Cadmium

Figure 3-4 shows the distribution of cadmium SQG exceedances (TEC is 0.99 mg/kg; PEC is 4.98 mg/kg) in the Harbortown Upstream Area. In this area, six surface grab samples had a maximum cadmium concentration that was greater that the TEC and below the PEC (HT18-05, -08, -12, -16, -18, and -26). One surface grab sample had a maximum cadmium concentration between one and two times greater than the PEC (HT18-03). The maximum surface grab sample cadmium concentration detected in the Harbortown Upstream Area was at HT18-03 (6.1 mg/kg).

For the core samples, five locations had a maximum cadmium concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-01, -08, -11, -14, and -20). Seven locations had a maximum cadmium concentration in at least one depth interval that was one and two times greater than the PEC (HT18-05, -06, -09, -12, -18, -19, and -25); and four locations had a maximum cadmium concentration in at least one depth interval that was greater than three times the PEC (HT18-03, -07, -13, and -30). The maximum subsurface cadmium concentration detected in the Harbortown Upstream Area was at HT18-03 in the 3- to 4.6-ft depth interval (25.1 mg/kg).

Chromium

Figure 3-5 shows the distribution of chromium SQG exceedances (TEC is 43.4 mg/kg; PEC is 111 mg/kg) in the Harbortown Upstream Area. In this area, each surface grab sample maximum chromium concentration was below the TEC with the exception HT18-03 and -05, which both had a concentration between one and two times greater than the TEC and below the PEC (84.6 and 57.3 mg/kg, respectively).

Revision: 00 Page 3-9

June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

For the core samples, six locations had a maximum chromium concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-05, -09, -12, -13, -21, and -25). Three locations had a maximum chromium concentration in at least one depth interval that was between one and two times greater than the PEC (HT18-06, -07, and -30); and one location had a maximum chromium concentration in at least one depth interval that was greater than two times the PEC (HT18-03). The maximum subsurface concentration detected in the Harbortown Upstream Area was at HT18-03 in the 3- to 4.6-ft depth interval (232 mg/kg).

Copper

Figure 3-6 shows the distribution of copper SQG exceedances (TEC is 31.6 mg/kg; PEC is 149 mg/kg) in the Harbortown Upstream Area. In this area, 17 surface grab samples had a maximum copper concentration that was greater that the TEC and below the PEC (HT18-03, -05, -06, -08, -09, -11, -12, -13, -16, -18, -19, -20, -23, -24, -25, -26, and -30). There were no surface grab samples that exceeded the PEC and the maximum surface grab sample copper concentration detected was at HT18-03 (113 mg/kg).

For the core samples, 12 locations had a maximum copper concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-01, -02, -06, -07, -08, -09, -11, -13, -14, -20, -29, and -30). Five locations had a maximum copper concentration in at least one depth interval that was between one and two times greater than the PEC (HT18-03, -05, -12, -19, and -25); and one location had a maximum copper concentration in at least one depth interval that was greater two times than the PEC (HT18-18). The maximum subsurface concentration detected in the Harbortown Upstream Area was at HT18-18 in the 0- to 1.9-ft depth interval (302 mg/kg).

Iron

Figure 3-7 shows the distribution of iron SQG exceedances (TEC is 20,000 mg/kg; PEC is 40,000 mg/kg) in the Harbortown Upstream Area. In this area, 11 surface grab samples had a maximum iron concentration that was greater that the TEC and below the PEC (HT18-01, -05, -06, -08, -09, -11, -13, -23, -25, -30, and -31). No surface grab samples had maximum iron concentrations above the PEC and the maximum iron concentration found in a surface sample was at location HT18-30 (27,000 mg/kg).

For the core samples, 15 locations had a maximum iron concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-03, -05, -06, -08, -09, -11, -12, -13, -15, -18, -20, -21, -25, -27, and -30). No subsurface samples had maximum iron concentrations that exceeded the PEC and the maximum subsurface concentration detected in the Harbortown Upstream Area was at HT18-09 in the 5- to 7-ft depth interval (28,700 mg/kg).

Lead

Figure 3-8 shows the distribution of lead SQG exceedances (TEC is 35.8 mg/kg; PEC is 128 mg/kg) in the Harbortown Upstream Area. In this area, 15 surface grab samples had a

Page 3-10 June 2019

maximum lead concentration that was greater that the TEC and below the PEC (HT18-03, -05, -06, -07, -08, -11, -12, -18, -19, -20, -23, -24, -26, -29, and -30). One surface grab sample had a maximum lead concentration that was greater than two times the PEC (HT18-16). The maximum lead concentration found in a surface sample was found at location HT18-16 (288 mg/kg).

For the core samples, eight locations had a maximum lead concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-01, -02, -09, -11, -14, -26, -27, and -29). Eight locations had a maximum lead concentration in at least one depth interval that was one to two times greater than the PEC (HT18-06, -07, -08, -12, -13, -20, -21,, and -30); and five locations had a maximum lead concentration in at least one depth interval that was greater than three times the PEC (HT18-03, -05, -18, -19, and -25). The maximum subsurface lead concentration detected in the Harbortown Upstream Area was at HT18-19 in the 0- to 1-ft depth interval (624 mg/kg).

Mercury

Figure 3-9 shows the distribution of mercury SQG exceedances (TEC is 0.18 mg/kg; PEC is 1.06 mg/kg) in the Harbortown Upstream Area. In this area, four surface grab samples had a maximum mercury concentration that was greater that the TEC and below the PEC (HT18-03, -05, -19, and -25). One surface grab sample had a maximum mercury concentration that was between one and two times greater that the PEC (HT18-24); and one surface grab sample had a maximum mercury concentration that was greater than two times the PEC (HT18-32). The maximum mercury concentration found in a surface sample was found at location HT18-32 (2.8 mg/kg).

For the core samples, 10 locations had a maximum mercury concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-02, -06, -07, -09, -11, -12, -13, -20, -27, and -32). Four locations had a maximum mercury concentration in at least one depth interval that was between one and two times greater than the PEC (HT18-03, -05, -08, and -30); and three locations had a maximum mercury concentration in at least one depth interval that was greater than three times the PEC (HT18-18, -198, and -25). The maximum subsurface mercury concentration detected in the Harbortown Upstream Area was at HT18-18 in the 0- to 1.9-ft depth interval (4.8 mg/kg).

Nickel

Figure 3-10 shows the distribution of nickel SQG exceedances (TEC is 22.7 mg/kg; PEC is 48.6 mg/kg) in the Harbortown Upstream Area. In this area, fifteen surface grab samples had a maximum nickel concentration that was greater that the TEC and below the PEC (HT18-01, -02, -06, -08, -09, -11, -12, -13, -16, -18, -23, -25, -30, -31, and -32). Two surface grab samples had a maximum nickel concentration that was between one and two times greater that the PEC (HT18-03 and HT18-05). The maximum nickel concentration found in a surface sample was found at location HT18-03 (58.8 mg/kg).

Revision: 00 Page 3-11 June 2019

For the core samples, 13 locations had a maximum nickel concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-01, -02, -08, -11, -13, -15, -17, -18, -19, -20, -24, -25, and -31). Seven locations had a maximum nickel concentration in at least one depth interval that was between one and two times greater than the PEC (HT18-05, -06, -07, -09, -12, -27, and -30); and one location had a maximum nickel concentration in at least one depth interval that was greater than two times the PEC (HT18-03). The maximum subsurface nickel concentration detected in the Harbortown Upstream Area was at HT18-03 in the 3- to 4.6-ft depth interval (101 mg/kg).

Silver

Figure 3-11 shows the distribution of silver SQG exceedances (TEC is 1.6 mg/kg; PEC is 2.2 mg/kg) in the Harbortown Upstream Area. In this area, none of the surface grab sample silver concentrations exceeded the TEC. The maximum silver concentration found in a surface sample was found at location HT18-03 (0.72 mg/kg).

For the core samples, two locations had a maximum silver concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-05 and-19). Four locations had a maximum silver concentration in at least one depth interval that was between one and two times greater than the PEC (HT18-06, -07, -18, and -25); and one location had a maximum silver concentration in at least one depth interval that was greater than two times the PEC (HT18-03). The maximum subsurface silver concentration detected in the Harbortown Upstream Area was at HT18-03 in the 1- to 3-ft depth interval (4.8 mg/kg).

Zinc

Figure 3-12 shows the distribution of zinc SQG exceedances (TEC is 121 mg/kg; PEC is 459 mg/kg) in the Harbortown Upstream Area. In this area, 14 surface grab samples had a maximum zinc concentration that was greater that the TEC and below the PEC (HT18-05, -06, -08, -09, -11, -12, -13, -16, -18, -23, -24, -25, -26, and -30). One surface grab sample had a maximum zinc concentration that was between one and two times greater that the PEC (HT18-03). The maximum zinc concentration found in a surface sample was found at location HT18-03 (587 mg/kg).

For the core samples, three locations had a maximum zinc concentration in at least one depth interval that was greater than the TEC and below the PEC (HT18-08, -09, and -11). Nine locations had a maximum zinc concentration in at least one depth interval that was between one and two times greater than the PEC (HT18-05, -06, -07, -12, -13, -18, -19, -25, and -30); and one location had a maximum zinc concentration in at least one depth interval that was greater than two times the PEC (HT18-03). The maximum subsurface zinc concentration detected in the Harbortown Upstream Area was at HT18-03 in the 3- to 4.6-ft depth interval (1,010 mg/kg).

Revision: 00 Page 3-12 June 2019

3.2.2.6 Ratio of Simultaneously Extracted Metals to Acid Volatile Sulfide

A total of 29 surface grab samples and three FDs were submitted for the ratio of SEM to AVS analysis. The SEM/AVS ratio was calculated for samples from 31 of the 32 samples that were submitted for analysis but could not be calculated for HT18-14 because AVS was not detected. Three samples had an SEM/AVS ratio greater than or equal to 1 (HT18-10, -17, and -19). This indicates that metals may be bioavailable and there is potential for toxicity to benthic organisms. All SEM/AVS results are presented in Table 3-6. These data were used for derivation of the ESBTUs presented in Chapter 4.

3.2.2.7 Petroleum Hydrocarbons

Results for DRO and ORO are presented in Table 3-7. The highest concentration of DRO (C₁₀-C₂₀) was detected in the surface grab sample from location HT18-03 (930 mg/kg). The highest concentration of ORO (C₂₀-C₃₆) was also detected in the surface grab sample from HT18-03 (1,300 mg/kg).

DRO (C₁₀-C₂₀) and ORO (C₂₀-C₃₆) concentrations were summed (by location) to create a TPH concentration (TPH [DRO+ORO]) for each location. Figure 3-13 presents the distribution of TPH (DRO+ORO) results in the Harbortown Upstream Area. For the evaluation purposes of this report, TPH (DRO+ORO) sample results were compared to values of 100, 1,000, 5,000, and 10,000 mg/kg. There were no locations with TPH values greater than 5,000 mg/kg; HT18-03 was the only location with a TPH (DRO+ORO) value between 1,000 and 5,000 mg/kg; 21 locations had TPH values between 100 and 1,000 mg/kg (HT18-05, -06, -07, -08, -09, -11, -12, -14, -15, -16, -18, -19, -20, -21, -24, -25, -26, -29, -30, -31, and -32); and seven locations had a TPH value less than 100 mg/kg (HT18-01, -02, -04, -10, -13, -17, and -23).

DRO and ORO Results Compared to Sample-Specific Risk Screening Levels

At present, there are no recognized cleanup goals for petroleum in sediment that are protective of aquatic receptors. A report prepared for the Massachusetts Department of Environmental Protection – Office of Research and Standards, titled *Sediment Toxicity of Petroleum Hydrocarbon Fractions* (Battelle 2007), proposes an approach for the development of sediment benchmarks based on the equilibrium partitioning theory. This theory, "states that the toxicity of hydrocarbons in sediments to benthic organisms is caused by the hydrocarbons that partition from the organic fraction of sediment particles into pore water and from pore water into the tissues of sediment-dwelling organisms" (Battelle 2007). Equilibrium partitioning sediment benchmarks were derived for fractions (classes or groupings of compounds with similar chemical and toxicological properties) using the final chronic aquatic toxicity value (derived in Battelle 2007 based on a logarithmic relationship between existing toxicological data and known values of the octanol-water partition coefficient), the sediment organic carbon/water partition coefficient, and the fraction of organic carbon in sediment.

There are uncertainties in using the equilibrium partitioning theory to develop sediment benchmarks for petroleum, such as the wide range of aromatic hydrocarbon toxicity data for both marine and freshwater species, as well as various test durations. Additionally, the aqueous solubility of hydrocarbons used in the DRO and ORO fractions are below the estimated acute toxicity values; the benchmarks are conservative. Where the benchmarks are exceeded, it is "difficult to distinguish between toxicological effects and potential physical impacts," and further site evaluation is necessary (Battelle 2007).

Sediment benchmarks were derived using the following equation:

Sediment Benchmark (mg/kg) =
$$K_{oc} \times FCV \times f_{oc} (0.001)$$

where:

K_{oc} = Sediment organic carbon/water partition coefficient.

FCV = Final chronic value.

 f_{oc} = Fraction of organic carbon in sediment. An f_{oc} of 0.1 percent (0.001) was used to give the most conservative estimated benchmark.

The sediment benchmarks presented in the following table were used to evaluate DRO and ORO results in the Harbortown Upstream Area:

Hydrocarbon	Geometric		Final Chronic	Sediment Benchmark
Fraction	Mean Log Kow	Koc	Value (μg/L)	(mg/kg foc)
$C_{13} - C_{18} (DRO)$	8.57	1.10×10^{8}	$0.05^{(a)}$	5,543
$C_{19} - C_{36}$ (ORO)	11.64	8.32×10^{10}	0.0001 ^(a)	9,883

⁽a) The fraction is not likely toxic because the mean LC_{50} (lethal concentration required to cause mortality to 50 percent of test organisms) exceeds mean aqueous solubility.

Source: Table 6, Sediment Toxicity of Petroleum Hydrocarbon Fractions (Battelle 2007).

NOTES: f_{oc} = Fraction of organic carbon in sediment.

K_{oc} = Sediment organic carbon/water partition coefficient.

 K_{ow} = Octanol-water partition coefficient.

Results from the site were provided as DRO C_{10} - C_{20} and ORO C_{20} - C_{36} . Consequently, for the purposes of the comparison of site results with sample-specific risk screening values, DRO C_{13} - C_{18} and ORO C_{19} - C_{36} were used, respectively.

The following equation was used to determine the SSRSLs:

This example calculation uses the DRO (C₁₀-C₂₀) results of FD for surface sample HT18-03 (the maximum detected result for DRO in the Harbortown Upstream Area):

HT18-03-SURF SSRSL = 5543 mg/kg (sediment benchmark) x
$$0.0531$$
 (for HT18-03-SURF) = 294 mg/kg

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Revision: 00 Page 3-14 June 2019

Table 3-7 and Figure 3-14 (DRO) and 3-15 (ORO) present the comparison of results to the calculated DRO and ORO SSRSLs.

In the Harbortown Upstream Area, 12 locations (HT18-03, -05, -10, -12, -15, -16, -19, -20, -21, -24, -26, and -29) had DRO concentrations exceeding the SSRSL. Three locations had DRO concentrations that were between three and four times the respective SSRL (HT18-03, -19, and -29); four locations had DRO concentrations that were between two and three times the respective SSRL (HT18-10, -15, -21, and -26); and five locations had DRO concentrations that were between one and two times the respective SSRL (HT18-05, -12, -16, -20, and -24) (Figure 3-14).

Nine locations had ORO concentrations exceeding the SSRSL. Five locations had DRO concentrations that were between two and three times the respective SSRL (HT18-03, -19, -21, -26, and -29); and four locations had DRO concentrations that were between one and two times the respective SSRL (HT18-05, -10, -15, and -24) (Figure 3-15).

3.2.2.8 Cyanide

A total of 29 surface grab samples and three FDs were submitted for WAD cyanide and total cyanide analysis and the results are presented in Table 3-8. WAD cyanide was detected in five of 32 samples submitted for analysis, including FDs. WAD cyanide concentrations ranged from 0.81 mg/kg (HT18-04) to 1.3 mg/kg (HT18-03). Of the total samples submitted, five samples had concentrations that exceeded the EPA Region 5 Resource Conservation and Recovery Act (RCRA) screening value for WAD cyanide at 0.1 mg/kg (HT18-02, -03, -04, -05, and -32).

Total cyanide was detected in four of 32 samples submitted for analysis. Total cyanide concentrations ranged from 0.83 mg/kg (HT18-19) to 2.7 mg/kg (HT18-06). Of the total samples submitted, three samples had concentrations that exceeded the EPA Region 5 RCRA screening value for total cyanide at 0.1 mg/kg (HT18-06, -16, and -19).

Revision: 00

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Page 3-15 June 2019

This page intentionally left blank

June 2019

4. EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARKS

PAH ESBTUs were calculated as an additional tool for evaluating potential risk associated with sediment contamination. ESBTUs are used to estimate whether there is potential ecological risk associated with exposure to pore water that is in equilibrium with a measured concentration of the contaminant in the sediment. Thus, ESBTUs are calculated using an assumed relationship for partitioning between sediment and water.

4.1 POLYCYCLIC AROMATIC HYDROCARBONS

ESBTUs for total 34 PAHs were calculated following the methods outlined in Procedures for the Derivation of ESBs for the Protection of Benthic Organisms: PAH Mixtures (EPA 2003a). Based on this guidance, individual PAH concentrations in sediment were first divided by the fraction of organic carbon measured in the sediment sample, resulting in an organic carbon-based PAH concentration, or normalized concentration:

$$C_{NormalizedPAHi} = \frac{c_{PAHi}}{f_{oc}}$$

 $C_{NormalizedPAHi}$ = Normalized individual PAH concentration. C_{PAHi} = Individual PAH concentration in sediment. f_{oc} = Fraction of organic carbon in sediment.

This value was then compared to the maximum solubility of that PAH in sediment on an organic carbon basis (EPA 2003a). To be conservative, the lesser of the two values was used to calculate the PAH ESBTU. This value was then divided by the individual PAH's effective concentration in sediment, defined as the product of its final chronic value and organic carbon-water partition coefficient (K_{oc}), resulting in an Equilibrium Partitioning Sediment Benchmark for each individual PAH.

$$ESB_{PAHi} = \frac{C_{NormalizedPAHi} \, or \, K_{max}}{C_{EC}}$$

 ESB_{PAHi} = Equilibrium Partitioning Sediment Benchmark for each individual PAH.

 $C_{NormalizedPAHi}$ = Normalized individual PAH concentration.

 K_{Max} = Maximum solubility concentration.

 C_{EC} = PAH's effective concentration in sediment (provided in Table 3-4 from

EPA 2003a).

The PAH ESBTU for a sediment sample is the sum of the 34 individual PAHs' ESBTUs (Table 4-1).

$$\sum ESBTU_{FCV} = \sum_{34} ESB_{PAHi}$$

Typically, a PAH ESBTU less than or equal to 1 indicates that benthic organisms are not expected to be harmed by contamination present in the sediments (EPA 2003a). To better evaluate the results, the following PAH ESBTUs ranges were used: ESBTUs less than 1,

between 1 and 7.5, between 7.5 and 10, and equal to or greater than 10. The samples with PAH ESBTUs greater than 1 may be toxic to aquatic life. Calculated PAH ESBTU results for each analyzed sample are provided in Table 4-1. Results from the PAH ESBTU calculations from the Harbortown Upstream Area are presented in Figure 4-1.

In the Harbortown Upstream area, three surface grab sample locations had PAH ESBTU between 1 and 7.5 (HT18-10, -19, and -29). All the remaining surface grab sample locations had PAH ESBTU values that were less than 1.

In the core samples, 18 locations had a subsurface sample PAH ESBTU greater than 1 in at least one core depth interval. At HT18-19, the maximum PAH ESBTU value was greater than 10 in at least one subsurface depth interval; and at 17 locations, the maximum PAH ESBTU value was between 1 and 7.5 in at least one depth interval (HT19-01, -02, -03, -05, -06, -07, -08, -12, -13, -14, -18, -20, -25, -26, -27, -29, and -30).

4.2 METALS

Metal toxicity is evaluated through an indirect estimate of toxicity based on the concentrations of AVS and SEM, as well as TOC in the sediments. Metal ESBTUs were calculated following the methods outlined in Procedures for the Derivation of ESBs for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc) (EPA 2005). The molar concentration of AVS was subtracted from the molar concentration of the sum of the SEM measured in each sediment sample, and the result was divided by the fraction of organic carbon, accounting for preferential sorption of metals to organic carbon. It should be noted that if the particular sample has excess AVS such that all SEM is accounted for, this value can be negative.

$$ESBTU_{Metals} = \frac{\sum SEM - AVS}{f_{oc}}$$

 $ESBTU_{Metals}$ = Metal ESBTU.

 $\sum SEM - AVS$ = Difference between sum of SEM and AVS. f_{oc} = Fraction of organic carbon in sediment.

As presented in the EPA 2005 guidance, when metals ESBTUs are calculated using this method, a value less than 130 μ mol of residual SEM per gram organic carbon (g_{oc}) indicates that the sediment poses a low risk of adverse biological effects associated with metals. Values between 130 and 3,000 μ mol/ g_{oc} may have adverse effects, and values greater than 3,000 μ mol/ g_{oc} are expected to be associated with adverse effects.

ESBTU results for metals did not exceeded 130 μmol/g_{oc} in surface grab samples from any location throughout the Harbortown Upstream Area (Table 4-2).

Revision: 00 Page 5-1 June 2019

5. PROBABLE EFFECTS CONCENTRATION QUOTIENTS

As described in the Prediction of Sediment Toxicity Using Census-Based Freshwater Sediment Quality Guidelines (EPA 2000) guidance, PEC-Qs combine data from multiple constituents in sediments into one unitless index, and thus can be used in comparing the quality of sediments from different locations and at different times. As discussed in Ingersoll et al. (2001), PEC-Qs are used to evaluate the combined effects of chemical mixtures on the toxicity of sediments to benthic organisms. They use consensus based freshwater SQGs to calculate concentration quotients (or hazard quotients) defined as measured sediment concentrations divided by the specific SQG for that particular chemical or metal. The principle of PEC-Qs is to calculate the geometric mean of all quotients for that particular sediment sample including those for metals, PAHs, and PCBs.

When the geometric mean PEC-Q is regressed with the percent of toxicity found in that sample (typically growth or mortality), as shown in Ingersoll et al. (2001), and the geometric mean of the PEC-Qs is approximately 1, between 30 and 50 percent of the organisms showed a toxic effect. This could be termed the Effect Concentration for 30 or 50 percent, respectively. This means that between 50 and 70 percent of the organisms should not show an effect when the PEC-Q is 1. Examination of the proportion of toxicity when the PEC-Q is 0.5 shows that between 6 and 35 percent of the organisms showed a toxic effect, again meaning that between 94 and 65 percent of the organisms did not show a toxic effect when the PEC-Q was 0.5. The important aspects related to the use of PEC-Qs are:

- 1. The toxic endpoint is not necessarily lethality, but often the endpoint is a chronic endpoint such as growth.
- 2. The use of a PEC-Q of 1 does not imply that 100 percent of organisms exposed to those concentrations will show an effect (chronic or acute), rather that 30–50 percent of those organisms will show the effects, and the rest will not be impacted.
- 3. The proportion of organisms that show an effect drops to 6–35 percent when the PEC-Q of 0.5 is used.

Consensus-based PECs were used to predict the potential for toxicity in sediments collected from the Harbortown Upstream Area. Mean PEC-Qs were calculated using the procedure that was established by EPA (2000) to determine the concentration of constituents above which adverse effects are likely to be observed to sediment-dwelling organisms. A PEC-Q was first determined for each of seven metals (arsenic, cadmium, chromium, copper, lead, nickel, and zinc) based on the available PEC.

$$PEC-Q\ metals = \frac{metal\ concentration\ (in\ dry\ weight)}{corresponding\ PEC\ value}$$

Page 5-2 June 2019

Then, an average PEC-Q for metals was calculated by summing the PEC-Qs of each metal and dividing by the number of metals that were included in the calculation (EPA 2000).

$$mean\ PEC-Q\ metals = \frac{\sum individual\ metal\ PEC-Qs}{n}$$

where

n = Number of metals in the calculation with available sediment chemistry data and PECs.

PEC-Qs were also calculated for total 17 PAHs using a value equal to one-half the RL for NDs (ND = ½ RL), and total PCBs using a value of zero for the NDs (ND=0). Nine of the 17 PAHs had PEC values and were used in the PEC-Q calculation: anthracene, benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenzo(a, h)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene.

$$PEC-Q\ total\ PAHs = \frac{total\ PAH\ concentration\ (ND=\frac{1}{2}RL)(in\ dry\ weight)}{corresponding\ PEC\ value}$$

$$PEC-Q\ total\ PCBs = \frac{total\ PCB\ concentration\ (ND=0)(in\ dry\ weight)}{corresponding\ PEC\ value}$$

A mean PEC-Q was calculated by summing the average PEC-Q for metals, the PEC-Q for PAHs, and the PEC-Q for PCBs.

$$mean\ PEC-Q = \frac{mean\ PEC-Q\ metals + PEC-Q\ total\ PAHs + PEC-Q\ total\ PCBs}{n}$$

where

n = Number of sediment classes of chemicals for which sediment chemistry data are available.

The mean PEC-Q was determined for each sediment sample to provide an overall measure of chemical contamination and to support an evaluation of the combined potential effects of multiple constituents in the sediment collected from the site (EPA 2000).

The mean PEC-Q values for each sample collected are summarized in Table 5-1. The mean PEC-Qs ranged from 0.03 in the 1- to 3-ft interval at location HT18-23 to 3.41 in the 7- to 8-ft interval at location HT18-06 (Table 5-1, Figure 5-1). The mean PEC-Q for each sediment sample was compared to benchmarks of 0.5, 1, and 5.

In the surface grab samples from the Harbortown Upstream Area, all the locations had mean PEC-Q values between 0 and 0.5. In the core samples, eight locations had a PEC-Q in at least

Revision: 00

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Page 5-3 June 2019

one depth interval that was between one and five (HT18-03, -05, -06, -07, -08, -18, -19, and -25); five locations had a maximum PEC-Q value in at least one depth interval that was between 0.5 and 1 (HT18-09, -12, -14, -27, and -30); and the remaining locations had subsurface samples with PEC-Q values between 0 and 0.5.

Revision: 00

Page 5-4 June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

This page intentionally left blank

Revision: 00 Page 6-1 June 2019

6. SPATIAL ANALYSIS TO DETERMINE HOT SPOTS WITHIN THE HARBORTOWN UPSTREAM AREA

To determine the location of hot spots within the Harbortown Upstream Area of the Detroit River AOC, three datasets were spatially interpolated to develop an estimate of the level and distribution of elevated concentrations of constituents across the study area: (1) all individual constituents (Section 3.2.3) with concentrations exceeding their respective PEC in sediment samples, (2) the calculated PAH ESBTUs (Section 4.1), and (3) the calculated PEC-Qs (Chapter 5). Metals ESBTU results (Section 4.2) are referenced but were not included as inputs for spatial analysis. This methodology is consistent with previous projects and facilitate direct comparison between studies (Section 6.6). Hot spot determination allows for prioritizing areas to be targeted for further investigation or remediation.

Interpolation was performed by using a spatially explicit statistical method called kriging, as described in Section 6.1. Section 6.2 describes the kriging analysis results for concentrations of all constituents with a PEC, Section 6.3 describes the kriging analysis results for PAH ESBTUs, and Section 6.4 describes the kriging analysis results for PEC-Qs. Section 6.5 describes the classification and priority assessment of hot spots based on kriging results.

6.1 METHODOLOGY

A three-dimensional model of each analyte measured in the sediment samples was constructed using the statistical interpolation method of kriging with C-Tech's Earth Volumetric Studio, Version 2019.3.0.

Input included each analyte's concentration at every location, and the results were combined to identify all areas with one or more detections above the respective PEC levels, two times above the PEC levels, and three times above the PEC levels. To further define the hot spot areas identified from modeling all constituents, additional inputs included the calculated PAH ESBTUs and PEC-Qs; these were modeled separately to identify areas with PAH ESBTUs of between 1 and 7.5, between 7.5 and 10, and equal to or greater than 10, and to identify areas with PEC-Qs between 0.5 and 1 and equal to or greater than 1. Although ESBTUs were also calculated for metals, these data were not included in the model inputs for the spatial analysis because only three results (one of which was an FD) exceeded the thresholds discussed in Section 4.2, and these results occurred within the hot spots identified in Section 6.2.

6.2 MODEL RESULTS FOR ALL PROBABLE EFFECT CONCENTRATION CONSTITUENTS IN THE HARBORTOWN UPSTREAM AREA

Concentrations of all individual constituents were input to the model, and the kriging analysis identified areas with PEC exceedances of total PCBs, total 17 PAHs, and/or each of the 10 metals that have PECs. Five non-continuous hot spots were identified within the study where one or more analytes were present in concentrations exceeding three times the PEC.

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Revision: 00 Page 6-2 June 2019

Figures 6-1 and 6-2 present the results for all constituents exceeding their respective PECs in the Harbortown Upstream Area. The estimated volume of sediment with elevated concentrations of constituents exceeding their respective PECs for each hot spot along with the predominant constituent contributing to the elevated concentrations is provided in the figure. The volume estimates do not include contingency or overburden; however, they are subject to the uncertainties of the study design and modeling limitations.

- *Harbortown Upstream Hot Spot 1*—Harbortown Upstream Hot Spot 1 includes locations HT18-03, -05, -06, -07, -08, and -09. The estimated volume of sediment with constituent concentrations exceeding the PEC is approximately 413,519 cy (Figure 6-1). Constituents for which the PEC exceedances are occurring within Hot Spot 1 include total PCBs, total 17 PAHs, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc (Figure 6-2, Table 6-1). The predominant constituents contributing to the elevated concentrations are total PCBs (HT18-03 and -06), total 17 PAHs (HT18-08), cadmium (HT18-03 and 07), and lead (HT18-03, -05, and -06), which all exceed three times the PEC within Hot Spot 1. Total PCBs (HT18-05 and -07), cadmium (HT18-06), nickel (HT18-03), silver (HT18-03), and zinc (HT18-03) had concentrations exceeding two times the PEC while all other remaining constituents found in this area had concentrations below two times the PEC.
- *Harbortown Upstream Hot Spot 2*—Harbortown Hot Spot 2 includes locations HT18-12, -13, and -14. The estimated volume of sediment with constituent concentrations exceeding the PEC is approximately 166,389 cy (Figure 6-1). Constituents for which the PEC exceedances are occurring within Hot Spot 2 include total 17 PAHs, cadmium, copper, lead, nickel, and zinc (Figure 6-2, Table 6-1). The predominant constituent contributing to the elevated concentrations is cadmium, which all exceeded three times the PEC in HT18-13 and are between one and two times the PEC in HT18-12. Lead had concentrations exceeding two times the PEC in HT18-12, and all other remaining constituents found in this area had concentrations below two times the PEC.
- *Harbortown Upstream Hot Spot 3*—Harbortown Upstream Hot Spot 3 includes locations HT18-16, -18, -19, -20, and -21. The estimated volume of sediment with constituent concentrations exceeding the PEC is approximately 30,699 cy (Figure 6-1). Constituents for which the PEC exceedances are occurring within Hot Spot 3 include Total 17 PAHs, cadmium, copper, lead, mercury, silver, and zinc (Figure 6-2, Table 6-1). The predominant constituents contributing to the elevated concentrations are total 17 PAHs, lead, and mercury, which all exceed three times the PEC in HT18-18 and -19. Cadmium, copper, and lead had concentrations exceeding two times the PEC in other locations within Hot Spot 3, while all other remaining constituents found in this area had concentrations below two times the PEC.
- *Harbortown Upstream Hot Spot 4*—Harbortown Upstream Hot Spot 4 includes locations HT18-24 and -25. The estimated volume of sediment with constituent concentrations exceeding the PEC is approximately 22,976 cy (Figure 6-1). Constituents for which the

Revision: 00 Page 6-3 June 2019

PEC exceedances are occurring within Hot Spot 4 include total 17 PAHs, cadmium, copper, lead, mercury, silver, and zinc. The predominant constituents contributing to the elevated concentrations are total 17 PAHs, lead, and mercury, which all exceed three times the PEC in HT18-25 (Figure 6-2, Table 6-1). Cadmium had concentrations exceeding two times the PEC in HT18-15 while all other remaining constituents found in this area had concentrations below two times the PEC.

• Harbortown Upstream Hot Spot 5—The Harbortown Upstream Hot Spot 5 included locations HT18-27, and -30. The estimated volume of sediment with constituent concentrations exceeding the PEC is approximately 201,956 cy (Figure 6-1). Constituents for which the PEC exceedances are occurring within Hot Spot 5 include Total 17 PAHs, cadmium, chromium, lead, mercury, nickel, and zinc (Figure 6-2, Table 6-1). The predominant constituent contributing to the elevated concentrations is Cadmium, which exceeds three times the PEC in HT18-30. All other remaining constituents found in this area had concentrations below two times the PEC.

6.3 MODEL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBON EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARK TOXIC UNITS FOR THE HARBORTOWN UPSTREAM AREA

A kriging analysis was performed to identify areas with PAH ESBTUs equal to or greater than 1 within some of the hot spot areas identified when all constituents with a PEC were kriged (Section 6.2). Figure 6-3 presents the results for PAH ESBTUs exceeding 1 overlain with the Harbortown Upstream Hot Spots 1-5.

PAH ESBTU values greater than 1 are primarily in the same areas as the five hot spots that had constituents exceeding three times the PEC, identified in Section 6.2; however, some PAH ESBTU values extend upstream from Hot Spot 1 and Hot Spot 5.

6.3.1 Spatial Analysis for Polycyclic Aromatic Hydrocarbon Equilibrium Partitioning Sediment Benchmark Toxic Units in Harbortown Upstream Area

Figure 6-3 presents areas identified with elevated PAH ESBTUs, maximum PAH ESBTU values at each sample location, and the overlap of the spatial analysis for PAH ESBTUs with hot spots identified in the Harbortown Upstream Area using all PEC constituents depicted in Figure 6-1. The spatial analysis for PAH ESBTUs identified a continuous area including eight locations (HT18-01 to -08) that have ESBTU values greater than one and is located within Hot Spot 1 but extending upstream to HT18-01. A continuous area including two locations (HT18-12 and -13) and a single location (HT18-14) both have ESBTU values greater than one and are identified within Hot Spot 2. A continuous area including three sample locations (HT18-18, -19, and -20) is located within Hot Spot 3 and has PAH ESBTUs greater than one at HT18-18, and -20, and a PAH ESBTU value greater than 7.5 at HT18-19. Two individual areas (HT18-24 and -25) both have PAH ESBTU values greater than one and are located within Hot Spot 4. Finally, one continuous area including three sample locations (HT18-27, -28, -19) has PAH ESBTU values greater than one and is located in Hot Spot 5 but extending upstream toward HT18-18.

Revision: 00 Page 6-4 June 2019

Two sample locations (HT18-10 and -26) have a PAH ESBTU value greater than one but are not included in a hot spot. Ten of 30 locations in the Harbortown Upstream Area had PAH ESBTU ratios less than 1 (HT18-09, -11, -15, -16, -17, -21, -23, -24, -31, and -32).

6.4 MODEL RESULTS FOR PROBABLE EFFECTS CONCENTRATION QUOTIENTS FOR THE HARBORTOWN UPSTREAM AREA

In addition to constituent concentrations and PAH ESBTUs, PEC-Qs were also modeled. The kriging analysis identified areas with PEC-Qs equal to or greater than 0.5 within some of the hot spot areas that were identified when constituents were kriged (Section 6.2). Figure 6-4 presents the results for PEC-Qs exceeding 0.5 overlain with the Harbortown Upstream Hot Spots 1-5.

6.4.1 Spatial Analysis for Probable Effects Concentration Quotients in the Harbortown Upstream Area

Figure 6-4 presents areas identified with elevated PEC-Qs, maximum PEC-Q values at each sample location, and the overlap of the spatial analysis for PEC-Qs with hot spots identified using all PEC constituents depicted in Figure 6-1. The spatial analysis for PEC-Qs identified three sample locations where sediment samples had PEC-Q values greater than 0.5 (HT18-09, -27, and -30, which correspond to Hot Spots 1, 5, and 5 respectively). Three sample locations also identified with sediment samples had PEC-Q values greater than one (HT18-05, -06, and -07, which correspond to Hot Spot 1). These areas identified with elevated PEC-Qs are all located within a hot spot and have an area less than the total hot spot identified using all PEC constituents in Section 6.2.

6.5 CLASSIFICATION OF HOT SPOTS BASED ON ALL KRIGING RESULTS IN THE HARBORTOWN UPSTREAM AREA

The hot spot areas identified in Section 6.2 can be prioritized for further investigation and potential remediation efforts when considered with the results of the spatial analyses of PAH ESBTUs and PEC-Qs. Hot spots are further categorized as Level 1, Level 2, or Level 3 based on the following criteria:

- Level 3 lowest impact
 - Contaminant results are ≥ 3 x PEC **OR**
 - -- PEC-Q \geq 0.5, **OR**
 - -- ESBTU > 1.
- Level 2
 - Contaminant results are ≥ 3 x PEC **OR**
 - PEC-Q \geq 1, **OR**
 - ESBTU > 7.5.
- Level 1 highest impact
 - Contaminant results are $\geq 3 \times PEC \ \mathbf{OR}$
 - PEC-Q \geq 5, **OR**
 - ESBTU \geq 7.5.

This categorization is based on the presence of elevated levels of contaminants and is not a comparative evaluation of the impact of different classes of contaminants. When determining the appropriate level classification for a contaminated area, Level 3 criteria (lowest impact) must be met before classifying a Level 2 hotspot, and Level 2 criteria must be met before classifying a Level 1 hotspot (highest impact). Because the PEC metric is the same for each hotspot level determination, if a hotspot in question has a PEC \geq 3, the PEC-Q and ESBTU metrics will be used to determine the appropriate hotspot classification. The ESBTU metric is also the same for the Level 2 and Level 1 hotspot determination, so if a hotspot in question has an ESBTU > 7.5, the PEC-Q value will be used to determine the appropriate hotspot classification. Level 1 hot spot areas have the largest estimated volumes of sediment with COCs exceeding the PEC. Level 3 hot spot areas have less elevated contaminant concentrations and, in some cases, smaller estimated sediment volumes exceeding the PEC. This section presents additional details on each of the three hot spot areas, presented within their respective levels. Table 6-1 presents maximum PEC exceedances in any interval for all constituents for sample locations and hot spots within the Harbortown Upstream Area. Table 6-2 presents maximum PAH ESBTUs in any interval for sample locations and hot spots within the Harbortown Upstream Area. Table 6-3 presents maximum PEC-Qs in any interval for sample locations and hot spots within the Harbortown Upstream Area.

6.5.1 Level 1 Hot Spots

To be considered Level 1, hot spots must have at least one of the following three conditions: a contaminant result that is equal to or greater than three times the respective PEC, a PEC-Q value equal to or greater than 5, or an ESBTU equal to or greater than 7.5. Level 2 criteria must be met before classifying a Level 1 hotspot (highest impact). There are no Hot Spots within the Harbortown Upstream area that are classified as Level 1 Hot Spots.

Page 6-6

June 2019

Revision: 00

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

6.5.2 Level 2 Hot Spots

To be considered Level 2, hot spots must have at least one of the following three conditions: a contaminant result that is equal to or greater than three times the respective PEC, a PEC-Q value equal to or greater than 1, or an ESBTU equal to or greater than 7.5. Level 3 criteria (lowest impact) must be met before classifying a Level 2 hotspot. Harbortown Upstream Hot Spots 1, 3, and 4 all meet the Level 2 criteria.

6.5.2.1 Harbortown Upstream Hot Spot 1

The Harbortown Upstream Hot Spot 1 includes six sample locations (Figure 6-2, Table 6-1). The COCs exceeding three times the PEC for this hot spot area are total 17 PAHs, total PCBs, and two metals (cadmium and lead).

Total 17 PAHs concentrations exceeded three times the PEC at HT18-8 and did not exceed the PEC in any other location within Hot Spot 1 (Figure 6-2). Of the intervals analyzed, total 17 PAHs concentrations exceeding three times the PEC in Hot Spot 1 were present to a maximum depth interval of 2-4.5 ft (HT18-08). Total PCB concentrations exceeded three times the PEC at two sample locations (HT18-03 and -06) (Figure 6-2, Table 6-1). Of the intervals analyzed, total PCB concentrations exceeding three times the PEC in Hot Spot 1 were present to a maximum depth interval of 7-8 ft (HT18-06). Cadmium concentrations exceeded three times the PEC at two sample locations (HT18-03 and -07). Of the intervals analyzed, cadmium concentrations exceeding three times the PEC in Hot Spot 1 were present to a maximum depth interval of 1-4.8 ft (HT18-07). Lead concentrations exceeded three times the PEC at two sample locations (HT18-03 and -05). Of the intervals analyzed, lead concentrations exceeding three times the PEC in Hot Spot 1 were present to a maximum depth interval of 2.7-5.1 ft (HT18-05).

Of the six locations in Hot Spot 1, total 17 PAHs exceeded the PEC at one location (HT18-08); total PCBs exceeded the PEC at four locations (HT18-03, -05, -06, and -07; arsenic exceeded the PEC at 1 location (HT18-08); cadmium exceeded the PEC at four locations (HT18-03, -05, -06, and -07); chromium exceeded the PEC at three locations (HT18-03, -06, and -07); copper exceeded the PEC at two locations (HT18-03 and -05); lead exceeded the PEC at five locations (HT18-03, -05, -06, -07, and -08); mercury exceeded the PEC at three locations (HT18-03, -05, and -08); nickel exceeded the PEC at four locations (HT18-03, -05, -06, and -07); silver exceeded the PEC at three locations (HT18-03, -06, and -07); and zinc exceeded the PEC at four locations (HT18-03, -05, -06, and -07). No metals exceeded the PEC in HT18-04. The highest concentrations of all constituents were detected in the subsurface samples. The highest concentrations of total 17 PAHs, arsenic, and mercury were detected in HT18-08; the highest concentration of total PCBs was detected in HT18-06; and the highest concentrations of cadmium, chromium, copper, lead, nickel, silver, and zinc were detected in HT18-03.

Five sample locations in Hot Spot 1 had PAH ESBTUs between 1 and 7.5 (Figure 6-3, Table 6-2) and all six sample locations had metal ESBTUs less than 130 μmol/g_{oc}. Four sample locations in Hot Spot 1 had PEC-Q values between one and five, and one sample location had PEC-Q values between 0.5 and 1 (Figure 6-4, Table 6-3).

Revision: 00 Page 6-7 June 2019

6.5.2.2 Harbortown Upstream Hot Spot 3

The Harbortown Upstream Hot Spot 3 includes five sample locations (Figure 6-2, Table 6-1). The COCs that exceed three times the PEC for this hot spot area are total 17 PAHs, and two metals (lead and mercury).

Total 17 PAHs concentrations exceeded three times the PEC at two locations (HT18-18 and -19) (Figure 6-2, Table 6-1). Of the intervals analyzed, total 17 PAHs concentrations exceeding three times the PEC in Hot Spot 3 were present to a maximum depth interval of 1-1.9 ft (HT18-18). Lead concentrations exceeded three times the PEC at two sample locations (HT18-18 and -19) (Figure 6-2, Table 6-1). Of the intervals analyzed, lead concentrations exceeding three times the PEC in Hot Spot 3 were present to a maximum depth interval of 0-1.9 ft (HT18-18). Mercury concentrations exceeded three times the PEC at two locations (HT18-18 and -19) (Figure 6-1, Table 6-1). Of the intervals analyzed, mercury concentrations exceeding three times the PEC in Hot Spot 3 were present to a maximum depth interval of 1-1.9 ft (HT18-18).

Of the five locations in Hot Spot 3, total 17 PAHs exceeded the PEC in two locations (HT18-18 and -19); cadmium exceeded the PEC at two locations (HT18-18 and -19); copper exceeded the PEC at two locations (HT18-18 and -19); lead exceeded the PEC at five locations (HT18-16, -18, -19, -20, and -21); mercury exceeded the PEC at two locations (HT18-18 and -19); silver exceeded the PEC at one location (HT18-18); and zinc exceeded the PEC at two locations (HT18-18 and -19). The highest concentrations of all constituents were detected in the subsurface samples. The highest concentrations of total 17 PAHs and lead were detected in HT18-19; and the highest concentrations of cadmium, copper, mercury, silver, and zinc were detected in HT18-18

One sample location (HT18-20) in Hot Spot 3 had PAH ESBTUs between 1 and 7.5 and one sample location (HT18-19) had PAH ESBTUs exceeding 10 (Figure 6-3, Table 6-2). No sample locations had metal ESBTUs greater than 130 μ mol/goc and two sample locations had PEC-Q values between one and five (Figure 6-4, Table 6-3).

6.5.2.3 Harbortown Upstream Hot Spot 4

The Harbortown Upstream Hot Spot 4 includes HT18-24 and -25 (Figure 6-2, Table 6-1). The COCs exceeding three times the PEC for this hot spot area are total 17 PAHs and two metals (lead and mercury).

Total 17 PAHs concentrations exceeded three times the PEC at HT18-25. Of the intervals analyzed, total 17 PAHs concentrations exceeding three times the PEC in Hot Spot 4 were present to a maximum depth interval of 1-3 ft (HT18-25). Lead concentrations exceeded three times the PEC at HT18-25. Of the intervals analyzed, lead concentrations exceeding three times the PEC in Hot Spot 4 were present to a maximum depth interval of 1-3 ft (HT18-25). Mercury concentrations exceeded three times the PEC at HT18-25. Of the intervals analyzed, mercury

Revision: 00 Page 6-8 June 2019

concentrations exceeding three times the PEC in Hot Spot 4 were present to a maximum depth interval of 1-3 ft (HT18-25).

Of the two locations in Hot Spot 4, total 17 PAHs exceeded the PEC at HT18-25; cadmium exceeded the PEC at HT18-25; copper exceeded the PEC at HT18-25; lead exceeded the PEC at HT18-25; mercury exceeded the PEC at HT18-24 and -25; silver exceeded the PEC at HT18-25; and zinc exceeded the PEC at HT18-25. The highest concentrations of all constituents were detected in the subsurface samples. The highest concentrations of total 17 PAHs, cadmium, copper, lead, mercury, silver, and zinc were detected in HT18-25.

HT18-25 in Hot Spot 4 had PAH ESBTUs between 1 and 7.5 (Figure 6-3, Table 6-2) and both sample locations had metal ESBTUs less than 130 μmol/g_{oc}. HT18-25 samples had a PEC-Q value between one and five (Figure 6-4, Table 6-3).

6.5.3 Level 3 Hot Spots

To be considered Level 3, hot spots must have at least one of the following three conditions: a contaminant result that is equal to or greater than three times the respective PEC, a PEC-Q value equal to or greater than 0.5, or an ESBTU equal to or greater than 1.0. Harbortown Upstream Hot Spots 2 and 5 both meet the Level 3 criteria.

6.5.3.1 Harbortown Upstream Hot Spot 2

The Harbortown Upstream Hot Spot 2 includes three locations (Figure 6-2, Table 6-1). The COC exceeding three times the PEC for this hot spot area is cadmium. Cadmium concentrations exceeded three times the PEC at HT18-13 and is between one and two times the PEC in HT18-12. Of the intervals analyzed, cadmium concentrations exceeding three times the PEC in Hot Spot 2 were present to a maximum depth interval of 1-3 ft (HT18-13).

Of the three locations in Hot Spot 2, total 17 PAHS exceeded the PEC at one location (HT18-14); cadmium exceeded the PEC at two locations (HT18-12 and -13); copper exceeded the PEC at one location (HT18-12); lead exceeded the PEC at two locations (HT18-12 and -13); nickel exceeded the PEC at one location (HT18-12); and zinc exceeded the PEC at two locations (HT18-12 and -13). The highest concentrations of all constituents were detected in the subsurface samples. The highest concentration of cadmium was detected in HT18-13; and the highest concentrations of copper, lead, nickel, and zinc were detected in HT18-12.

All of the sample locations in Hot Spot 2 have PAH ESBTUs between 1 and 7.5 (Figure 6-3, Table 6-2) and all of the sample locations have metal ESBTUs less than 130 μ mol/g_{oc}. Two sample locations have PEC-Q values between 0.5 and 1 (Figure 6-4, Table 6-3).

Revision: 00
Page 6-9
June 2019

6.5.3.2 Harbortown Upstream Hot Spot 5

The Harbortown Upstream Hot Spot 5 includes three sample locations (Figure 6-2, Table 6-1). The COC exceeding three times the PEC for this hot spot area is cadmium.

Cadmium concentrations exceeded three times the PEC in HT18-30 (Figure 6-2, Table 6-1). Of the intervals analyzed, cadmium concentrations exceeding three times the PEC in Hot Spot 5 were present to a maximum depth interval of 7-10 ft (HT18-30).

Of the three locations in Hot Spot 5, total 17 PAHs exceeded the PEC at one location (HT18-27); cadmium exceeded the PEC at one location (HT18-30); chromium exceeded the PEC at one location (HT18-30); lead exceeded the PEC at one location (HT18-30); mercury exceeded the PEC at one location (HT18-30); nickel exceeded the PEC at two locations (HT18-27, and -30) and zinc exceeded the PEC at one location (HT18-30). No metals exceeded the PEC in HT18-29. The highest concentrations of all constituents were detected in the subsurface samples. The highest concentration of total 17 PAHs was detected in HT18-27; and the highest concentrations of cadmium, chromium, lead, mercury, nickel, and zinc were detected in HT18-30.

All three sample locations in Hot Spot 5 had PAH ESBTUs between 1 and 7.5 (Figure 6-3, Table 6-2) and each location had metal ESBTUs less than 130 µmol/goc. One sample in Hot Spot 5 had PEC-Q values between 0.5 and 1 (Figure 6-4, Table 6-3).

6.6 COMPARISON OF HARBORTOWN UPSTREAM AREA HOT SPOTS WITH ASSESSMENTS FOR OTHER SECTIONS OF THE DETROIT RIVER AREA OF CONCERN

The Level 1, Level 2, and Level 3 criteria in Section 6.5 were also utilized to categorize hot spots in the Riverbend Assessment of Contaminated Sediments (EA 2016a), Harbortown Assessment of Contaminated Sediments (EA 2016b), and Mid/Lower Trenton Channel Assessment of Contaminated Sediments (EA 2015). Different hot spot rating systems were utilized in the Celeron Island Area Assessment of Contaminated Sediments (EA 2014a) and the River Rouge/Ecorse Shoreline Assessment of Contaminated Sediments (EA 2014b). In the Celeron Island Area characterization, hot spots were categorized as low or high impact. Low impact hot spots were defined as areas having concentrations of at least one constituent exceeding its respective PEC, while the high impact designation was applied to hot spots containing concentrations of at least one constituent exceeding three times its respective PEC (EA 2014a). In the River Rouge/Ecorse Shoreline characterization, hot spots were categorized as major if the model predicted that a majority of the area within the hot spot had at least one constituent with a concentration exceeding three times its respective PEC. Hot spots that did not satisfy the criteria to be labeled as major were identified as other hot spots (EA 2014b).

As discussed in the previous sections, five hot spots have been identified in the Harbortown Upstream Area. No Hotspots were designated as Level 1, three were designated as Level 2, and two were designated as Level 3. The five Hot Spots (Level 2 and Level 3) would be identified as

Revision: 00 Page 6-10

June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

high impact hot spots under the criteria utilized in the Celeron Island Area characterization and would be identified as major hot spots according to the criteria applied in the River Rouge/Ecorse Shoreline characterization because they all had concentrations exceeding three times the respective PEC. In the Mid/Lower Trenton Channel, nine hot spots were identified, of which seven were designated as Level 1, one was designated as Level 2, and one was designated as Level 3 using the same criteria as the Harbortown designations (EA 2015).

Three hotspots were identified in the Harbortown Area, two of which are designated as Level 1, and one of which is designated as Level 3. The two Level 1 Hot Spots would be identified as high impact hot spots under the criteria utilized in the Celeron Island Area characterization and would be identified as major hot spots according to the criteria applied in the River Rouge/Ecorse Shoreline characterization. The Level 3 Hot Spot in this study would be identified as a low impact Hot Spot under the criteria utilized in the Celeron Island Area characterization and an "other" Hot Spot based on criteria in the River Rouge/Ecorse Shoreline study.

Four hots spots were identified in the Riverbend Area, all of which are designated as Level 1. All four of the Riverbend Area hot spots would be identified as high impact hot spots under the criteria utilized in the Celeron Island Area characterization. The four Riverbend Area hot spots would all be identified as major hot spots according to the criteria applied in the River Rouge/Ecorse Shoreline characterization.

Of the nine hot spots identified in the Mid/Lower Trenton Channel, seven would be identified as high impact under the criteria utilized in the Celeron Island Area characterization, with the remaining two being designated as low impact. If the criteria from the River Rouge/Ecorse Shoreline were applied, four of the Mid/Lower Trenton Channel hot spots would be identified as major hot spots and the remaining five would be identified as other hot spots.

In the Celeron Island Area characterization, seven hot spots were identified, of which four were designated as high impact and three were designated as low impact (EA 2014a). If the criteria described in Section 6.5 were applied to the seven hot spots that were identified in the Celeron Island Area characterization, four of the hot spots would be identified as Level 1 hot spots and three would be identified as Level 3 hot spots. If the criteria from the River Rouge/Ecorse Shoreline characterization were applied, one of the hot spots in the Celeron Island Area would be identified as a major hot spot and the other six would be considered other hot spots.

Three hot spots were identified in the River Rouge/Ecorse Shoreline characterization, of which two hot spots were labeled as major and one hot spot was labeled as other (EA 2014b). If the criteria defined in Section 6.5 were applied to the hot spots identified in the River Rouge/Ecorse Shoreline characterization, all three of the hot spots would be designated as Level 1. If the criteria from the Celeron Island Area characterization were applied to the three hot spots identified in the River Rouge/Ecorse Shoreline characterization, all three would be labeled as high impact hot spots.

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Revision: 00 Page 7-1 June 2019

7. CONCLUSIONS

Based on the data collected during the Harbortown Upstream Area sediment characterization, there are no Level 1 high impact hot spots. The Level 2 hot spot areas with elevated concentrations of constituents are: Harbortown Upstream Hot Spots 1, 3, and 4. These Level 2 hot spots have an estimated total of approximately 466,194 cubic yard (cy) of sediment with constituent concentrations meeting the Level 2 criteria.

The Level 3 hot spot areas with elevated concentrations of constituents are: Harbortown Upstream Hot Spots 2 and 5. These Level 3 hot spots have an estimated total of approximately 368,345 cubic yard (cy) of sediment with constituent concentrations meeting the Level 3 criteria.

The five hot spots identified in the Harbortown Upstream Area were determined to be Level 2 or 3 hot spots and should be considered for further investigation. Model results indicated that three of these five areas have (Level 2) a large volume of sediment with elevated concentrations of constituents exceeding three times respective PECs and elevated PAH ESBTUs and PEC-Qs. There is a possible correlation of elevated concentrations being associated with soft sediment; cores that were comprised primarily of fat, gray clay had fewer to no exceedances. Further delineation of the extent of sediment with elevated concentrations of constituents is recommended.

The modeling results for all constituents exceeding two or three times the PEC, the PAH ESBTUs, and the PEC-Qs suggest that the hot spot areas should be considered for further investigation and potential remediation within the Harbortown Upstream Area. However, it should be noted that the limited number of samples results in significant uncertainty of the volume of sediment with elevated concentrations of constituents in the hot spot areas.

Revision: 00 Page 7-2 June 2019

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

This page intentionally left blank

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

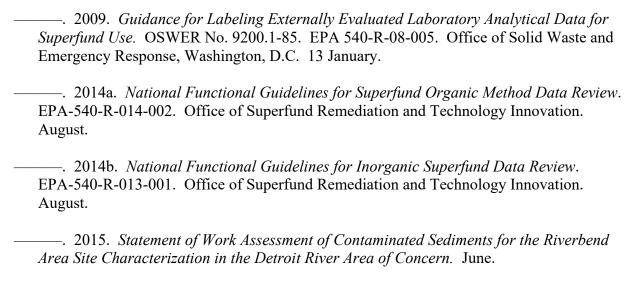
Revision: 00 Page 8-1 June 2019

8. REFERENCES

- AMEC Environment & Infrastructure, Anchor QEA, LLC, and ENVIRON International Corporation. 2013. *Lower Rouge River Old Channel: Final FS Report*. Prepared for Honeywell International Inc. August.
- Battelle. 2007. *Sediment Toxicity of Petroleum Hydrocarbon Fractions*. Prepared for Massachusetts Department of Environmental Protection Office of Research and Standards. September.
- EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology (EA). 2014a. Assessment of Contaminated Sediments, Celeron Island Area Site Characterization Report, Detroit River Area of Concern, Grosse Ile, Michigan. July.
- ——. 2014b. Assessment of Contaminated Sediments, River Rouge/Ecorse Shoreline Site Characterization Report, Detroit River Area of Concern, Wayne County, Michigan. August.
- ——. 2015. Assessment of Contaminated Sediments, Mid/Lower Trenton Channel Area Site Characterization Report, Detroit River Area of Concern, Grosse Ile, Michigan. July.
- ——. 2016a. Assessment of Contaminated Sediment, Riverbend Area Site Characterization, Detroit River Area of Concern, Detroit, Michigan. June.
- ——. 2016b. Assessment of Contaminated Sediment, Harbortown Area Site Characterization, Detroit River Area of Concern, Detroit, Michigan. December.
- _____. 2018. Quality Assurance Project Plan, Assessment of Contaminated Sediment,
 Harbortown Upstream Area Site Characterization, Detroit River Area of Concern, Detroit,
 Michigan. October.
- ——. 2019. Data Usability Assessment Report, Harbortown Upstream Area Site Characterization, Detroit River Area of Concern, Detroit, Michigan. April.
- Geiger, S.C. 2010. The Determination of Sediment Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability using Direct Pore Water Analysis by Solid-Phase Microextraction (SPME). ESTCP Project ER-200709. Prepared for Environmental Security Technology Certification Program, U.S. Department of Defense. August.
- Ingersoll, C.G., D.D. MacDonald, N. Wang, J.L. Crane, L.J. Field, P.S. Haverland, N.E. Kemble, R.A. Lindskoog, C. Severn, and D.E. Smorong. 2001. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines. *Archives of Environmental Contamination and Toxicology* 41:8-21.
- Kenaga, D. and J. Crum. 1987. Sediment PCB Concentrations along the U.S. shoreline of the upper Detroit River, and sediment and Water PCB concentrations in two City of Detroit

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

Page 8-2 June 2019

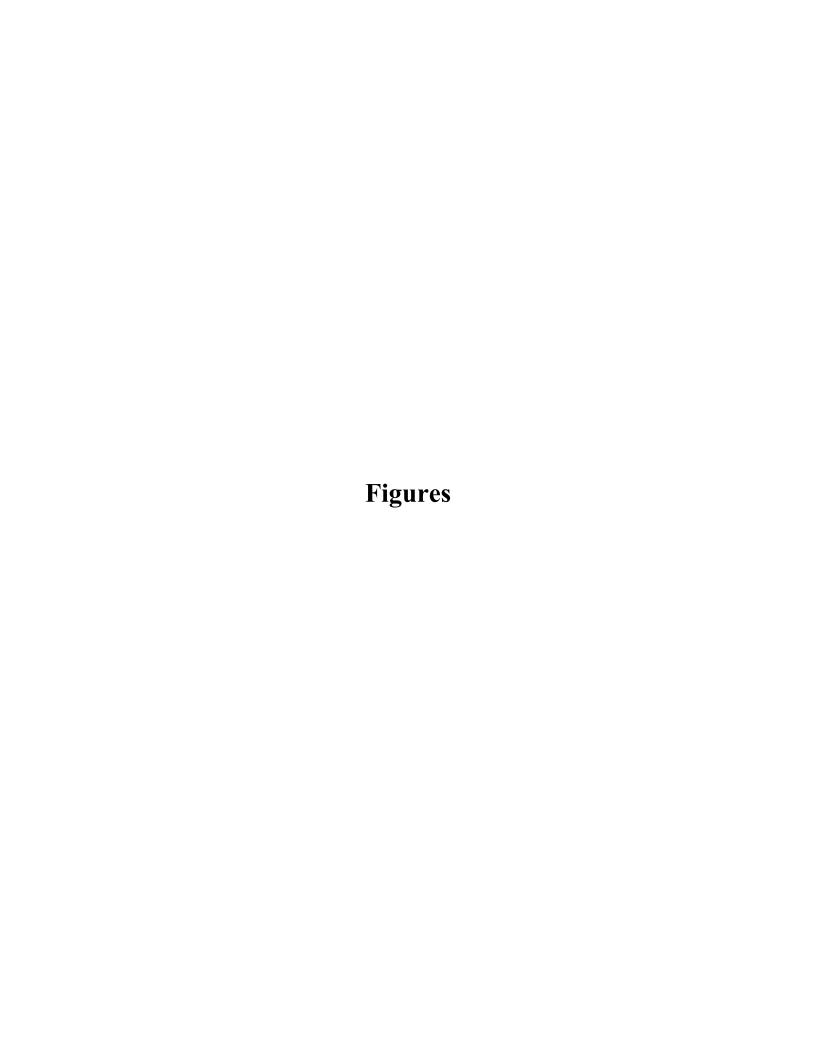

Revision: 00

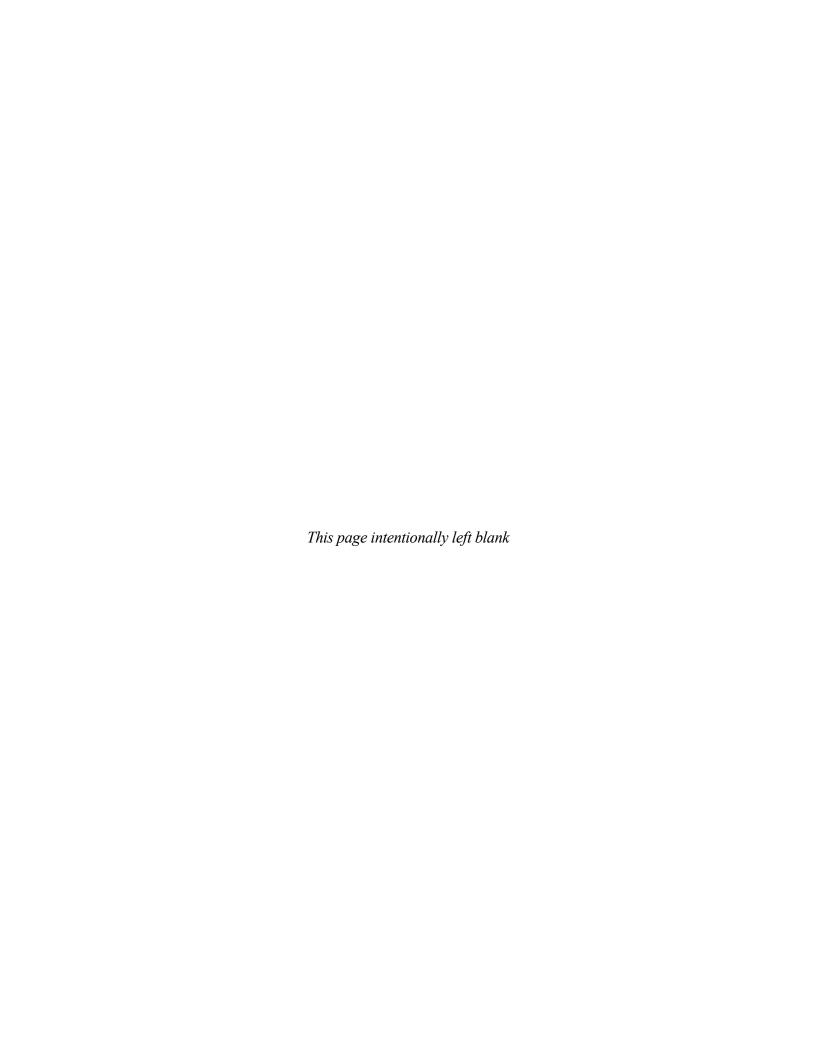
combined sewers with overflows to the Detroit River, July and October 1986 and January 1987. Michigan Department of Natural Resources, Surface Water Quality Division

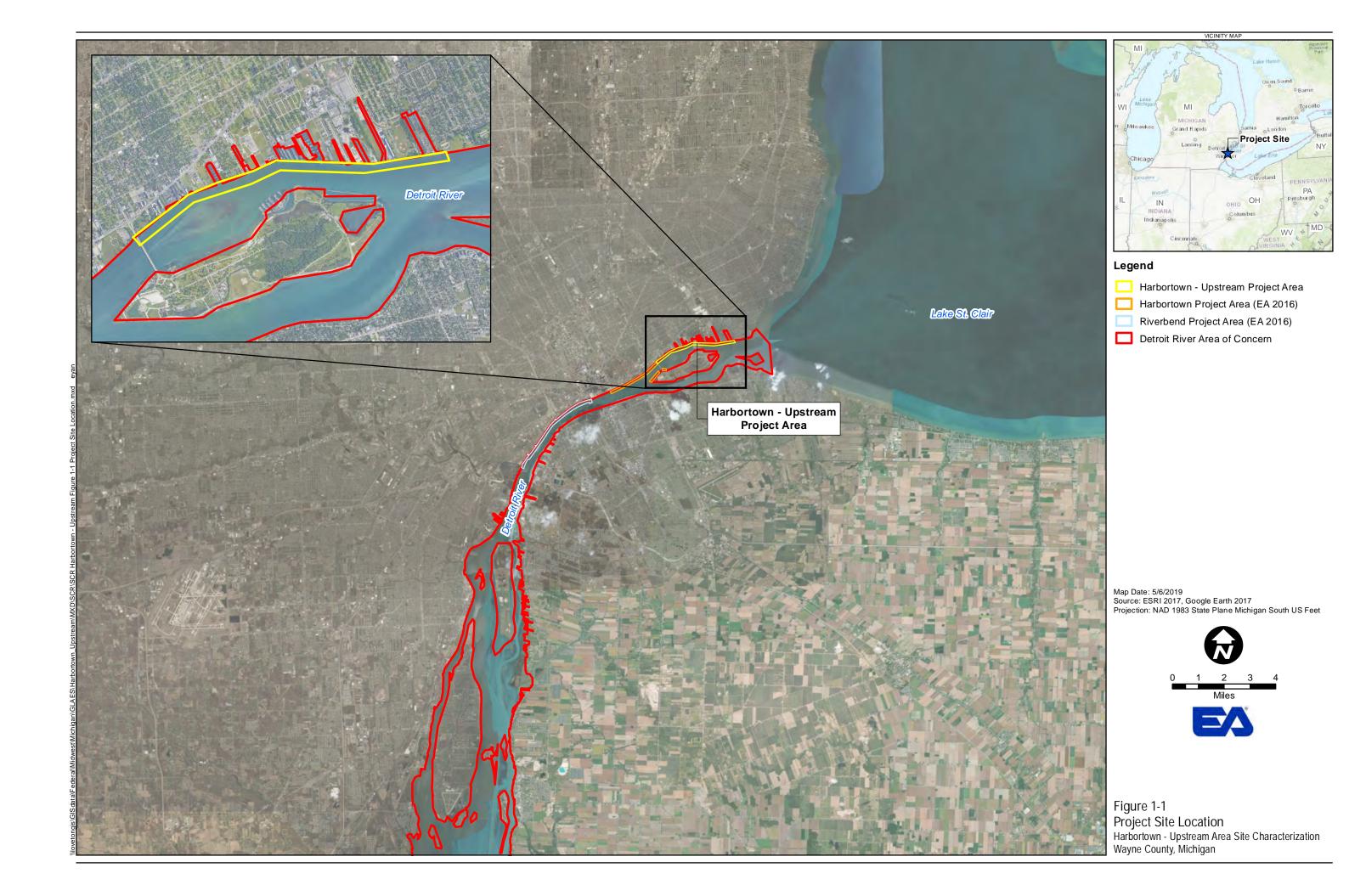
- MacDonald D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. *Archives of Environmental Contamination and Toxicology* 39:20-31.
- MacDonald, D.D. and M. MacFarlane. 1999. (Draft). Criteria for managing contaminated sediment in British Columbia. British Columbia Ministry of Environment, Lands, and Parks. Victoria, British Columbia.
- Michigan Department of Environment, Great Lakes, and Energy (EGLE). 1996. *Detroit River Remedial Action Plan Report*.
- ———. 2008. The Michigan Department of Environmental Quality Biennial Remedial Action Plan Update for the Detroit River Area of Concern. 2 January.
- Michigan Department of Natural Resources (MDNR). 1991. *Detroit River Remedial Action Plan Stage 1*. Surface Water Quality Division, Lansing, Michigan. June.
- Persaud, D.R., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediments in Ontario. Standards Development Branch. Ontario Ministry of Environment and Energy. Toronto, Canada.
- U.S. Environmental Protection Agency (EPA). 2000. Prediction of sediment Toxicity Using Consensus-Based Freshwater Sediment Quality Guidelines. EPA 905/R-00/007. Great Lakes Program Office, Chicago, Illinois.
- ——. 2003a. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. Office of Research and Development, Washington, D.C. 20460.
- ——. 2003b. *EPA Region 5 Resource Conservation and Recovery Act Ecological Screening Levels*. August.
- ——. 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). EPA-600-R-02-011. Office of Research and Development, Washington, D.C. 20460. January.
- . 2008. Interim Guidance for Developing Global Positioning System Data Collection Standard Operating Procedures and Quality Assurance Project Plans. EPA/600/R-08/020.

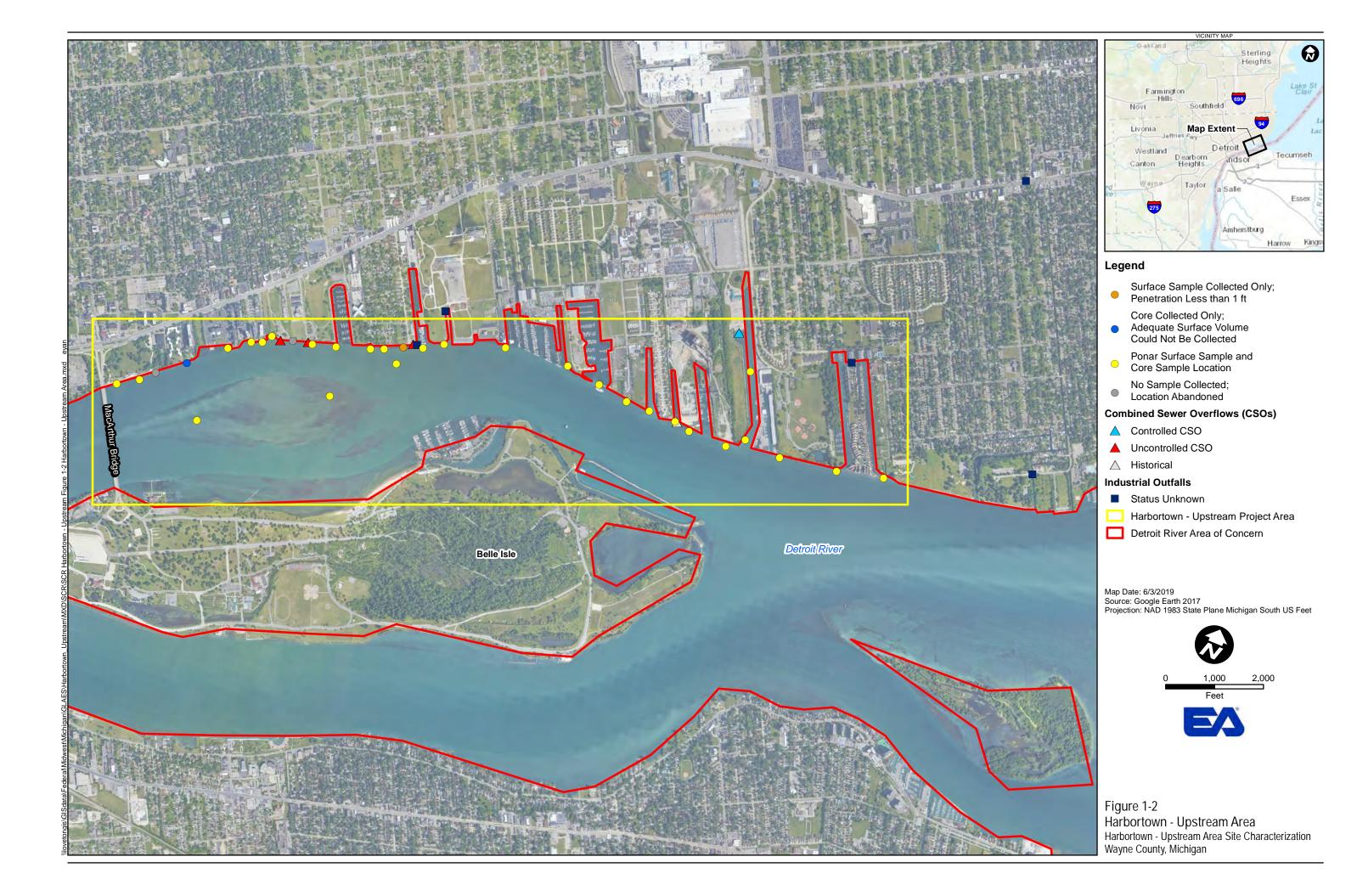
EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

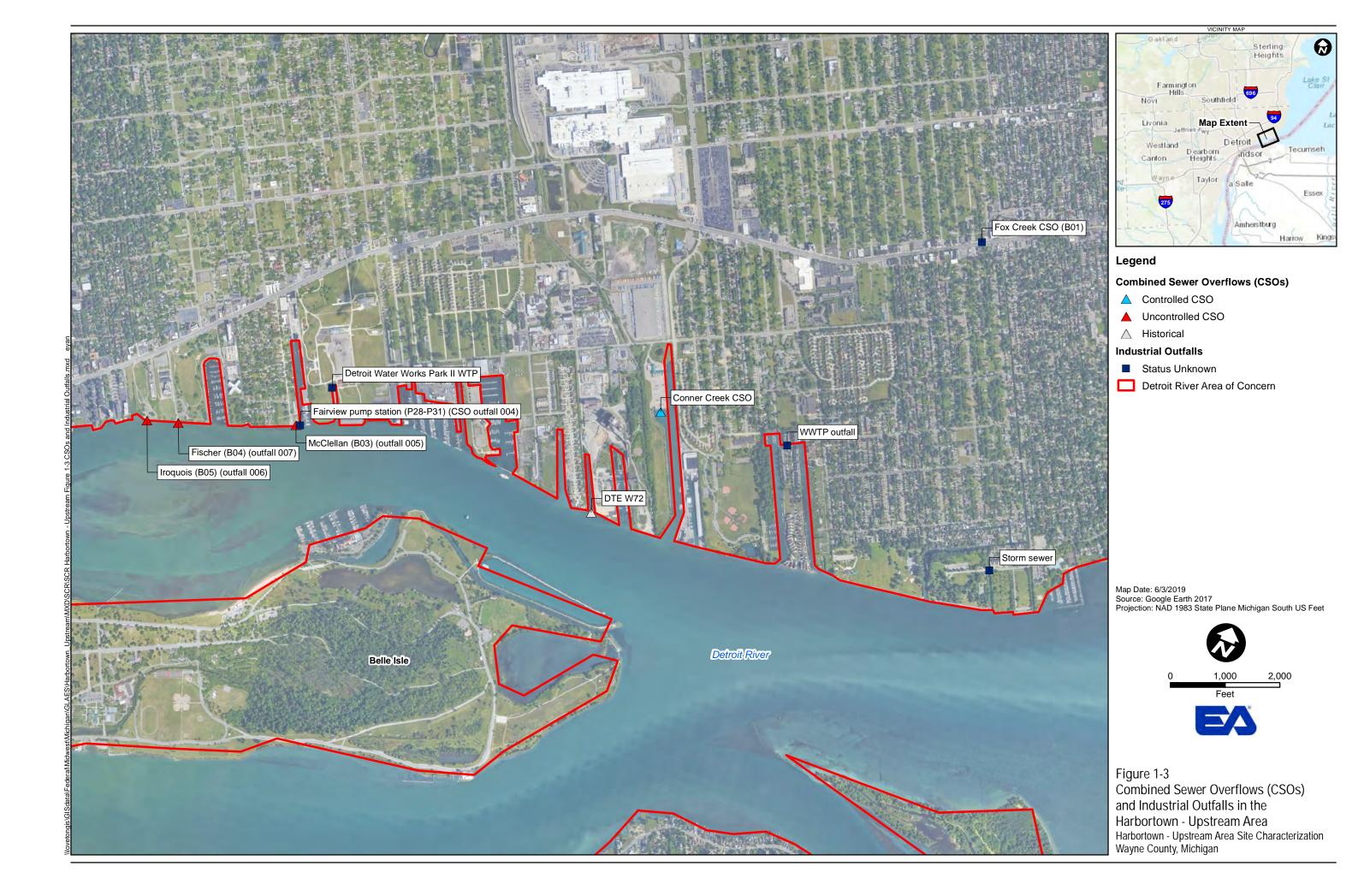
Revision: 00 Page 8-3 June 2019

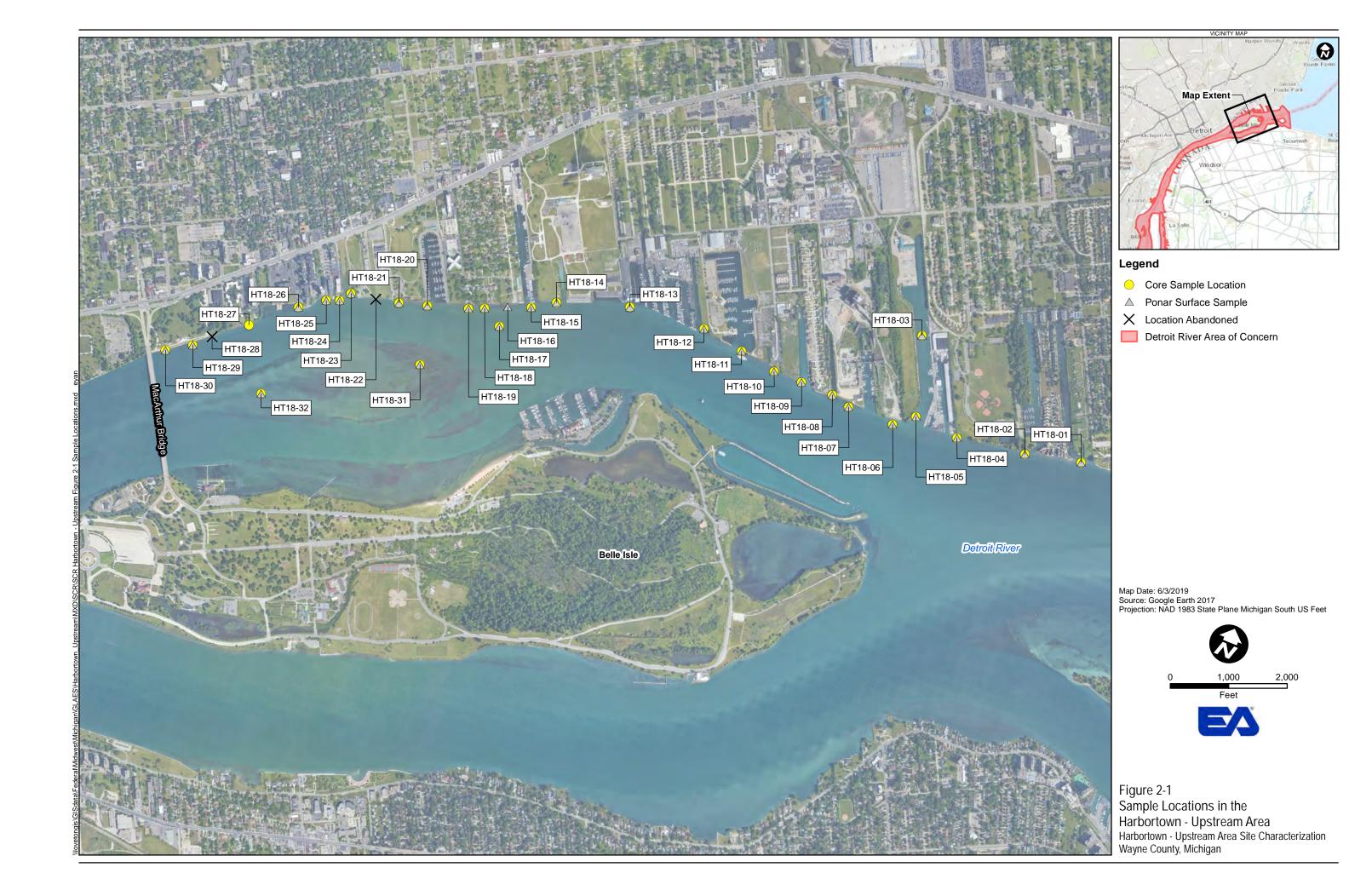


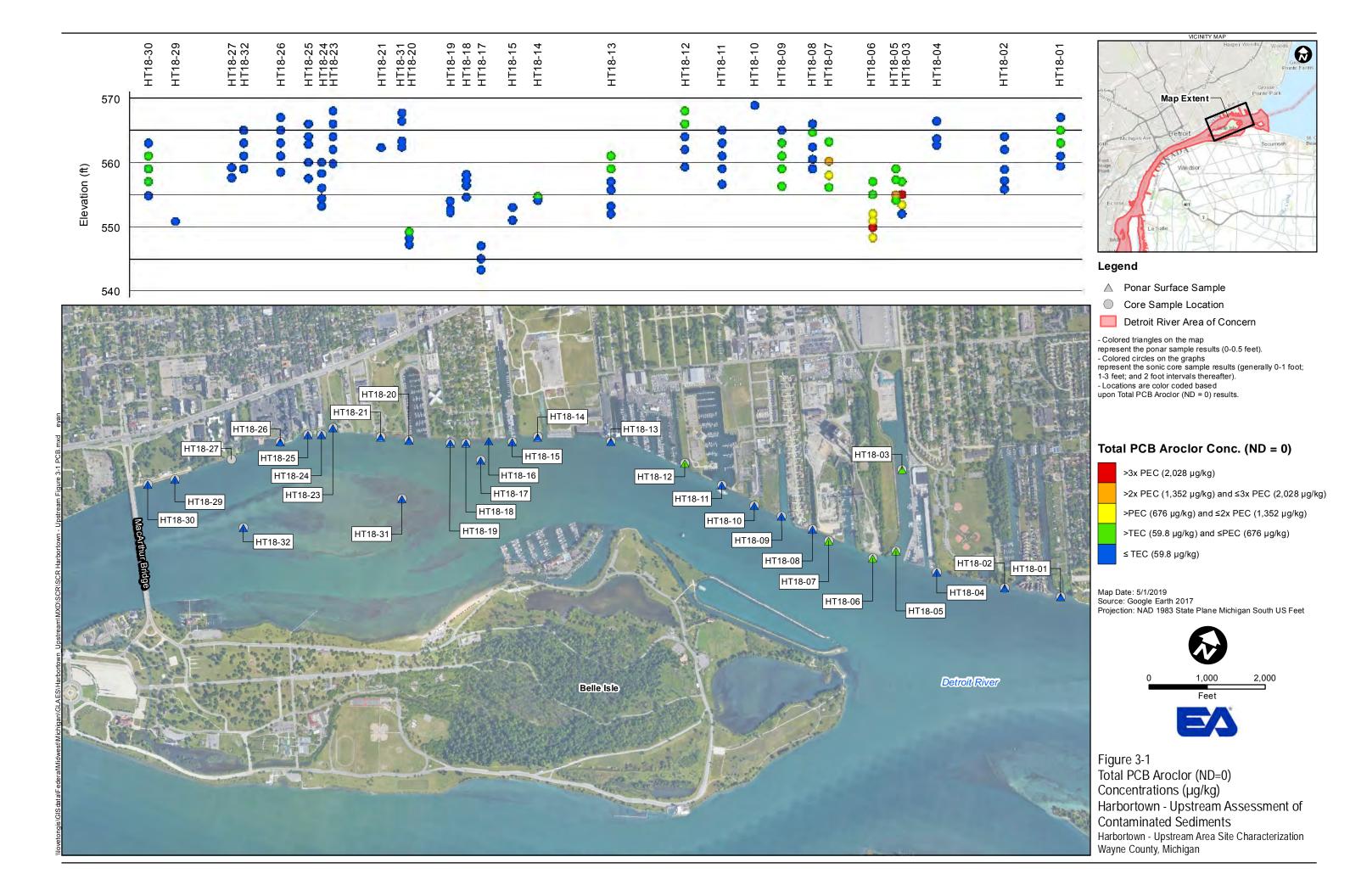

Wisconsin Department of Natural Resources (WDNR). 2003. Consensus Based Sediment Quality Guidelines, Recommendations for Use and Application. WT 732-2003. December.

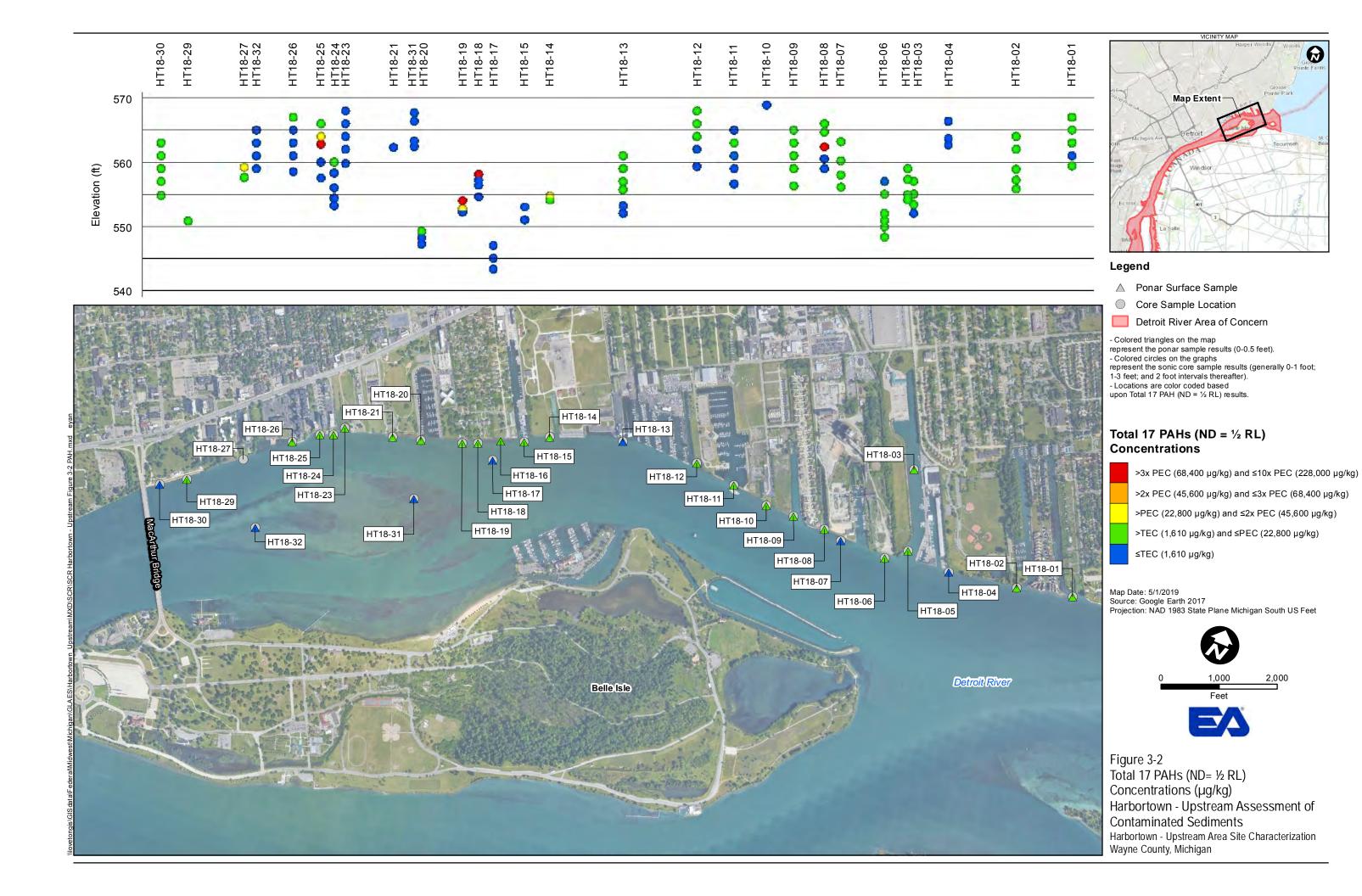

Revision: 00 Page 8-4 June 2019

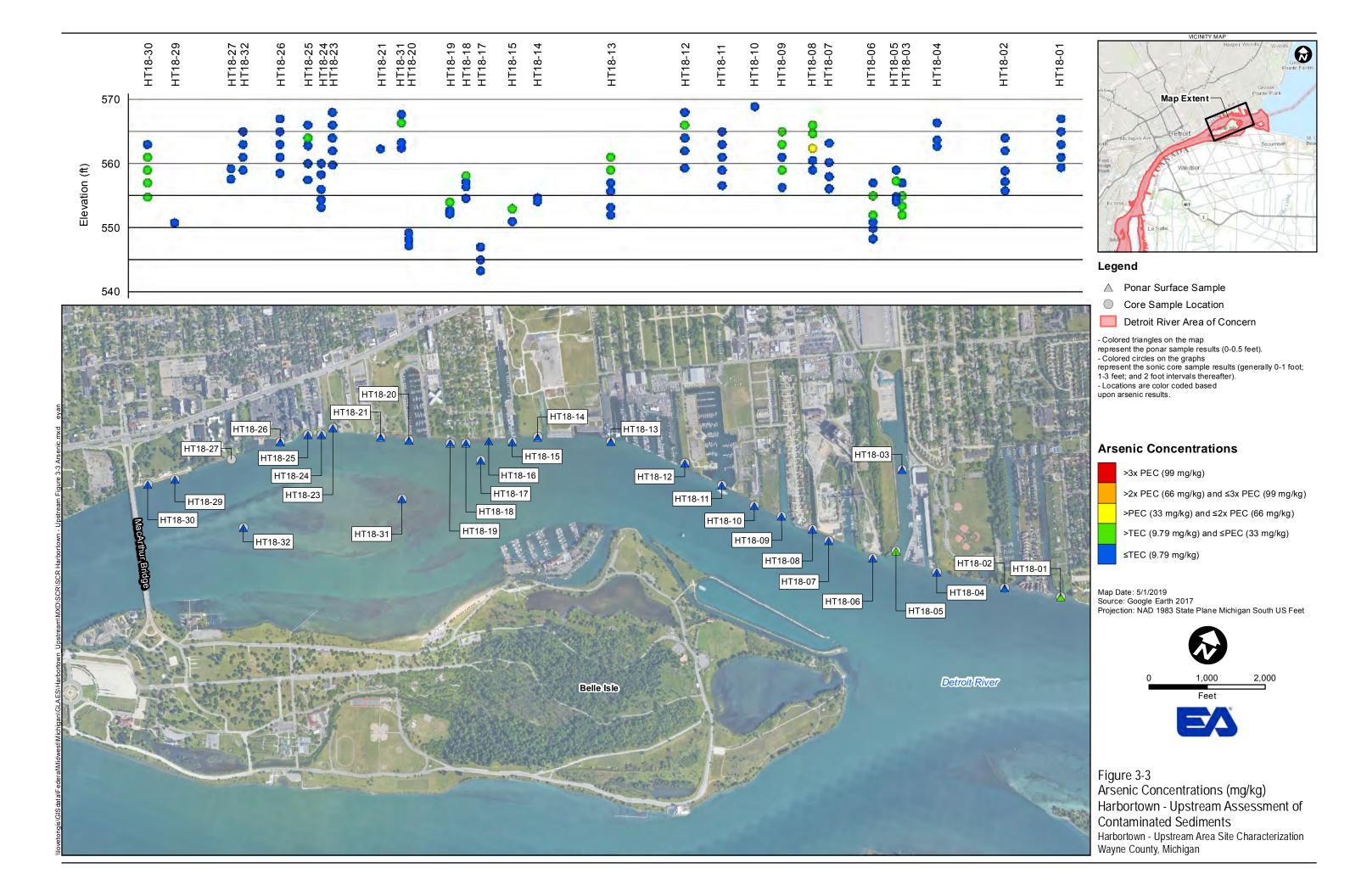

EA Engineering, Science, and Technology, (MI) PLC and Its Affiliate EA Science and Technology

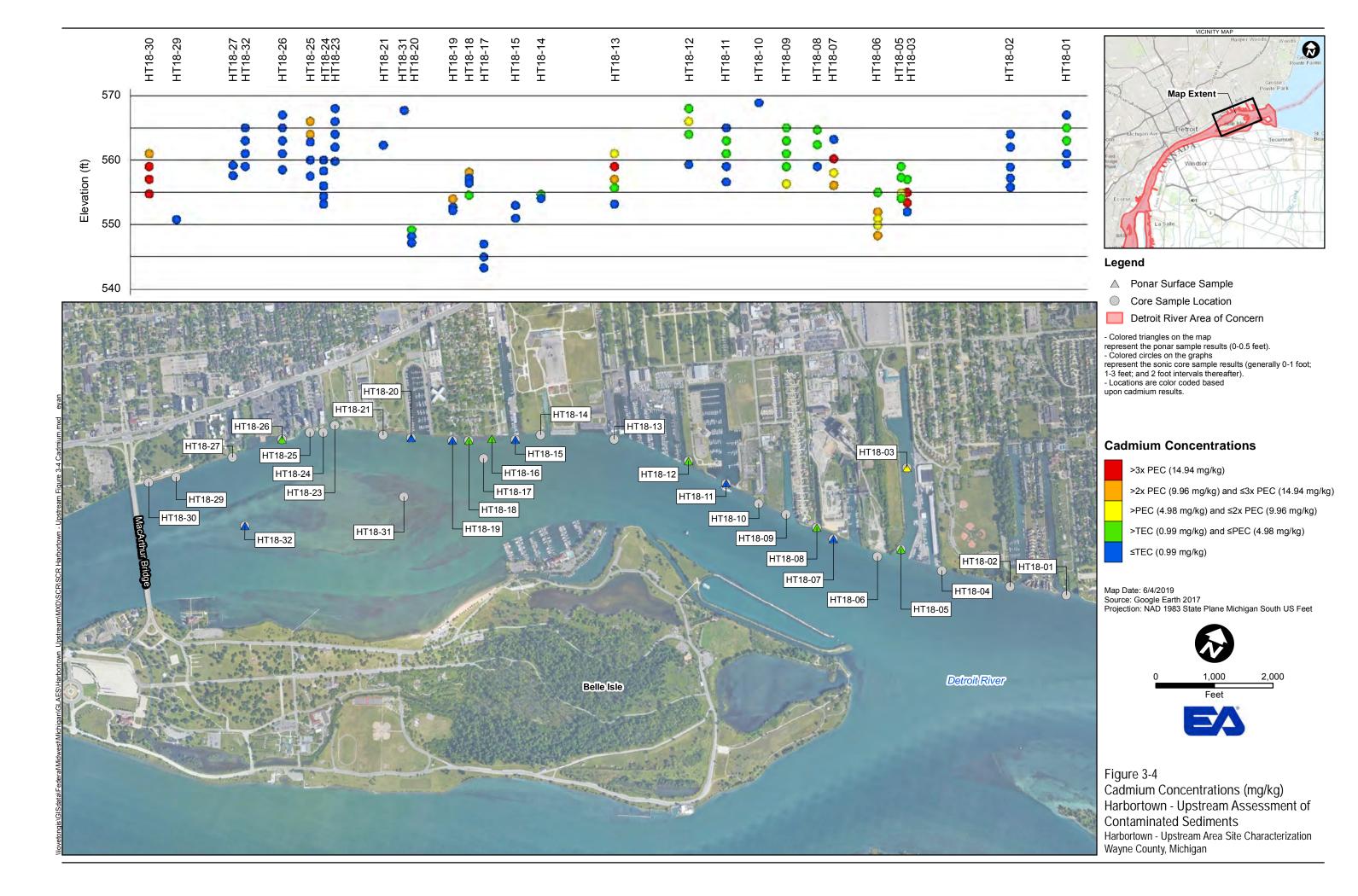

This page intentionally left blank

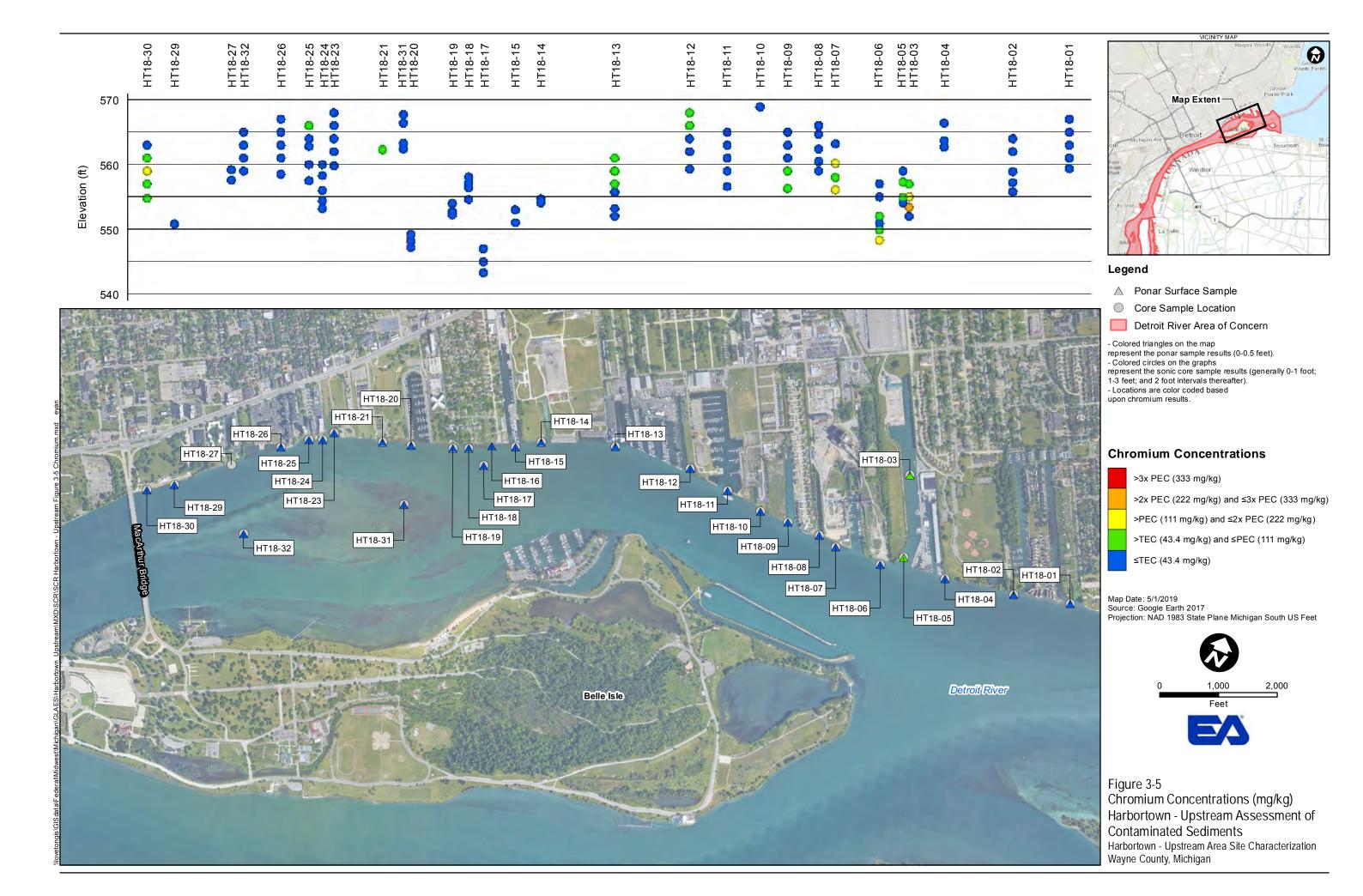


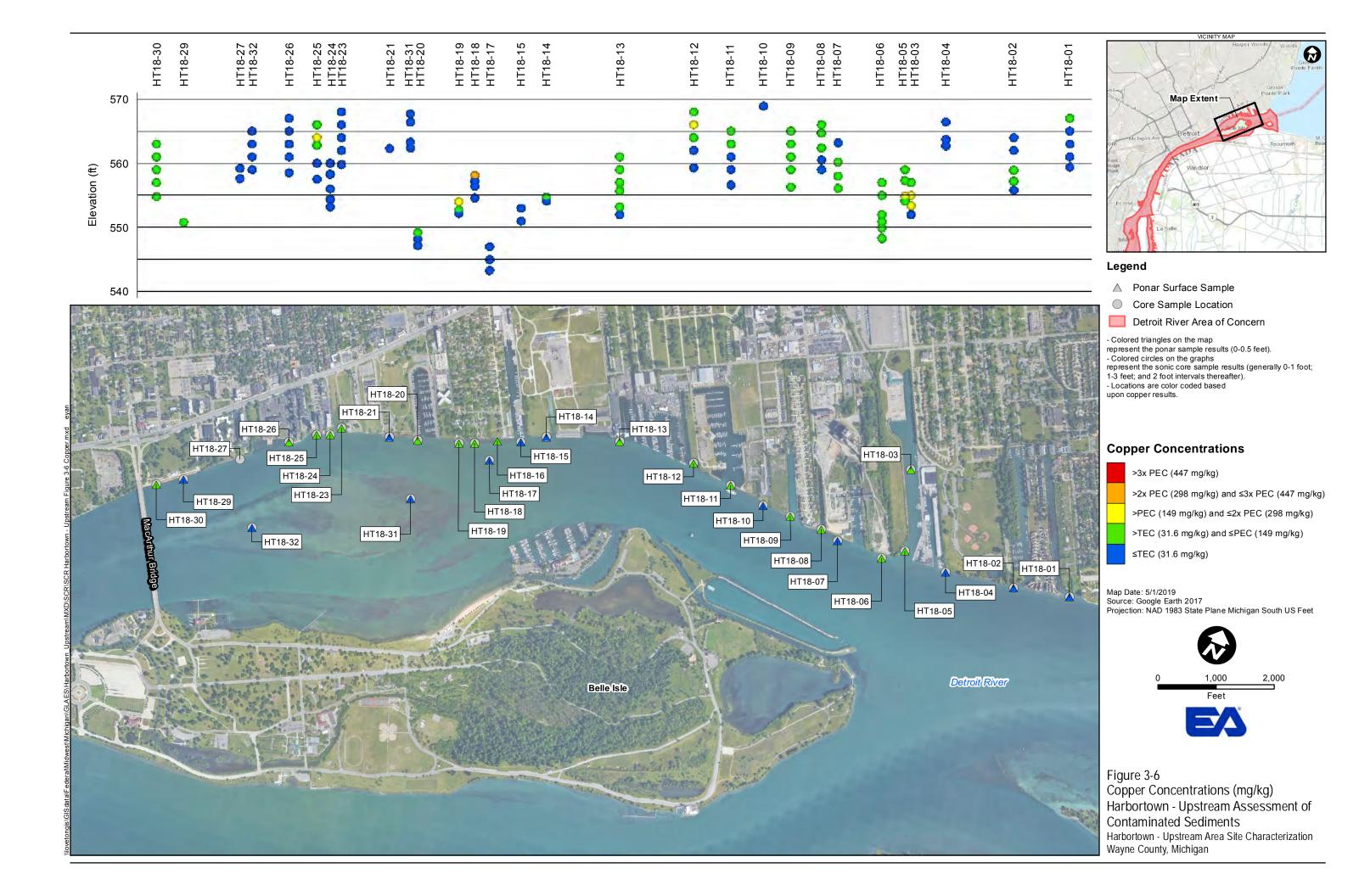


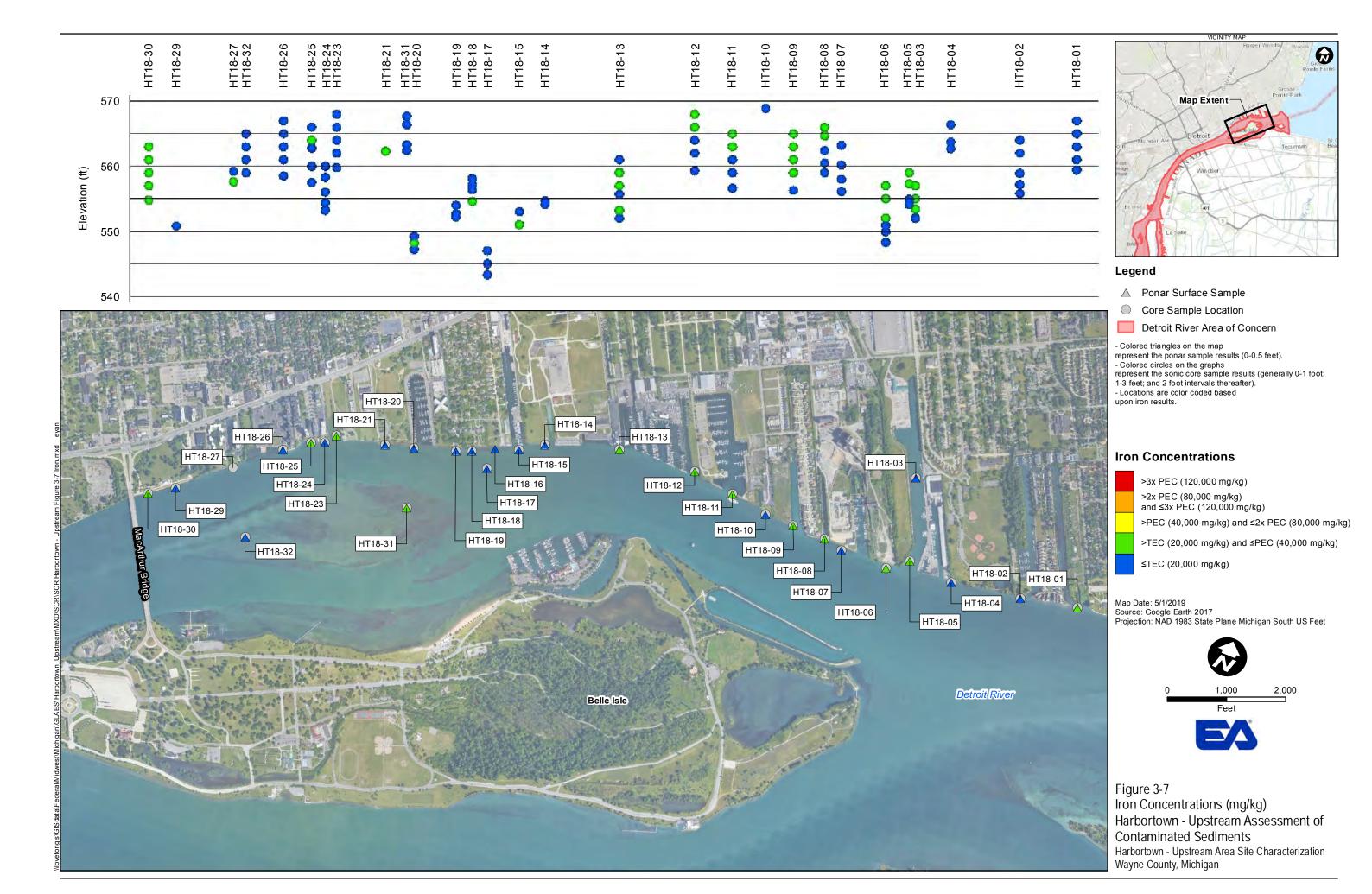


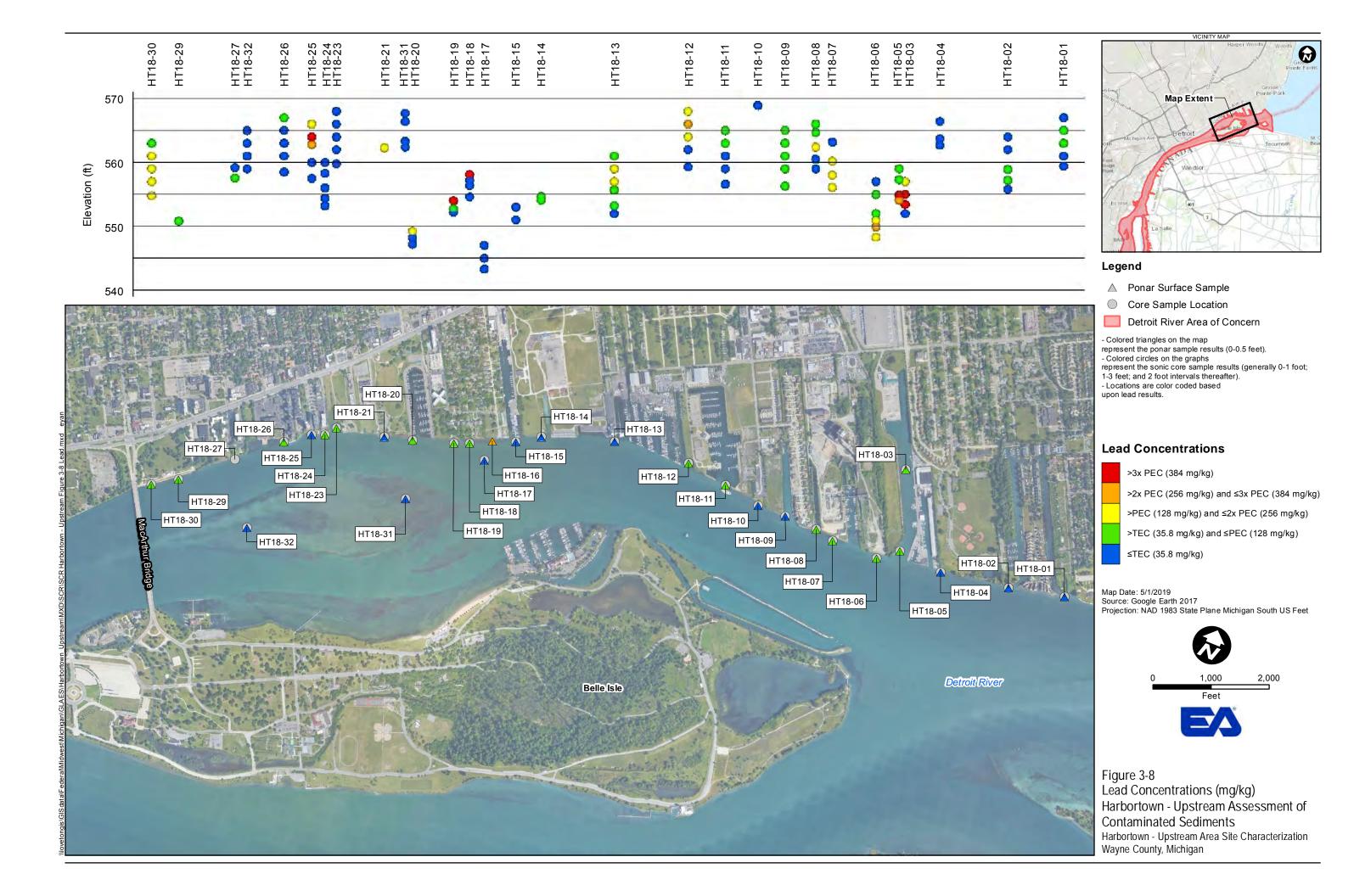


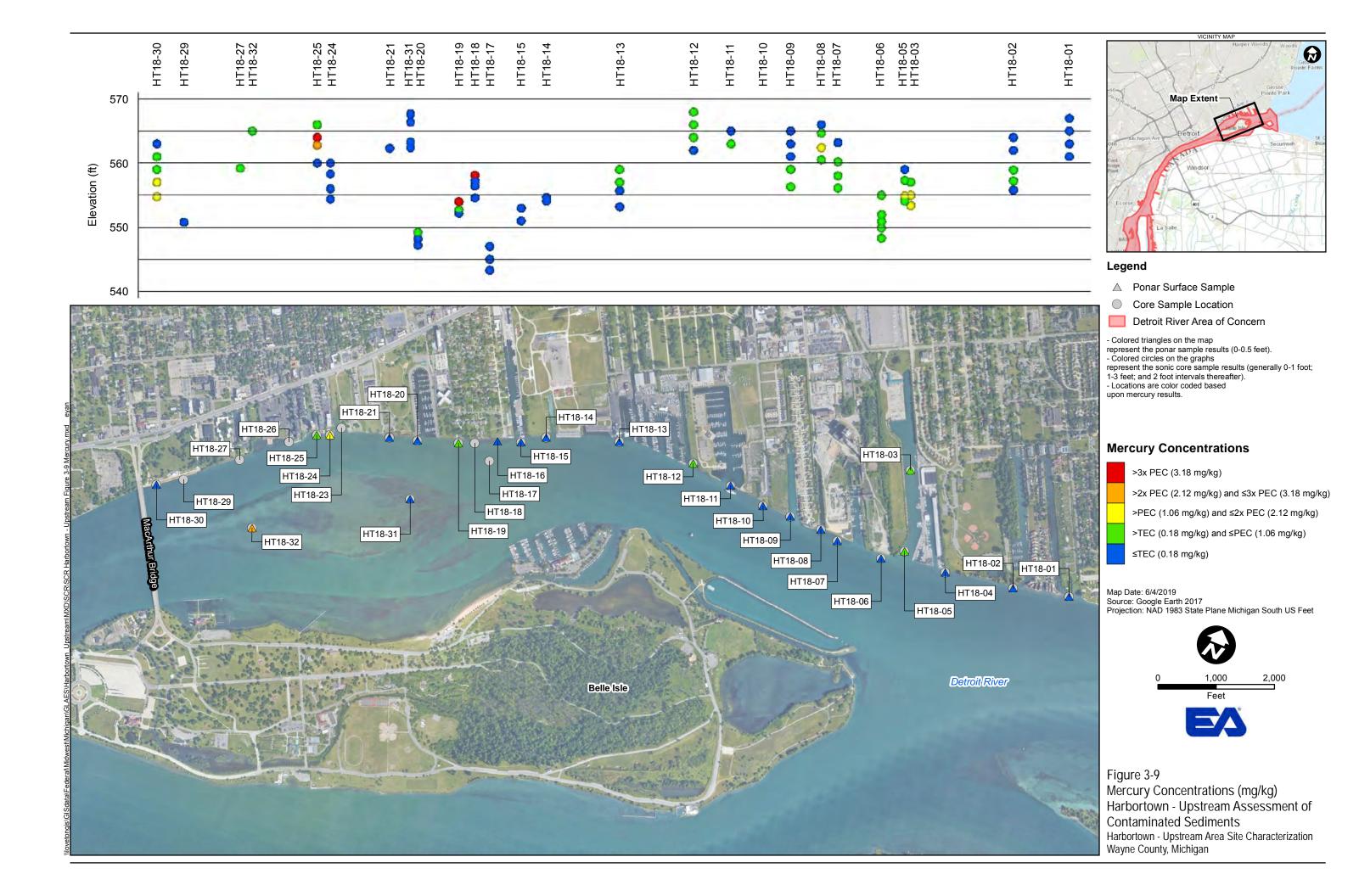


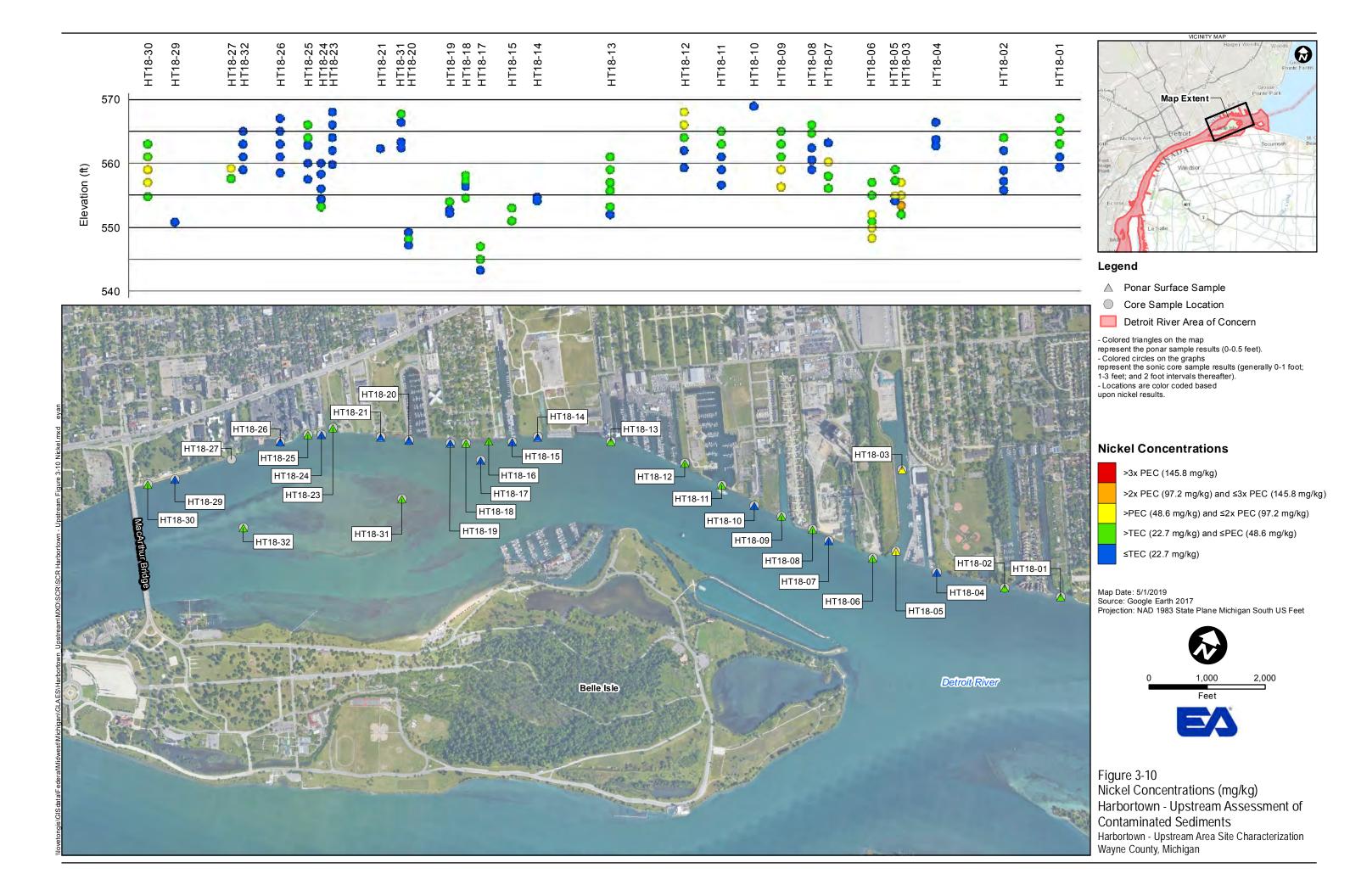


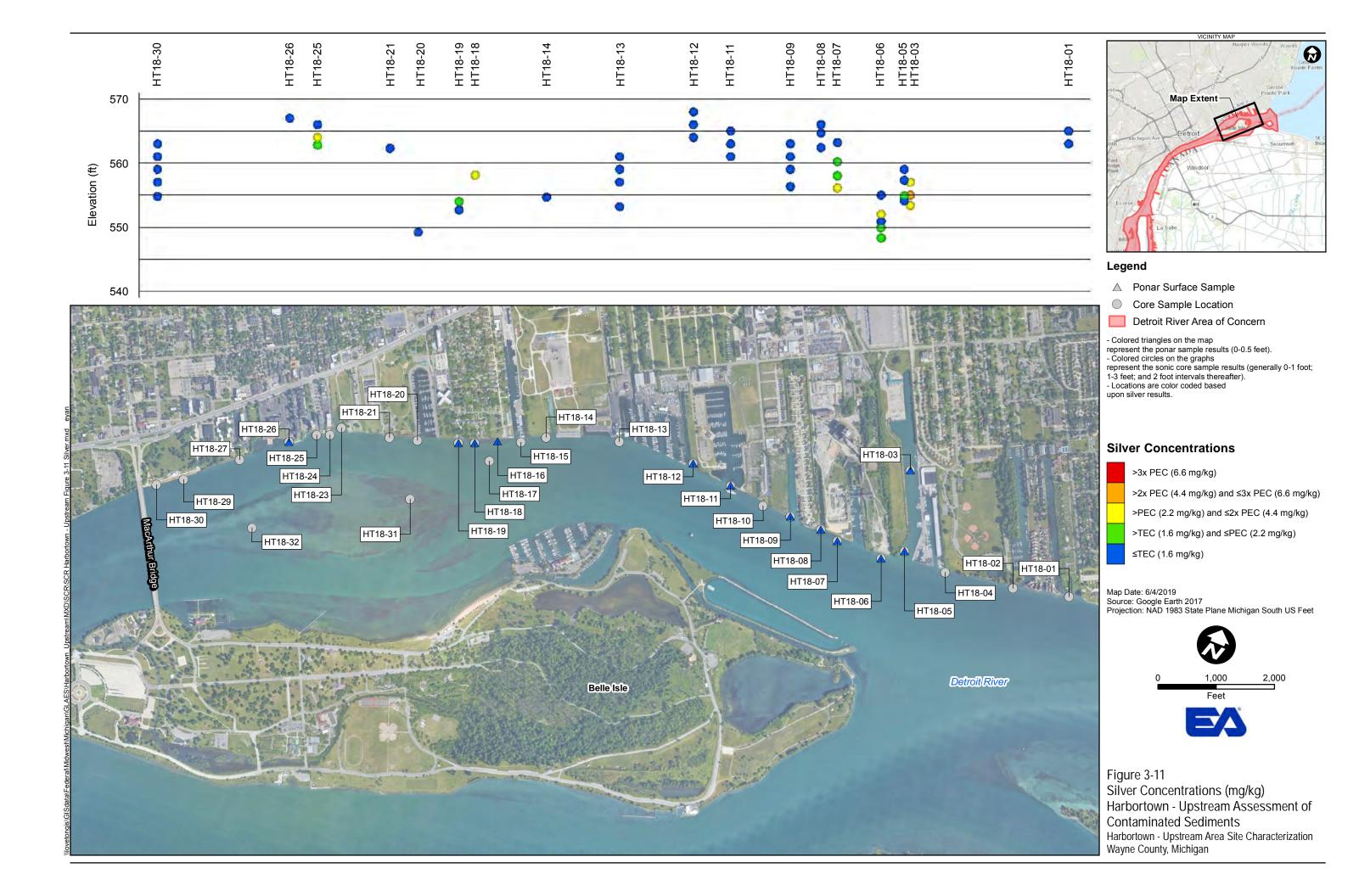


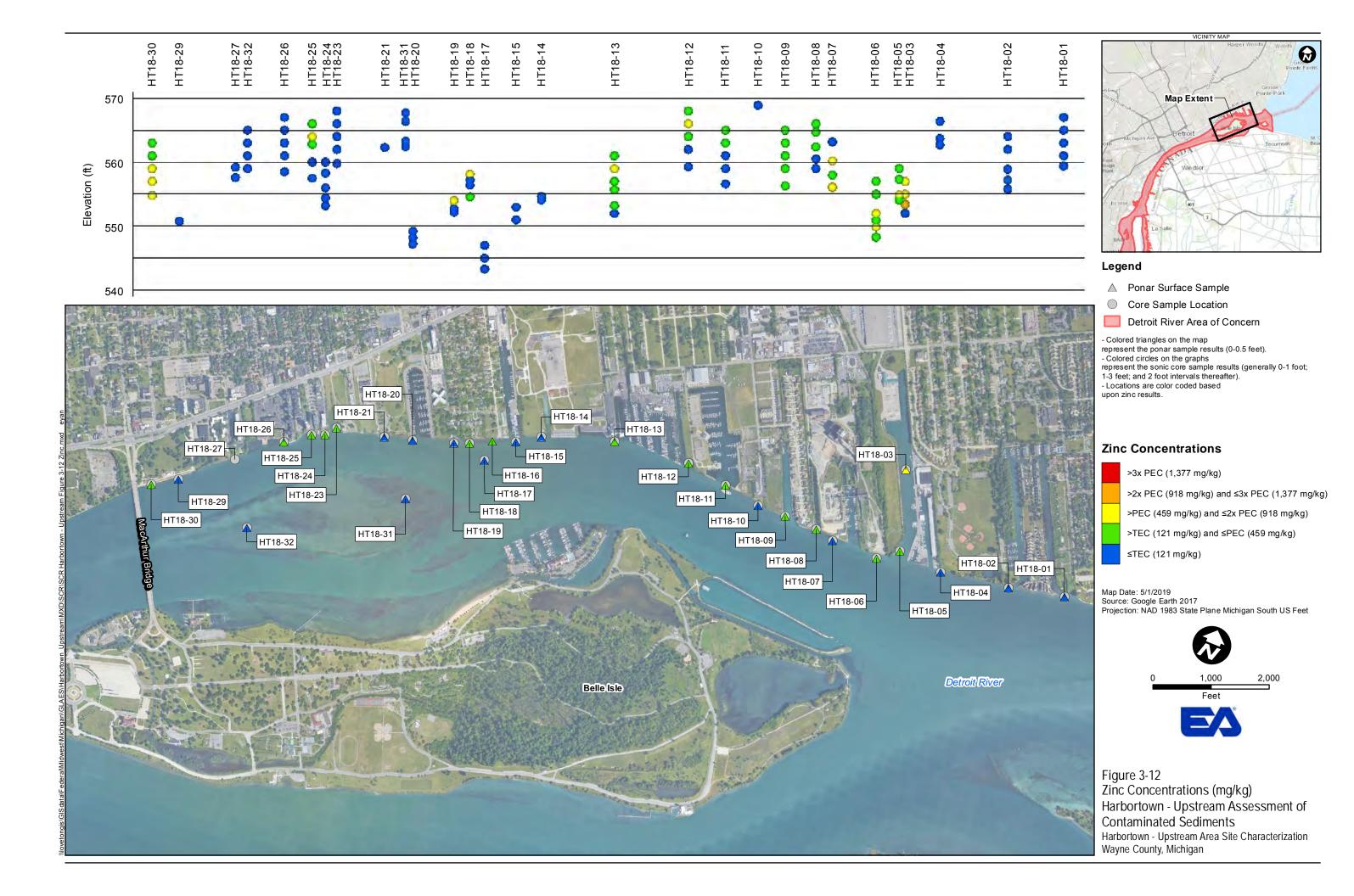


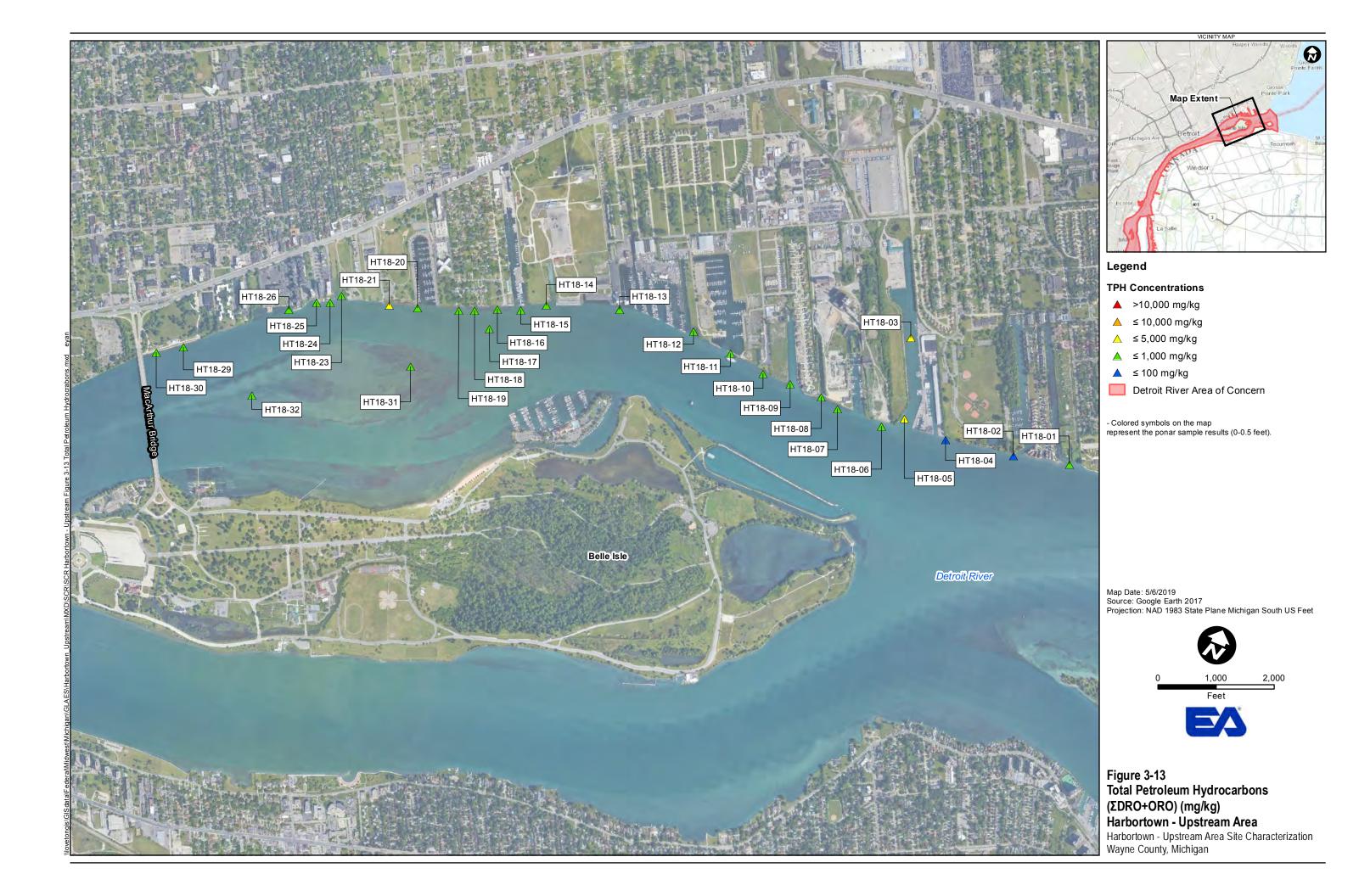


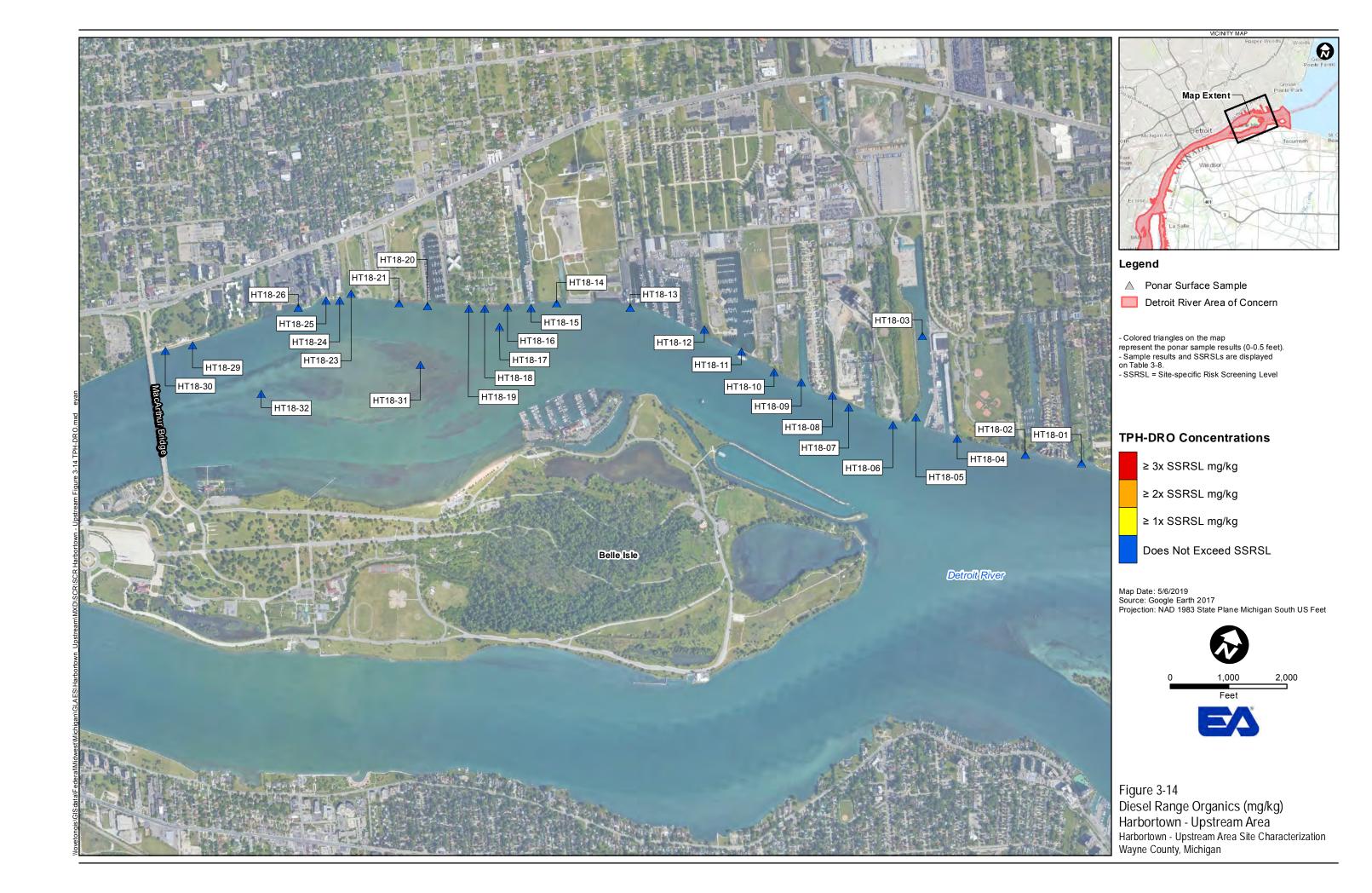


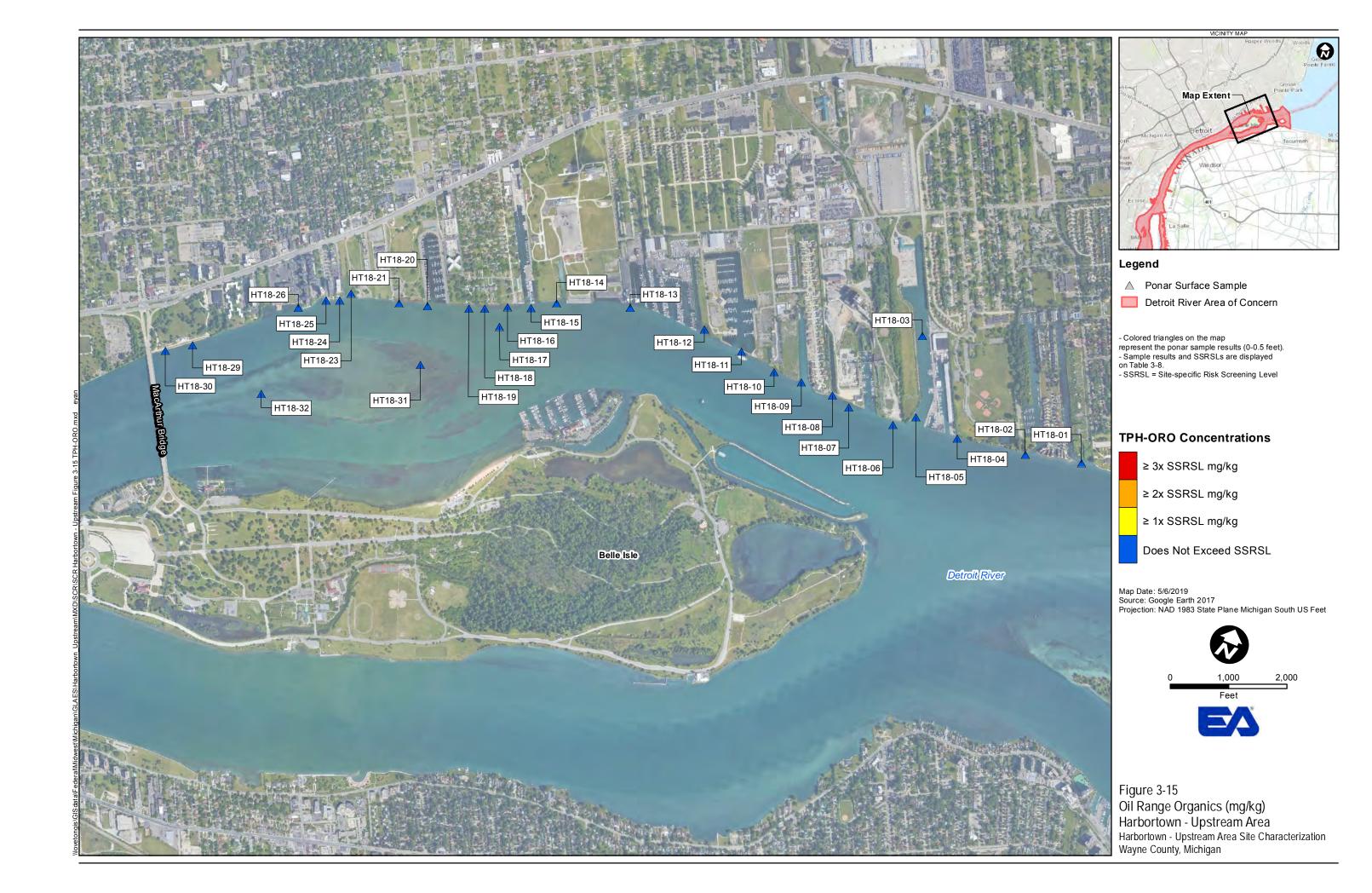


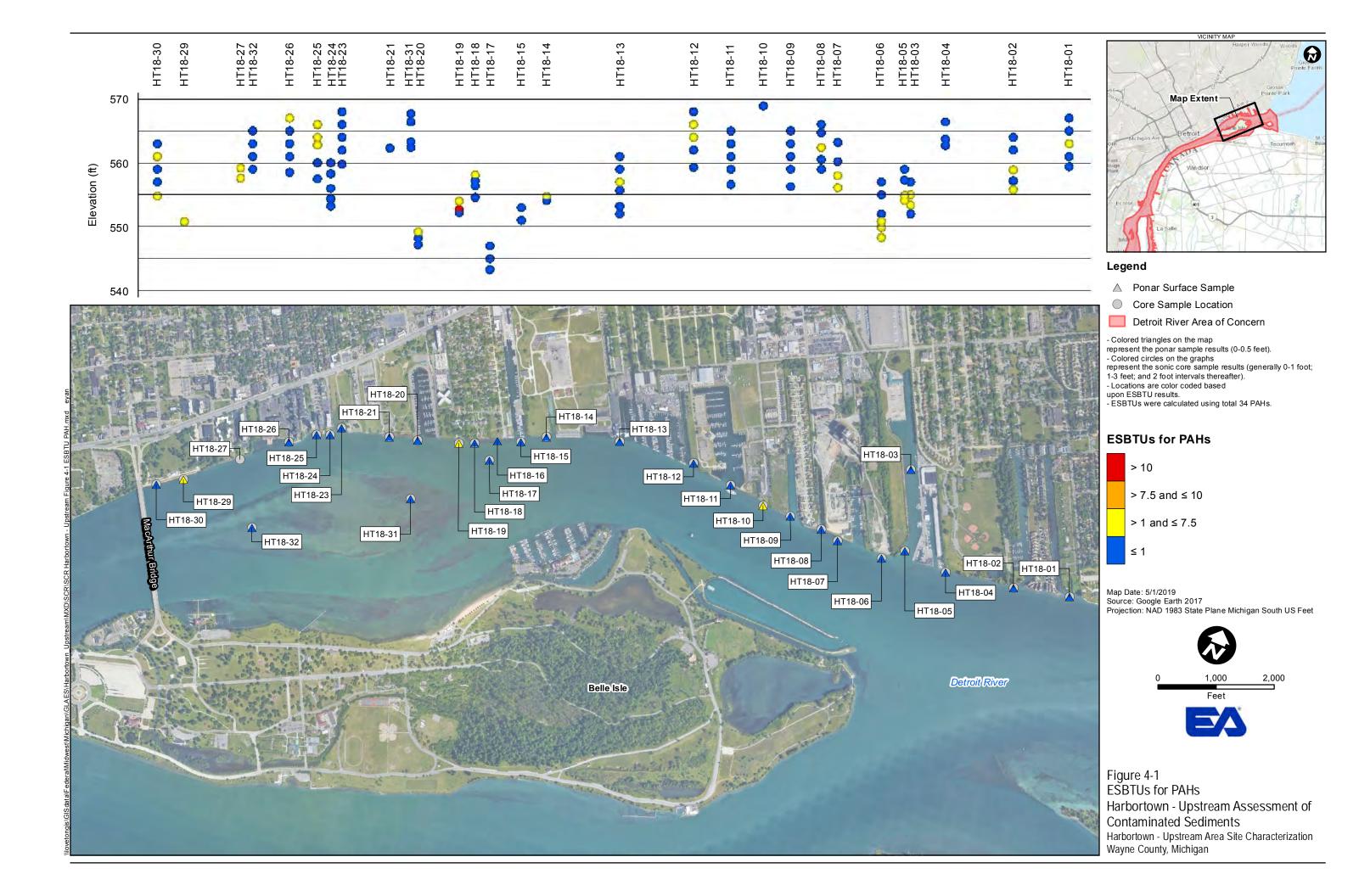


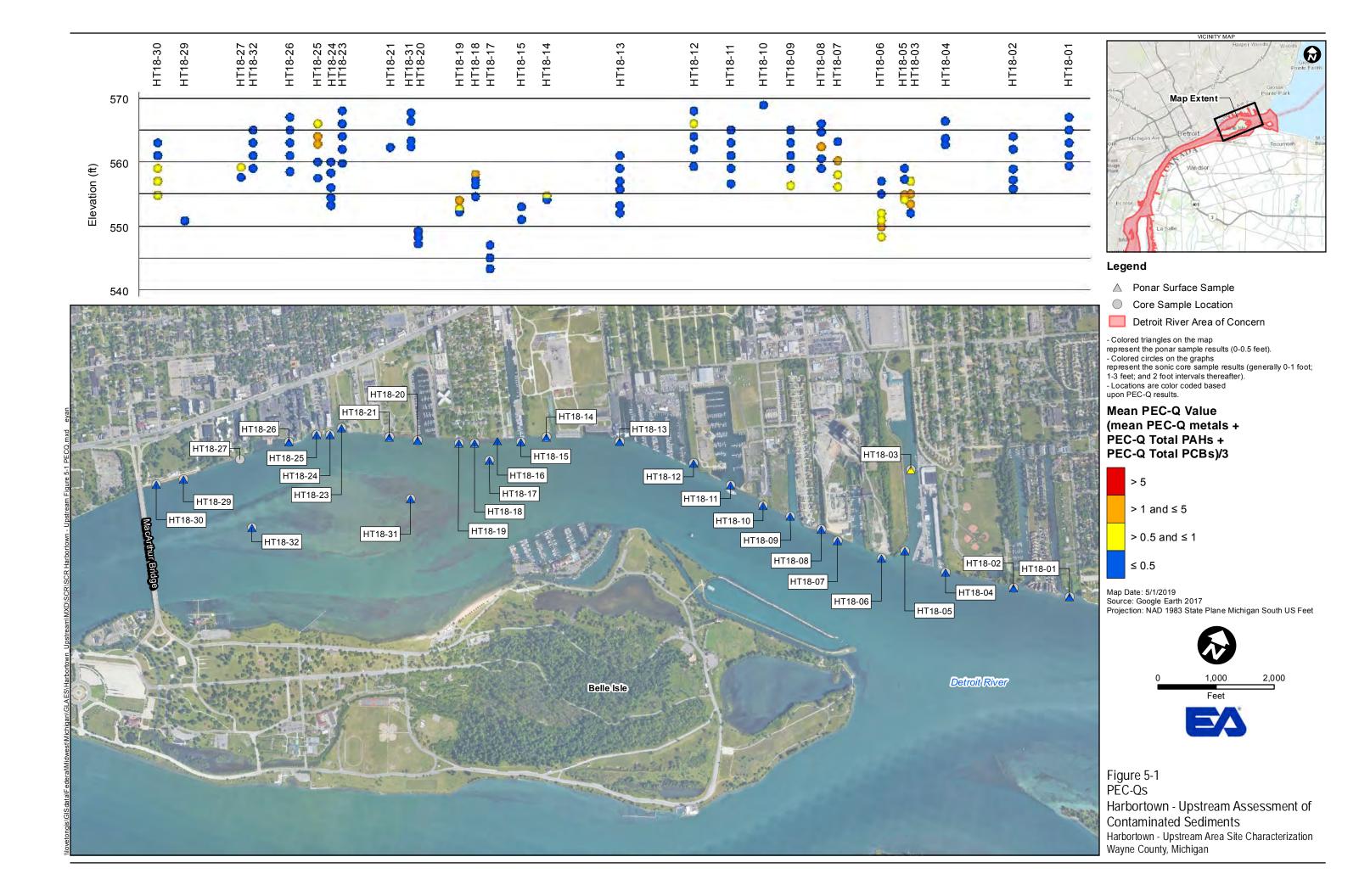


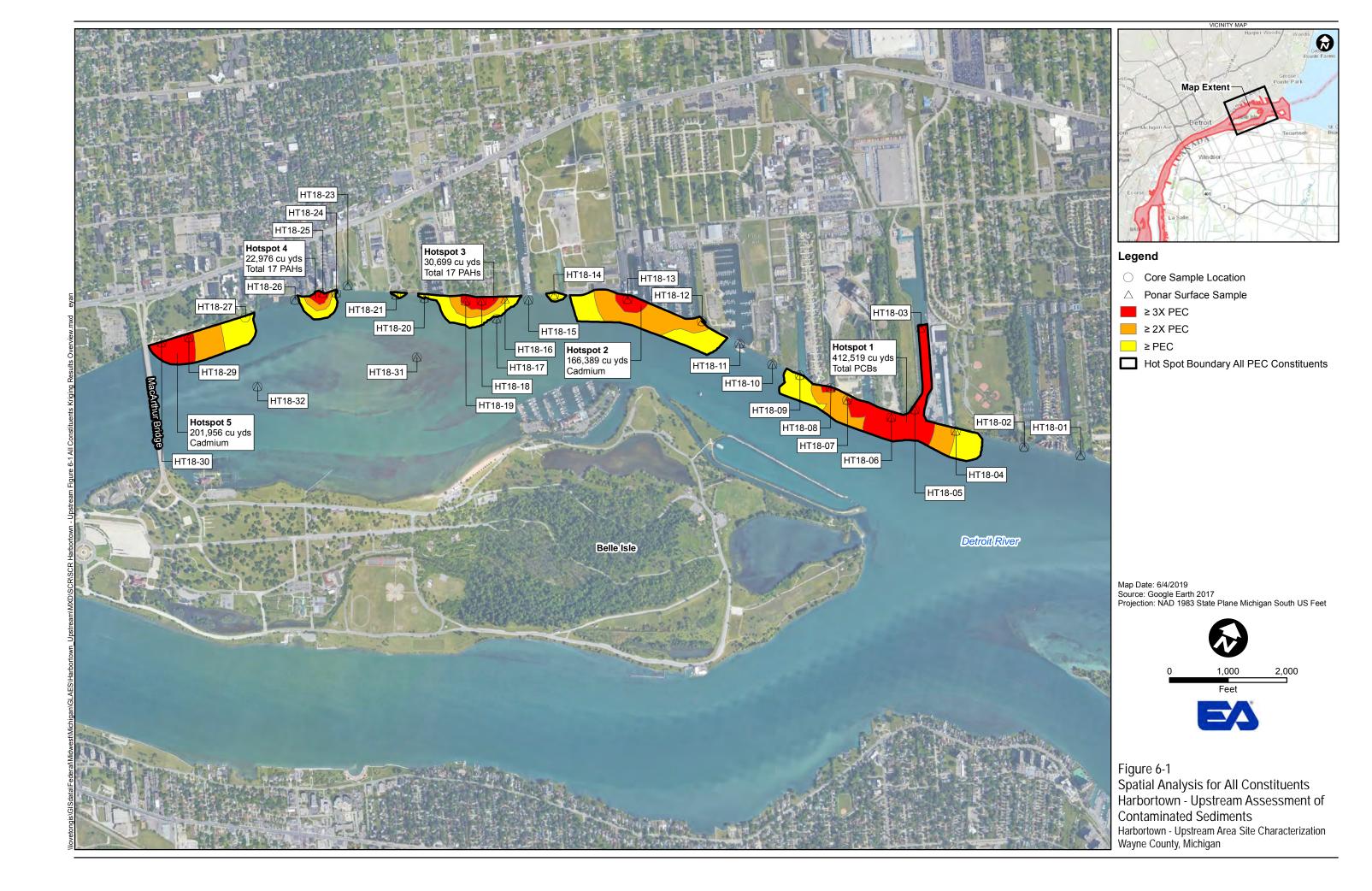


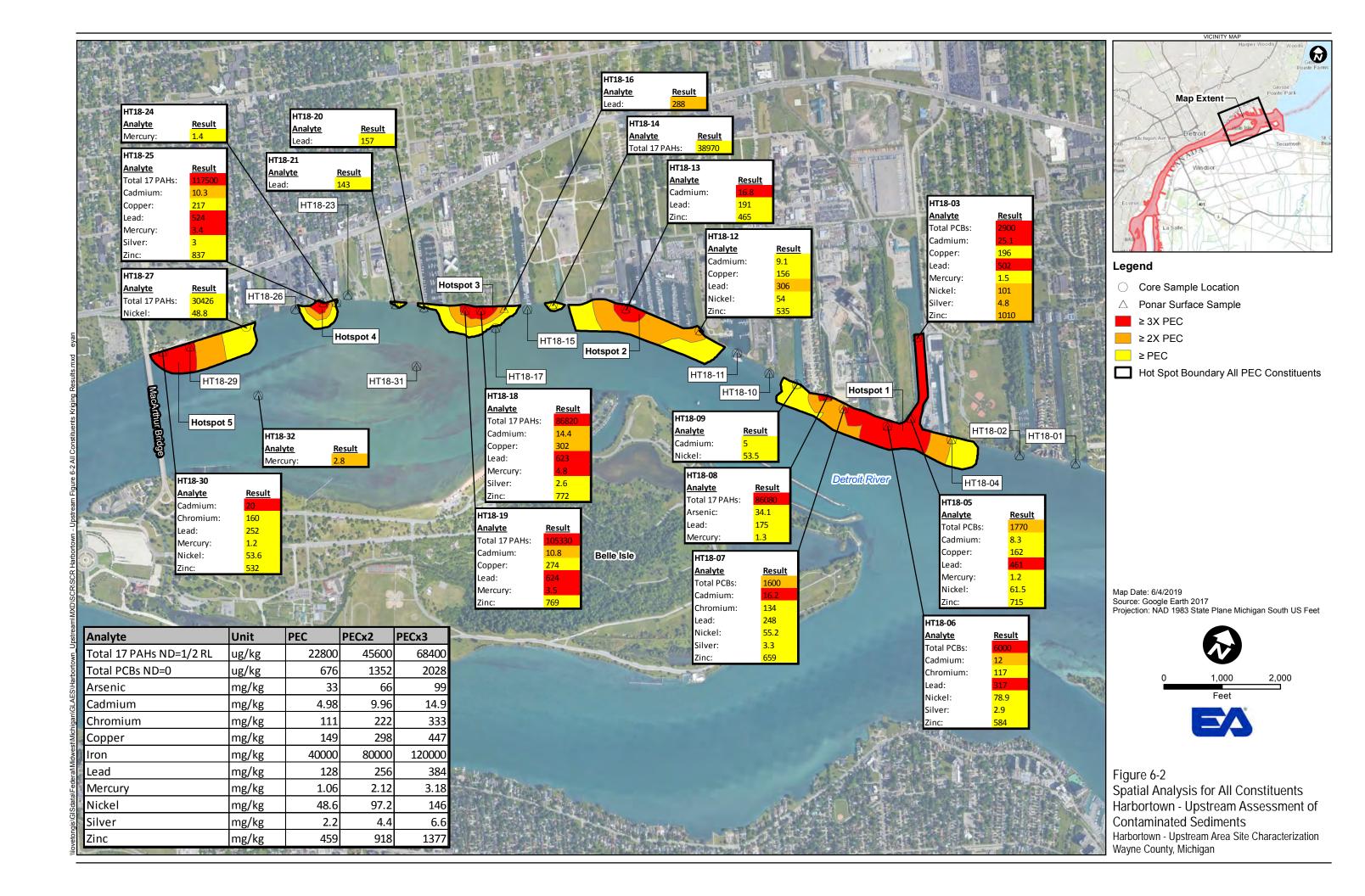


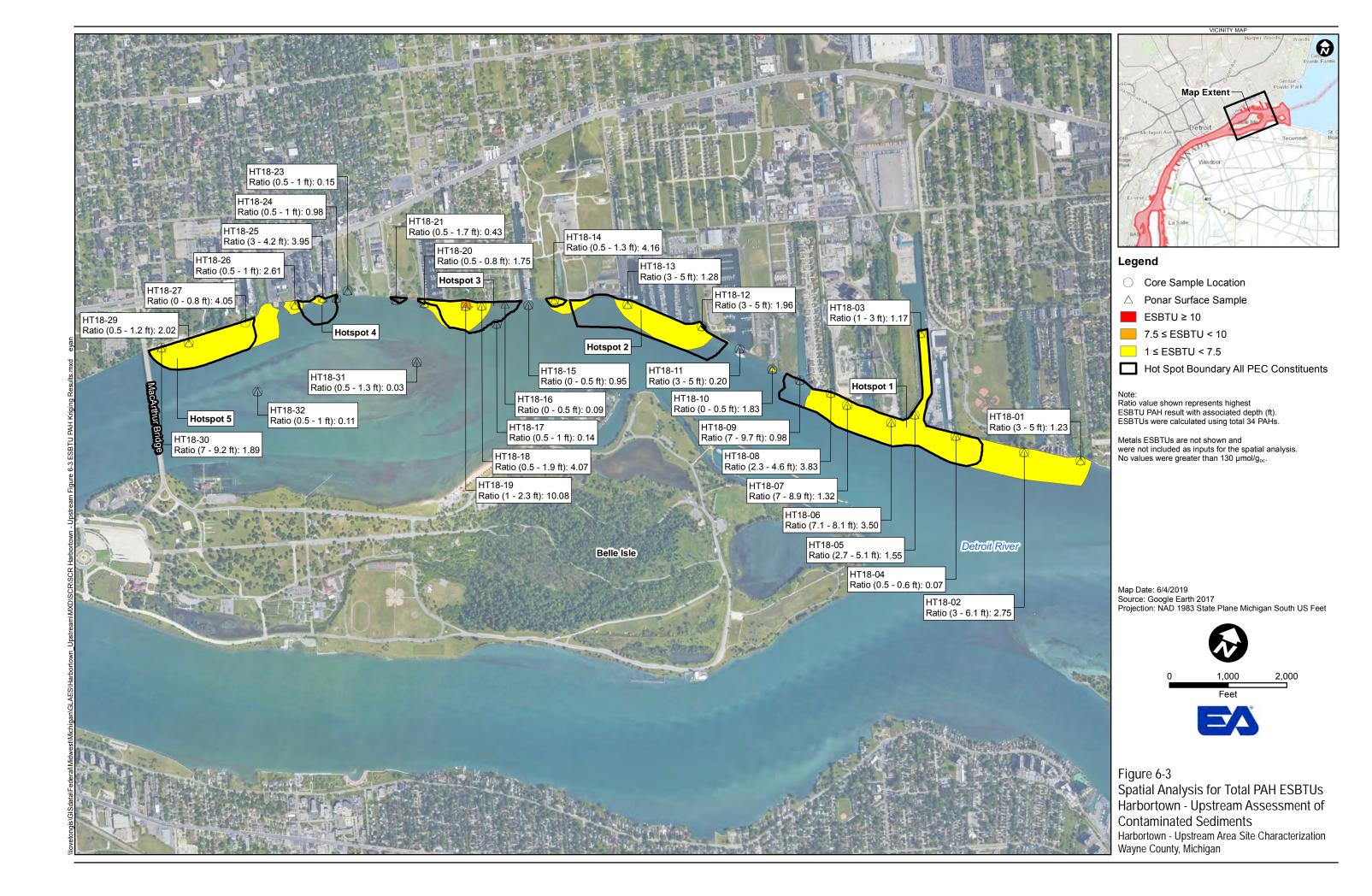


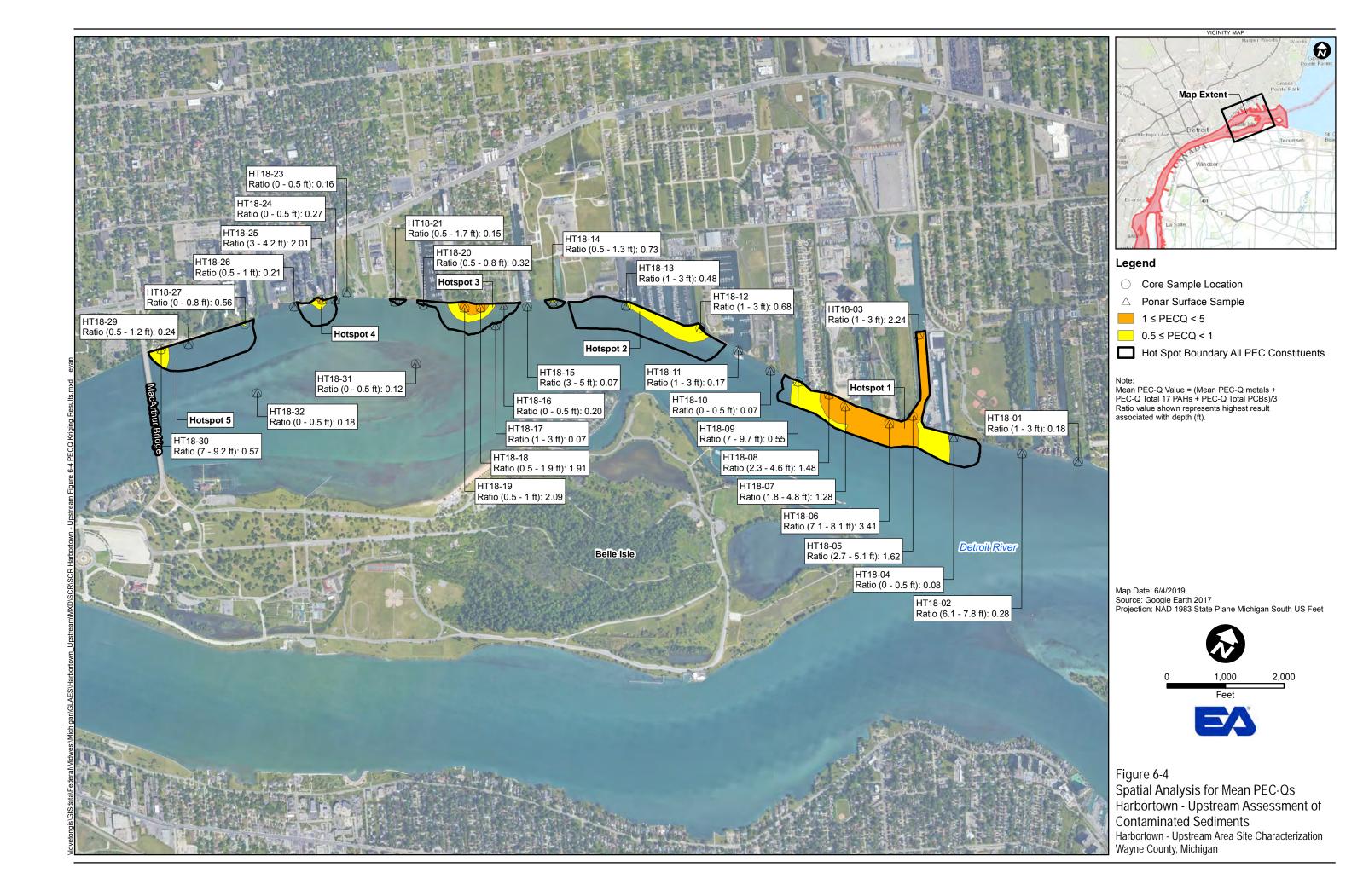


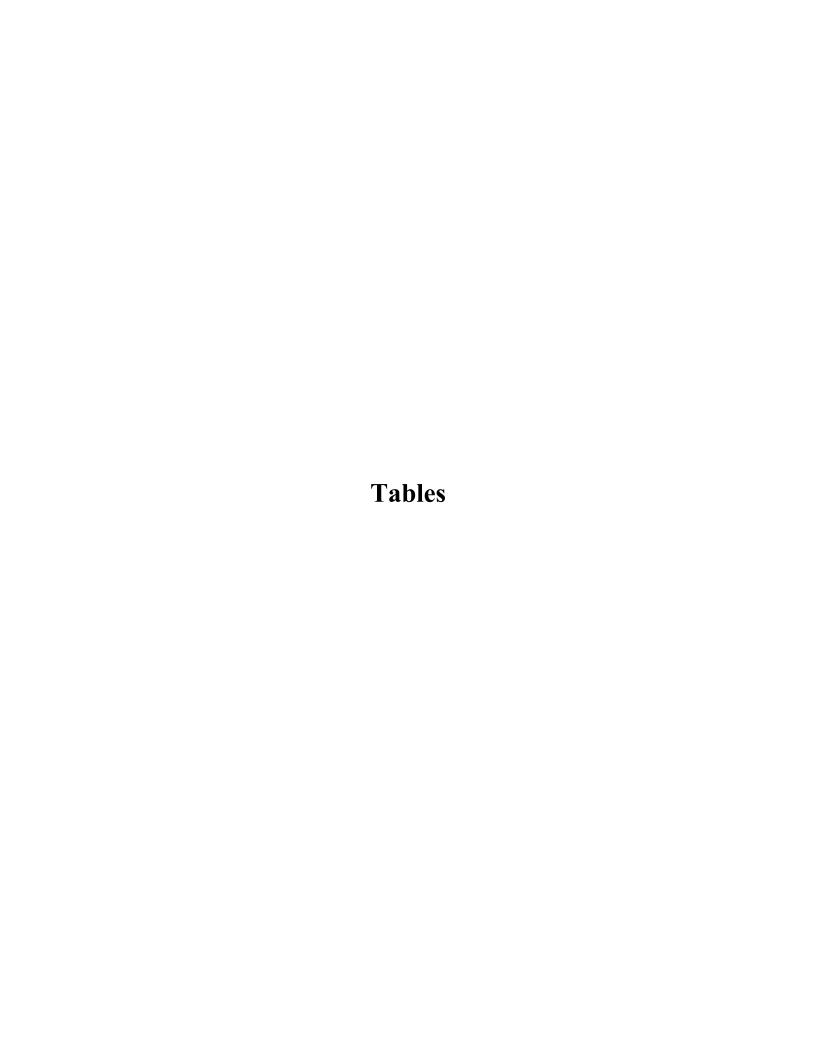












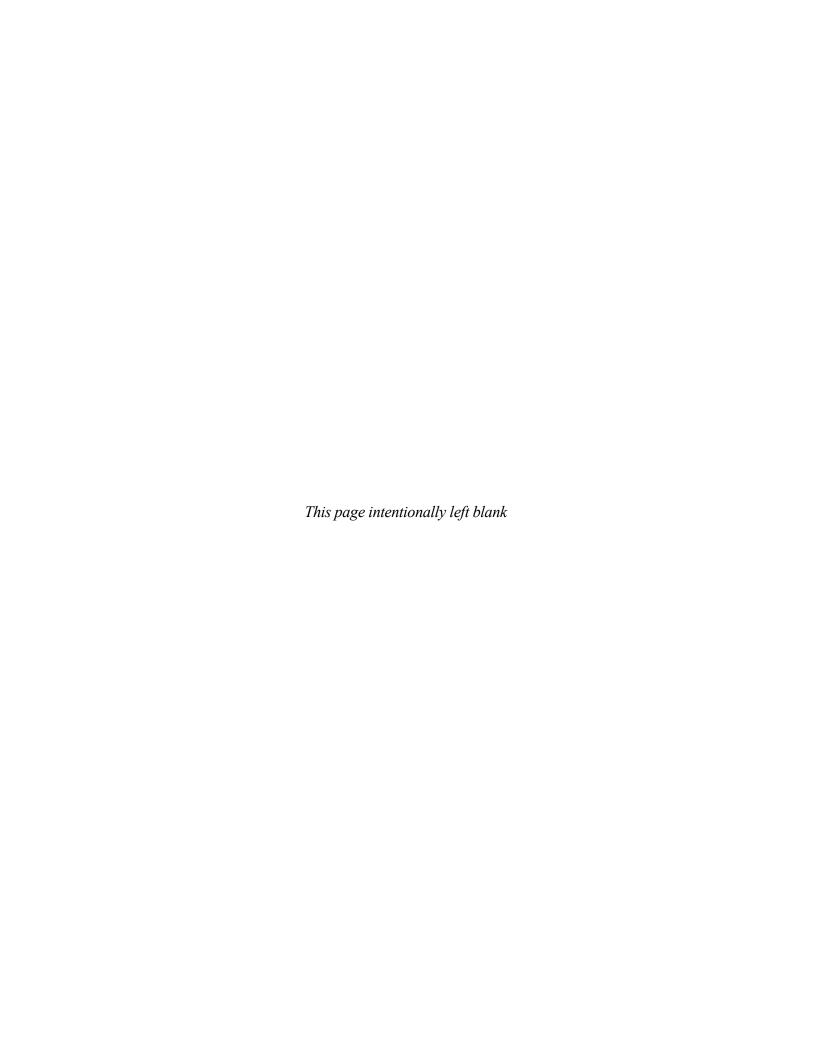


TABLE 2-1 HARBORTOWN UPSTREAM AREA SITE CHARACTERIZATION CORE SAMPLE COORDINATES AND FIELD NOTES DETROIT RIVER AREA OF CONCERN, DETROIT, MICHIGAN (OCTOBER 2018)

			Target C	Coordinates	Actual C	oordinates	Distance from	
Location ID	Date Sampled	Time Sampled	Y	X	Y	X	Distance from Target	Field Notes
Location 1D	Date Sampleu	(local)	NAD83	State Plane Michiga	n South (US Surve	ey Feet)	Coordinates ^a (ft)	
HT18-01	10/29/18	15:10	315192.23	13508075.13	315207.40	13508163.48	90	Location is southeast of Keelson Road Canal. Encountered refusal at 8.75 ft.
HT18-02	10/29/18	15:45	315056.37	13507390.26	314981.93	13507218.00	188	Location is at the southeast corner of Maheras Gentry Park, West of Keelson Road. Shifted east avoid structures in the water. Did not encounter refusal. Full 10 ft push.
HT18-03	10/29/18	17:20	314907.48	13506492.58	316204.46	13504821.37	2,115	Probing initially indicated rocks were close to outfall so the location was shifted downstream within Conner Creek per EPA's request. Encountered refusal at 6.25 ft. Core material is deblack, has a sewage odor, and appears to be CSC
HT18-04	10/29/18	11:55	314846.92	13506012.69	314799.27	13506032.74	52	Location is southeast of Bayview Yacht Club and was shifted roughly 50 ft south per EPA's reques Encountered refusal at 6.0 ft.
HT18-05	10/29/18	16:35	314770.01	13505209.76	314875.03	13505246.58	111	Location is at the mouth of Conor Creek. Encountered refusal at 6.5 ft.
HT18-06	10/29/18	11:20	314630.34	13504922.58	314606.83	13504925.14	24	Location was shifted roughly 25 ft southwest an southeast of Conner Creek power plant. No refu encountered. Full 10ft push.
HT18-07	10/29/18	10:30	314620.04	13504112.03	314602.34	13504116.64	18	Location is south of Edison Boat Club. No refuse encountered. Full 10 ft push.
HT18-08	10/22/18	17:30	314688.32	13503770.82	314683.26	13503777.78	9	Location is at the mouth of the channel east of S Bar Lane houses and west of Connor Creek pov plant. No refusal encountered. Full 10 ft push.
HT18-09	10/22/18	16:55	314712.27	13503175.69	314691.28	13503206.11	37	Location is at the mouth of the channel west of Bar Lane houses and east of St. Jean Boat Ram No refusal encountered. Full 10 ft push.
HT18-10	10/22/18	15:55	314729.72	13502692.33	314685.39	13502703.88	46	Location is roughly 40 ft east of St. Jean Boat launch. Refusal encountered at 2.0 ft.
HT18-11	10/22/18	15:21	314717.41	13502281.36	314797.63	13502055.71	239	Location was shifted northwest due to a Bolbo Location was taken tied up to a seawall north of Bolbo boat stern. No refusal was encountered. I 10 ft push.
HT18-12	10/22/18	14:20	314928.71	13501334.14	314913.81	13501317.15	23	Location is at the western edge of Riverside Marina. No refusal encountered. Full 10 ft push
HT18-13	10/29/18	9:50	314834.39	13499954.07	314783.68	13499999.58	68	Location was shifted roughly 50 ft southeast offshore. Due south of Rooster tail. No refusal encountered. Full 10 ft push.
HT18-14	10/29/18	9:00	314403.97	13498807.97	314381.03	13498806.20	23	Location is south and west of the water treatmed plant. First attempt had no recovery. Second at had encountered refusal at 3ft. A sheen and odd were observed during core recovery.
HT18-15	10/24/18	16:50	314291.31	13498518.14	314141.47	13498434.92	171	Location was shifted west to avoid a submerge water pipeline. South of Kam marine Jefferson Encountered refusal at 6.5 ft.

TABLE 2-1 HARBORTOWN UPSTREAM AREA SITE CHARACTERIZATION CORE SAMPLE COORDINATES AND FIELD NOTES DETROIT RIVER AREA OF CONCERN, DETROIT, MICHIGAN (OCTOBER 2018)

			Target C	oordinates	Actual Co	oordinates	Distance from	
Location ID	Date Sampled	Time Sampled	Y	X	Y	X	Target	Field Notes
Education 12	Dute sumpleu	(local)	NAD83	State Plane Michiga	n South (US Surve	y Feet)	Coordinates ^a (ft)	1 1014 1 (010)
HT18-16	-	-	314055.14	13498098.42	-	-	_	No samples collected here. Penetration less than 1 ft with no recovery after three attempts.
HT18-17	10/24/18	15:00	314020.61	13497949.23	313640.54	13498052.60	394	Location was shifted offshore-south of Manoogian mansion per EPA's request. Encountered refusal at 4.5 ft.
HT18-18	10/24/18	11:45	313873.80	13497665.63	313829.97	13497704.09	58	Location is south of Perry Subdivision, roughly30 west of brick boathouse. Encountered refusal at 6. ft. Sheen and odor were observed during core recovery.
HT18-19	10/24/18	11:15	313799.15	13497425.99	313724.96	13497447.99	77	Location is due south of white boathouse and dock Encountered refusal at 3.25 ft. Sheen was observe during core recovery.
HT18-20	10/24/18	10:15	313714.43	13497216.52	313503.46	13496776.66		Location was shifted to the west of the marina mouth per EPA's request. Encountered refusal at 3.25 ft.
HT18-21	10/24/18	9:30	313410.84	13496306.40	313369.05	13496309.93	42	Location is south of Burns Dr. No recovery collected on first attempt. The second attempt was collected on a slope and encountered refusal at 2 ft A hydrocarbon odor from the core was observed
HT18-22	-	-	313282.35	13495915.97	-	-	-	No samples collected here. EPA opted to abandon this location in favor of HT18-31.
HT18-23	10/23/18	17:15	313204.09	13495499.30	313212.97	13495482.52	19	Location is east of 8330 on the river building. Th first attempt had 2ft of recovery and sheen on the core but was not used. The second attempt had 4 f of recovery with a 5 ft tube but was not used. The Third attempt had no refusal. Full 10ft push.
HT18-24	10/23/18	16:10	313044.75	13495316.72	313026.65	13495347.65	36	Location is offshore of 8330 building. The first attempt was using a 5 foot tube, and had no refus The second attempt was using a 10 ft tube and encountered refusal at 9.0 ft.
HT18-25	10/23/18	15:00	312956.68	13495101.34	312941.41	13495136.25	38	Location was along seawall, north/south facing. N refusal was encountered. A full 10ft. Push
HT18-26	10/23/18	14:40	312666.39	13494711.65	312652.58	13494738.30	30	Location is south of the UAW building. No refusa was encountered. A full 10ft push. A hydrocarbon odor and sheen were observed from the core.
HT18-27	10/23/18	9:45	312089.78	13494061.39	312054.29	13494070.31	37	Location is offshore of the River Terrace Apartments. The first attempt had no recovery. The second attempt encountered refusal at 3.0ft.
HT18-28	-	-	311631.07	13493556.26	-	-		No samples collected here. Probing indicates hard pack sand. EPA opted to abandon this location in favor of HT18-32.
HT18-29	10/22/18	11:35	311374.20	13493269.52	311376.81	13493301.66	32	Location is at the east end of Gabriel Richard Par Encountered refusal at 1.5 ft.
HT18-30	10/22/18	9:55	311056.45	13492824.80	311119.35	13492902.54		Location in found of Gabriel Richard Park, rough 50 ft east of the MacArthur Bridge. No refusal encountered. Full 10 ft. push.
HT18-31	10/23/18	11:25	-	-	312523.64	13497037.48		Location is in the center of the channel between Belle Isle and US main land side of the Detroit River. Encountered refusal at 6.75 ft.
HT18-32	10/23/18	10:50	-	-	311044.78	13494702.36		Location is in the center of the channel between Belle Isle and US main land side of the Detroit River. Encountered refusal at 7 ft.

EPA = U.S. Environmental Protection Agency NAD83 = North American Datum of 1983

TABLE 2-2 HARBORTOWN UPSTREAM AREA SITE CHARACTERIZATION SURFACE SAMPLE COORDINATES AND DESCRIPTION DETROIT RIVER AREA OF CONCERN, DETROIT, MICHIGAN (OCTOBER 2018)

HT18-15				Actual Co	oordinates	
ADBS Natar Plane Michigan South	Logotion ID	Data Sampled	Time Sampled	Y	X	Surface Sample Description
HTT8-01 10/29/18 15:10 31527/30 1738/16248 Gmy/brown aft with trace organics.	Location 1D	Date Sampled	(local)	NAD83 State Plan	ne Michigan South	Surface Sample Description
HT18-01 1029/18 15:10 31507-60 1359/16.14 Gray/town ail With fixence organics.					_	
HT18-02	HT18-01	10/29/18	15:10	\	. ,	Gray/brown silt with trace organics
H118-02 1029/18 17-20 3160/446 1390/821,37 139						·
HTT8-05	HT18-02	10/29/18	15:45	314981.93	13507218.00	
HT1R-05	HT18-03	10/29/18	17:20	316204.46	13504821.37	
HTT8-05	HT18-04	10/29/18	11:55	314799.27	13506032.74	Ç
HT18-06	HT18-05	10/29/18	16:35	314875.03	13505246.58	
HT18-07	HT18-06	10/29/18	11:20	314606.83	13504925.14	Dark Gray silt with trace sand and trace organics, and a
HT18-19	HT18-07	10/29/18	10:30	314602.34	13504116.64	
HT18-19	HT18-08	10/22/18	17:30	314683.26	13503777.78	Gray/brown silt with a couple pieces of organic debris.
HT18-11	HT18-09	10/22/18	16:55	314691.28	13503206.11	
HT18-12	HT18-10	10/22/18	15:55	314685.39	13502703.88	
HT18-12	HT18-11	10/22/18	15:21	314797.63	13502055.71	
HT18-13 10/29/18 9-50 314783.68 13499999.58 Gray silt with light brown film on top.	HT18-12	10/22/18	14:20	314913.81	13501317.15	Dark Gray/brown silt with some SAV. Live juvenile
HT18-14	HT18-13	10/29/18	9:50	314783.68	13499999.58	
HT18-16	HT18-14	10/29/18	9:00	314381.03	13498806.20	Brown sand/silt with gravel and mussel shells. Trace organic wood debris. Two ponar attempts consolidated into
HT18-16	HT18-15	10/24/18	16:50	314141.47	13498434.92	l · ·
HT18-18	HT18-16	10/24/18	15:45	314006.21	13498058.48	•
HT18-19	HT18-17	10/24/18	15:00	313640.54	13498052.60	T
HT18-19	HT18-18	10/24/18	11:45	313829.97	13497704.09	Gray silt with light brown film and few pieces of SAV.
HT18-20	HT18-19	10/24/18	11:15	313724.96	13497447.99	pieces of SAV. Native mussel shells present in addition to
HT18-21	HT18-20	10/24/18	10:15	313503.46	13496776.66	Gray/brown silt with sand and mussel shells, and some live invertebrates.
HT18-23	HT18-21	10/24/18	9:30	313369.05	13496309.93	
HT18-23	HT18-22	-	-	-	-	No samples collected here, location abandoned
HT18-25	HT18-23	10/23/18	17:15	313212.97	13495482.52	Gray silt with SAV.
HT18-26 HT18-26 HT18-27 HT18-27 HT18-27 HT18-27 HT18-27 HT18-28 HT18-30 HT18-30 HT18-31 HT18-31 HT18-31 HT18-31 HT18-28 HT18-29 HT18-31 HT18-30 HT18-31 HT18-30 HT18-31 HT18-30 HT1	HT18-24	10/23/18	16:10	313026.65	13495347.65	Gray/brown silt with sand.
HT18-26 HT18-26 HT18-26 HT18-27 HT18-27 HT18-27 HT18-27 HT18-28 HT18-30 HT18-30 HT18-31 HT18-31 HT18-31 HT18-31 HT18-28 HT18-29 HT18-31 HT18-30 HT18-31 HT18-30 HT18-31 HT18-30 HT1	HT18-25	10/23/18	15:00	312941.41	13495136.25	Gray/brown silt with some very fine sand and SAV.
HT18-27	HT18-26	10/23/18	14:40	312652.58	13494738.30	few pieces of SAV. Two ponar attempts consolidated into
HT18-29	HT18-27	-	-	-	-	No surface samples collected. First through third attempts contained 90% mussel shells. Moved 10 ft and underwent an additional three attempts that contained mussels and
HT18-29	HT18-28	-	-	-	-	No samples collected here, location abandoned
HT18-30 10/22/18 9:55 309921.24 13492860.68 Gray silt with brown surface skin layer. HT18-31 10/23/18 11:25 312523.64 13497037.48 Dark gray silt, light brown microbial layer on tip, a few pieces of SAV.		10/22/18	11:35	311376.81	13493301.66	Sand with lots of mussel shells and some gravel. Three
HT18-31 10/23/18 11:25 312523.64 13497037.48 Dark gray silt, light brown microbial layer on tip, a few pieces of SAV.	UT19 20	10/22/19	0.55	300021 24	13/102860 68	
						Dark gray silt, light brown microbial layer on tip, a few
	HT18-32	10/23/18	10:50	311044.78	13494702.36	

NAD83 = North American Datum of 1983

PID = Photoionization Detector

ppm = parts per million

SAV = submerged aquatic vegetation

TABLE 2-3 HARBORTOWN AREA SITE CHARACTERIZATION CORE DATA DETROIT RIVER AREA OF CONCERN, DETROIT, MICHIGAN (OCTOBER 2018)

			***			C 6			Sediment (Core	
Location ID	Sample Processing Date	Processing Time (Local)	Water Surface Elevation NAVD88 (ft)	Depth of Water NAVD88 (ft)	Sediment Surface Elevation NAVD88 (ft)	Surface (Ponar) Sample (Y/N)	Penetration Depth (ft)	Sediment Recovery (ft)	Percent Recovery	Collection Method	Collected to Refusal (Y/N)
HT18-01	10/30/2018	9:40	575.3	7.1	568.2	Y	8.8	8.2	94	Sonic Coring	Y
HT18-02	10/30/2018	11:00	575.3	10.1	565.2	Y	10.0	9.0	90	Sonic Coring	N
HT18-03	10/30/2018	13:55	575.3	17.5	557.8	Y	6.3	5.9	94	Sonic Coring	Y
HT18-04	10/29/2018	12:15	575.3	8.4	566.9	Y	6.0	4.2	70	Sonic Coring	Y
HT18-05	10/30/2018	16:30	575.3	15.5	559.8	Y	6.5	5.5	85	Sonic Coring	Y
HT18-06	10/29/2018	14:10	575.4	17.1	558.3	Y	10.0	9.2	92	Sonic Coring	N
HT18-07	10/29/2018	14:30	573.4	10.1	565.3	Y	10.0	8.6	86	Sonic Coring	N
HT18-08	10/23/2018	17:10	575.4	8.8	566.6	Y	10.0	8.0	80	Sonic Coring	N
HT18-09	10/23/2018	13:45	575.4	9.7	565.7	Y	10.0	9.6	96	Sonic Coring	N
HT18-10	10/24/2018	9:40	575.4	5.0	570.4	Y	2.0	1.1	53	Sonic Coring	Y
HT18-11	10/27/2018	8:30	575.4	9.4	566.0	Y	10.0	9.4	94	Sonic Coring	N
HT18-12	10/23/2018	15:40	575.4	6.7	568.7	Y	10.0	9.7	97	Sonic Coring	N
HT18-13	10/29/2018	17:55	575.4	13.6	561.8	Y	10.0	9.6	96	Sonic Coring	N
HT18-14	10/30/2018	8:50	575.4	19.4	556.0	Y	3.0	1.9	63	Sonic Coring	Y
HT18-15	10/25/2018	10:10	575.5	19.4	556.1	Y	6.5	6.6	102	Sonic Coring	Y
HT18-16 ^a	10/24/2018	-	-	-	-	Y	-	-	-	-	-
HT18-17	10/25/2018	11:20	575.5	27.1	548.4	Y	4.5	4.6	102	Sonic Coring	Y

TABLE 2-3 HARBORTOWN AREA SITE CHARACTERIZATION CORE DATA DETROIT RIVER AREA OF CONCERN, DETROIT, MICHIGAN (OCTOBER 2018)

			XXV. A		G 1: 4	C C			Sediment (Core	
Location ID	Sample Processing Date	Processing Time (Local)	Water Surface Elevation NAVD88 (ft)	Depth of Water NAVD88 (ft)	Sediment Surface Elevation NAVD88 (ft)	Surface (Ponar) Sample (Y/N)	Penetration Depth (ft)	Sediment Recovery (ft)	Percent Recovery	Collection Method	Collected to Refusal (Y/N)
HT18-18	10/25/2018	12:05	575.5	15.0	560.5	Y	6.0	5.4	90	Sonic Coring	Y
HT18-19	10/25/2018	14:35	575.5	20.9	554.6	Y	3.3	3.0	92	Sonic Coring	Y
HT18-20	10/25/2018	15:05	575.5	25.9	549.6	Y	3.3	3.0	92	Sonic Coring	Y
HT18-21	10/25/2018	15:45	575.5	11.0	564.5	Y	2.0	1.8	88	Sonic Coring	Y
HT18-22 ^b	-	-	-	-	-	-	-	-	-	-	-
HT18-23	10/24/2018	10:15	575.4	6.5	568.9	Y	10.0	9.2	92	Sonic Coring	N
HT18-24	10/24/2018	11:40	575.4	14.7	560.7	Y	9.0	7.8	87	Sonic Coring	Y
HT18-25	10/24/2018	15:10	575.4	8.5	566.9	Y	10.0	9.5	95	Sonic Coring	N
HT18-26	10/24/2018	16:10	575.4	6.9	568.5	Y	10.0	9.5	95	Sonic Coring	N
HT18-27	10/24/2018	17:10	575.3	15.0	560.3	N ^c	3.0	2.0	67	Sonic Coring	Y
HT18-28 ^b	-	-	-	-	-	-	-	-	-	-	-
HT18-29	10/23/2018	12:00	575.4	23.4	552.0	Y	1.5	1.2	80	Sonic Coring	Y
HT18-30	10/23/2018	10:35	575.4	11.4	564.0	Y	10.0	9.2	92	Sonic Coring	N
HT18-31	10/25/2018	8:30	575.4	6.3	569.1 ^d	Y	6.8	6.6	98	Sonic Coring	Y
HT18-32	10/24/2018	18:00	575.4	9.7	565.7	Y	7.0	7.1	101	Sonic Coring	Y

Note: all samples collected by Cetacean Marine.

NAVD88 = North American Vertical Datum of 1988.

a. No Cores collected here, less than 1 ft of recovery, ponar was collected

b. No Samples collected, location abandoned

c. Surface sample was abandonded after 6 ponar attempts without any usable sample material.

d. Estimated Value

ft = Foot (feet).

TABLE 2-4 HARBORTOWN UPSTREAM AREA SITE CHARACTERIZATION ACTUAL ANALYTICAL PROGRAM DETROIT RIVER AREA OF CONCERN, DETROIT, MICHIGAN (OCTOBER 2018)

		Analytical Group and Method										Analytica	l Interval ³
Location ID	Sample Depth Interval (ft)	34 PAHs ¹ EPA CLP SOM02.4	Total Michigan Metals + Iron and Nickel EPA CLP ISM02.4	PCB - Aroclors EPA CLP SOM02.4	SEM/AVS EPA-821-R-91-100/ SW846 6010C/7470A	Total Organic Carbon Lloyd Kahn	Percent Moisture ASTM D2216	Grain Size (with hydrometer) ASTM D422	Total Cyanide SW846 9012B	WAD Cyanide SM4500_CN_I	DRO/MRO ² SW846 8015B	Start of Interval (ft)	End of Interval (ft)
HT18-01	Surface ⁴ 0.0-1.0 1.0-3.0 ⁵ 3.0-5.0 5.0-7.0 7.0-8.5	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 5 7	0.5 1 3 5 7 8.6
HT18-02	Surface 0.0-1.0 1.0-3.0 3.0-6.0 6.0-8.0 8.0-9.0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 6.1 7.8	0.5 1 3 6.1 7.8 9.2
HT18-03	Surface 0.0-1.0 1.0-3.0 3.0-4.5 4.5-6.0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 0 0 0	1 1 1 1 1	1 1 1 1 1	1 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 1 3 4.6	0.5 1 3 5 6
HT18-04	Surface 0.0-0.5 0.5-3.0 3.0-4.0	1 1 1 1	1 1 1 1	1 1 1	1 0 0 0	1 1 1	1 1 1 1	1 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 0.6 3.3	0.5 0.6 3.3 4.3
HT18-05	Surface 0.0-1.0 1.0-3.0 3.0-5.0 5.0-6.0	1 1 1 1 1	1 1 1 1	1 1 1 1 1	1 0 0 0	1 1 1 1	1 1 1 1 1	1 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 1 2.7 5.1	0.5 1 2.7 5.1 5.9
HT18-06	Surface 0.0-1.0 1.0-3.0 3.0-6.0 6.0-7.0 7.0-8.0	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 6 7.1	0.5 1 3 6 7.1 8.1
HT18-07	8.0-10 Surface 0.0-2.0 2.0-5.0 5.0-7.0 7.0-9.0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	0 1 0 0 0	1 1 1 1 1	1 1 1 1 1	0 1 0 0 0	0 1 0 0 0	0 1 0 0 0	0 1 0 0 0	8.1 0 0 1.8 4.8 7	9.7 0.5 1.8 4.8 7 8.9
HT18-08	Surface 0.0-1.0 1.0-2.0 2.0-4.5 4.5-6.5 6.5-8.0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 2.3 4.6 6.5	0.5 1 2.3 4.6 6.5 8
HT18-09	Surface 0.0-1.0 1.0-3.0 3.0-5.0 5.0-7.0 7.0-10	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 5	0.5 1 3 5 7 9.7
HT18-10	Surface 0.0-1.0	1	1 1	1	1 0	1	1 1	1 0	1 0	1 0	1 0	0	0.5 1.1
HT18-11	Surface 0.0-1.0 1.0-3.0 3.0-5.0 5.0-7.0 7.0-10	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 5	0.5 1 3 5 7 9.4
HT18-12	Surface 0.0-1.0 1.0-3.0 3.0-5.0 5.0-7.0 7.0-10	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 5 7	0.5 1 3 5 7 9.7
HT18-13	Surface 0.0-1.0 1.0-3.0 3.0-5.0 5.0-6.0 6.0-9.0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 5 6.3	1 1 3 5 6.3 8.8
HT18-14	9.0-10 Surface 0.0-1.0	1 1 1	1 1 1	1 1 1	0 1 0 0	1 1 1	1 1 1 1	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0	8.8 0 0 1.3	10 0.5 1.3 1.9
HT18-15	1.0-2.0 Surface 0.0-0.5 0.5-3.0 3.0-5.0	1 1 1 1	1 1 1 1	1 1 1 1	1 0 0 0	1 1 1 1	1 1 1 1 1	1 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 0.5 3	0.5 0.5 3 5

TABLE 2-4 HARBORTOWN UPSTREAM AREA SITE CHARACTERIZATION ACTUAL ANALYTICAL PROGRAM DETROIT RIVER AREA OF CONCERN, DETROIT, MICHIGAN (OCTOBER 2018)

	Analytical Group and Method										Analytical Interval ³		
Location ID	Sample Depth Interval (ft)	34 PAHs ¹ EPA CLP SOM02.4	Total Michigan Metals + Iron and Nickel EPA CLP ISM02.4	PCB - Aroclors EPA CLP SOM02.4	SEM/AVS EPA-821-R-91-100/ SW846 6010C/7470A	Total Organic Carbon Lloyd Kahn	Percent Moisture ASTM D2216	Grain Size (with hydrometer) ASTM D422	Total Cyanide SW846 9012B	WAD Cyanide SM4500_CN_I	DRO/MRO ² SW846 8015B	Start of Interval (ft)	End of Interval (ft)
HT18-16	Surface	1	1	1	1	1	1	1	1	1	1	0	0.5
HT18-17	Surface 0.0-1.0 1.0-3.0 3.0-5.0	1 1 1	1 1 1	1 1 1	1 0 0 0	1 1 1	1 1 1	1 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 1 3	0.5 1 3 4.7
HT18-18	Surface 0.0-2.0 2.0-3.0 3.0-3.5 3.5-5.5	1 1 1 1	1 1 1 1	1 1 1 1	1 0 0 0	1 1 1 1 1	1 1 1 1	1 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 1.9 2.8 3.6	0.5 1.9 2.8 3.6 5.4
HT18-19	Surface 0.0-1.0 1.0-2.0 2.0-3.0	1 1 1 1	1 1 1	1 1 1	1 0 0	1 1 1	1 1 1 1	1 0 0	1 0 0 0	1 0 0	1 0 0	0 0 1 2.3	0.5 1 2.3 2.8
HT18-20	Surface 0.0-1.0 1.0-2.0 2.0-3.0	1 1 1 1	1 1 1 1	1 1 1	1 0 0 0	1 1 1	1 1 1	1 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 0.8 1.8	0.5 0.8 1.8 2.8
HT18-21	Surface	1	1	1	1	1	1	1	1	1	1	0	0.5
HT18-22	0.0-1.5	1	1	1	0	1	1	0	0	0	0	0	1.7
HT18-22	Surface 0.0-1.0 1.0-3.0 3.0-5.0 5.0-7.0 7.0-10	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 5	0.5 1 3 5 7 9.2
HT18-24	Surface 0.0-1.0 1.0-2.5 2.5-5.0 5.0-6.5 6.5-7.5	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 2.7 5 6.6	0.5 1 2.7 5 6.6 7.8
HT18-25	Surface 0.0-1.0 1.0-3.0 3.0-4.0 4.0-7.0 7.0-10	1 1 1 1 1	1 1 1 1	1 1 1 1	1 0 0 0 0	1 1 1 1	1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 4.2	0.5 1 3 4.2 7 9.5
HT18-26	Surface 0.0-1.0 1.0-3.0 3.0-5.0 5.0-7.0 7.0-10	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 1 1 1 1	1 1 1 1 1 1	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 1 3 5	0.5 1 3 5 7 9.5
HT10 27	0.0-1.0	1	1	1	0	1	1	0	0	0	0	0	0.8
HT18-27	1.0-2.0	1	1	1	0	1	1	0	0	0	0	0.8	2.4
HT18-28		1				1	1		1	1	1		0.5
HT18-29	Surface 0.0-1.0 Surface 0.0-1.0	1 1 1 1	1 1 1	1 1 1 1	1 0 1 0	1 1 1	1 1 1 1	1 0 1 0	1 0 1 0	1 0 1 0	1 0 1 0	0 0 0 0	0.5 1.2 0.5
HT18-30	1.0-3.0		1 1 1 1	1 1 1 1	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 3 5 7	3 5 7 9.2
HT18-31	Surface 0.0-1.0 1.0-2.5 2.5-5.5 5.5-6.5	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 0 0 0	1 1 1 1 1	1 1 1 1 1	1 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 1.3 2.6 5.7	0.5 1.3 2.6 5.7 6.6
HT18-32 Total Sediment Samples	Surface 0.0-1.0 1.0-3.0 3.0-5.0 5.0-7.0	1 1 1 1 1 142	1 1 1 1 1 142	1 1 1 1 1 142	1 0 0 0 0 0	1 1 1 1 1 142	1 1 1 1 1 142	1 0 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0 0	0 0 1 3 5	0.5 1 3 5 7
Field Quality Control Samples	142	144	142	49	142	142	27	29	29	29			
Field Duplicate (10% of samples Matrix Spike/Matrix Spike Dupl Total Samples NOTES:	s)	15 8 165	15 8 165	15 8 165	3 2 33	15 8 165	15 0 157	3 0 32	3 2 34	3 2 34	3 2 34		

NOTES:

1. 34 PAHs include: acenaphthene; acenaphthene; anthracene; fluorine; naphthalene; 2-methylnapthalene; phenanthrene; benzo(a)anthracene; benzo(a)pyrene; benzo(e)pyrene; benzo(b)fluoranthene; benzo(g,h,i)perylene; benzo(k)fluoranthene; chrysene; dibenz(a,h)anthracene; fluoranthene; indeno(1,2,3-c,d)pyrene; pyrene; C1 naphthalenes; C2 naphthalenes; C3 naphthalenes; C4 naphthalenes; C2 phenanthrenes; C3 fluorenes; C1 fluoranthenes; C3 phenanthrenes; C4 phenanthrenes; C4 phenanthrenes; C5 chrysenes; C6 chrysenes; C7 chrysenes; C7 chrysenes; C8 chrysenes; C9 ch

2. DRO includes C10 to C20; MRO includes C20 to C36.

3. Analytical intervals were modified in the field based on consultation with EPA. They were defined by visible lithological changes and signs of contamination in the core.

4. Field duplicate taken at sample intervals marked yellow.

5. Volume collected for Matrix Spike/Matrix Spike Duplicates from the sample intervals and marked green.

--- = no sample collected

CLP = Contract Laboratory Program.

EPA = U.S. Environmental Protection Agency.

PAH = Polycyclic aromatic hydrocarbon. PCB = Polychlorinated biphenyl.

SEM/AVS = Simultaneously extracted metal/Acid volatile sulfide.

WAD = Weak acid dissociable.

TABLE 3-1 SUMMARY OF EXCEEDANCES, HT

Analyte	Total Number of Submitted Samples	Total Number of Submitted Samples (Without FDs)	Total Number of Detects (Without FDs)	TEC	PEC	SEM/AVS Ratio > 1	Number of TEC Exceedances	Number of PEC Exceedances	Units	Percentage of Samples that Exceeded TEC	Percentage of Samples That Exceeded PEC	Percentage of Samples That Exceed SEM/AVS Ratio of 1
SEM/AVS	•	•		•		•	•			•	•	•
SEM/AVS Ratio	32	29	28	NA	NA	3	NA	NA	none	NA	NA	10.3
PAHs												
Total PAH17 ND=1/2RL	157	142	142	1,610	22,800	NA	81	8	μg/kg	57.0	5.6	NA
PCB Aroclors												
Total PCBs ND=0	157	142	83	59.8	676	NA	38	9	μg/kg	26.8	6.3	NA
Metals												
Arsenic	157	142	142	9.79	33	NA	26	1	mg/kg	18.3	0.7	NA
Barium	157	142	142	NSL	NSL	NA	NSL	NSL	mg/kg	NSL	NSL	NA
Cadmium	157	142	113	0.99	4.98	NA	51	24	mg/kg	35.9	16.9	NA
Chromium	157	142	142	43.4	111	NA	26	6	mg/kg	18.3	4.2	NA
Copper	157	142	142	31.6	149	NA	68	7	mg/kg	47.9	4.9	NA
Iron	157	142	142	20000 ^(a)	40000 ^(a)	NA	41	0	mg/kg	28.9	0.0	NA
Lead	157	142	142	35.8	128	NA	71	29	mg/kg	50.0	20.4	NA
Mercury	157	142	98	0.18	1.06	NA	46	12	mg/kg	32.4	8.5	NA
Nickel	157	142	142	22.7	48.6	NA	74	17	mg/kg	52.1	12.0	NA
Selenium	157	142	64	NSL	NSL	NA	NSL	NSL	mg/kg	NSL	NSL	NA
Silver	157	142	62	1.6 ^(a)	$2.2^{(a)}$	NA	14	7	mg/kg	9.9	4.9	NA
Zinc	157	142	142	121	459	NA	60	17	mg/kg	42.3	12.0	NA

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for Use and Application, Publication No. WT-732 2003, WDNR December 2003.

NOTES:

 $\mu g/kg = micrograms per kilogram.$

AVS = Acid volatile sulfides.

FD = Field Duplicate.

mg/kg = milligrams per kilogram.

NA = Not Applicable.

ND = Non-detect.

NSL = No Screening Level.

PAH = Polycyclic aromatic hydrocarbon.

PCB = Polychlorinated biphenyl.

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

RL= reporting limit.

SEM = Simultaneously extracted metals.

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TABLE 3-2 SEDIMENT RESULTS FOR GRAIN SIZE, HT

Coarse Sand % 0 0.1 0.8 0.5 0.8 1.5 0.5 0.4		Location ID:	HT18-01	HT18-01	HT18-02	HT18-03	HT18-04	HT18-05	HT18-06	HT18-07
Depth Interval (Feet) O-0.5 O-0.		Sample Name:	HT18-01-SURF	HT18-01-SURF-FD	HT18-02-SURF	HT18-03-SURF	HT18-04-SURF	HT18-05-SURF	HT18-06-SURF	HT18-07-SURF
Clare Clar		-	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
Gravel		Depth Interval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Coarse Sand	Analyte	Unit								
Medium Sand	Gravel	%	0	0.3	0.8	0.2	0	0	0	0
Fine Sand	Coarse Sand	%	0	0.1	0.8	0.5	0.8	1.5	0.5	0.4
Sand 96	Medium Sand	%	2.7	1.8	2.6	4.5	1.2	3.4	2	1.8
Silt Clay	Fine Sand	%	7.6	7.9	10.8	38.6	40.3	15.7	10.7	54.6
Clay	Sand	%	10.3	9.8	14.2	43.6	42.3	20.6	13.2	56.8
Silt + Clay % 89.7 89.9 85.0 56.2 57.7 79.4 86.8 43.2	Silt	%	62.8	62.6	65.8	37.9	44.8	60.9	62.3	34.5
Sieve Size 3 inch - Percent Finer % passed 100	Clay	%	26.9	27.3	19.2	18.3	12.9	18.5	24.5	8.7
Sieve Size 3 inch - Percent Finer	Silt + Clay	%	89.7	89.9	85.0	56.2	57.7	79.4	86.8	43.2
Sieve Size 1.5 inch - Percent Finer	Hydrometer and Sieve Analysis									
Sieve Size 1.5 inch - Percent Finer	Sieve Size 3 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 1 inch - Percent Finer	Sieve Size 2 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 0.75 inch - Percent Finer	Sieve Size 1.5 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size #4 - Percent Finer	Sieve Size 1 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size #4 - Percent Finer % passed 100 99.7 99.2 99.8 100 100 100 100 Sieve Size #10 - Percent Finer % passed 100 99.6 98.4 99.3 99.2 98.5 99.5 99.6 Sieve Size #20 - Percent Finer % passed 97.8 98.1 96.8 96.9 98.3 95.9 98 98.7 Sieve Size #40 - Percent Finer % passed 97.3 97.8 95.8 94.8 98 95.1 97.5 97.8 Sieve Size #60 - Percent Finer % passed 96.5 97.1 94.3 91.2 96.4 94.1 96.7 91.6 Sieve Size #80 - Percent Finer % passed 95.6 96.5 93.1 84.1 90.8 93.1 96.1 74.5 Sieve Size #80 - Percent Finer % passed 95.6 96.5 93.1 84.1 90.8 93.1 96.1 74.5 Sieve Size #80 - Percent Finer % passed 95.1 95.8 91.9 76.1	Sieve Size 0.75 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size #10 - Percent Finer % passed 100 99.6 98.4 99.3 99.2 98.5 99.5 99.6 Sieve Size #20 - Percent Finer % passed 97.8 98.1 96.8 96.9 98.3 95.9 98 98.7 Sieve Size #40 - Percent Finer % passed 97.3 97.8 95.8 94.8 98 95.1 97.5 97.8 Sieve Size #60 - Percent Finer % passed 96.5 97.1 94.3 91.2 96.4 94.1 96.7 91.6 Sieve Size #80 - Percent Finer % passed 95.6 96.5 97.1 94.3 91.2 96.4 94.1 96.7 91.6 Sieve Size #80 - Percent Finer % passed 95.6 96.5 93.1 84.1 90.8 93.1 96.7 91.6 Sieve Size #100 - Percent Finer % passed 95.1 95.8 91.9 76.1 81.4 92 95.3 63.2 Sieve Size #200 - Percent Finer % passed 89.7 89.9 85 <td>Sieve Size 0.375 inch - Percent Finer</td> <td>% passed</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td>	Sieve Size 0.375 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size #20 - Percent Finer % passed 97.8 98.1 96.8 96.9 98.3 95.9 98 98.7 Sieve Size #40 - Percent Finer % passed 97.3 97.8 95.8 94.8 98 95.1 97.5 97.8 Sieve Size #60 - Percent Finer % passed 96.5 97.1 94.3 91.2 96.4 94.1 96.7 91.6 Sieve Size #80 - Percent Finer % passed 95.6 96.5 93.1 84.1 90.8 93.1 96.1 74.5 Sieve Size #100 - Percent Finer % passed 95.1 95.8 91.9 76.1 81.4 92 95.3 63.2 Sieve Size #200 - Percent Finer % passed 89.7 89.9 85 56.2 57.7 79.4 86.8 43.2 Hydrometer Reading 1 - Percent Finer % passed 57.0 53.9 41.8 50.2 27.9 36.3 44.3 16.4 Hydrometer Reading 2 - Percent Finer % passed 47.8 44.6 36.5	Sieve Size #4 - Percent Finer	% passed	100	99.7	99.2	99.8	100	100	100	100
Sieve Size #40 - Percent Finer % passed 97.3 97.8 95.8 94.8 98 95.1 97.5 97.8 Sieve Size #60 - Percent Finer % passed 96.5 97.1 94.3 91.2 96.4 94.1 96.7 91.6 Sieve Size #80 - Percent Finer % passed 95.6 96.5 93.1 84.1 90.8 93.1 96.1 74.5 Sieve Size #100 - Percent Finer % passed 95.1 95.8 91.9 76.1 81.4 92 95.3 63.2 Sieve Size #200 - Percent Finer % passed 89.7 89.9 85 56.2 57.7 79.4 86.8 43.2 Hydrometer Reading 1 - Percent Finer % passed 57.0 53.9 41.8 50.2 27.9 36.3 44.3 16.4 Hydrometer Reading 2 - Percent Finer % passed 47.8 44.6 36.5 34.8 24.4 31.9 40.3 14.3 Hydrometer Reading 3 - Percent Finer % passed 40.0 40.6 29.9 <td>Sieve Size #10 - Percent Finer</td> <td>% passed</td> <td>100</td> <td>99.6</td> <td>98.4</td> <td>99.3</td> <td>99.2</td> <td>98.5</td> <td>99.5</td> <td>99.6</td>	Sieve Size #10 - Percent Finer	% passed	100	99.6	98.4	99.3	99.2	98.5	99.5	99.6
Sieve Size #60 - Percent Finer % passed 96.5 97.1 94.3 91.2 96.4 94.1 96.7 91.6 Sieve Size #80 - Percent Finer % passed 95.6 96.5 93.1 84.1 90.8 93.1 96.1 74.5 Sieve Size #100 - Percent Finer % passed 95.1 95.8 91.9 76.1 81.4 92 95.3 63.2 Sieve Size #200 - Percent Finer % passed 89.7 89.9 85 56.2 57.7 79.4 86.8 43.2 Hydrometer Reading 1 - Percent Finer % passed 57.0 53.9 41.8 50.2 27.9 36.3 44.3 16.4 Hydrometer Reading 2 - Percent Finer % passed 47.8 44.6 36.5 34.8 24.4 31.9 40.3 14.3 Hydrometer Reading 3 - Percent Finer % passed 40.0 40.6 29.9 27.8 19.9 27.4 35.1 12.9 Hydrometer Reading 4 - Percent Finer % passed 33.4 34 24	Sieve Size #20 - Percent Finer	% passed	97.8	98.1	96.8	96.9	98.3	95.9	98	98.7
Sieve Size #80 - Percent Finer % passed 95.6 96.5 93.1 84.1 90.8 93.1 96.1 74.5 Sieve Size #100 - Percent Finer % passed 95.1 95.8 91.9 76.1 81.4 92 95.3 63.2 Sieve Size #200 - Percent Finer % passed 89.7 89.9 85 56.2 57.7 79.4 86.8 43.2 Hydrometer Reading 1 - Percent Finer % passed 57.0 53.9 41.8 50.2 27.9 36.3 44.3 16.4 Hydrometer Reading 2 - Percent Finer % passed 47.8 44.6 36.5 34.8 24.4 31.9 40.3 14.3 Hydrometer Reading 3 - Percent Finer % passed 40.0 40.6 29.9 27.8 19.9 27.4 35.1 12.9 Hydrometer Reading 4 - Percent Finer % passed 33.4 34 24.6 23 16.4 24.4 29.8 10.8 Hydrometer Reading 5 - Percent Finer % passed 26.9 27.3 <t< td=""><td>Sieve Size #40 - Percent Finer</td><td>% passed</td><td>97.3</td><td>97.8</td><td>95.8</td><td>94.8</td><td>98</td><td>95.1</td><td>97.5</td><td>97.8</td></t<>	Sieve Size #40 - Percent Finer	% passed	97.3	97.8	95.8	94.8	98	95.1	97.5	97.8
Sieve Size #100 - Percent Finer % passed 95.1 95.8 91.9 76.1 81.4 92 95.3 63.2 Sieve Size #200 - Percent Finer % passed 89.7 89.9 85 56.2 57.7 79.4 86.8 43.2 Hydrometer Reading 1 - Percent Finer % passed 57.0 53.9 41.8 50.2 27.9 36.3 44.3 16.4 Hydrometer Reading 2 - Percent Finer % passed 47.8 44.6 36.5 34.8 24.4 31.9 40.3 14.3 Hydrometer Reading 3 - Percent Finer % passed 40.0 40.6 29.9 27.8 19.9 27.4 35.1 12.9 Hydrometer Reading 4 - Percent Finer % passed 33.4 34 24.6 23 16.4 24.4 29.8 10.8 Hydrometer Reading 5 - Percent Finer % passed 26.9 27.3 19.2 18.3 12.9 18.5 24.5 8.7 Hydrometer Reading 6 - Percent Finer % passed 19.0 20.6	Sieve Size #60 - Percent Finer	% passed	96.5	97.1	94.3	91.2	96.4	94.1	96.7	91.6
Sieve Size #200 - Percent Finer % passed 89.7 89.9 85 56.2 57.7 79.4 86.8 43.2 Hydrometer Reading 1 - Percent Finer % passed 57.0 53.9 41.8 50.2 27.9 36.3 44.3 16.4 Hydrometer Reading 2 - Percent Finer % passed 47.8 44.6 36.5 34.8 24.4 31.9 40.3 14.3 Hydrometer Reading 3 - Percent Finer % passed 40.0 40.6 29.9 27.8 19.9 27.4 35.1 12.9 Hydrometer Reading 4 - Percent Finer % passed 33.4 34 24.6 23 16.4 24.4 29.8 10.8 Hydrometer Reading 5 - Percent Finer % passed 26.9 27.3 19.2 18.3 12.9 18.5 24.5 8.7 Hydrometer Reading 6 - Percent Finer % passed 19.0 20.6 15.3 11.2 10.2 14.1 17.9 6.6	Sieve Size #80 - Percent Finer	% passed	95.6	96.5	93.1	84.1	90.8	93.1	96.1	74.5
Hydrometer Reading 1 - Percent Finer % passed 57.0 53.9 41.8 50.2 27.9 36.3 44.3 16.4 Hydrometer Reading 2 - Percent Finer % passed 47.8 44.6 36.5 34.8 24.4 31.9 40.3 14.3 Hydrometer Reading 3 - Percent Finer % passed 40.0 40.6 29.9 27.8 19.9 27.4 35.1 12.9 Hydrometer Reading 4 - Percent Finer % passed 33.4 34 24.6 23 16.4 24.4 29.8 10.8 Hydrometer Reading 5 - Percent Finer % passed 26.9 27.3 19.2 18.3 12.9 18.5 24.5 8.7 Hydrometer Reading 6 - Percent Finer % passed 19.0 20.6 15.3 11.2 10.2 14.1 17.9 6.6	Sieve Size #100 - Percent Finer	% passed		95.8	91.9	76.1	81.4	92	95.3	63.2
Hydrometer Reading 2 - Percent Finer % passed 47.8 44.6 36.5 34.8 24.4 31.9 40.3 14.3 Hydrometer Reading 3 - Percent Finer % passed 40.0 40.6 29.9 27.8 19.9 27.4 35.1 12.9 Hydrometer Reading 4 - Percent Finer % passed 33.4 34 24.6 23 16.4 24.4 29.8 10.8 Hydrometer Reading 5 - Percent Finer % passed 26.9 27.3 19.2 18.3 12.9 18.5 24.5 8.7 Hydrometer Reading 6 - Percent Finer % passed 19.0 20.6 15.3 11.2 10.2 14.1 17.9 6.6	Sieve Size #200 - Percent Finer	% passed	89.7	89.9	85	56.2	57.7	79.4	86.8	43.2
Hydrometer Reading 3 - Percent Finer % passed 40.0 40.6 29.9 27.8 19.9 27.4 35.1 12.9 Hydrometer Reading 4 - Percent Finer % passed 33.4 34 24.6 23 16.4 24.4 29.8 10.8 Hydrometer Reading 5 - Percent Finer % passed 26.9 27.3 19.2 18.3 12.9 18.5 24.5 8.7 Hydrometer Reading 6 - Percent Finer % passed 19.0 20.6 15.3 11.2 10.2 14.1 17.9 6.6	Hydrometer Reading 1 - Percent Finer	% passed	57.0	53.9	41.8	50.2	27.9	36.3	44.3	16.4
Hydrometer Reading 4 - Percent Finer % passed 33.4 34 24.6 23 16.4 24.4 29.8 10.8 Hydrometer Reading 5 - Percent Finer % passed 26.9 27.3 19.2 18.3 12.9 18.5 24.5 8.7 Hydrometer Reading 6 - Percent Finer % passed 19.0 20.6 15.3 11.2 10.2 14.1 17.9 6.6	Hydrometer Reading 2 - Percent Finer	% passed		44.6			24.4			
Hydrometer Reading 5 - Percent Finer % passed 26.9 27.3 19.2 18.3 12.9 18.5 24.5 8.7 Hydrometer Reading 6 - Percent Finer % passed 19.0 20.6 15.3 11.2 10.2 14.1 17.9 6.6	Hydrometer Reading 3 - Percent Finer	% passed	40.0	40.6	29.9	27.8	19.9	27.4	35.1	12.9
Hydrometer Reading 6 - Percent Finer % passed 19.0 20.6 15.3 11.2 10.2 14.1 17.9 6.6	Hydrometer Reading 4 - Percent Finer	% passed	33.4	34	24.6	23	16.4	24.4	29.8	10.8
	Hydrometer Reading 5 - Percent Finer	% passed	26.9	27.3		18.3	12.9	18.5	24.5	8.7
Hydrometer Reading 7 - Percent Finer % passed 12.4 14 10 6.5 7.5 8.2 12.6 4.5	Hydrometer Reading 6 - Percent Finer	% passed	19.0	20.6	15.3	11.2	10.2	14.1	17.9	6.6
	Hydrometer Reading 7 - Percent Finer	% passed	12.4	14	10	6.5	7.5	8.2	12.6	4.5

Notes:

% = percent passed

FD = Field Duplicate

HT= Harbortown Upstream Area

TABLE 3-2 SEDIMENT RESULTS FOR GRAIN SIZE, HT

Coarse Sand		Location ID:	HT18-08	HT18-09	HT18-10	HT18-11	HT18-12	HT18-12	HT18-13	HT18-14
Name		Sample Name:	HT18-08-SURF	HT18-09-SURF		HT18-11-SURF	HT18-12-SURF	HT18-12-SURF-FD	HT18-13-SURF	HT18-14-SURF
Course Sand		_	10/22/2018	10/22/2018	10/22/2018		10/22/2018	10/22/2018	10/29/2018	10/29/2018
Gravel	De	epth Interval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Connec Sand	Analyte	Unit								
Medium Sand	Gravel	%	0	0	9.1	0	0	0	0	55.8
Fine Stand	Coarse Sand	%	0.9	0	0.4	0.6	0.7	1.9	1.1	11.5
Sand 96	Medium Sand	%	1.8	1.9	8.8	3.0	1.6	1.4	1.0	8.8
Site Clay	Fine Sand	%	5.3	2.9	77.5	7.6	16.5	14.3	8.5	14
Clay 96 25.5 30.6 2.1 27.7 16.6 15.5 30.9 3.7 Silt+Clay 96 92.0 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Silt+Clay 96 92.0 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Silt+Clay 97.0 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Silt+Clay 89.8 Silt+Clay 89.4 89.6 97. 98.8 Silt+Clay 89.8 Silt+Cla	Sand	%	8.0	4.8	86.7	11.2	18.8	17.6	10.6	34.3
Silt + Clay % 92.0 95.2 4.2 88.8 81.2 82.4 89.4 9.9	Silt	%	66.5	64.6	2.1	61.1	64.6	66.9	58.5	6.2
Sieve Size 3 inch - Percent Finer % passed 100	Clay	%	25.5	30.6	2.1	27.7	16.6	15.5	30.9	3.7
Sieve Size 3 inch - Percent Finer % passed 100	Silt + Clay	%	92.0	95.2	4.2	88.8	81.2	82.4	89.4	9.9
Sieve Size 2 inch - Percent Finer % passed 100	Hydrometer and Sieve Analysis									
Sieve Size 1.5 inch - Percent Finer % passed 100 61.7 Sieve Size #10 - Percent Finer % passed 100 100 90.5 99.4 99.3 98.1 98.9 32.7 Sieve Size #10 - Percent Finer % passed 97.9 98.4 89.6 97 98.4 97.2 98 28.7 Sieve Size #0 - Percent Finer % passed 97.3 98.1 81.7 96.4 97.7 96.7 97.9 23.9	Sieve Size 3 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 1 inch - Percent Finer % passed 100 44.2 Sieve Size #10 - Percent Finer % passed 99.1 100 90.5 99.4 99.3 98.1 98.9 32.7 Sieve Size #20 - Percent Finer % passed 97.9 98.4 89.6 97 98.4 97.2 98 28.7 Sieve Size #40 - Percent Finer % passed 97.3 98.1 81.7 96.4 97.7 96.7 97.9 23.9 Sieve Size #30 - Percent Finer % pas	Sieve Size 2 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 0.75 inch - Percent Finer % passed 100 100 100 100 100 100 100 100 100 100 100 100 100 100 61.7 Sieve Size #4 - Percent Finer % passed 100 100 90.9 100 100 100 100 44.2 Sieve Size #4 - Percent Finer % passed 99.1 100 90.5 99.4 99.3 98.1 98.9 32.7 Sieve Size #20 - Percent Finer % passed 97.9 98.4 89.6 97 98.4 97.2 98 28.7 Sieve Size #40 - Percent Finer % passed 97.3 98.1 81.7 96.4 97.7 96.7 97.9 23.9 Sieve Size #60 - Percent Finer % passed 96.7 97.9 24.3 95.6 95.2 95.8 97.6 17.5 Sieve Size #80 - Percent Finer % passed 96.1 97.8 10.8 94.7 93.6 95.8 97.2 13.9 Sieve S	Sieve Size 1.5 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 0.375 inch - Percent Finer % passed 100 100 91.3 100 100 100 100 61.7 Sieve Size #4 - Percent Finer % passed 100 100 90.9 100 100 100 100 44.2 Sieve Size #10 - Percent Finer % passed 99.1 100 90.5 99.4 99.3 98.1 98.9 32.7 Sieve Size #20 - Percent Finer % passed 97.9 98.4 89.6 97 98.4 97.2 98 28.7 Sieve Size #40 - Percent Finer % passed 97.3 98.1 81.7 96.4 97.7 96.7 97.9 23.9 Sieve Size #60 - Percent Finer % passed 96.7 97.9 24.3 95.6 95.2 95.8 97.6 17.5 Sieve Size #80 - Percent Finer % passed 96.1 97.8 10.8 94.7 93.6 94.5 97.2 13.9 Sieve Size #200 - Percent Finer % passed 96.1 97.5 7.3 93.6	Sieve Size 1 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size #4 - Percent Finer % passed 100 100 90.9 100 100 100 100 44.2 Sieve Size #10 - Percent Finer % passed 99.1 100 90.5 99.4 99.3 98.1 98.9 32.7 Sieve Size #20 - Percent Finer % passed 97.9 98.4 89.6 97 98.4 97.2 98 28.7 Sieve Size #40 - Percent Finer % passed 97.3 98.1 81.7 96.4 97.7 96.7 97.9 23.9 Sieve Size #60 - Percent Finer % passed 96.7 97.9 24.3 95.6 95.2 95.8 97.6 17.5 Sieve Size #80 - Percent Finer % passed 96.1 97.8 10.8 94.7 93.6 94.5 97.2 13.9 Sieve Size #100 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 95.6 97.5 7.3 93.6	Sieve Size 0.75 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size #10 - Percent Finer % passed 99.1 100 90.5 99.4 99.3 98.1 98.9 32.7 Sieve Size #20 - Percent Finer % passed 97.9 98.4 89.6 97 98.4 97.2 98 28.7 Sieve Size #40 - Percent Finer % passed 97.3 98.1 81.7 96.4 97.7 96.7 97.9 23.9 Sieve Size #60 - Percent Finer % passed 96.7 97.9 24.3 95.6 95.2 95.8 97.6 17.5 Sieve Size #80 - Percent Finer % passed 96.1 97.8 10.8 94.7 93.6 94.5 97.6 17.5 Sieve Size #100 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 95.2 4.2 88.8 81.2	Sieve Size 0.375 inch - Percent Finer	% passed	100	100	91.3	100	100	100	100	61.7
Sieve Size #20 - Percent Finer % passed 97.9 98.4 89.6 97 98.4 97.2 98 28.7 Sieve Size #40 - Percent Finer % passed 97.3 98.1 81.7 96.4 97.7 96.7 97.9 23.9 Sieve Size #60 - Percent Finer % passed 96.7 97.9 24.3 95.6 95.2 95.8 97.6 17.5 Sieve Size #80 - Percent Finer % passed 96.1 97.8 10.8 94.7 93.6 94.5 97.2 13.9 Sieve Size #100 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Hydrometer Reading 1 - Percent Finer % passed 45.6 53.4 3.5 49.9 38.3	Sieve Size #4 - Percent Finer	% passed	100	100	90.9	100	100	100	100	44.2
Sieve Size #40 - Percent Finer % passed 97.3 98.1 81.7 96.4 97.7 96.7 97.9 23.9 Sieve Size #60 - Percent Finer % passed 96.7 97.9 24.3 95.6 95.2 95.8 97.6 17.5 Sieve Size #80 - Percent Finer % passed 96.1 97.8 10.8 94.7 93.6 94.5 97.2 13.9 Sieve Size #100 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 92 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Hydrometer Reading 1 - Percent Finer % passed 48.6 65.6 4.4 57.8 45.1 40.3 58.3 10.5 Hydrometer Reading 2 - Percent Finer % passed 45.6 53.4 3.5 49.9 38.3 31.6 51.5 7.7 Hydrometer Reading 3 - Percent Finer % passed 39.4 42.9 3	Sieve Size #10 - Percent Finer	% passed	99.1	100	90.5	99.4	99.3	98.1	98.9	32.7
Sieve Size #60 - Percent Finer % passed 96.7 97.9 24.3 95.6 95.2 95.8 97.6 17.5 Sieve Size #80 - Percent Finer % passed 96.1 97.8 10.8 94.7 93.6 94.5 97.2 13.9 Sieve Size #100 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 92 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Hydrometer Reading 1 - Percent Finer % passed 48.6 65.6 4.4 57.8 45.1 40.3 58.3 10.5 Hydrometer Reading 2 - Percent Finer % passed 45.6 53.4 3.5 49.9 38.3 31.6 51.5 7.7 Hydrometer Reading 3 - Percent Finer % passed 39.4 42.9 3 38.8 28 25.4 46 6.6 Hydrometer Reading 5 - Percent Finer % passed 31.7 37.6 2.6	Sieve Size #20 - Percent Finer	% passed	97.9	98.4	89.6	97	98.4	97.2	98	28.7
Sieve Size #80 - Percent Finer % passed 96.1 97.8 10.8 94.7 93.6 94.5 97.2 13.9 Sieve Size #100 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 92 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Hydrometer Reading 1 - Percent Finer % passed 48.6 65.6 4.4 57.8 45.1 40.3 58.3 10.5 Hydrometer Reading 2 - Percent Finer % passed 45.6 53.4 3.5 49.9 38.3 31.6 51.5 7.7 Hydrometer Reading 3 - Percent Finer % passed 39.4 42.9 3 38.8 28 25.4 46 6.6 Hydrometer Reading 4 - Percent Finer % passed 31.7 37.6 2.6 34.1 22.3 18 37.7 4.3 Hydrometer Reading 5 - Percent Finer % passed 25.5 30.6 2.1	Sieve Size #40 - Percent Finer	% passed	97.3	98.1	81.7	96.4	97.7	96.7	97.9	23.9
Sieve Size #100 - Percent Finer % passed 95.6 97.5 7.3 93.6 92 92.7 96.4 12.6 Sieve Size #200 - Percent Finer % passed 92 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Hydrometer Reading 1 - Percent Finer % passed 48.6 65.6 4.4 57.8 45.1 40.3 58.3 10.5 Hydrometer Reading 2 - Percent Finer % passed 45.6 53.4 3.5 49.9 38.3 31.6 51.5 7.7 Hydrometer Reading 3 - Percent Finer % passed 39.4 42.9 3 38.8 28 25.4 46 6.6 Hydrometer Reading 4 - Percent Finer % passed 31.7 37.6 2.6 34.1 22.3 18 37.7 4.3 Hydrometer Reading 5 - Percent Finer % passed 25.5 30.6 2.1 27.7 16.6 15.5 30.9 3.7 Hydrometer Reading 6 - Percent Finer % passed 19.3 21.9 1.6	Sieve Size #60 - Percent Finer	% passed	96.7	97.9	24.3	95.6	95.2	95.8	97.6	17.5
Sieve Size #200 - Percent Finer % passed 92 95.2 4.2 88.8 81.2 82.4 89.4 9.9 Hydrometer Reading 1 - Percent Finer % passed 48.6 65.6 4.4 57.8 45.1 40.3 58.3 10.5 Hydrometer Reading 2 - Percent Finer % passed 45.6 53.4 3.5 49.9 38.3 31.6 51.5 7.7 Hydrometer Reading 3 - Percent Finer % passed 39.4 42.9 3 38.8 28 25.4 46 6.6 Hydrometer Reading 4 - Percent Finer % passed 31.7 37.6 2.6 34.1 22.3 18 37.7 4.3 Hydrometer Reading 5 - Percent Finer % passed 25.5 30.6 2.1 27.7 16.6 15.5 30.9 3.7 Hydrometer Reading 6 - Percent Finer % passed 19.3 21.9 1.6 19.8 10.9 10.5 22.6 2.6	Sieve Size #80 - Percent Finer	% passed	96.1	97.8	10.8	94.7	93.6	94.5	97.2	13.9
Hydrometer Reading 1 - Percent Finer % passed 48.6 65.6 4.4 57.8 45.1 40.3 58.3 10.5 Hydrometer Reading 2 - Percent Finer % passed 45.6 53.4 3.5 49.9 38.3 31.6 51.5 7.7 Hydrometer Reading 3 - Percent Finer % passed 39.4 42.9 3 38.8 28 25.4 46 6.6 Hydrometer Reading 4 - Percent Finer % passed 31.7 37.6 2.6 34.1 22.3 18 37.7 4.3 Hydrometer Reading 5 - Percent Finer % passed 25.5 30.6 2.1 27.7 16.6 15.5 30.9 3.7 Hydrometer Reading 6 - Percent Finer % passed 19.3 21.9 1.6 19.8 10.9 10.5 22.6 2.6	Sieve Size #100 - Percent Finer	% passed	95.6				92	92.7	96.4	12.6
Hydrometer Reading 2 - Percent Finer % passed 45.6 53.4 3.5 49.9 38.3 31.6 51.5 7.7 Hydrometer Reading 3 - Percent Finer % passed 39.4 42.9 3 38.8 28 25.4 46 6.6 Hydrometer Reading 4 - Percent Finer % passed 31.7 37.6 2.6 34.1 22.3 18 37.7 4.3 Hydrometer Reading 5 - Percent Finer % passed 25.5 30.6 2.1 27.7 16.6 15.5 30.9 3.7 Hydrometer Reading 6 - Percent Finer % passed 19.3 21.9 1.6 19.8 10.9 10.5 22.6 2.6	Sieve Size #200 - Percent Finer	% passed	92	95.2	4.2	88.8	81.2	82.4	89.4	9.9
Hydrometer Reading 3 - Percent Finer % passed 39.4 42.9 3 38.8 28 25.4 46 6.6 Hydrometer Reading 4 - Percent Finer % passed 31.7 37.6 2.6 34.1 22.3 18 37.7 4.3 Hydrometer Reading 5 - Percent Finer % passed 25.5 30.6 2.1 27.7 16.6 15.5 30.9 3.7 Hydrometer Reading 6 - Percent Finer % passed 19.3 21.9 1.6 19.8 10.9 10.5 22.6 2.6	Hydrometer Reading 1 - Percent Finer	% passed	48.6	65.6	4.4	57.8	45.1	40.3	58.3	10.5
Hydrometer Reading 4 - Percent Finer % passed 31.7 37.6 2.6 34.1 22.3 18 37.7 4.3 Hydrometer Reading 5 - Percent Finer % passed 25.5 30.6 2.1 27.7 16.6 15.5 30.9 3.7 Hydrometer Reading 6 - Percent Finer % passed 19.3 21.9 1.6 19.8 10.9 10.5 22.6 2.6	Hydrometer Reading 2 - Percent Finer	% passed	45.6	53.4	3.5	49.9	38.3	31.6	51.5	7.7
Hydrometer Reading 5 - Percent Finer % passed 25.5 30.6 2.1 27.7 16.6 15.5 30.9 3.7 Hydrometer Reading 6 - Percent Finer % passed 19.3 21.9 1.6 19.8 10.9 10.5 22.6 2.6	Hydrometer Reading 3 - Percent Finer	% passed						25.4		6.6
Hydrometer Reading 6 - Percent Finer % passed 19.3 21.9 1.6 19.8 10.9 10.5 22.6 2.6	Hydrometer Reading 4 - Percent Finer	% passed		37.6	2.6	34.1	22.3	18	37.7	4.3
	Hydrometer Reading 5 - Percent Finer	% passed	25.5		2.1	27.7	16.6	15.5	30.9	3.7
Hydrometer Reading 7 - Percent Finer % passed 13.1 14.9 1.2 13.5 8.6 6.8 15.8 2	Hydrometer Reading 6 - Percent Finer	% passed	19.3	21.9	1.6	19.8	10.9	10.5	22.6	2.6
	Hydrometer Reading 7 - Percent Finer	% passed	13.1	14.9	1.2	13.5	8.6	6.8	15.8	2

Notes:

% = percent passed

FD = Field Duplicate

HT= Harbortown Upstream Area

TABLE 3-2 SEDIMENT RESULTS FOR GRAIN SIZE, HT

	Location ID:	HT18-15	HT18-16	HT18-17	HT18-18	HT18-19	HT18-20	HT18-21	HT18-23
	Sample Name:	HT18-15-SURF	HT18-16-SURF	HT18-17-SURF	HT18-18-SURF	HT18-19-SURF	HT18-20-SURF	HT18-21-SURF	HT18-23-SURF
	Sample Date:	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/23/2018
De	epth Interval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
Gravel	%	16.9	0	16.4	0.8	6.5	19.3	55.7	0
Coarse Sand	%	7	5.9	6.4	0.9	6.7	1.7	12.5	0.7
Medium Sand	%	8.6	11.7	9.2	2.9	7.9	2.1	9.9	0.5
Fine Sand	%	54.3	16.8	51.4	29	65.4	45.6	9.6	5.4
Sand	%	69.9	34.4	67	32.8	80	49.4	32	6.6
Silt	%	7.0	58.5	10.4	51.0	9.2	20.6	10.4	67.1
Clay	%	6.2	7.1	6.2	15.4	4.3	10.7	1.9	26.3
Silt + Clay	%	13.2	65.6	16.6	66.4	13.5	31.3	12.3	93.4
Hydrometer and Sieve Analysis									
Sieve Size 3 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 2 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 1.5 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 1 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 0.75 inch - Percent Finer	% passed	100	100	100	100	100	100	74.8	100
Sieve Size 0.375 inch - Percent Finer	% passed	91.3	100	93.8	100	99.1	89.7	58.7	100
Sieve Size #4 - Percent Finer	% passed	83.1	100	83.6	99.2	93.5	80.7	44.3	100
Sieve Size #10 - Percent Finer	% passed	76.1	94.1	77.2	98.3	86.8	79	31.8	99.3
Sieve Size #20 - Percent Finer	% passed	72.7	88.8	72.7	96.2	83.4	77.9	27.2	98.9
Sieve Size #40 - Percent Finer	% passed	67.5	82.4	68	95.4	78.9	76.9	21.9	98.8
Sieve Size #60 - Percent Finer	% passed	50.5	73.1	52.6	92.8	66.8	74.6	17.3	98.7
Sieve Size #80 - Percent Finer	% passed	37.1	68.9	34.6	86.1	50.2	68.8	15.5	98.3
Sieve Size #100 - Percent Finer	% passed	29.5	67.5	26.3	79.4	34.2	59.8	14.3	97.9
Sieve Size #200 - Percent Finer	% passed	13.2	65.6	16.6	66.4	13.5	31.3	12.3	93.4
Hydrometer Reading 1 - Percent Finer	% passed	12.1	21.4	12.1	32.3	9.5	25	4.5	52
Hydrometer Reading 2 - Percent Finer	% passed	10.3	13.1	10.6	29.4	8.4	20.3	3.6	44.9
Hydrometer Reading 3 - Percent Finer	% passed	8.6	11.6	8.6	25.4	7.2	17.1	3.2	40.6
Hydrometer Reading 4 - Percent Finer	% passed	7.4	8.6	7.1	20.4	5.5	13.9	2.4	34.9
Hydrometer Reading 5 - Percent Finer	% passed	6.2	7.1	6.2	15.4	4.3	10.7	1.9	26.3
Hydrometer Reading 6 - Percent Finer	% passed	4.4	4.9	4.7	11.4	3.2	9.1	1.5	19.2
Hydrometer Reading 7 - Percent Finer	% passed	3.3	3.4	3.2	7.5	2	6	0.6	12.1
Notes:									

Notes:

% = percent passed

FD = Field Duplicate

HT= Harbortown Upstream Area

	Location ID:	HT18-24	HT18-25	HT18-26	HT18-29	HT18-30	HT18-31	HT18-32	HT18-32
S	Sample Name:	HT18-24-SURF	HT18-25-SURF	HT18-26-SURF	HT18-29-SURF	HT18-30-SURF	HT18-31-SURF	HT18-32-SURF	HT18-32-SURF-FD
	Sample Date:	10/23/2018	10/23/2018	10/23/2018	10/22/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018
Depth I	nterval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
Gravel	%	8.4	0	0.9	41.6	0	0	1.5	0
Coarse Sand	%	2.8	0.7	0.7	17.1	1.1	1.2	0.8	0.8
Medium Sand	%	4.2	2.4	1.4	10.7	0.9	1.2	1.9	1.6
Fine Sand	%	49.2	14.9	61.8	16.1	6.3	5.5	13	12.6
Sand	%	56.2	18	63.9	43.9	8.3	7.9	15.7	15
Silt	%	27.2	57.8	28.6	13.4	49.7	60.2	61.1	61.9
Clay	%	8.3	24.2	6.6	1.1	42.0	31.9	21.7	23.1
Silt + Clay	%	35.5	82.0	35.2	14.5	91.7	92.1	82.8	85.0
Hydrometer and Sieve Analysis									
Sieve Size 3 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 2 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 1.5 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 1 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 0.75 inch - Percent Finer	% passed	100	100	100	100	100	100	100	100
Sieve Size 0.375 inch - Percent Finer	% passed	94.4	100	100	85.9	100	100	100	100
Sieve Size #4 - Percent Finer	% passed	91.6	100	99.1	58.4	100	100	98.5	100
Sieve Size #10 - Percent Finer	% passed	88.8	99.3	98.4	41.3	98.9	98.8	97.7	99.2
Sieve Size #20 - Percent Finer	% passed	87	97.6	97.6	36.8	98.4	98.1	96.5	98.1
Sieve Size #40 - Percent Finer	% passed	84.6	96.9	97	30.6	98	97.6	95.8	97.6
Sieve Size #60 - Percent Finer	% passed	77.2	94.8	94.4	21.1	96.4	96.5	93.2	96.2
Sieve Size #80 - Percent Finer	% passed	60.1	92.3	88.5	17	95.8	95.5	91.6	94.6
Sieve Size #100 - Percent Finer	% passed	48.8	90.4	81.1	15.8	95.4	94.9	90.5	93.3
Sieve Size #200 - Percent Finer	% passed	35.4	82	35.2	14.5	91.7	92.1	82.8	85
Hydrometer Reading 1 - Percent Finer	% passed	14.7	43.6	14.9	1.9	67.9	70.8	58.2	55.2
Hydrometer Reading 2 - Percent Finer	% passed	14	39.5	13.5	1.5	60.1	59.5	48	48.8
Hydrometer Reading 3 - Percent Finer	% passed	12.5	33.9	10.7	1.5	55	45.7	36.9	39.1
Hydrometer Reading 4 - Percent Finer	% passed	9.7	29.8	8.7	1.5	45.9	38.2	26.8	31.6
Hydrometer Reading 5 - Percent Finer	% passed	8.3	24.2	6.6	1.1	42	31.9	21.7	23.1
Hydrometer Reading 6 - Percent Finer	% passed	6.1	18.7	5.2	0.6	31.7	23.2	15.7	16.6
Hydrometer Reading 7 - Percent Finer	% passed	3.9	11.8	3.1	0.2	21.3	15.7	10.6	12.3

Notes:

% = percent passed

FD = Field Duplicate

HT= Harbortown Upstream Area

]	Location ID:	HT18-01	HT18-01	HT18-01	HT18-01	HT18-01	HT18-01	HT18-01
		Sa	mple Name:	HT18-01-SURF	HT18-01-SURF-FD	HT18-01-0010	HT18-01-1030	HT18-01-3050	HT18-01-5070	HT18-01-5070-FD
		S	ample Date:	10/29/2018	10/29/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018
		Depth 1	Interval (ft):	0-0.5	0-0.5	0-1	1-3	3-5	5-7	5-7
Analyte										
Aroclor-1016	NSL	NSL	ug/kg	89 U	88 U	61 U	53 U	48 U	43 U	45 U
Aroclor-1221	NSL	NSL	ug/kg	89 U	88 U	61 U	53 U	48 U	43 U	45 U
Aroclor-1232	NSL	NSL	ug/kg	89 U	88 U	61 U	53 U	48 U	43 U	45 U
Aroclor-1242	NSL	NSL	ug/kg	15 J	17 J	28 J	33 J	48 U	43 U	45 U
Aroclor-1248	NSL	NSL	ug/kg	89 U	88 U	61 U	53 U	48 U	43 U	45 U
Aroclor-1254	NSL	NSL	ug/kg	17 J	17 J	22 J	43 J	93	43 U	45 U
Aroclor-1260	NSL	NSL	ug/kg	89 U	88 U	61 U	53 U	48 U	43 U	45 U
Aroclor-1262	NSL	NSL	ug/kg	89 U	88 U	61 U	53 U	48 U	43 U	45 U
Aroclor-1268	NSL	NSL	ug/kg	89 U	88 U	61 U	53 U	48 U	43 U	45 U
Total PCBs ND=0	59.8	676	ug/kg	32	34	50	76	93	0	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-01	HT18-02	HT18-02	HT18-02	HT18-02	HT18-02	HT18-02
		Sa	mple Name:	HT18-01-7085	HT18-02-SURF	HT18-02-0010	HT18-02-1030	HT18-02-3060	HT18-02-6080	HT18-02-8090
		S	ample Date:	10/30/2018	10/29/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018
		Depth 1	Interval (ft):	7-8.6	0-0.5	0-1	1-3	3-6.1	6.1-7.8	7.8-9.2
Analyte										
Aroclor-1016	NSL	NSL	ug/kg	43 U	81 U	68 U	44 U	45 U	43 U	41 U
Aroclor-1221	NSL	NSL	ug/kg	43 U	81 U	68 U	44 U	45 U	43 U	41 U
Aroclor-1232	NSL	NSL	ug/kg	43 U	81 U	68 U	44 U	45 U	43 U	41 U
Aroclor-1242	NSL	NSL	ug/kg	43 U	17 J	25 J	44 U	45 U	43 U	41 U
Aroclor-1248	NSL	NSL	ug/kg	43 U	81 U	68 U	44 U	45 U	43 U	41 U
Aroclor-1254	NSL	NSL	ug/kg	43 U	15 J	23 J	44 U	45 U	43 U	41 U
Aroclor-1260	NSL	NSL	ug/kg	43 U	81 U	68 U	44 U	45 U	43 U	41 U
Aroclor-1262	NSL	NSL	ug/kg	43 U	81 U	68 U	44 U	45 U	43 U	41 U
Aroclor-1268	NSL	NSL	ug/kg	43 U	81 U	68 U	44 U	45 U	43 U	41 U
Total PCBs ND=0	59.8	676	ug/kg	0	32	48	0	0	0	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-03	HT18-03	HT18-03	HT18-03	HT18-03	HT18-03	HT18-04
		Sa	ımple Name:	HT18-03-SURF	HT18-03-0010	HT18-03-1030	HT18-03-1030-FD	HT18-03-3045	HT18-03-4560	HT18-04-SURF
		S	Sample Date:	10/29/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/29/2018
_		Depth 1	Interval (ft):	0-0.5	0-1	1-3	1-3	3-4.6	4.6-6	0-0.5
Analyte										
Aroclor-1016	NSL	NSL	ug/kg	86 U	85 U	61 U	61 U	52 U	39 U	69 U
Aroclor-1221	NSL	NSL	ug/kg	86 U	85 U	61 U	61 U	52 U	39 U	69 U
Aroclor-1232	NSL	NSL	ug/kg	86 U	85 U	61 U	61 U	52 U	39 U	69 U
Aroclor-1242	NSL	NSL	ug/kg	110 J	240	920	1400	490	39 U	69 U
Aroclor-1248	NSL	NSL	ug/kg	86 U	85 U	61 U	61 U	52 U	39 U	69 U
Aroclor-1254	NSL	NSL	ug/kg	110	85 U	970	1500	510	39 U	11 J
Aroclor-1260	NSL	NSL	ug/kg	86 U	210	61 U	61 U	52 U	39 U	69 U
Aroclor-1262	NSL	NSL	ug/kg	86 U	85 U	61 U	61 U	52 U	39 U	69 U
Aroclor-1268	NSL	NSL	ug/kg	86 U	85 U	61 U	61 U	52 U	39 U	69 U
Total PCBs ND=0	59.8	676	ug/kg	220	450	1890	2900	1000	0	11

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-04	HT18-04	HT18-04	HT18-04	HT18-05	HT18-05	HT18-05
		Sa	mple Name:	HT18-04-0005	HT18-04-0530	HT18-04-0530-FD	HT18-04-3040	HT18-05-SURF	HT18-05-0010	HT18-05-1030
		S	Sample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/30/2018	10/30/2018
		Depth	Interval (ft):	0-0.6	0.6-3.3	0.6-3.3	3.3-4.3	0-0.5	0-1	1-2.7
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	42 U	44 U	44 U	38 U	96 U	90 U	88 U
Aroclor-1221	NSL	NSL	ug/kg	42 U	44 U	44 U	38 U	96 U	90 U	88 U
Aroclor-1232	NSL	NSL	ug/kg	42 U	44 U	44 U	38 U	96 U	90 U	88 U
Aroclor-1242	NSL	NSL	ug/kg	42 U	44 U	44 U	38 U	40 J	32 J	100
Aroclor-1248	NSL	NSL	ug/kg	42 U	44 U	44 U	38 U	96 U	90 U	88 U
Aroclor-1254	NSL	NSL	ug/kg	3.9 J	44 U	44 U	38 U	56 J	65 J	110
Aroclor-1260	NSL	NSL	ug/kg	42 U	44 U	44 U	38 U	96 U	90 U	88 U
Aroclor-1262	NSL	NSL	ug/kg	42 U	44 U	44 U	38 U	96 U	90 U	88 U
Aroclor-1268	NSL	NSL	ug/kg	42 U	44 U	44 U	38 U	96 U	90 U	88 U
Total PCBs ND=0	59.8	676	ug/kg	3.9	0	0	0	96	97	210

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-05	HT18-05	HT18-06	HT18-06	HT18-06	HT18-06	HT18-06
		Sa	mple Name:	HT18-05-3050	HT18-05-5060	HT18-06-SURF	HT18-06-0010	HT18-06-1030	HT18-06-1030-FD	HT18-06-3060
		S	ample Date:	10/30/2018	10/30/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
		Depth 1	Interval (ft):	2.7-5.1	5.1-5.9	0-0.5	0-1	1-3	1-3	3-6
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	51 U	45 U	91 U	86 U	72 U	73 U	69 U
Aroclor-1221	NSL	NSL	ug/kg	51 U	45 U	91 U	86 U	72 U	73 U	69 UJ
Aroclor-1232	NSL	NSL	ug/kg	51 U	45 U	91 U	86 U	72 U	73 U	69 UJ
Aroclor-1242	NSL	NSL	ug/kg	920	250	27 J	58 J	86	110	250 J
Aroclor-1248	NSL	NSL	ug/kg	51 U	45 U	91 U	86 U	72 U	73 U	69 UJ
Aroclor-1254	NSL	NSL	ug/kg	850	170	35 J	86 U	240	73 U	69 UJ
Aroclor-1260	NSL	NSL	ug/kg	51 U	45 U	91 U	40 J	72 U	68 J	460 J
Aroclor-1262	NSL	NSL	ug/kg	51 U	45 U	91 U	86 U	72 U	73 U	69 UJ
Aroclor-1268	NSL	NSL	ug/kg	51 U	45 U	91 U	86 U	72 U	73 U	69 UJ
Total PCBs ND=0	59.8	676	ug/kg	1770	420	62	98	326	178	710

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-06	HT18-06	HT18-06	HT18-07	HT18-07	HT18-07	HT18-07
		Sa	mple Name:	HT18-06-6070	HT18-06-7080	HT18-06-8010	HT18-07-SURF	HT18-07-0020	HT18-07-2050	HT18-07-5070
		S	Sample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
_		Depth	Interval (ft):	6-7.1	7.1-8.1	8.1-9.7	0-0.5	0-1.8	1.8-4.8	4.8-7
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	46 U	47 U	48 U	58 U	41 U	54 U	48 U
Aroclor-1221	NSL	NSL	ug/kg	46 U	47 U	48 U	58 U	41 U	54 U	48 U
Aroclor-1232	NSL	NSL	ug/kg	46 U	47 U	48 U	58 U	41 U	54 U	48 U
Aroclor-1242	NSL	NSL	ug/kg	690	4100	560	36 J	110	820	150
Aroclor-1248	NSL	NSL	ug/kg	46 U	47 U	48 U	58 U	41 U	54 U	48 U
Aroclor-1254	NSL	NSL	ug/kg	470	1900 J	510	43 J	220	780	570
Aroclor-1260	NSL	NSL	ug/kg	46 U	47 U	48 U	58 U	41 U	54 U	48 U
Aroclor-1262	NSL	NSL	ug/kg	46 U	47 U	48 U	58 U	41 U	54 U	48 U
Aroclor-1268	NSL	NSL	ug/kg	46 U	47 U	48 U	58 U	41 U	54 U	48 U
Total PCBs ND=0	59.8	676	ug/kg	1160	6000	1070	79	330	1600	720

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-07	HT18-08	HT18-08	HT18-08	HT18-08	HT18-08	HT18-08
		Sa	mple Name:	HT18-07-7090	HT18-08-SURF	HT18-08-0010	HT18-08-1020	HT18-08-1020-FD	HT18-08-2045	HT18-08-4565
		S	Sample Date:	10/29/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018
_		Depth 1	Interval (ft):	7-8.9	0-0.5	0-1	1-2.3	1-2.3	2.3-4.6	4.6-6.5
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	49 U	110 U	86 U	67 U	70 U	52 UJ	44 U
Aroclor-1221	NSL	NSL	ug/kg	49 U	110 U	86 U	67 U	70 U	52 UJ	44 U
Aroclor-1232	NSL	NSL	ug/kg	49 U	110 U	86 U	67 U	70 U	52 UJ	44 U
Aroclor-1242	NSL	NSL	ug/kg	49 U	17 J	86 U	67 U	70 U	52 UJ	44 U
Aroclor-1248	NSL	NSL	ug/kg	49 U	110 U	86 U	67 U	70 U	52 UJ	44 U
Aroclor-1254	NSL	NSL	ug/kg	210	110 U	28 J	75	52 J	13 J	44 U
Aroclor-1260	NSL	NSL	ug/kg	49 U	16 J	86 U	67 U	70 U	52 UJ	44 U
Aroclor-1262	NSL	NSL	ug/kg	49 U	110 U	86 U	67 U	70 U	52 UJ	44 U
Aroclor-1268	NSL	NSL	ug/kg	49 U	110 U	86 U	67 U	70 U	52 UJ	44 U
Total PCBs ND=0	59.8	676	ug/kg	210	33	28	75	52	13	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-08	HT18-09	HT18-09	HT18-09	HT18-09	HT18-09	HT18-09
		Sa	mple Name:	HT18-08-6580	HT18-09-SURF	HT18-09-0010	HT18-09-1030	HT18-09-3050	HT18-09-3050-FD	HT18-09-5070
		S	ample Date:	10/23/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018
		Depth	Interval (ft):	6.5-8	0-0.5	0-1	1-3	3-5	3-5	5-7
Analyte										
Aroclor-1016	NSL	NSL	ug/kg	40 U	100 U	95 U	73 U	66 U	66 U	71 U
Aroclor-1221	NSL	NSL	ug/kg	40 U	100 U	95 U	73 U	66 U	66 U	71 U
Aroclor-1232	NSL	NSL	ug/kg	40 U	100 U	95 U	73 U	66 U	66 U	71 U
Aroclor-1242	NSL	NSL	ug/kg	40 U	28 J	95 U	39 J	47 J	61 J	92 J
Aroclor-1248	NSL	NSL	ug/kg	40 U	100 U	95 U	73 U	66 U	66 U	71 U
Aroclor-1254	NSL	NSL	ug/kg	40 U	100 U	95 U	73 U	66 U	66 U	71 U
Aroclor-1260	NSL	NSL	ug/kg	40 U	19 J	29 J	26 J	34 J	53 J	56 J
Aroclor-1262	NSL	NSL	ug/kg	40 U	100 U	95 U	73 U	66 U	66 U	71 U
Aroclor-1268	NSL	NSL	ug/kg	40 U	100 U	95 U	73 U	66 U	66 U	71 U
Total PCBs ND=0	59.8	676	ug/kg	0	47	29	65	81	114	148

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-09	HT18-10	HT18-10	HT18-11	HT18-11	HT18-11	HT18-11
		Sa	mple Name:	HT18-09-7010	HT18-10-SURF	HT18-10-0010	HT18-11-SURF	HT18-11-0010	HT18-11-1030	HT18-11-3050
		S	Sample Date:	10/23/2018	10/22/2018	10/24/2018	10/22/2018	10/24/2018	10/24/2018	10/24/2018
		Depth	Interval (ft):	7-9.7	0-0.5	0-1.1	0-0.5	0-1	1-3	3-5
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	55 U	44 U	39 U	110 U	93 U	70 U	53 U
Aroclor-1221	NSL	NSL	ug/kg	55 U	44 U	39 U	110 U	93 U	70 U	53 U
Aroclor-1232	NSL	NSL	ug/kg	55 U	44 U	39 U	110 U	93 U	70 U	53 U
Aroclor-1242	NSL	NSL	ug/kg	55 U	3.8 J	39 U	110 U	93 U	70 U	53 U
Aroclor-1248	NSL	NSL	ug/kg	230 J	44 U	39 U	110 U	24 J	70 U	53 U
Aroclor-1254	NSL	NSL	ug/kg	55 U	4.4 J	39 U	110 U	93 U	70 U	53 U
Aroclor-1260	NSL	NSL	ug/kg	230 J	44 U	39 U	13 J	14 J	31 J	58
Aroclor-1262	NSL	NSL	ug/kg	55 U	44 U	39 U	110 U	93 U	70 U	53 U
Aroclor-1268	NSL	NSL	ug/kg	55 U	44 U	39 U	110 U	93 U	70 U	53 U
Total PCBs ND=0	59.8	676	ug/kg	460	8.2	0	13	38	31	58

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-11	HT18-11	HT18-12	HT18-12	HT18-12	HT18-12	HT18-12
		Sa	mple Name:	HT18-11-5070	HT18-11-7010	HT18-12-SURF	HT18-12-SURF-FD	HT18-12-0010	HT18-12-1030	HT18-12-3050
		S	ample Date:	10/24/2018	10/24/2018	10/22/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018
_		Depth 1	Interval (ft):	5-7	7-9.4	0-0.5	0-0.5	0-1	1-3	3-5
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	43 U	41 U	90 U	90 U	62 U	53 U	42 U
Aroclor-1221	NSL	NSL	ug/kg	43 U	41 U	90 U	90 U	62 U	53 U	42 U
Aroclor-1232	NSL	NSL	ug/kg	43 U	41 U	90 U	90 U	62 U	53 U	42 U
Aroclor-1242	NSL	NSL	ug/kg	43 U	41 U	51 J	56 J	79 J	53 U	42 U
Aroclor-1248	NSL	NSL	ug/kg	43 U	41 U	90 U	90 U	62 U	53 U	42 U
Aroclor-1254	NSL	NSL	ug/kg	43 U	41 U	90 U	90 U	62 U	180 J	42 U
Aroclor-1260	NSL	NSL	ug/kg	43 U	41 U	39 J	37 J	45 J	53 U	42 U
Aroclor-1262	NSL	NSL	ug/kg	43 U	41 U	90 U	90 U	62 U	38 J	42 U
Aroclor-1268	NSL	NSL	ug/kg	43 U	41 U	90 U	90 U	62 U	53 U	42 U
Total PCBs ND=0	59.8	676	ug/kg	0	0	90	93	124	218	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-12	HT18-12	HT18-13	HT18-13	HT18-13	HT18-13	HT18-13
		Sa	mple Name:	HT18-12-5070	HT18-12-7010	HT18-13-SURF	HT18-13-0010	HT18-13-1030	HT18-13-3050	HT18-13-5060
		S	ample Date:	10/23/2018	10/23/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
		Depth	Interval (ft):	5-7	7-9.7	0-0.5	0-1	1-3	3-5	5-6.3
Analyte										
Aroclor-1016	NSL	NSL	ug/kg	43 U	42 U	95 U	63 U	56 U	53 U	57 U
Aroclor-1221	NSL	NSL	ug/kg	43 U	42 U	95 U	63 U	56 U	53 U	57 U
Aroclor-1232	NSL	NSL	ug/kg	43 U	42 U	95 U	63 U	56 U	53 U	57 U
Aroclor-1242	NSL	NSL	ug/kg	43 U	42 U	12 J	63 U	56 U	53 U	57 U
Aroclor-1248	NSL	NSL	ug/kg	43 U	42 U	95 U	63 U	56 U	53 U	57 U
Aroclor-1254	NSL	NSL	ug/kg	43 U	42 U	16 J	150	80	7.8 J	57 U
Aroclor-1260	NSL	NSL	ug/kg	43 U	42 U	95 U	63 U	56 U	53 U	57 U
Aroclor-1262	NSL	NSL	ug/kg	43 U	42 U	95 U	63 U	56 U	53 U	57 U
Aroclor-1268	NSL	NSL	ug/kg	43 U	42 U	95 U	63 U	56 U	5.9 J	57 U
Total PCBs ND=0	59.8	676	ug/kg	0	0	28	150	80	13.7	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-13	HT18-13	HT18-13	HT18-14	HT18-14	HT18-14	HT18-15
		Sa	mple Name:	HT18-13-6090	HT18-13-6090-FD	HT18-13-9010	HT18-14-SURF	HT18-14-0010	HT18-14-1020	HT18-15-SURF
		S	ample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/30/2018	10/30/2018	10/24/2018
		Depth 1	Interval (ft):	6.3-8.8	6.3-8.8	8.8-10	0-0.5	0-1.3	1.3-1.9	0-0.5
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	45 U	46 U	40 U	49 U	42 U	44 U	60 U
Aroclor-1221	NSL	NSL	ug/kg	45 U	46 U	40 U	49 U	42 U	44 U	60 U
Aroclor-1232	NSL	NSL	ug/kg	45 U	46 U	40 U	49 U	42 U	44 U	60 U
Aroclor-1242	NSL	NSL	ug/kg	45 U	46 U	40 U	9.2 J	42 U	44 U	60 U
Aroclor-1248	NSL	NSL	ug/kg	45 U	46 U	40 U	49 U	42 U	44 U	60 U
Aroclor-1254	NSL	NSL	ug/kg	45 U	46 U	40 U	11 J	130	9.5 J	49 J
Aroclor-1260	NSL	NSL	ug/kg	45 U	46 U	40 U	49 U	42 U	44 U	60 U
Aroclor-1262				45 U	46 U	40 U	49 U	42 U	4.7 J	60 U
Aroclor-1268 NSL NSL ug/kg				45 U	46 U	40 U	49 U	42 U	44 U	60 U
Total PCBs ND=0					0	0	20.2	130	14.2	49

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-15	HT18-15	HT18-15	HT18-15	HT18-16	HT18-17	HT18-17
		Sa	mple Name:	HT18-15-0005	HT18-15-0530	HT18-15-3050	HT18-15-3050-FD	HT18-16-SURF	HT18-17-SURF	HT18-17-0010
		S	ample Date:	10/25/2018	10/25/2018	10/25/2018	10/25/2018	10/24/2018	10/24/2018	10/25/2018
		Depth 1	Interval (ft):	0-0.5	0.5-3	3-5	3-5	0-0.5	0-0.5	0-1
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	38 U	39 U	39 U	39 U	82 U	48 U	38 U
Aroclor-1221	NSL	NSL	ug/kg	38 U	39 U	39 U	39 U	82 U	48 U	38 U
Aroclor-1232	NSL NSL ug/kg			38 U	39 U	39 U	39 U	82 U	48 U	38 U
Aroclor-1242	NSL	NSL	ug/kg	38 U	39 U	39 U	39 U	82 U	48 U	38 U
Aroclor-1248	NSL	NSL	ug/kg	38 U	39 U	39 U	39 U	82 U	48 U	38 U
Aroclor-1254	NSL	NSL	ug/kg	3.9 J	39 U	39 U	39 U	18 J	11 J	38 U
Aroclor-1260	NSL	NSL	ug/kg	38 U	39 U	39 U	39 U	82 U	48 U	38 U
Aroclor-1262				38 U	39 U	39 U	39 U	82 U	48 U	38 U
roclor-1268 NSL NSL ug/kg				38 U	39 U	39 U	39 U	82 U	48 U	38 U
Total PCBs ND=0	59.8	676	ug/kg	3.9	0	0	0	18	11	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-17	HT18-17	HT18-18	HT18-18	HT18-18	HT18-18	HT18-18
		Sa	mple Name:	HT18-17-1030	HT18-17-3050	HT18-18-SURF	HT18-18-0020	HT18-18-2030	HT18-18-3035	HT18-18-3555
		S	Sample Date:	10/25/2018	10/25/2018	10/24/2018	10/25/2018	10/25/2018	10/25/2018	10/25/2018
		Depth 1	Interval (ft):	1-3	3-4.7	0-0.5	0-1.9	1.9-2.8	2.8-3.6	3.6-5.4
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	38 U	39 U	80 U	56 U	40 U	38 U	39 U
Aroclor-1221	NSL	NSL	ug/kg	38 U	39 U	80 U	56 U	40 U	38 U	39 U
Aroclor-1232	NSL NSL ug/kg			38 U	39 U	80 U	56 U	40 U	38 U	39 U
Aroclor-1242	NSL	NSL	ug/kg	38 U	39 U	80 U	56 U	40 U	38 U	39 U
Aroclor-1248	NSL	NSL	ug/kg	38 U	39 U	80 U	56 U	40 U	38 U	39 U
Aroclor-1254	NSL	NSL	ug/kg	38 U	39 U	24 J	56 U	40 U	38 U	39 U
Aroclor-1260	NSL	NSL	ug/kg	38 U	39 U	80 U	6.2 J	40 U	38 U	39 U
Aroclor-1262	NSL	NSL	ug/kg	38 U	39 U	80 U	56 U	40 U	38 U	39 U
roclor-1268 NSL NSL ug/kg				38 U	39 U	80 U	56 U	40 U	38 U	39 U
Total PCBs ND=0					0	24	6.2	0	0	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-19	HT18-19	HT18-19	HT18-19	HT18-20	HT18-20	HT18-20
		Sa	mple Name:	HT18-19-SURF	HT18-19-0010	HT18-19-1020	HT18-19-2030	HT18-20-SURF	HT18-20-0010	HT18-20-1020
		S	ample Date:	10/24/2018	10/25/2018	10/25/2018	10/25/2018	10/24/2018	10/25/2018	10/25/2018
		Depth 1	Interval (ft):	0-0.5	0-1	1-2.3	2.3-2.8	0-0.5	0-0.8	0.8-1.8
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	54 U	53 U	41 U	39 U	67 U	41 U	40 U
Aroclor-1221	NSL	NSL	ug/kg	54 U	53 U	41 U	39 U	67 U	41 U	40 U
Aroclor-1232	NSL NSL ug/kg			54 U	53 U	41 U	39 U	67 U	41 U	40 U
Aroclor-1242	NSL	NSL	ug/kg	54 U	53 U	41 U	39 U	67 U	41 U	40 U
Aroclor-1248	NSL	NSL	ug/kg	54 U	53 U	41 U	39 U	67 U	41 U	40 U
Aroclor-1254	NSL	NSL	ug/kg	22 J	53 U	41 U	39 U	15 J	210	40 U
Aroclor-1260	NSL	NSL	ug/kg	54 U	53 U	41 U	39 U	67 U	41 U	40 U
Aroclor-1262				54 U	53 U	41 U	39 U	67 U	41 U	40 U
Aroclor-1268 NSL NSL ug/kg				54 U	53 U	41 U	39 U	67 U	41 U	40 U
Total PCBs ND=0					0	0	0	15	210	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-20	HT18-20	HT18-21	HT18-21	HT18-23	HT18-23	HT18-23
		Sa	mple Name:	HT18-20-2030	HT18-20-2030-FD	HT18-21-SURF	HT18-21-0015	HT18-23-SURF	HT18-23-0010	HT18-23-1030
		S	ample Date:	10/25/2018	10/25/2018	10/24/2018	10/25/2018	10/23/2018	10/24/2018	10/24/2018
		Depth 1	Interval (ft):	1.8-2.8	1.8-2.8	0-0.5	0-1.7	0-0.5	0-1	1-3
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	41 U	39 U	48 U	38 U	110 U	44 U	41 U
Aroclor-1221	NSL	NSL	ug/kg	41 U	39 U	48 U	38 U	110 U	44 U	41 U
Aroclor-1232	NSL	NSL	ug/kg	41 U	39 U	48 U	38 U	110 U	44 U	41 U
Aroclor-1242	NSL	NSL	ug/kg	41 U	39 U	48 U	38 U	110 U	44 U	41 U
Aroclor-1248	NSL	NSL	ug/kg	41 U	39 U	48 U	38 U	110 U	44 U	41 U
Aroclor-1254	NSL	NSL	ug/kg	41 U	39 U	8.3 J	38 U	12 J	24 J	41 U
Aroclor-1260	NSL	NSL	ug/kg	41 U	39 U	48 U	25 J	110 U	44 U	41 U
Aroclor-1262	NSL	NSL	ug/kg	41 U	39 U	48 U	38 U	110 U	44 U	41 U
Aroclor-1268	NSL	NSL	ug/kg	41 U	39 U	48 U	38 U	110 U	44 U	41 U
Total PCBs ND=0	59.8	676	ug/kg	0	0	8.3	25	12	24	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-23	HT18-23	HT18-23	HT18-24	HT18-24	HT18-24	HT18-24
		Sa	ımple Name:	HT18-23-3050	HT18-23-5070	HT18-23-7010	HT18-24-SURF	HT18-24-0010	HT18-24-1025	HT18-24-2550
		S	Sample Date:	10/24/2018	10/24/2018	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018
		Depth	Interval (ft):	3-5	5-7	7-9.2	0-0.5	0-1	1-2.7	2.7-5
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	44 U	43 U	46 U	73 U	42 U	42 U	44 U
Aroclor-1221	NSL	NSL	ug/kg	44 U	43 U	46 U	73 U	42 U	42 U	44 U
Aroclor-1232	NSL	NSL	ug/kg	44 U	43 U	46 U	73 U	42 U	42 U	44 U
Aroclor-1242	NSL	NSL	ug/kg	44 U	43 U	46 U	73 U	42 U	42 U	44 U
Aroclor-1248	NSL	NSL	ug/kg	44 U	43 U	46 U	73 U	42 U	42 U	44 U
Aroclor-1254	NSL	NSL	ug/kg	44 U	43 U	46 U	29 J	42 U	42 U	44 U
Aroclor-1260	NSL	NSL	ug/kg	44 U	43 U	46 U	73 U	42 U	42 U	44 U
Aroclor-1262	NSL	NSL	ug/kg	44 U	43 U	46 U	73 U	42 U	42 U	44 U
roclor-1268 NSL NSL ug/kg				44 U	43 U	46 U	73 U	42 U	42 U	44 U
Total PCBs ND=0	59.8	676	ug/kg	0	0	0	29	0	0	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-24	HT18-24	HT18-24	HT18-25	HT18-25	HT18-25	HT18-25
		Sa	mple Name:	HT18-24-5065	HT18-24-5065-FD	HT18-24-6575	HT18-25-SURF	HT18-25-0010	HT18-25-1030	HT18-25-3040
		S	ample Date:	10/24/2018	10/24/2018	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018
		Depth 1	Interval (ft):	5-6.6	5-6.6	6.6-7.8	0-0.5	0-1	1-3	3-4.2
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	43 U	40 U	39 U	99 U	56 U	65 U	54 U
Aroclor-1221	NSL	NSL	ug/kg	43 U	40 U	39 U	99 UJ	56 U	65 U	54 U
Aroclor-1232	NSL NSL ug/kg			43 U	40 U	39 U	99 UJ	56 U	65 U	54 U
Aroclor-1242	NSL	NSL	ug/kg	43 U	40 U	39 U	99 UJ	56 U	65 U	54 U
Aroclor-1248	NSL	NSL	ug/kg	43 U	40 U	39 U	99 UJ	56 U	65 U	54 U
Aroclor-1254	NSL	NSL	ug/kg	43 U	40 U	39 U	99 UJ	15 J	65 U	54 U
Aroclor-1260	NSL	NSL	ug/kg	43 U	40 U	39 U	99 UJ	56 U	65 U	54 U
Aroclor-1262	NSL NSL ug/kg			43 U	40 U	39 U	99 UJ	6.3 J	65 U	54 U
roclor-1268 NSL NSL ug/kg				43 U	40 U	39 U	99 UJ	56 U	65 U	54 U
Total PCBs ND=0					0	0	0	21.3	0	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-25	HT18-25	HT18-26	HT18-26	HT18-26	HT18-26	HT18-26
		Sa	mple Name:	HT18-25-4070	HT18-25-7010	HT18-26-SURF	HT18-26-0010	HT18-26-1030	HT18-26-3050	HT18-26-3050-FD
		S	Sample Date:	10/24/2018	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018
		Depth 1	Interval (ft):	4.2-7	7-9.5	0-0.5	0-1	1-3	3-5	3-5
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	45 U	43 U	62 U	41 U	40 U	43 U	43 U
Aroclor-1221	NSL	NSL	ug/kg	45 U	43 U	62 U	41 U	40 U	43 U	43 U
Aroclor-1232	NSL NSL ug/kg			45 U	43 U	62 U	41 U	40 U	43 U	43 U
Aroclor-1242	NSL	NSL	ug/kg	45 U	43 U	62 U	41 U	40 U	43 U	43 U
Aroclor-1248	NSL	NSL	ug/kg	45 U	43 U	62 U	41 U	40 U	43 U	43 U
Aroclor-1254	NSL	NSL	ug/kg	45 U	43 U	50 J	41 U	40 U	43 U	43 U
Aroclor-1260	NSL	NSL	ug/kg	45 U	43 U	62 U	41 U	40 U	43 U	43 U
Aroclor-1262				45 U	43 U	62 U	41 U	40 U	43 U	43 U
aroclor-1268 NSL NSL ug/kg				45 U	43 U	62 U	41 U	40 U	43 U	43 U
Total PCBs ND=0	59.8	676	ug/kg	0	0	50	0	0	0	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-26	HT18-26	HT18-27	HT18-27	HT18-29	HT18-29	HT18-30
		Sa	imple Name:	HT18-26-5070	HT18-26-7010	HT18-27-0010	HT18-27-1020	HT18-29-SURF	HT18-29-0010	HT18-30-SURF
		S	Sample Date:	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/22/2018	10/23/2018	10/22/2018
		Depth	Interval (ft):	5-7	7-9.5	0-0.8	0.8-2.4	0-0.5	0-1.2	0-0.5
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	44 U	43 U	43 U	41 U	41 U	40 U	85 U
Aroclor-1221	NSL	NSL	ug/kg	44 U	43 U	43 U	41 U	41 U	40 U	85 U
Aroclor-1232	NSL NSL ug/kg			44 U	43 U	43 U	41 U	41 U	40 U	85 U
Aroclor-1242	NSL	NSL	ug/kg	44 U	43 U	43 U	41 U	41 U	40 U	22 J
Aroclor-1248	NSL	NSL	ug/kg	44 U	43 U	43 U	41 U	41 U	40 U	85 U
Aroclor-1254	NSL	NSL	ug/kg	44 U	43 U	18 J	41 U	41 U	40 U	85 U
Aroclor-1260	NSL	NSL	ug/kg	44 U	43 U	43 U	41 U	25 J	22 J	8.6 J
Aroclor-1262	NSL	NSL	ug/kg	44 U	43 U	43 U	41 U	41 U	40 U	85 U
roclor-1268 NSL NSL ug/kg			ug/kg	44 U	43 U	43 U	41 U	41 U	40 U	85 U
Total PCBs ND=0	59.8	676	ug/kg	0	0	18	0	25	22	30.6

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-30	HT18-30	HT18-30	HT18-30	HT18-30	HT18-31	HT18-31
		Sa	mple Name:	HT18-30-0010	HT18-30-1030	HT18-30-3050	HT18-30-5070	HT18-30-7010	HT18-31-SURF	HT18-31-0010
		S	Sample Date:	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/25/2018
		Depth 1	Interval (ft):	0-1	1-3	3-5	5-7	7-10	0-0.5	0-1.3
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	75 U	61 U	57 UJ	53 U	57 U	91 U	57 U
Aroclor-1221	NSL	NSL	ug/kg	75 U	61 U	57 UJ	53 U	57 U	91 U	57 U
Aroclor-1232	NSL NSL ug/kg			75 U	61 U	57 UJ	53 U	57 U	91 U	57 U
Aroclor-1242	NSL	NSL	ug/kg	75 U	61 U	57 UJ	53 U	57 U	15 J	57 U
Aroclor-1248	NSL	NSL	ug/kg	75 U	61 U	57 UJ	35 J	57 U	91 U	57 U
Aroclor-1254	NSL	NSL	ug/kg	75 U	120 J	47 J-	53 U	12 J	8.3 J	41 J
Aroclor-1260	NSL	NSL	ug/kg	11 J	61 U	57 UJ	19 J	8.2 J	91 U	57 U
Aroclor-1262				75 U	61 U	18 J-	53 U	57 U	91 U	57 U
Aroclor-1268 NSL NSL ug/kg				75 U	61 U	57 UJ	15 J	9.2 J	91 U	57 U
Total PCBs ND=0					120	65	69	29.4	23.3	41

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-31	HT18-31	HT18-31	HT18-32	HT18-32	HT18-32	HT18-32
		Sa	mple Name:	HT18-31-1025	HT18-31-2555	HT18-31-5565	HT18-32-SURF	HT18-32-SURF-FD	HT18-32-0010	HT18-32-0010-FD
		S	Sample Date:	10/25/2018	10/25/2018	10/25/2018	10/23/2018	10/23/2018	10/24/2018	10/24/2018
		Depth	Interval (ft):	1.3-2.6	2.6-5.7	5.7-6.6	0-0.5	0-0.5	0-1	0-1
Analyte	TEC	PEC	Unit							
Aroclor-1016	NSL	NSL	ug/kg	69 U	39 U	38 U	68 U	66 U	48 U	46 U
Aroclor-1221	NSL	NSL	ug/kg	69 U	39 U	38 U	68 U	66 U	48 U	46 U
Aroclor-1232	NSL NSL ug/kg			69 U	39 U	38 U	68 U	66 U	48 U	46 U
Aroclor-1242	NSL	NSL	ug/kg	69 U	39 U	38 U	68 U	15 J	48 U	46 U
Aroclor-1248	NSL	NSL	ug/kg	69 U	39 U	38 U	68 U	66 U	48 U	46 U
Aroclor-1254	NSL	NSL	ug/kg	69 U	39 U	38 U	6.3 J	66 U	22 J	20 J
Aroclor-1260	NSL	NSL	ug/kg	69 U	39 U	38 U	68 U	8.6 J	48 U	46 U
Aroclor-1262	NSL	NSL	ug/kg	69 U	39 U	38 U	68 U	66 U	48 U	46 U
roclor-1268 NSL NSL ug/kg			ug/kg	69 U	39 U	38 U	68 U	66 U	48 U	46 U
Total PCBs ND=0	59.8	676	ug/kg	0	0	0	6.3	23.6	22	20

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

]	Location ID:	HT18-32	HT18-32	HT18-32
		Sa	mple Name:	HT18-32-1030	HT18-32-3050	HT18-32-5070
		S	ample Date:	10/24/2018	10/24/2018	10/24/2018
		Depth 1	Interval (ft):	1-3	3-5	5-7
Analyte	TEC	PEC	Unit			
Aroclor-1016	NSL	NSL	ug/kg	44 U	45 U	46 U
Aroclor-1221	NSL	NSL	ug/kg	44 U	45 U	46 U
Aroclor-1232	NSL	NSL	ug/kg	44 U	45 U	46 U
Aroclor-1242	NSL	NSL	ug/kg	44 U	45 U	46 U
Aroclor-1248	NSL	NSL	ug/kg	44 U	45 U	46 U
Aroclor-1254	NSL	NSL	ug/kg	44 U	45 U	46 U
Aroclor-1260	NSL	NSL	ug/kg	44 U	45 U	46 U
Aroclor-1262	NSL	NSL	ug/kg	44 U	45 U	46 U
Aroclor-1268	NSL	NSL	ug/kg	44 U	45 U	46 U
Гotal PCBs ND=0	59.8	676	ug/kg	0	0	0

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PCB = Polychlorinated biphenyl

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

D = Sample was analyzed at a higher dilution factor

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated).

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected.

Part							SEDIMENT RE							_
Mathematical Programme 1998 1999 199				HT18-01	HT18-01	HT18-01	HT18-01	HT18-01	HT18-01	HT18-01	HT18-01	HT18-02	HT18-02	HT18-02
August														
Assignment Total Price Price Control			•											
Selection productions SSL SSL weight SSL	Analyta	TEC	 `	0-0.3	0-0.3	0-1	1-3	3-3	3-7	3-7	/-8.0	0-0.3	0-1	1-3
Selectoraphinted Color NSL Color Col				8.1	4.6.J	6.7 J	7.7 J	8.3 J	3.3 J	21 J	10 J	9.J	5.9 J	16.J
Accomplishing	5 1				+									
Accordatifolocoming S.F. NSL Pale 45 U 50 U		+ +												
Anthenesis	•													
Based (Informations 108 11.09 ug/sg 130 72 229 230 230 310 94 468 188 218 130 199 Based (Informations 108 11.09 ug/sg 160 92 39.0 160 170 30.0 230 190 73 310 130 220 190 140 Based (Informations 108 11.09 ug/sg 230 170 30.0 230 190 73 310 130 220 190 140 Based (Informations 108 11.09 ug/sg 170 96 210 140 130 54 220 44.1 140 150 98 Based (Informations 108 108 ug/sg 170 96 210 140 130 54 220 44.1 140 150 98 Based (Informations 108 ug/sg 180 ug/sg 180 ug/sg 180 ug/sg		+ +			+									
Banach B		+ +												
Serock	Renzo(a)nyrene ^{(a)(b)}													
Bronto-Spreams 150 1,450 ug/kg 200 120 220 300 140 56 320 96 180 140 110	Renzo(h)fluoranthene ^{(a)(b)}	+ +												
Brance B		 												
Barocking Service Se	Denzo(e)pyrene													
Chi-chi-chi-chi-chi-chi-chi-chi-chi-chi-c	Denze (lyflyerenth en a (a)(b)													
CF Floreness NSL NSL NSL Ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 44 U 53 U 33 U 45 U 4														
C3-HoundheesePyreame NSL NSL NSL Ug/kg 160J 92J 260J 290J 290J 290J 290J 290J 230J 180J 240J 2					+									
C1-Neanthrineses/Authraceses														
C.P. Denominenses		+ +			+									
C Chrysness NSL N					+									
CP Honorance NSL NSL wg kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 44 U 53 U 33 U 45 U 45 U 25 Honorance NSL NSL wg kg 98 J 56 J 130 J 140 J 120 J 50 J 240 J 52 J 110 J 54 J 100 J 62 J 6		+ +			+									
C2-Floarnthenes/Pyrenes					+									
C2-Naphthalenes ⁶⁰ NSL					+									
C2-Phenanthrenes/Anthracenes ^(h) NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 44 U 53 U 33 U 33 U 45 U C3-Phenanthrenes/Pyrenes NSL NSL ug/kg 45 U 29 U 80 U 66 U 49 J 22 U 99 J 44 U 53 U 33 U 33 U 45 U C3-Phenanthrenes/Pyrenes NSL NSL ug/kg 45 U 29 U 80 U 66 U 49 J 22 U 99 J 44 U 53 U 38 J 45 U 45 U 45 U 46 J 58 J J	· · ·													
C3 Chrysenes ^(b) NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 44 U 53 U 33 U 45 U C3 Fluorense ^(b) NSL NSL ug/kg 45 U 29 U 80 U 66 U 49 J 22 U 99 J 44 U 53 U 33 U 45 U C3 Fluorense ^(b) NSL NSL ug/kg 45 U 29 U 80 U 66 U 49 J 22 U 99 J 44 U 53 U 38 J 45 U C3 Fluorense ^(b) NSL NSL ug/kg 45 U 29 U 80 U 66 U 49 J 22 U 99 J 44 U 53 U 38 J 45 U C3 Fluorense ^(b) NSL NSL ug/kg 45 U 29 U 80 U 66 U 49 J 22 U 99 J 44 U 53 U 38 J 45 U C3 Fluorense ^(b) NSL NSL ug/kg 45 U 29 U 80 U 80 U 88 J 70 J 22 U 90 U 160 J 46 J 88 J 46 J 88 J 46 J 48 J C4 Chrysene ^(c) NSL NSL ug/kg 45 U 29 U 80 U 86 U 87 J 70 J 22 U 90 U 160 J 44 U 53 U 33 U 33 U 45 U C4 Chrysene ^(c) NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 160 J 44 U 53 U 33 U 33 U 45 U C4 Chrysene ^(c) NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 160 J 44 U 53 U 33 U 33 U 45 U C4 Chrysene ^(c) NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 160 J 44 U 53 U 33 U 33 U 45 U C4 Chrysene ^(c) NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 160 J 44 U 53 U 33 U 33 U 45 U C4 Chrysene ^(c) NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 160 J 44 U 53 U 33 U 33 U 45 U 29 U 80 U 66 U 48 U 22 U 90 U 160 J 44 U 53 U 33 U 34 U 54 U 55 U 34 U 55 U 35 U 36 U 36 U 36 U 36 U 36 U 37 U 38 U 38 U 45 U 45 U 46 U 48 U														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					+									
C3-Flooranthenes/Pyrenes NSL NSL ug/kg 45 U 29 U 80 U 66 U 51 J 22 U 91 J 44 U 53 U 33 U 45 U C3-Naphthalenes/9) NSL NSL ug/kg 54 J 33 J 80 U 79 J 49 J 25 J 210 J 46 J 58 J 46 J 48 J 48 J C3-Phenathrenes/Anthracenes/90 NSL NSL ug/kg 45 U 29 U 80 U 88 J 70 J 22 U 160 J 44 U 53 U 33 J 45 U C4 Chrysenes NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 44 U 53 U 33 U 45 U C4-Naphthalenes/90 NSL NSL ug/kg 45 U 29 U 80 U 86 U 48 U 22 U 190 U 44 U 53 U 33 U 45 U C4-Phenathrenes/Anthracenes/90 NSL NSL ug/kg 45 U 29 U 80 U 85 J 51 J 22 U 190 J 44 U 59 J 48 J 45 U C4-Phenathrenes/Anthracenes/90 NSL NSL ug/kg 45 U 29 U 80 U 85 J 51 J 22 U 190 J 44 U 59 J 48 J 45 U Chrysene ⁽⁰⁾⁽⁰⁾ 166 1,290 ug/kg 270 150 340 320 240 100 430 170 280 200 200 Dibenzo(a)hanthracene ⁽⁰⁾⁽⁰⁾⁽⁰⁾ 13 NSL ug/kg 47 26 J 73 J 53 J 53 J 50 21 J 87 J 32 J 47 J 47 39 J 10 Dibenzo(a)hanthracene ⁽⁰⁾⁽⁰⁾⁽⁰⁾ 42 2 2 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3					+									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-Fluoranthenes/Pyrenes													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•				 					 				
C4 Chrysenes(b) NSL NSL ug/kg 45 U 29 U 80 U 66 U 48 U 22 U 90 U 44 U 53 U 33 U 45 U (4.5) Ug/kg 71 J 43 J 80 U 85 J 51 J 22 U 190 J 44 U 59 J 48 J 45 U (4.5) Ug/kg 71 J 43 J 80 U 85 J 51 J 22 U 190 J 44 U 59 J 48 J 45 U (4.5) Ug/kg 45 U 29 U 80 U 69 J 51 J 22 U 100 J 44 U 53 U 33 U 45 U (4.5) Ug/kg 45 U 29 U 150 340 320 240 100 430 170 280 200 200 (4.5) Dibenzo(a,h)anthracene (a) 33 NSL ug/kg 47 26 J 73 J 53 J 50 21 J 87 J 32 J 47 J 47 39 J (4.5) Ug/kg 50 Ug/kg 530 310 710 810 540 230 J 1100 J 440 660 360 490 (4.5) Ug/kg 77 S36 ug/kg 16 J 10 J 40 J 54 J 37 J 16 J 80 J 45 J 37 J 19 J 58 L 16 L 16 Ug/kg 8.3 J 5 J 80 J 8.3 J 48 J 22 J 90 J 14 J 8.5 J 37 J 19 J 58 L 16 L 16 Ug/kg 8.3 J 5 J 80 J 8.3 J 48 J 22 J 90 J 14 J 8.5 J 33 J 45 J 80 J 8		+												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					+									
C4-Phenanthrenes/Anthracenes(b) NSL ug/kg 45 U 29 U 80 U 69 J 51 J 22 U 100 J 44 U 53 U 33 U 45 U Chrysene(s(b) 166 1,290 ug/kg 270 150 340 320 240 100 430 170 280 200 200 Dibenzo(a,h)anthracene(s(b)) 33 NSL ug/kg 47 26 J 73 J 53 J 50 21 J 87 J 32 J 47 J 47 J 39 J Fluorathene(s(b) 423 2,230 ug/kg 530 310 710 810 540 230 J 1100 J 440 660 360 490 Fluorathene(s(b) 77 536 ug/kg 16 J 10 J 40 J 54 J 37 J 16 J 80 J 45 J 37 J 19 J 58 Indeno(1,2,3-ed)pyrene(s(s)) 200 NSL ug/kg 8.3 J 5 J 80 J 8.3 J 48 J 22 J														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					+									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Fluoranthene $^{(a)(b)}$ 423 2,230 ug/kg 530 310 710 810 540 230 J 1100 J 440 660 360 490 Fluorene $^{(a)(b)}$ 77 536 ug/kg 16 J 10 J 40 J 54 J 37 J 16 J 80 J 45 37 J 19 J 58 Indeno(1,2,3-ed)pyrene $^{(a)(b)}$ 200 NSL ug/kg 170 96 200 150 120 53 230 84 150 140 97 Naphthalene $^{(a)(b)}$ 176 561 ug/kg 8.3 J 5 J 80 J 8.3 J 48 J 22 J 90 J 14 J 8.5 J 33 J 45 J 9 Perylene $^{(b)}$ NSL NSL ug/kg 51 31 19 J 65 J 47 J 24 120 53 58 49 49 49 Phenanthrene $^{(a)(b)}$ NSL NSL ug/kg 180 120 400 530 350 170 J 750 J 390 360 170 470 Pyrene $^{(a)(b)}$ 195 1,520 ug/kg 330 200 550 560 440 200 J 870 J 870 J 360 440 270 420 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 5570 2307 3109 2057 2824		33												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Indeno(1,2,3-cd)pyrene a/b 200 NSL ug/kg 170 96 200 150 120 53 230 84 150 140 97 Naphthalene a/b 176 561 ug/kg 8.3 J 5 J 80 J 8.3 J 48 J 22 J 90 J 14 J 8.5 J 33 J 45 J Perylene NSL NSL ug/kg 51 31 19 J 65 J 47 J 24 120 53 58 49 49 Phenanthrene a/b 204 1,170 ug/kg 180 120 400 530 350 170 J 750 J 390 360 170 470 Pyrene a/b 195 1,520 ug/kg 330 200 550 560 440 200 J 870 J 360 440 270 420 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 5570 2307 3109 2057 2824 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 5570 2307 3109 2057 2824 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 5570 2307 3109 2057 2824 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 2570 2307 3109 2057 2824 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 2570 2307 23														
Naphthalene (a)(b)		200												
Perylene (b) NSL NSL ug/kg 51 31 19 J 65 J 47 J 24 120 53 58 49 49 Phenanthrene (a)(b) 204 1,170 ug/kg 180 120 400 530 350 170 J 750 J 390 360 170 470 Pyrene (a)(b) 195 1,520 ug/kg 330 200 550 560 440 200 J 870 J 360 440 270 420 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 5570 2307 3109 2057 2824	Naphthalene ^{(a)(b)}				+									
Phenanthrene ^{(a)(b)} 204 1,170 ug/kg 180 120 400 530 350 170 J 750 J 390 360 170 470 Pyrene ^{(a)(b)} 195 1,520 ug/kg 330 200 550 560 440 200 J 870 J 360 440 270 420 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 5570 2307 3109 2057 2824					+									
Pyrene (a)(b) 195 1,520 ug/kg 330 200 550 560 440 200 J 870 J 360 440 270 420 Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 5570 2307 3109 2057 2824														
Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2562 1503 3642 3733 2835 1261 5570 2307 3109 2057 2824														
	2													
	Total PAH34 ND=1/2RL	 	 											

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations(b) Analytes inleuded in Total 34 PAH calculations

Page 1 of 14

Site Characterization Report

		L	ocation ID:	HT18-02	HT18-02	HT18-02	HT18-03	HT18-03	HT18-03	HT18-03	HT18-03	HT18-03	HT18-04	HT18-04
			nple Name:	HT18-02-3060	HT18-02-6080	HT18-02-8090	HT18-03-SURF	HT18-03-0010	HT18-03-1030	HT18-03-1030-FD	HT18-03-3045	HT18-03-4560	HT18-04-SURF	HT18-04-0005
			mple Date:	10/30/2018	10/30/2018	10/30/2018	10/29/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/29/2018	10/29/2018
		Depth I	nterval (ft):	3-6.1	6.1-7.8	7.8-9.2	0-0.5	0-1	1-3	1-3	3-4.6	4.6-6	0-0.5	0-0.6
Analyte	TEC	PEC	Unit											
1-Methylnaphthalene	NSL	NSL	ug/kg	62 J	40 J	16 J	23 J	51 J	360	350	520	3.8 U	1.8 J	1.1 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	220 J	210 J	100 J	30 J	340 J	300 J	300 J	260 J	3.8 U	2 J	0.87 J
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	440	170 J	83 J	31 J	77 J	230 J	240 J	240 J	3.8 U	2.7 J	1.8 J
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	33 J	35 J	12 J	170 U	340 U	53 J	48 J	47 J	3.8 U	8.7 U	0.56 J
Anthracene ^{(a)(b)}	57.2	845	ug/kg	690	240	150	60 J	150 J	220 J	350	270	3.8 U	6.8 J	2.9 J
Benzo(a)anthracene (a)(b)	108	1,050	ug/kg	940	990	350	560	960	950	990	720	0.83 J	32	15
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	800	380	210	450	1100	840	870	550	3.8 U	31	17
Benzo(b)fluoranthene(a)(b)	10,400	NSL	ug/kg	650	720	260	1000	1400	1000	930	680	3.8 U	47	25
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	520	530	200	730	1100	750	780	580	1.8 J	33	14
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	470	470	190	580	1200	690	690	480	3.2 J	26	2.7 J
Benzo(k)fluoranthene(a)(b)	240	NSL	ug/kg	750	870	280	860	1300	910	1000	770	0.48 J	38	22
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	400 J	420 J	160 J	240 J	540 J	920 J	940 J	820 J	5.1 J	15 J	7.8 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	170 U	340 U	580 J	550 J	600 J	3.8 U	8.7 U	4.2 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	1300 J	1300 J	450 J	670 J	1200 J	1900 J	1900 J	1700 J	7.1 J	29 J	18 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	170 U	340 U	350 J	330 J	440 J	3.8 U	8.7 U	4.2 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	1000 J	680 J	300 J	330 J	570 J	3000 J	2800 J	2900 J	15 J	18 J	9.7 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	170 U	340 U	640 J	630 J	590 J	4.8 J	8.7 U	4.3 J
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	170 U	340 U	1600 J	1500 J	1600 J	6.5 J	8.7 U	4.2 U
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	490 J	540 J	190 J	400 J	790 J	1600 J	1600 J	1500 J	11 J	21 J	11 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	470 J	210 U	100 U	170 J	360 J	3800 J	3600 J	4700 J	17 J	8.7 U	4.9 J
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	490 J	380 J	160 J	380 J	730 J	4400 J	4200 J	4300 J	20 J	12 J	9.2 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	170 U	340 U	480 J	460 J	440 J	4.1 J	8.7 U	4.2 U
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	230 J	540 J	2100 J	2000 J	2100 J	9.8 J	8.7 U	4.5 J
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	220 U	210 U	100 U	210 J	380 J	1100 J	1100 J	1100 J	7.7 J	8.7 U	5.2 J
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	370 J	210 J	100 U	270 J	510 J	5900 J	5600 J	6900 J	38 J	9 J	8.7 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	330 J	740 J	4000 J	3800 J	3800 J	17 J	8.7 U	6.5 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	170 U	340 U	300 U	300 U	260 U	3.8 U	8.7 U	4.2 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	350 J	670 J	5100 J	5300 J	5700 J	56 J	12 J	13 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	220 U	210 U	100 U	260 J	570 J	2900 J	2700 J	2600 J	12 J	8.7 U	4.7 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg	970	1100	370	1000	1600	1400	1400	1100	4	47	23
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	180 J	210	73 J	170	380	250 J	260 J	170 J	3.8 U	7.7 J	5.2
Fluoranthene ^{(a)(b)}	423	2,230	ug/kg	2300	2400	890	2200	2900	2800	2700	2200	1.3 J	100	47
Fluorene ^{(a)(b)}	77	536	ug/kg	370	180 J	86 J	53 J	85 J	230 J	220 J	230 J	1 J	4.2 J	2.5 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	460	500	190	580	1100	650	650	450	0.6 J	26	15
Naphthalene ^{(a)(b)}	176	561	ug/kg	220 J	210 J	100 J	25 J	340 J	300 J	300 J	260 J	3.8 U	2.6 J	0.66 J
Perylene ^(b)	NSL	NSL	ug/kg	220	150 J	98 J	160 J	310 J	270 J	270 J	190 J	2.6 J	11	7.4
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	2200	1600	730	740	1100	1800	1800	1700	5.4	45	16
Pyrene ^{(a)(b)}	195	1,520	ug/kg	2000	1900	760	1400	2000	2000	2100	1700	2.5 J	68	32
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	13693	12185	4834	9824	16202	14623	14848	11827	34.5	490	229
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	19343	16800	6702	14424	24722	53163	52058	51657	255	671	352

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

							5-4 SEDIMENT RE							
			ocation ID:	HT18-04	HT18-04	HT18-04	HT18-05	HT18-05	HT18-05	HT18-05	HT18-05	HT18-06	HT18-06	HT18-06
			nple Name:	HT18-04-0530	HT18-04-0530-FD	HT18-04-3040	HT18-05-SURF	HT18-05-0010	HT18-05-1030	HT18-05-3050	HT18-05-5060	HT18-06-SURF	HT18-06-0010	HT18-06-1030
			mple Date:	10/29/2018	10/29/2018 0.6-3.3	10/29/2018	10/29/2018 0-0.5	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/29/2018	10/29/2018	10/29/2018
Analyte	TEC	PEC	nterval (ft): Unit	0.6-3.3	0.0-3.3	3.3-4.3	0-0.5	0-1	1-2.7	2.7-5.1	5.1-5.9	0-0.5	0-1	1-3
1-Methylnaphthalene	NSL	NSL	ug/kg	0.5 J	0.45 J	0.31 J	19 J	10 J	25 J	130 J	97 J	4.1 J	6.4 J	17 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	4.4 U	4.3 U	3.8 U	23 J	45 J	87 J	500 J	220 J	4.9 J	6.6 J	23 J
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	0.34 J	4.3 U	3.8 U	43 J	13 J	27 J	560	220	5.8 J	7.2 J	13 J
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	4.4 U	4.3 U	3.8 U	160 U	45 U	87 U	500 U	28 J	37 U	29 U	6.8 J
Anthracene ^{(a)(b)}	57.2	845	ug/kg	4.4 U	4.3 U	3.8 U	95 J	19 J	33 J	600	300	14 J	12 J	23 J
Benzo(a)anthracene ^{(a)(b)}	108	1,050	ug/kg	4.4 U	4.3 U	3.8 U	660	170	260	1600	1200	100	91	140
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	4.4 U	4.3 U	3.8 U	690	160	280	1200	830	120	110	150
Benzo(b)fluoranthene ^{(a)(b)}	10,400	NSL	ug/kg	1.5 J	0.86 J	0.66 J	1000	290	420	1200	1100	170	180	250
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	0.88 J	0.64 J	0.49 J	700	210	310	870	820	120	100	150
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	4.4 U	4.3 U	3.8 U	560	210	310	680	830	96	24 J	50
Benzo(k)fluoranthene ^{(a)(b)}	240	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	810	250	380	1300	1100	140	130	190
C1 Chrysenes ^(b)	NSL	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	350 J	140 J	170 J	830 J	690 J	64 J	43 J	83 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	160 U	45 U	87 U	500 U	220 U	37 U	29 U	48 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	680 J	210 J	390 J	2300 J	1400 J	110 J	110 J	200 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	160 U	45 U	87 U	500 U	220 U	37 U	29 U	48 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	310 J	89 J	200 J	1700 J	790 J	52 J	52 J	160 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	160 U	45 U	87 U	500 U	340 J	37 U	29 U	48 U
C2 Chrysenes C2 Fluorenes (b)	NSL	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	160 U	45 U	94 J	680 J	220 U	37 U	29 U	91 J
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg ug/kg	4.4 U	4.3 U	3.8 U	390 J	130 J	230 J	1100 J	830 J	66 J	65 J	120 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	160 U	55 J	180 J	1600 J	500 J	37 U	29 J	130 J
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	270 J	85 J	250 J	1900 J	800 J	52 J	54 J	190 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	160 U	45 U	87 U	500 U	220 U	37 U	29 U	48 U
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	190 J	76 J	170 J	810 J	400 J	37 J	29 U	99 J
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	160 J	53 J	110 J	580 J	440 J	37 U	29 U	63 J
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	170 J	82 J	260 J	2600 J	590 J	38 J	50 J	230 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	210 J	72 J	230 J	1600 J	770 J	38 J	39 J	160 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	160 U	45 U	87 U	500 U	220 U	37 U	29 U	48 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	7.8 J	6.8 J	5 J	210 J	99 J	280 J	2500 J	550 J	52 J	80 J	330 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	4.4 U	4.3 U	3.8 U	160 J	52 J	210 J	1100 J	710 J	37 U	29 J	120 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg	2 J	1.5 J	1.1 J	1000	300	480	1800	1400	170	160	240
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	4.4 U	4.3 U	3.8 U	170	63	94	310 J	350	28 J	29	41 J
Fluoranthene ^{(a)(b)}	423	2,230	ug/kg	1.8 J	1.2 J	0.68 J	2300	530	830	4100	2600	360	310	510
Fluorene ^{(a)(b)}	77	536	ug/kg	4.4 U	4.3 U	3.8 U	62 J	19 J	40 J	420 J	240	9.2 J	11 J	23 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	0.51 J	4.3 U	3.8 U	570	190	280	740	820	94	96	130
Naphthalene ^{(a)(b)}	176	561	ug/kg	4.4 U	4.3 U	3.8 U	23 J	45 J	87 J	500 J	260	4.7 J	5.7 J	12 J
Perylene ^(b)	NSL	NSL	ug/kg	3.2 J	3 J	2.2 J	200	58	92	320 J	280	36 J	24 J	40 J
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	1 J	0.91 J	3.8 U	840	210	380	3000	1800	120	110	230
Pyrene ^{(a)(b)}	195	1,520	ug/kg	1.7 J	1.3 J	0.73 J	1400	420	670	3500	2100	220	220	350
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	30.9	31.6	27.9	10326	2957	4702	22260	15398	1675	1517	2382
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	73.5	72.1	62.2	14313	4275	7668	41820	24368	2417	2222	4462

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level
PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

Page 3 of 14

		L	ocation ID:	HT18-06	HT18-06	HT18-06	HT18-06	HT18-06	HT18-07	HT18-07	HT18-07	HT18-07	HT18-07	HT18-08
			nple Name:	HT18-06-1030-FD	HT18-06-3060	HT18-06-6070	HT18-06-7080	HT18-06-8010	HT18-07-SURF	HT18-07-0020	HT18-07-2050	HT18-07-5070	HT18-07-7090	HT18-08-SURF
			mple Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/22/2018
		Depth I	nterval (ft):	1-3	3-6	6-7.1	7.1-8.1	8.1-9.7	0-0.5	0-1.8	1.8-4.8	4.8-7	7-8.9	0-0.5
Analyte	TEC	PEC	Unit						_					
1-Methylnaphthalene	NSL	NSL	ug/kg	15 J	88 J	170	490	450	2.7 J	11 J	110 J	150	360	12 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	20 J	130 J	150	550	550	3.3 J	14 J	64 J	150	520	9.7 J
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	11 J	49 J	110	130	150 J	5.8 J	26 J	77 J	73 J	100 J	8.5 J
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	5.3 J	32 J	34 J	48 J	49 J	23 U	83 U	47 J	31 J	54 J	6.4 J-
Anthracene ^{(a)(b)}	57.2	845	ug/kg	17 J	86 J	160	160	150 J	20 J	52 J	120 J	110 J	120	21 J-
Benzo(a)anthracene ^{(a)(b)}	108	1,050	ug/kg	110	440	430	460	470	83	220	490	400	380	140 J-
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	130	430	400	370	390	77	190	420	350	320	60
Benzo(b)fluoranthene(a)(b)	10,400	NSL	ug/kg	220	650	520	550	540	110	240	540	460	430	270
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	130	390	340	350	340	75	150	350	280	260	45
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	39	120 J	110	100	100 J	54	44 J	99 J	87 J	63 J	28 UJ
Benzo(k)fluoranthene(a)(b)	240	NSL	ug/kg	150	480	420	400	420	91	200	490	340	330	170
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	61 J	230 J	300 J	510 J	460 J	31 J	87 J	610 J	330 J	560 J	69 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	29 J	240 J	520 J	720 J	560 J	23 U	83 U	300 J	230 J	440 J	28 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	160 J	660 J	810 J	1100 J	1000 J	85 J	250 J	1200 J	750 J	1000 J	190 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	29 U	140 J	200 J	690 J	630 J	23 U	83 U	130 U	210 J	600 J	28 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	120 J	570 J	1600 J	2400 J	2200 J	45 J	180 J	1800 J	1200 J	2000 J	88 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	37 J	140 U	250 J	440 J	380 J	23 U	83 U	470 J	280 J	570 J	49 J
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	73 J	630 J	1300 J	1700 J	1300 J	23 U	83 U	1100 J	710 J	1300 J	28 J
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	97 J	410 J	620 J	960 J	780 J	49 J	140 J	1000 J	560 J	1100 J	130 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	110 J	800 J	2500 J	4100 J	4300 J	23 U	120 J	1900 J	1800 J	4500 J	48 J
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	150 J	800 J	2200 J	3400 J	3200 J	40 J	210 J	3600 J	2000 J	3800 J	90 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	29 U	140 U	140 J	210 J	240 U	23 U	83 U	300 J	150 J	330 J	34 J
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	84 J	600 J	1500 J	1900 J	1400 J	27 J	99 J	1300 J	810 J	1700 J	28 U
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	62 J	220 J	500 J	700 J	690 J	25 J	83 U	960 J	470 J	1000 J	55 J
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	190 J	1400 J	4600 J	6500 J	6500 J	34 J	250 J	4000 J	2900 J	6000 J	81 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	130 J	540 J	1700 J	2700 J	2700 J	30 J	170 J	3400 J	1800 J	3700 J	67 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	29 U	140 U	89 U	96 J	240 U	23 U	83 U	130 U	120 U	120 J	28 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	280 J	1900 J	4500 J	6300 J	6400 J	38 J	280 J	4700 J	3200 J	5900 J	130 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	100 J	320 J	1200 J	1900 J	1900 J	23 U	120 J	2500 J	1200 J	2800 J	48 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg	200	680	600	700	700	120	280	740	570	630	210 J-
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	32	99 J	86 J	95	83 J	20 J	45 J	93 J	75 J	61 J	42
Fluoranthene ^{(a)(b)}	423	2,230	ug/kg	400	1500	1400	1500	1700	270	690	1500	1300	1200	440
Fluorene ^{(a)(b)}	77	536	ug/kg	20 J	110 J	200	220	220 J	10 J	31 J	120 J	110 J	190	17 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	110	340	260	240	250	58	120	260	210	180	66 J-
Naphthalene ^{(a)(b)}	176	561	ug/kg	11 J	25 J	110	140	43 J	3.1 J	83 U	22 J	26 J	23 J	6 J
Perylene ^(b)	NSL	NSL	ug/kg	38	92 J	99	94 J	88 J	23	48 J	110 J	82 J	71 J	6.7 J
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	170	790	1200	1300	1400	120	380	930	920	1000	150
Pyrene ^{(a)(b)}	195	1,520	ug/kg	270	1000	980	1000	1300	180	540	1100	930	900	180 J-
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	1915	6961	7170	7963	8515	1237	3155	7112	6142	6501	1811
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	3631	16353	30824	42523	41563	1753	5354	34818	23984	41632	2831

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations(b) Analytes inleuded in Total 34 PAH calculations

								SULISTORTAIIS						
			ocation ID:	HT18-08	HT18-08	HT18-08	HT18-08	HT18-08	HT18-08	HT18-09	HT18-09	HT18-09	HT18-09	HT18-09
			nple Name:	HT18-08-0010	HT18-08-1020	HT18-08-1020-FD	HT18-08-2045	HT18-08-4565	HT18-08-6580	HT18-09-SURF	HT18-09-0010	HT18-09-1030	HT18-09-3050	HT18-09-3050-FD
			mple Date: nterval (ft):	10/23/2018 0-1	10/23/2018 1-2.3	10/23/2018 1-2.3	10/23/2018 2.3-4.6	10/23/2018 4.6-6.5	10/23/2018 6.5-8	10/22/2018 0-0.5	10/23/2018 0-1	10/23/2018	10/23/2018 3-5	10/23/2018 3-5
Analyte	TEC	PEC	Unit	U-1	1-2.3	1-2.3	2.3-4.0	4.0-0.3	0.3-8	0-0.3	0-1	1-3	3-3	3-3
1-Methylnaphthalene	NSL	NSL	ug/kg	7.3 J	38 J	29 J	440 J	3.4 J	1.1 J	5.6 J	9.6 J	12 J	5.7 J	18 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	7.7 J	45 J	35 J	500 J	5.1 J	0.85 J	5.3 J	11 J	13 J	6.6 J	22 J
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	7.1 J	120 J	86 J	1600	6.3 J	0.61 J	51 U	7.9 J	14 J	8.1 J	37 J
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	43 U	220 U	16 J	1000 U	3.1 J	4.1 U	51 R	39 U	6.8 J	33 U	10 J
Anthracene ^{(a)(b)}	57.2	845	ug/kg	6.9 J	180 J	140	3900	12	4.1 U	10 J-	18 J	20 J	25 J	71
Benzo(a)anthracene ^{(a)(b)}	108	1,050	ug/kg	100	850	690	6500	60	2 J	110 J-	140	170	100 J	320 J
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	62	550	460	4000	34	1.5 J	140	190	180	110	320
Benzo(b)fluoranthene ^{(a)(b)}	10,400	NSL	ug/kg	260	920	780	4200	51	3.2 J	230	330	320	150	450
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	180	650	510	3100	37	2.6 J	160	230	220	100	290
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	180	570	500	2200	33	4.1 U	110 J-	240	190	93	270
Benzo(k)fluoranthene ^{(a)(b)}	240	NSL	ug/kg	200	840	620	4300	39	1.7 J	180	250	250	120	320
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	58 J	310 J	250 J	3200 J	110 J	5 J	51 U	68 J	90 J	52 J	130 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	43 U	220 U	140 U	1000 U	14 J	4.1 U	51 U	39 U	37 U	33 U	66 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	150 J	870 J	680 J	9500 J	130 J	8 J	150 J	180 J	230 J	120 J	350 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	43 U	220 U	140 U	1000 U	8.7 U	4.1 U	51 U	39 U	37 U	33 U	66 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	67 J	440 J	330 J	5800 J	110 J	7.7 J	61 J	80 J	120 J	72 J	220 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	43 U	220 U	140 U	2100 J	110 J	4.2 J	51 U	51 J	50 J	33 U	73 J
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	43 U	220 U	140 U	1500 J	50 J	4.2 J	51 U	39 U	71 J	33 J	110 J
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	95 J	460 J	370 J	5100 J	140 J	8.3 J	86 J	120 J	130 J	68 J	220 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	43 U	220 U	140 J	2100 J	35 J	5 J	51 U	47 J	110 J	46 J	130 J
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	75 J	320 J	260 J	5800 J	270 J	15 J	55 J	79 J	150 J	78 J	220 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	43 U	220 U	140 U	1100 J	77 J	4.1 U	51 U	39 U	37 U	33 U	66 U
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	63 J	220 U	140 J	1200 J	110 J	5.1 J	51 U	62 J	37 U	50 J	170 J
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	46 J	220 U	140 J	3100 J	110 J	6.5 J	51 U	51 J	68 J	33 J	96 J
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	75 J	220 J	170 J	2700 J	87 J	10 J	51 U	80 J	180 J	78 J	210 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	66 J	230 J	180 J	6000 J	340 J	14 J	51 U	63 J	120 J	61 J	170 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	43 U	220 U	140 U	1000 U	24 J	4.1 U	51 U	39 U	37 U	33 U	66 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	98 J	220 J	170 J	4400 J	150 J	20 J	83 J	100 J	200 J	86 J	240 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	43 U	220 U	140 J	4700 J	300 J	12 J	51 U	46 J	89 J	52 J	140 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg	220	1100	850	6600	83	5	210 J-	280	300	150	440
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	41 J	190 J	170	840 J	11	0.46 J	36 J	61	49	29 J	87
Fluoranthene (a)(b)	423	2,230	ug/kg	410	2300	1800	16000	110	5.1	380	500	570	300 J	920 J
Fluorene ^{(a)(b)}	77	536	ug/kg	13 J	130 J	95 J	2200	6.5 J	1.2 J	12 J	17 J	26 J	14 J	52 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	150	530	480	2100	28	1.2 J	130 J-	220	170	87	250
Naphthalene ^{(a)(b)}	176	561	ug/kg	4.4 J	47 J	34 J	640 J	3.4 J	0.85 J	51 U	7.9 J	9.8 J	3.6 J	23 J
Perylene ^(b)	NSL	NSL	ug/kg	42 J	210 J	170	1100	16	6.9	44 J	61	67	35	100
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	130	1400	930	16000	52	3.2 J	150	180	230	130 J	500 J
Pyrene ^{(a)(b)}	195	1,520	ug/kg	270	1700	1300	14000	88	4.9	310 J-	350	430	200 J	640 J
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	2084	11582	8986	86080	625	37.92	2115	2822	2949	1543	4732
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	3122	15997	12511	141380	2595	164.97	2969	4056	4725	2482	7395

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram
ND = Non-detect

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected
*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

							5-4 SEDIMENT RE							
			ocation ID:	HT18-09	HT18-09	HT18-10	HT18-10	HT18-11	HT18-11	HT18-11	HT18-11	HT18-11	HT18-11	HT18-12
			nple Name:	HT18-09-5070	HT18-09-7010	HT18-10-SURF	HT18-10-0010	HT18-11-SURF	HT18-11-0010	HT18-11-1030	HT18-11-3050	HT18-11-5070	HT18-11-7010	HT18-12-SURF
			mple Date:	10/23/2018	10/23/2018	10/22/2018	10/24/2018	10/22/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/22/2018
Analyte	TEC	PEC	nterval (ft): Unit	5-7	7-9.7	0-0.5	0-1.1	0-0.5	0-1	1-3	3-5	5-7	7-9.4	0-0.5
1-Methylnaphthalene	NSL	NSL	ug/kg	27 J	130	6.7 J	1.1 J	10 J	5.1 J	12 J	6.6 J	0.78 J	1.1 J	14 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	37 J	160	6.5 J	1.1 J	7.3 J	5.8 J	12 J	6.2 J	0.7 J	0.71 J	13 J
Acenaphthene (a)(b)	6.71	NSL	ug/kg	20 J	64 J	48	4.5	11 J	18 J	17 J	12 J	0.66 J	4.1 U	19 J
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	16 J	40 J	44 R	2 J	5.2 J-	18 U	8.9 J	4.8 J	4.3 U	4.1 U	15 J-
Anthracene ^{(a)(b)}	57.2	845	ug/kg	48	160	99 J-	3.3 J	19 J-	8 J	33 J	21	0.58 J	4.1 U	40 J-
Benzo(a)anthracene ^{(a)(b)}	108	1,050	ug/kg	210	520	200 J-	14	120 J-	64	190	110	2.4 J	4.1 U	220 J-
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	240	490	67	12	83	87	200	110	2.2 J	0.56 J	110
Benzo(b)fluoranthene ^{(a)(b)}	10,400	NSL	ug/kg	350	700	140	19	230	150	280	130	3.7 J	1.8 J	250
	150	1,450	ug/kg	240	470	37 J	14	74	100	190	95	2.5 J	1.6 J	84
Benzo(e)pyrene ^(b)	170	NSL	ug/kg ug/kg	230	290	44 UJ	11	20 J-	94	180	82	2.5 J 2.4 J	4.1 U	19 J-
Benzo(g,h,i)perylene ^{(a)(b)} Benzo(k)fluoranthene ^{(a)(b)}	240	NSL	ug/kg ug/kg	280	510	110	15	150	120	240	120	4.3 U	0.86 J	190
C1 Chrysenes ^(b)	NSL	NSL	ug/kg ug/kg	130 J	390 J	84 J	20 J	60 J	30 J	88 J	66 J	4.3 U	4.1 U	110 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg ug/kg	79 J	400 J	44 U	3.9 U	28 U	18 U	46 U	21 U	4.3 U	4.1 U	45 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg ug/kg	280 J	880 J	250 J	3.9 U	150 J	85 J	230 J	140 J	5.4 J	4.1 U	260 J
	NSL	NSL		47 U	200 J	44 U	3.9 U	28 U	18 U	46 U	21 U	4.3 U	4.3 J	45 U
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	220 J	200 J	190 J	21 J	88 J	41 J	140 J	85 J	4.3 U	5.4 J	160 J
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg											
C2 Chrysenes ^(b) C2 Fluorenes ^(b)	NSL	NSL	ug/kg	64 J	380 J	48 J	19 J	35 J	23 J	52 J 74 J	30 J	4.3 U	4.1 U	61 J 45 U
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg ug/kg	250 J 190 J	1100 J 740 J	44 U 110 J	7.3 J 28 J	28 U 110 J	24 J 55 J	74 J 140 J	35 J 82 J	4.3 U 4.3 J	4.1 U 4.7 J	170 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	270 J	1700 J	64 J	8.4 J	42 J	24 J	92 J	48 J	4.3 U	4.8 J	72 J
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	290 J	2100 J	130 J	38 J	84 J	41 J	150 J	99 J	7.2 J	9.3 J	160 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	47 U	200 J	44 U	9.2 J	28 U	18 U	46 U	21 U	4.3 U	4.1 U	45 U
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	300 J	1500 J	44 U	16 J	28 U	18 U	110 J	56 J	4.3 U	4.1 U	45 U
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	91 J	580 J	48 J	25 J	44 J	26 J	73 J	43 J	4.3 U	4.1 U	77 J
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	450 J	3500 J	79 J	20 J	69 J	39 J	160 J	89 J	6.7 J	11 J	120 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	220 J	1800 J	62 J	43 J	60 J	30 J	120 J	86 J	6 J	7.5 J	120 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	47 U	110 U	44 U	3.9 U	28 U	18 U	46 U	21 U	4.3 U	4.1 U	45 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	460 J	3900 J	74 J	26 J	110 J	48 J	150 J	100 J	9.5 J	17 J	160 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	200 J	1500 J	44 U	34 J	39 J	21 J	100 J	66 J	4.6 J	6.2 J	78 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg	340	770	170 J-	22	190 J-	130	280	150	4.3	2.8 J	240 J-
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	66	120	27 J	3.8 J	39	27	56	28	0.53 J	4.1 U	45
Fluoranthene ^{(a)(b)}	423	2,230	ug/kg	690	1500	430	38	370	240	570	290	7	2.7 J	550
Fluorene ^{(a)(b)}	77	536	ug/kg	46 J	140	61	2.8 J	18 J	7.9 J	28 J	17 J	0.75 J	0.86 J	34 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	200	330	42 J-	10	79 J-	92	170	81	1.6 J	0.62 J	87 J-
Naphthalene ^{(a)(b)}	176	561	ug/kg	10 J	54 J	4.6 J	1.4 J	4.4 J	5.4 J	11 J	5.7 J	1 J	0.65 J	11 J
Perylene ^(b)	NSL	NSL	ug/kg	68	150	10 J	14	17 J	28	62	45	12	24	20 J
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	320	950	360	22	160	87	270	150	3.8 J	2.4 J	260
Pyrene ^{(a)(b)}	195	1,520	ug/kg	460	1100	240 J-	29	200 J-	170	380	220	5.6	2.4 J	310 J-
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	3563	7898	2071	211	1706	1315	2926	1538	41.52	28.66	2413
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	7118	29363	3247	536	2611	1888	4724	2614	118.77	135.45	3940

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)
(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

Sample	
Part	IT18-13
Analyte	8-13-5060
Analyte TFC PFC Unit	/29/2018
Description Process	5-6.3
2-Methylnaphthalene ⁽ⁱⁱ⁾ 20.2 NSL ug/kg 14.J 32.J 88.J 79.J 0.73.J 0.82.J 3.1.J 22.J 35.J 33.J Accomplibree ⁽ⁱⁱⁱ⁾ 6.71 NSL ug/kg 20.J 62.J 190.J 330 6 42.U 2.9.J 41.J 59.J 53.J 33.J 36.cenaphthylnee ⁽ⁱⁱⁱ⁾ 5.887 NSL ug/kg 12.J 22.J 66.J 51.J 11.J 42.U 1.9.J 23.J 36.J 27.J Anthracene ⁽ⁱⁱⁱ⁾ 157.2 845 ug/kg 52.J 180 280 350 4.3 42.U 6.7.J 70.J 100.J 110 Benzo(a)anthracene ⁽ⁱⁱⁱ⁾ 108 1.050 ug/kg 230.J 620 1200 1200 17 42.U 48 380 510 430 Eenzo(a)pyrene ⁽ⁱⁱⁱ⁾ 150 1.450 ug/kg 260 550 1200 1000 16 1.6.J 90 420 590 440 Benzo(a)pyrene ⁽ⁱⁱⁱ⁾ 10.400 NSL ug/kg 260 550 1200 1000 16 1.6.J 90 420 590 440 Benzo(a)pyrene ⁽ⁱⁱⁱ⁾ 150 1.450 ug/kg 47 400 870 730 11 12.J 62 280 380 280 Benzo(a)pyrene ⁽ⁱⁱⁱ⁾ 170 NSL ug/kg 5.2.J 310 670 560 10 42.U 50 69.J 110 59.J Benzo(a)pyrene ⁽ⁱⁱⁱ⁾ 240 NSL ug/kg 5.2.J 310 670 560 10 42.U 50 69.J 110 59.J Benzo(a)pyrene ⁽ⁱⁱⁱ⁾ 240 NSL ug/kg 200 460 1000 880 13 0.69.J 70 400 390 380 280 C1 Chysenes ⁽ⁱⁱ⁾ NSL NSL ug/kg 120.J 270.J 770.J 510.J 510.J 9.J 42.U 50 69.J 110 59.J 680.J C1 Fluorenee ⁽ⁱⁱⁱ⁾ NSL NSL ug/kg 46 U 12.0 U 270 U 210 U 4.3 U 4.2 U 12.U 82.J 140.J 120.J 120.J C1-Fluoranthenes/Pyrenes ⁽ⁱⁱ⁾ NSL NSL ug/kg 46 U 12.0 U 270 U 210 U 4.3 U 4.2 U 12.U 82.J 140.J 120.J C1-Fluoranthenese ⁽ⁱⁱ⁾ NSL NSL ug/kg 46 U 12.D U 270 U 210 U 4.3 U 4.2 U 12.U 79 U 110 U 77 U C1-Fluoranthenese ⁽ⁱⁱ⁾ NSL NSL ug/kg 46 U 12.D U 270 U 210 U 4.3 U 4.2 U 12.U 79 U 110 U 77 U C1-Fluoranthenese ⁽ⁱⁱ⁾ NSL NSL ug/kg 46 U 12.D U 270 U 210 U 4.3 U 4.2 U 12.U 79 U 110 U 77 U C1-Fluoranthenese ⁽ⁱⁱ⁾ NSL NSL ug/kg 46 U 12.D U 270 U 210 U 4.3 U 4.2 U 12.U 79 U 110 U 77 U C1-Fluoranthenese ⁽ⁱⁱ⁾ NSL NSL ug/kg 46 U 12.D U 270 U 210 U 4.3 U 4.2 U 12.U 79 U 110 U 77 U C1-Fluoranthenese ⁽ⁱⁱ⁾ NSL NSL ug/kg 46 U 12.D U 270 U 210 U 4.3 U 4.2 U 12.U 28.J 140.J 560 J 390.J 660 J 660 J 390.J 660 J 310.J 56.J 4.D	12 J
Acenaphthene ⁽³⁶⁵⁾ 6.71 NSL ug/kg 20 J 62 J 190 J 330 6 4.2 U 2.9 J 41 J 59 J S3 J Acenaphtylene ⁽³⁶⁵⁾ 5.87 NSL ug/kg 12.J 22 J 66 J 51 J 11.1 J 4.2 U 1.9 J 23 J 36 J 27 J Anthracene ⁽³⁶⁵⁾ 5.72 845 ug/kg 52 J 180 280 350 4.3 4.2 U 6.7 J 70 J 100 J 110 Benzo(a)anthracene ⁽³⁶⁵⁾ 108 1.050 ug/kg 230 J 620 1200 1200 17 4.2 U 48 360 510 430 Benzo(a)ptranchene ⁽⁴⁶⁵⁾ 10,400 NSL ug/kg 75 480 790 490 8 4.2 U 48 360 510 430 Benzo(c)ptranchene ⁽⁴⁶⁵⁾ 10,400 NSL ug/kg 260 550 1200 1000 16 1.6.1 1.6 9 420 590	18 J
Accomplithylence S.87	27 J
Anthracene	11 J
Benzo(a)anthracene 108 1,050 ug/kg 230 J 620 1200 1200 17 4.2 U 48 380 510 430 Benzo(a)pyrene 150 1,450 ug/kg 75 480 790 490 8 4.2 U 53 360 450 350 Benzo(b)fluoranthene 10,400 NSL ug/kg 260 550 1200 1000 16 1.6 J 90 420 590 440 Benzo(c)pyrene 150 1,450 ug/kg 47 400 870 730 11 1.2 J 62 280 380 280 Benzo(gh.i)perylene 170 NSL ug/kg 5.2 J 310 670 560 10 4.2 U 50 69 J 110 59 J Benzo(c)fluoranthene 180 NSL ug/kg 200 460 1000 880 13 0.69 J 70 400 390 380 CI Chrysenes NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 82 J 140 J 120 J CI-Naphthalenes NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 56 J 650 J 1000 J CI-Naphthalenes NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 56 J 650 J 1000 J CI-Naphthalenes NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 56 J 650 J 1000 J CI-Naphthalenes NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 56 J 650 J 1000 J CI-Naphthalenes NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 70 U 110 U 77 U CI-Phenanthrenes/Anthracenes NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 17 J 170 J 370 J 650 J CI Chrysenes NSL NSL ug/kg 64 J 180 J 660 J 310 J 51.J 4.2 U 17 J 170 J 370 J 650 J CI Chrysenes NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 17 J 170 J 370 J 650 J CI Chrysenes NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 280 J 560 J 390 J CI Chrysenes NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 220 J 380 J 370 J CI Chrysenes NSL NSL ug/kg 47 J 40 J 1300 J 860 J 13 J 4.4 J 4.4 J 4.4 J 4.4 J 4.4 J 4.4 J	55
Benzo(a)pyrene ^{(h)b} 150 1,450 ug/kg 260 550 1200 1000 16 1,6 J 90 420 590 440 420 590 440 590 440 590 440 590 440 420 590 440 420 590 440 420 590 440 420 590 440 420	210
Benzo(b)fluoranthene(**) 10,400 NSL ug/kg 260 550 1200 1000 16 1.6 J 90 420 590 440	180
Benzo(g)pyrene Benzo(g,h,j)perylene Ben	200
Benzo(g,h,i)perylene (a)(b) 170 NSL ug/kg 5.2 J- 310 670 560 10 4.2 U 50 69 J 110 59 J Benzo(k)fluoranthene (a)(b) 240 NSL ug/kg 200 460 1000 880 13 0.69 J 70 400 390 380 CI Chrysenes (b) NSL NSL ug/kg 120 J 270 J 770 J 510 J 9 J 4.2 U 30 J 280 J 510 J 680 J CI Fluorenes (b) NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 82 J 140 J 120 J CI-Pluoranthenes/Pyrenes (b) NSL NSL ug/kg 270 J 640 J 1700 J 1500 J 22 J 4.2 U 56 J 650 J 1000 J CI-Phenanthrenes/Anthracenes (b) NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 79 U 110 U 77 U CI-Phenanthrenes/Anthracenes (b) NSL NSL ug/kg 160 J 520 J 1500 J 1200 J 17 J 5.2 J 31 J 550 J 1000 J 980 J C2 Chrysenes (b) NSL NSL ug/kg 64 J 180 J 660 J 310 J 5.1 J 4.2 U 17 J 170 J 170 J 370 J 650 J C2 Fluorenes (b) NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 280 J 560 J 390 J C2-Fluoranthenes/Pyrenes NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 280 J 560 J 390 J C2-Fluoranthenes/Pyrenes NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 280 J 560 J 390 J C2-Fluoranthenes/Pyrenes NSL NSL ug/kg 170 J 470 J 1300 J 860 J 13 J 4.4 J 35 J 440 J 830 J 1000 J C2-Naphthalenes (b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J C2-Naphthalenes (b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J C2-Naphthalenes (b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J C2-Naphthalenes (b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 15 J 220 J 380 J 370 J C2-Naphthalenes (b) NSL NSL ug/kg 77 J 200 J 740	150
Benzo(k)fluoranthene 240 NSL ug/kg 200 460 1000 880 13 0.69 J 70 400 390 380	42
C1 Chrysenes ^(b)	190
C1 Fluorenes (b) NSL NSL ug/kg 46 U 120 U 270 U 210 U 4.3 U 4.2 U 12 U 82 J 140 J 120 J 12	300 J
C1-Fluoranthenes/Pyrenes (b) NSL NSL ug/kg 270 J 640 J 1700 J 1500 J 22 J 4.2 U 56 J 650 J 1000 J 1000 J 1000 J C1-Naphthalenes (b) NSL NSL ug/kg 46 U 12 U 270 U 210 U 4.3 U 4.2 U 12 U 79 U 110 U 77 U C1-Phenanthrenes/Anthracenes (b) NSL NSL ug/kg 160 J 520 J 1500 J 1200 J 17 J 5.2 J 31 J 550 J 1000 J 980 J C2 Chrysenes (b) NSL NSL ug/kg 64 J 180 J 660 J 310 J 5.1 J 4.2 U 17 J 170 J 370 J 650	51 J
C1-Naphthalenes ^(b) NSL NSL ug/kg 46 U 12 U 270 U 210 U 4.3 U 4.2 U 12 U 79 U 110 U 77 U C1-Phenanthrenes/Anthracenes ^(b) NSL NSL ug/kg 160 J 520 J 1500 J 1200 J 17 J 5.2 J 31 J 550 J 1000 J 980 J C2 Chrysenes ^(b) NSL NSL ug/kg 64 J 180 J 660 J 310 J 5.1 J 4.2 U 17 J 170 J 370 J 650 J C2 Fluorenes ^(b) NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 280 J 560 J 390 J C2-Fluoranthenes/Pyrenes NSL NSL ug/kg 170 J 470 J 1300 J 860 J 13 J 4.4 J 35 J 440 J 830 J 1000 J C2-Naphthalenes ^(b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J	51 J
C1-Phenanthrenes/Anthracenes NSL NSL ug/kg 160 J 520 J 1500 J 1200 J 17 J 5.2 J 31 J 550 J 1000 J 980 J C2 Chrysenes NSL NSL ug/kg 64 J 180 J 660 J 310 J 5.1 J 4.2 U 17 J 170 J 370 J 650 J C2 Fluorenes NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 280 J 560 J 390 J C2-Fluoranthenes/Pyrenes NSL NSL ug/kg 170 J 470 J 1300 J 860 J 13 J 4.4 J 35 J 440 J 830 J 1000 J C2-Naphthalenes NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J	38 U
C2 Chrysenes ^(b) NSL NSL ug/kg 46 J 180 J 660 J 310 J 5.1 J 4.2 U 17 J 170 J 370 J 650 J C2 Fluorenes ^(b) NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 280 J 560 J 390 J C2-Fluoranthenes/Pyrenes NSL NSL ug/kg 170 J 390 J 1000 J C2-Naphthalenes ^(b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J	370 J
C2 Fluorenes ^(b) NSL NSL ug/kg 46 U 160 J 600 J 210 U 4.3 U 4.2 U 12 U 280 J 560 J 390 J C2-Fluoranthenes/Pyrenes NSL NSL ug/kg 170 J 470 J 1300 J 860 J 13 J 4.4 J 35 J 440 J 830 J 1000 J C2-Naphthalenes ^(b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J	
C2-Fluoranthenes/Pyrenes NSL NSL ug/kg 170 J 470 J 1300 J 860 J 13 J 4.4 J 35 J 440 J 830 J 1000 J C2-Naphthalenes ^(b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J	240 J
C2-Naphthalenes ^(b) NSL NSL ug/kg 77 J 200 J 740 J 780 J 11 J 4.9 J 15 J 220 J 380 J 370 J	150 J 450 J
	180 J
-II /-Prengnthrenes/Anthrecenes/ NNL N	690 J
	160 J
	240 J
	400 J
	400 J
	810 J
	68 J
A	530 J
	710 J
Chrysene ^{(a)(b)} 166 1,290 ug/kg 260 J- 670 1500 1300 19 2.5 J 87 520 710 590	260
Dibenzo(a,h)anthracene ^{(a)(b)} 33 NSL ug/kg 57 110 J 250 J 210 3.1 J 4.2 U 14 78 J 100 J 82	38
Fluoranthene ^{(a)(b)} 423 2,230 ug/kg 530 1500 3000 3200 45 2.2 J 180 1100 1400 1100	480
Fluorene ^{(a)(b)} 77 536 ug/kg 35 J 72 J 190 J 460 3.6 J 0.77 J 5.3 J 66 J 89 J 83	44
Indeno(1,2,3-cd)pyrene ^{(a)(b)} 200 NSL ug/kg 77 J- 290 620 540 9.1 4.2 U 51 220 270 210	110
	12 J
Perylene ^(b) NSL NSL ug/kg 8 J 150 290 210 18 23 18 87 110 83	42
Phenanthrene ^{(a)(b)} 204 1,170 ug/kg 260 960 1900 3100 34 2.2 J 54 550 700 570	280
Pyrene ^{(a)(b)} 195 1,520 ug/kg 250 J- 1200 2400 2600 32 1.9 J 100 850 1100 790	410
Total PAH17 ND=1/2RL 1,610 22,800 ug/kg 2351.2 7546 15424 16470 222.77 30.26 819.9 5183 6675 5329	2567
	8169

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

Page 7 of 14

		L	ocation ID:	HT18-13	HT18-13	HT18-13	HT18-14	HT18-14	HT18-14	HT18-15	HT18-15	HT18-15	HT18-15	HT18-15
			nple Name:	HT18-13-6090	HT18-13-6090-FD	HT18-13-9010	HT18-14-SURF	HT18-14-0010	HT18-14-1020	HT18-15-SURF	HT18-15-0005	HT18-15-0530	HT18-15-3050	HT18-15-3050-FD
			mple Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/30/2018	10/30/2018	10/24/2018	10/25/2018	10/25/2018	10/25/2018	10/25/2018
		Depth I	nterval (ft):	6.3-8.8	6.3-8.8	8.8-10	0-0.5	0-1.3	1.3-1.9	0-0.5	0-0.5	0.5-3	3-5	3-5
Analyte	TEC	PEC	Unit									_		
1-Methylnaphthalene	NSL	NSL	ug/kg	5 J	5.9 J	3.5 J	3.9 J	560 J	20 J	61 J	1.1 J-	4.1	3.3 J	3.5 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	7.6 J	9.5 J	3 J	5.1 J	840 J	88 J	66 J	1.2 J-	5.2	3.8 J	4.1
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	18	21 J	14 J	8.4 J	680 J	100	180	2.8 J-	3.8 U	3.9 U	3.9 U
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	3.4 J	4.7 J	3.1 J	5.4 J	840 U	12 J	120 U	0.51 J-	3.8 U	3.9 U	3.9 U
Anthracene ^{(a)(b)}	57.2	845	ug/kg	21	29	31	27	1100	120	310	3.3 J-	3.8 U	3.9 U	3.9 U
Benzo(a)anthracene ^{(a)(b)}	108	1,050	ug/kg	61	86	77	170	2800	360	480	7.2 J-	0.51 J	0.6 J	0.65 J
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	36	62	65	100	2200	240	250	4.3 J-	0.62 J	0.55 J	0.63 J
Benzo(b)fluoranthene(a)(b)	10,400	NSL	ug/kg	59	88	68	180	2000	250	320	7.7 J-	1.6 J	1.5 J	1.6 J
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	44	61	42	120	1600	210	190	6.2 J-	2 J	2 J	2.1 J
Benzo(g,h,i)perylene(a)(b)	170	NSL	ug/kg	26	36	10 J	83	1200	170	48 J	5.9 J-	3.3 J	2.9 J	3.2 J
Benzo(k)fluoranthene(a)(b)	240	NSL	ug/kg	49	67	63	150	2600	300	320	7.1 J-	1.1 J	1.1 J	0.92 J
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	110 J	160 J	35 J	74 J	1600 J	220 J	180 J	9.2 J-	4.5 J	4.3 J	4.9 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	22 J	28 J	20 U	25 U	840 U	88 U	120 U	4 J-	3.8 J	3.9 U	4 J
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	140 J	190 J	96 J	160 J	4500 J	650 J	450 J	16 J-	7.2 J	7 J	8 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	15 U	23 U	20 U	25 U	890 J	88 U	120 U	3.8 UJ	6.4 J	4.8 J	5.2 J
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	160 J	210 J	66 J	75 J	2900 J	430 J	490 J	16 J-	15 J	16 J	16 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	89 J	150 J	20 U	31 J	840 U	100 J	120 U	7.7 J-	4.7 J	4.8 J	4.9 J
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	60 J	79 J	20 U	25 U	840 U	90 J	120 U	8.6 J-	5.7 J	6 J	6.8 J
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	150 J	200 J	42 J	81 J	2300 J	310 J	210 J	13 J-	9.8 J	9.9 J	11 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	79 J	99 J	20 J	25 U	2100 J	130 J	230 J	9.1 J-	21 J	19 J	20 J
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	300 J	410 J	48 J	50 J	2800 J	390 J	220 J	25 J-	21 J	22 J	22 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	61 J	91 J	20 U	25 U	840 U	88 U	120 U	4.1 J-	3.8 U	3.9 U	3.9 U
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	120 J	160 J	20 U	25 U	980 J	120 J	120 U	12 J-	8.7 J	9 J	10 J
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	130 J	150 J	20 U	36 J	1100 J	150 J	120 U	9.4 J-	9.1 J	8.8 J	9.4 J
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	170 J	210 J	30 J	26 J	2400 J	240 J	160 J	25 J-	41 J	41 J	43 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	350 J	490 J	27 J	29 J	2200 J	310 J	120 U	25 J-	18 J	19 J	20 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	22 J	30 J	20 U	25 U	840 U	88 U	120 U	3.8 UJ	3.8 U	3.9 U	3.9 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	200 J	260 J	35 J	26 J	2200 J	270 J	120 U	43 J-	62 J	65 J	68 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	310 J	430 J	20 U	25 U	1500 J	230 J	120 U	20 J-	13 J	13 J	14 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg	83	120	79	190	3200	400	460	12 J-	3.4 J	3.6 J	3.9
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	9.5 J	13 J	14 J	35	540 J	68 J	64 J	1.5 J-	3.8 U	3.9 U	3.9 U
Fluoranthene (a)(b)	423	2,230	ug/kg	200	280	200	400	7000	960	1400	27 J-	1.5 J	1.1 J	1.3 J
Fluorene ^{(a)(b)}	77	536	ug/kg	25	30	17 J	16 J	790 J	65 J	240	2.4 J-	1.2 J	1.1 J	1.1 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	27	38	38	93	1200	170	170	4.2 J-	0.58 J	0.49 J	0.48 J
Naphthalene ^{(a)(b)}	176	561	ug/kg	4.8 J	6.1 J	3.9 J	7.9 J	1000	88 J	86 J	0.87 J-	5.3	3.2 J	3.7 J
Perylene ^(b)	NSL	NSL	ug/kg	11 J	17 J	29	37	570 J	93	62 J	6.2 J-	2.4 J	2.4 J	2.6 J
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	160	190	130	150	5300	760	1600	11 J-	5.4	5	5.3
Pyrene ^{(a)(b)}	195	1,520	ug/kg	130	180	150	280	6100	840	910	19 J-	2.5 J	2.4 J	2.7 J
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	920.3	1260.3	966	1900.8	38970	4991	6964	117.98	39.81	35.14	37.38
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	3168.2	4337.3	1471	2623.7	66470	8562	9480	357.68	274.81	272.49	288.68

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

(MacDonald et al. 2000).

PAH = Polycyclic aromatic hydrocarbon RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

		L	ocation ID:	HT18-16	HT18-17	HT18-17	HT18-17	HT18-17	HT18-18	HT18-18	HT18-18	HT18-18	HT18-18	HT18-19
			nple Name:	HT18-16-SURF	HT18-17-SURF	HT18-17-0010	HT18-17-1030	HT18-17-3050	HT18-18-SURF	HT18-18-0020	HT18-18-2030	HT18-18-3035	HT18-18-3555	HT18-19-SURF
			mple Date:	10/24/2018	10/24/2018	10/25/2018	10/25/2018	10/25/2018	10/24/2018	10/25/2018	10/25/2018	10/25/2018	10/25/2018	10/24/2018
		Depth I	nterval (ft):	0-0.5	0-0.5	0-1	1-3	3-4.7	0-0.5	0-1.9	1.9-2.8	2.8-3.6	3.6-5.4	0-0.5
Analyte	TEC	PEC	Unit											
1-Methylnaphthalene	NSL	NSL	ug/kg	4.7 J	1.5 J	5.9	5	5.3	10 J	490 J	7.2	3.8 J	5.2	14 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	5.6 J	1.7 J	6.6	5.5	5.7	9.9 J	340 J	7.7	4.1 J	6	180 U
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	8.6 J	5.1 J	3.9	3.9 U	3.8 U	32 J	1100 J	13	13	4 U	85 J
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	4.4 J	9.4 U	0.44 J	3.9 U	3.8 U	81 U	140 J	3.9	2.6 J	4 U	130 J
Anthracene ^{(a)(b)}	57.2	845	ug/kg	17 J	5.7 J	9.3	3.9 U	3.8 U	73 J	1800	17	19	4 U	190
Benzo(a)anthracene(a)(b)	108	1,050	ug/kg	100	29	19	0.82 J	0.97 J	320	6900	11	46	0.82 J	1200
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	100	11	16	0.62 J	1.2 J	270	4800	8.4	36	1.1 J	1000
Benzo(b)fluoranthene(a)(b)	10,400	NSL	ug/kg	150	37	16	2.2 J	2.7 J	350	6400	7.1	37	2.4 J	1200
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	110	25	12	2.5 J	3.4 J	250	4300	7	27	3.1 J	970
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	48	12	12	4	4.9	150	3100	11	20	4.8	580
Benzo(k)fluoranthene(a)(b)	240	NSL	ug/kg	130	35	14	1.1 J	1.2 J	330	5100	6.4	30	1.4 J	1200
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	54 J	15 J	14 J	5.8 J	6.8 J	150 J	3300 J	13 J	30 J	6.6 J	560 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	27 U	9.4 U	8.8 J	5 J	6.4 J	81 U	1100 J	14 J	12 J	5.3 J	180 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	110 J	28 J	35 J	9.6 J	13 J	300 J	10000 J	28 J	71 J	11 J	870 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	27 U	9.4 U	8.6 J	7.2 J	7.6 J	81 U	1100 U	10 J	9.4 U	7.6 J	180 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	56 J	18 J	37 J	20 J	24 J	170 J	8100 J	65 J	67 J	22 J	380 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	36 J	9.4 U	8.5 J	6.1 J	7.5 J	81 U	2300 J	11 J	15 J	7 J	380 J
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	27 U	9.4 U	15 J	7.8 J	9.9 J	81 U	2800 J	19 J	20 J	9.1 J	180 U
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	84 J	19 J	24 J	13 J	17 J	170 J	5400 J	21 J	39 J	14 J	560 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	37 J	9.4 U	32 J	26 J	28 J	81 U	4600 J	60 J	34 J	30 J	180 U
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	52 J	14 J	43 J	27 J	32 J	120 J	11000 J	62 J	74 J	30 J	260 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	27 U	9.4 U	5.4 J	4.1 J	5.5 J	81 U	1100 J	7.1 J	9.4 U	4.9 J	250 J
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	49 J	11 J	20 J	12 J	15 J	81 U	4100 J	23 J	26 J	13 J	180 U
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	41 J	9.4 U	17 J	11 J	14 J	81 J	3700 J	18 J	24 J	13 J	360 J
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	70 J	12 J	67 J	54 J	62 J	81 U	11000 J	120 J	83 J	61 J	180 U
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	41 J	9.9 J	35 J	23 J	28 J	81 U	8900 J	45 J	55 J	26 J	180 U
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	27 U	9.4 U	3.9 U	3.9 U	3.8 U	81 U	1100 U	3.9 U	9.4 U	4 U	180 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	81 J	15 J	100 J	83 J	100 J	84 J	9000 J	170 J	100 J	87 J	180 U
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	28 J	9.4 U	25 J	16 J	20 J	81 U	6000 J	31 J	37 J	18 J	180 U
Chrysene ^{(a)(b)}	166	1,290	ug/kg	170	40	23	4.7	5.6	400	8100	15	53	5.1	1300
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	32	8.2 J	3.7 J	0.49 J	0.62 J	79 J	1300	1.8 J	7.8 J	0.6 J	260
Fluoranthene (a)(b)	423	2,230	ug/kg	370	100	57	1.6 J	2 J	950	18000	32	110	2.3 J	2700
Fluorene ^{(a)(b)}	77	536	ug/kg	11 J	5.1 J	4.5	1.5 J	2 J	41 J	1100	12	12	1.7 J	100 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	97	24	8.6	0.63 J	0.81 J	220	3400	4.1	20	0.81 J	990
Naphthalene ^{(a)(b)}	176	561	ug/kg	4.3 J	1.4 J	5.2	4.4	5.3	13 J	240 J	7.8	4.6 J	4.9	180 U
Perylene ^(b)	NSL	NSL	ug/kg	25 J	6.1 J	7.6	2.9 J	3.5 J	85	1400	4.5	14	3.5 J	330
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	160	57	30	6.9	8.9	500	11000	58	81	8.1	1100
Pyrene ^{(a)(b)}	195	1,520	ug/kg	230	64	47	3.3 J	4.3	560	14000	31	95	3.8 J	1800
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	1637.9	440.9	276.24	43.61	51.9	4338.4	86820	247.2	591.1	49.83	14015
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	2448.8	630.8	745.49	352.06	420.7	5933	176580	931.05	1266.1	390.93	18825

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations(b) Analytes inleuded in Total 34 PAH calculations

Page 9 of 14

							5-4 SEDIMENT RE							
			ocation ID:	HT18-19	HT18-19	HT18-19	HT18-20	HT18-20	HT18-20	HT18-20	HT18-20	HT18-21	HT18-21	HT18-23
			nple Name:	HT18-19-0010	HT18-19-1020	HT18-19-2030	HT18-20-SURF	HT18-20-0010	HT18-20-1020	HT18-20-2030	HT18-20-2030-FD	HT18-21-SURF	HT18-21-0015	HT18-23-SURF
			imple Date: nterval (ft):	10/25/2018 0-1	10/25/2018 1-2.3	10/25/2018 2.3-2.8	10/24/2018 0-0.5	10/25/2018 0-0.8	10/25/2018 0.8-1.8	10/25/2018 1.8-2.8	10/25/2018 1.8-2.8	10/24/2018 0-0.5	10/25/2018 0-1.7	10/23/2018 0-0.5
Analyte	TEC	PEC	Unit	U-1	1-2.3	2.3-2.8	0-0.3	0-0.8	0.8-1.8	1.6-2.6	1.0-2.0	0-0.3	0-1./	0-0.3
1-Methylnaphthalene	NSL	NSL	ug/kg	260 J	820 U	1.6 J	8.8 J	14 J	1.8 J	1.5 J	2.3 J	10 J	8.1 J	6.6 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	410 J	820 U	1.9 J	10 J	18 J	2.6 J	1.9 J	2.6 J	16 J	14 J	6.4 J
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	2100 J	820 J	9.7 J	44 J	82 J	13	17	22	33 J	15 J	10 J
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	2100 U	820 U	9.7 U	8 J	14 J	4 U	1.4 J	2.4 J	48 U	3.9 J	54 U
Anthracene ^{(a)(b)}	57.2	845	ug/kg	2100	1300	14	86	100	5.3	18	34	110	18	22 J
Benzo(a)anthracene ^{(a)(b)}	108	1,050	ug/kg	8100	3300	43	330	400	8.6	38	67	200	73	150
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	5400	2400	35	270	260	6.7	30	50	140	64	170
Benzo(b)fluoranthene ^{(a)(b)}	10,400	NSL	ug/kg	6900	2700	37	340	400	6.4	28	45	160	80	240
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	5000	2000	28	220	280	4.4	22	35	160	150	180
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	3800	1600	27	71	210	3.5 J	18	29	35 J	86	140
Benzo(k)fluoranthene ^{(a)(b)}	240	NSL	ug/kg	6100	2600	35	310	350	7.1	30	52	120	68	220
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	5100 J	1300 J	22 J	120 J	170 J	4.5 J	18 J	31 J	160 J	180 J	69 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	2100 U	820 U	9.7 U	68 U	82 U	4 U	8.6 J	16 U	48 U	15 U	54 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	12000 J	3800 J	59 J	280 J	480 J	11 J	56 J	94 J	360 J	310 J	160 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	2100 U	820 U	9.7 U	68 U	82 U	4 U	8.1 U	16 U	48 U	15 J	54 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	11000 J	2300 J	48 J	170 J	250 J	9.5 J	46 J	70 J	190 J	110 J	78 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	3200 J	820 U	14 J	68 U	82 U	4 U	8.1 U	16 U	220 J	330 J	54 U
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	3800 J	820 U	12 J	68 U	82 U	4 U	8.1 U	16 U	48 U	39 J	54 U
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	6800 J	1400 J	29 J	150 J	230 J	6.1 J	22 J	37 J	440 J	550 J	91 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	5700 J	820 U	19 J	68 U	82 U	6.7 J	13 J	18 J	73 J	63 J	54 U
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	15000 J	1700 J	53 J	96 J	210 J	5.8 J	31 J	45 J	130 J	220 J	62 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	2100 U	820 U	9.7 U	68 U	82 U	4 U	8.1 U	16 U	200 J	260 J	54 U
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	5300 J	820 U	18 J	68 U	85 J	4 U	8.1 U	16 U	48 U	77 J	54 U
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	5100 J	820 U	18 J	68 U	97 J	4 U	9.7 J	16 U	290 J	480 J	54 U
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	16000 J	930 J	44 J	68 U	110 J	5.4 J	21 J	28 J	78 J	78 J	54 U
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	13000 J	1100 J	42 J	68 U	130 J	4 U	16 J	24 J	140 J	350 J	54 U
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	2100 U	820 U	9.7 U	68 U	82 U	4 U	8.1 U	16 U	89 J	130 J	54 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	15000 J	830 J	44 J	68 U	100 J	4 U	22 J	26 J	51 J	89 J	62 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	7700 J	820 U	33 J	68 U	82 U	4 U	11 J	20 J	130 J	340 J	54 U
Chrysene ^{(a)(b)}	166	1,290	ug/kg	9300	3500	49	390	460	8.9	40	68	220	130	260
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	1500 J	580 J	8.8 J	74	74 J	1.4 J	6.2 J	11 J	38 J	25	51 J
Fluoranthene (a)(b)	423	2,230	ug/kg	22000	8900	110	950	1100	20	100	170	580	150	570
Fluorene ^{(a)(b)}	77	536	ug/kg	1500 J	470 J	6.5 J	49 J	62 J	5.7	4.3 J	8.5 J	48	17	17 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	3800	1600	24	200	210	3.6 J	18	32	97	58	160
Naphthalene ^{(a)(b)}	176	561	ug/kg	270 J	820 U	2.1 J	18 J	25 J	5.3	2.7 J	3.7 J	7.8 J	9.8 J	54 U
Perylene ^(b)	NSL	NSL	ug/kg	1600 J	730 J	21	68	94	14	35	35	33 J	21	53 J
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	13000	6500	71	540	600	27	88	130	510	120	210
Pyrene ^{(a)(b)}	195	1,520	ug/kg	18000	7500	89	630	840	15	85	140	400	150	340
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	105330	45000	567.85	4320	5205	142.1	526.5	867.2	2738.8	1081.7	2620.4
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	228520	62970	1042.35	5672	7424	220.8	848.5	1346.6	4832.8	3837.2	3575

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level
PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

						IABLE	3-4 SEDIMENT RE	SUL 15 FUR PAHS	, н і					
		L	ocation ID:	HT18-23	HT18-23	HT18-23	HT18-23	HT18-23	HT18-24	HT18-24	HT18-24	HT18-24	HT18-24	HT18-24
			nple Name:	HT18-23-0010	HT18-23-1030	HT18-23-3050	HT18-23-5070	HT18-23-7010	HT18-24-SURF	HT18-24-0010	HT18-24-1025	HT18-24-2550	HT18-24-5065	HT18-24-5065-FD
			mple Date:	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018
			nterval (ft):	0-1	1-3	3-5	5-7	7-9.2	0-0.5	0-1	1-2.7	2.7-5	5-6.6	5-6.6
Analyte 1-Methylnaphthalene	TEC NSL	PEC NSL	Unit	1.8 J	4.1 U	0.4 J	0.65 J	101	140 U	69 U	0.47 J	0.59 J	0.45 J	0.63 J
7 1	20.2	NSL	ug/kg					1.9 J						
2-Methylnaphthalene ^(a)	+ +	NSL	ug/kg	2 J	4.1 U	4.3 U	0.52 J	1.1 J	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	3.6 J	4.1 U	4.3 U	0.39 J	0.44 J	56 J	43 J	4.2 U	4.5 U	4.3 U	4.1 U
Acenaphthylene ^{(a)(b)} Anthracene ^{(a)(b)}	5.87 57.2	845	ug/kg	1.5 J	4.1 U	4.3 U	4.4 U	4.5 U	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
	108	1,050	ug/kg	7 J 46	4.1 U 4.1 U	4.3 U 4.3 U	4.4 U 4.4 U	4.5 U	150	77	4.2 U	4.5 U 0.85 J	4.3 U 4.3 U	4.1 U 4.1 U
Benzo(a)anthracene ^{(a)(b)}	150	1,450	ug/kg	39				0.81 J	600	340	0.57 J			
Benzo(a)pyrene ^{(a)(b)}	+ +	NSL	ug/kg		4.1 U	4.3 U	4.4 U	0.93 J	450	160	4.2 U	0.5 J	4.3 U	4.1 U
Benzo(b)fluoranthene ^{(a)(b)}	10,400		ug/kg	67	0.81 J	1 J	1.6 J	3.5 J	570	350	1.3 J	1.6 J	0.74 J	1.2 J
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	43	0.51 J	0.74 J	1.2 J	3 J	390	230	0.81 J	1.4 J	0.52 J	0.62 J
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	37	0.61 J	0.82 J	1.3 J	4.5 U	270	180	1.4 J	0.87 J	4.3 U	4.1 U
Benzo(k)fluoranthene ^{(a)(b)}	240	NSL	ug/kg	51	4.1 U	4.3 U	4.4 U	1 J	550	280	0.84 J	0.92 J	4.3 U	0.73 J
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	20 J	4.1 U	4.3 U	4.4 U	5.8 J	180 J	110 J	4.2 U	4.5 U	4.3 U	4.1 U
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	11 U	4.1 U	4.3 U	4.4 U	4.5 U	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	60 J	4.1 U	4.3 U	4.4 U	9.4 J	470 J	350 J	4.2 U	4.5 U	4.3 U	4.1 U
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	11 U	4.1 U	4.3 U	4.4 U	4.5 U	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	33 J	4.1 U	4.3 U	4.8 J	12 J	230 J	200 J	4.2 U	4.5 J	4.3 U	4.1 U
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	13 J	4.1 U	4.3 U	4.4 U	4.5 U	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	12 J	4.1 U	4.3 U	4.4 U	5.3 J	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
C2-Fluoranthenes/Pyrenes	NSL NSL	NSL NSL	ug/kg	36 J	4.1 U	4.3 U	4.4 U	9.7 J	190 J	110 J	4.2 U	4.5 U	4.3 U	4.1 U
C2-Naphthalenes ^(b)	NSL NSL	NSL	ug/kg	12 J	4.1 U	4.3 U	4.4 U	8.4 J	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
C2-Phenanthrenes/Anthracenes ^(b)	NSL NSL	NSL	ug/kg	58 J	4.1 U	4.3 U	7.6 J	21 J	140 U	110 J	7.2 J	7 J	5.4 J	7.3 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	11 U	4.1 U	4.3 U	4.4 U	4.5 U	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
C3 Fluorenes ^(b) C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg ug/kg	22 J 19 J	4.1 U 4.1 U	4.3 U 4.3 U	4.4 U 4.4 U	6.6 J 7.6 J	140 U 140 U	69 U 69 U	4.2 U 4.2 U	4.5 U 4.5 U	4.3 U 4.3 U	4.1 U 4.1 U
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg ug/kg	27 J	4.1 U	4.3 U	7.6 J	21 J	140 U	69 U	7.7 J	8.8 J	6.3 J	8.6 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	40 J	4.1 U	4.3 U	6.4 J	16 J	140 U	69 U	4.9 J	5.1 J	4.3 U	5.5 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	11 U	4.1 U	4.3 U	4.4 U	4.5 U	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	40 J	4.1 J	7.2 J	13 J	37 J	140 U	69 U	17 J	16 J	13 J	18 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	26 J	4.1 U	4.3 U	4.4 U	11 J	140 U	69 U	4.2 U	4.5 U	4.3 U	4.4 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg	64	0.84 J	1.4 J	2.3 J	5.4	740	420	1.9 J	2.5 J	1.4 J	1.9 J
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	12	4.1 U	4.3 U	4.4 U	4.5 U	120 J	73	4.2 U	4.5 U	4.3 U	4.1 U
Fluoranthene (a)(b)	423	2,230	ug/kg	130	0.58 J	1 J	1.2 J	3.2 J	2200	1100	4.2 U	4.5 U	4.3 U	4.1 U
Fluorene ^{(a)(b)}	77	536	ug/kg	3.8 J	4.1 U	4.3 U	0.68 J	1.8 J	85 J	34 J	0.69 J	0.84 J	0.46 J	0.58 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg	35	4.1 U	4.3 U	4.4 U	1 J	340	200	0.58 J	0.73 J	4.3 U	4.1 U
Naphthalene ^{(a)(b)}	176	561	ug/kg	1.9 J	4.1 U	0.58 J	0.78 J	0.74 J	140 U	69 U	4.2 U	4.5 U	4.3 U	4.1 U
Perylene ^(b)	NSL	NSL	ug/kg	19	2.2 J	3.6 J	4.7	9.9	130 J	64 J	1.7 J	3.2 J	1.3 J	1.3 J
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	57	0.5 J	1.5 J	2.2 J	3.6 J	1200	580	4.2 U	4.5 U	4.3 U	4.1 U
Pyrene ^{(a)(b)}	195	1,520	ug/kg	110	0.67 J	1.3 J	1.8 J	4.3 J	1200	660	4.2 U	4.5 U	4.3 U	4.1 U
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	667.8	26.56	29	28.17	36.82	8741	4600.5	28.28	29.06	32.7	31.06
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	1112.8	62.07	70.64	97.15	213.37	10981	6044	90.69	97.56	85.02	97.28
NOTES:	-,0-0	,000	- B - B											

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level
PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

Page 11 of 14

								WENT RESULTS F							
			ocation ID:	HT18-24	HT18-25	HT18-25	HT18-25	HT18-25	HT18-25	HT18-25	HT18-26	HT18-26	HT18-26	HT18-26	HT18-26
			nple Name:	HT18-24-6575	HT18-25-SURF	HT18-25-0010	HT18-25-1030	HT18-25-3040	HT18-25-4070	HT18-25-7010	HT18-26-SURF	HT18-26-0010	HT18-26-1030	HT18-26-3050	HT18-26-3050-FD
			mple Date:	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018
Analyte	TEC	PEC	nterval (ft): Unit	6.6-7.8	0-0.5	0-1	1-3	3-4.2	4.2-7	7-9.5	0-0.5	0-1	1-3	3-5	3-5
1-Methylnaphthalene	NSL	NSL	ug/kg	4.3	5.2 J	55 J	230 J	2600 U	0.7 J	0.99 J	7 J	200 U	0.83 J	1.2 J	1.1 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	4.5	5.9 J	75 J	140 J	2600 U	0.45 J	0.62 J	8.2 J	200 U	0.79 J	0.92 J	0.9 J
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	0.35 J	25 J	130 J	460 J	1200 J	17	0.39 J	23 J	85 J	1.2 J	0.56 J	0.46 J
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	3.9 U	50 U	380 U	94 J	2600 U	4.5 U	4.3 U	65 U	200 U	4 U	4.3 U	4.2 U
Anthracene ^{(a)(b)}	57.2	845	ug/kg	0.52 J	57	270 J	790	3000	4.1 J	4.3 U	45 J	320	2.8 J	4.3 U	4.2 U
Benzo(a)anthracene ^{(a)(b)}	108	1,050	ug/kg	0.85 J	260	1600	2800	8800	2 J	0.85 J	300	890	11	1.1 J	0.94 J
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	1.4 J	240	1000	2100	6900	1.2 J	0.91 J	240	690	9.8	0.81 J	0.58 J
Benzo(b)fluoranthene ^{(a)(b)}	10,400	NSL	ug/kg	2.7 J	320	1600	2500	7200	2.9 J	2.2 J	410	810	11	2.5 J	2.6 J
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	3.6 J	210	790	1800	5300	2.4 J	1.8 J	250	560	8.2	2.2 J	1.7 J
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	4.4	150	91 J	1100	4200	15	4.3 U	73	490	8.5	2.1 J	2.6 J
Benzo(k)fluoranthene ^{(a)(b)}	240	NSL	ug/kg	0.77 J	250	1300	2100	6800	1.9 J	0.9 J	320	680	10	4.3 U	4.2 U
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	7.5 J	100 J	1200 J	2700 J	3900 J	4.5 U	4.3 U	140 J	340 J	7.3 J	4.3 U	4.2 U
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	5.6 J	50 U	380 U	620 J	2600 U	4.5 U	4.3 U	65 U	200 U	4 U	4.3 U	4.2 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	12 J	230 J	2100 J	4100 J	8800 J	4.6 J	6 J	270 J	1000 J	15 J	6.3 J	5.5 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	6 J	50 U	380 U	610 U	2600 U	4.5 U	4.3 U	65 U	200 U	4 U	4.3 U	4.2 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	22 J	110 J	1800 J	4600 J	5600 J	7.9 J	7.7 J	140 J	550 J	9.3 J	5.4 J	5.2 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	7.6 J	50 U	600 J	1700 J	2600 U	4.5 U	4.3 U	65 U	200 U	4.9 J	4.3 U	4.2 U
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	11 J	50 U	590 J	2000 J	2600 U	4.5 U	4.3 U	65 U	200 U	4 U	4.3 U	4.2 U
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	16 J	110 J	1500 J	3000 J	3500 J	4.5 U	5.7 J	150 J	360 J	8.8 J	5.8 J	5.1 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	26 J	50 U	710 J	2700 J	2600 U	6.1 J	4.7 J	65 U	200 U	4 U	4.7 J	4.2 U
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	31 J	58 J	3100 J	7400 J	4600 J	9.5 J	17 J	140 J	420 J	12 J	9.1 J	8.1 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	6.1 J	50 U	380 U	1100 J	2600 U	4.5 U	4.3 U	65 U	200 U	4 U	4.3 U	4.2 U
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	14 J	50 U	1200 J	3400 J	2600 U	4.5 U	4.3 U	85 J	200 U	4.2 J	4.3 U	4.2 U
C3-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	11 J	50 U	1000 J	2000 J	2600 U	4.5 U	4.5 J	66 J	200 U	6 J	4.6 J	4.2 U
C3-Naphthalenes ^(b)	NSL	NSL	ug/kg	59 J	50 U	1800 J	8300 J	2600 U	11 J	12 J	77 J	200 U	9.7 J	10 J	9.2 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	28 J	50 U	3300 J	7000 J	3800 J	6.3 J	9.9 J	120 J	280 J	16 J	10 J	8.7 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	3.9 U	50 U	380 U	610 U	2600 U	4.5 U	4.3 U	65 U	200 U	4 U	4.3 U	4.2 U
C4-Naphthalenes ^(b)	NSL	NSL	ug/kg	95 J	50 U	2200 J	8600 J	2600 U	19 J	22 J	89 J	200 U	15 J	17 J	18 J
C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	20 J	50 U	2400 J	4400 J	3000 J	4.7 J	7.1 J	84 J	200 U	9.3 J	6.6 J	5.9 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg	5.7	350	2100	3400	10000	3.9 J	3.6 J	430	970	14	3.8 J	3.4 J
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg	0.71 J	66	330 J	540 J	1500 J	0.74 J	4.3 U	84	170 J	2.1 J	4.3 U	0.89 J
Fluoranthene ^{(a)(b)}	423	2,230	ug/kg	2.4 J	770	4400	7900	26000	11	3.2 J	840	2400	27	3.3 J	2.9 J
Fluorene ^{(a)(b)}	77	536	ug/kg	1.6 J	31 J	180 J	590 J	1700 J	3.6 J	1.3 J	28 J	47 J	0.98 J	0.53 J	0.51 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL 561	ug/kg	0.86 J	190	820	1500	4300	1.6 J	0.68 J	240	460	6.7	0.71 J	1.3 J
Naphthalene ^{(a)(b)}	176	561	ug/kg	2.2 J	9 J	52 J	80 J	2600 U	4.5 U	0.56 J	12 J	200 U	1.1 J	1.3 J	1.2 J
Perylene ^(b)	NSL 204	NSL 1.170	ug/kg	3.8 J	66	160 J	530 J	2000 J	4.2 J	8.7	62 J	210	9.9	7.9	7.1
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg	7.3	350	1900	4500	16000	43	3.6 J	320	1400	13	2.9 J	2.2 J
Pyrene ^{(a)(b)}	195	1,520	ug/kg	4.3	460	2800	5000	16000	7	3.6 J	510	2000	21	3.5 J	3 J
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg	42.51	3558.9 4627	18838	35594 97014	117500	119.89	31.01	3915.7 5592	11712	142.97	32.63	29.78
Total PAH34 ND=1/2RL	1,610	22,800	ug/kg	398.16	4627	41473	97014	166200	213.14	144.49	5592	16072	274.98	128.11	117.18

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations(b) Analytes inleuded in Total 34 PAH calculations

Page 12 of 14

TABLE 3-4 SEDIMENT RESULTS FOR PAHS, HT

	Location ID: HT18-26 HT18-27 HT18-27 HT18-29 HT18-29 HT18-30 H														
		Locat	tion ID:	HT18-26	HT18-26	HT18-27	HT18-27	HT18-29	HT18-29	HT18-30	HT18-30	HT18-30	HT18-30	HT18-30	HT18-30
		Sample		HT18-26-5070	HT18-26-7010	HT18-27-0010	HT18-27-1020	HT18-29-SURF	HT18-29-0010	HT18-30-SURF	HT18-30-0010	HT18-30-1030	HT18-30-3050	HT18-30-5070	HT18-30-7010
			le Date:	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/22/2018	10/23/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018
	T T C	Depth Inter	` ′	5-7	7-9.5	0-0.8	0.8-2.4	0-0.5	0-1.2	0-0.5	0-1	1-3	3-5	5-7	7-10
Analyte 1-Methylnaphthalene	TEC NSL		Unit	1.5 J	1 J	390 J	590	17 J	37 J	8.8 J	12 J	50 J	41 J	57 J	170 J
, i	20.2	 	ug/kg												
2-Methylnaphthalene ^(a)	+	 	ug/kg	0.97 J	0.61 J	490	540	210 U	36 J	7.2 J	10 J	49 J	43 J	63 J	170 J
Acenaphthene ^{(a)(b)}	6.71		ug/kg	0.52 J	4.3 U	1000	570	37 J	180 J	8.3 J	35 J	78 J	58 J	69 J	110 J
Acenaphthylene ^{(a)(b)}	5.87		ug/kg	4.5 U	4.3 U	76 J	210 U	88 J-	28 J	4.8 J-	49 U	47 J	41 J	35 J	56 J
Anthracene ^{(a)(b)}	57.2		ug/kg	4.5 U	4.3 U	530	290	180 J-	320	17 J-	78	150	110	110	250
Benzo(a)anthracene ^{(a)(b)}	108		ug/kg	4.5 U	4.3 U	2600	200 J	1200 J-	770	120 J-	240	640	560	550	900
Benzo(a)pyrene ^{(a)(b)}	150		ug/kg	1.2 J	4.3 U	1600	140 J	320	480	63	170	450	420	410	720
Benzo(b)fluoranthene(a)(b)	10,400		ug/kg	2 J	1.8 J	2000	170 J	680	600	180	290	670	660	560	910
Benzo(e)pyrene ^(b)	150		ug/kg	1.7 J	1.6 J	1500	140 J	240	460	56	200	490	430	420	660
Benzo(g,h,i)perylene ^{(a)(b)}	170	 	ug/kg	2 J	4.3 U	1200	140 J	42 J-	390	12 J-	180	370	330	310	490
Benzo(k)fluoranthene ^{(a)(b)}	240		ug/kg	4.5 U	0.64 J	2000	210 J	750	610	140	260	570	470	450	760
C1 Chrysenes ^(b)	NSL		ug/kg	4.5 U	4.3 U	990 J	210 U	530 J	290 J	57 J	86 J	490 J	370 J	500 J	1100 J
C1 Fluorenes ^(b)	NSL		ug/kg	4.5 U	4.3 U	440 J	210 U	210 U	200 U	29 U	49 U	210 J	120 J	120 J	300 J
C1-Fluoranthenes/Pyrenes ^(b)	NSL		ug/kg	6.3 J	5.5 J	3400 J	250 J	1400 J	850 J	150 J	260 J	1100 J	910 J	1000 J	2800 J
C1-Naphthalenes ^(b)	NSL		ug/kg	4.5 U	4.3 U	590 J	760 J	210 U	200 U	29 U	49 U	120 U	110 U	110 U	250 J
C1-Phenanthrenes/Anthracenes ^(b)	NSL		ug/kg	7.1 J	7.2 J	1600 J	290 J	860 J	650 J	75 J	160 J	1300 J	860 J	990 J	2600 J
C2 Chrysenes ^(b)	NSL		ug/kg	4.5 U	4.3 U	440 U	210 U	230 J	200 U	33 J	49 U	410 J	300 J	400 J	910 J
C2 Fluorenes ^(b)	NSL		ug/kg	4.5 U	4.3 U	440 U	210 U	210 U	200 U	29 U	49 U	780 J	480 J	450 J	1200 J
C2-Fluoranthenes/Pyrenes	NSL	 	ug/kg	6 J	5.6 J	1000 J	210 U	900 J	480 J	93 J	130 J	910 J	700 J	890 J	2300 J
C2-Naphthalenes ^(b)	NSL		ug/kg	4.9 J	4.9 J	1600 J	1300 J	210 U	200 U	42 J	62 J	750 J	390 J	630 J	2200 J
C2-Phenanthrenes/Anthracenes ^(b)	NSL		ug/kg	11 J	15 J	1300 J	210 U	520 J	370 J	71 J	93 J	2600 J	1800 J	2100 J	5500 J
C3 Chrysenes ^(b)	NSL		ug/kg	4.5 U	4.3 U	440 U	210 U	210 U	200 U	29 U	49 U	270 J	210 J	260 J	480 J
C3 Fluorenes ^(b)	NSL		ug/kg	4.5 U	4.3 U	440 U	210 U	210 U	200 U	29 U	49 U	1200 J	840 J	880 J	1700 J
C3-Fluoranthenes/Pyrenes C3-Naphthalenes ^(b)	NSL NSL	 	ug/kg	4.5 U	4.3 J	440 U	210 U	310 J	200 U	35 J	49 U	800 J	580 J	720 J	1700 J
	NSL		ug/kg	11 J	14 J	1600 J	380 J	280 J	200 U	73 J	76 J	2600 J	1200 J	1300 J	3900 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL		ug/kg	10 J	8.7 J	620 J	210 U	210 U	230 J	50 J	50 J	2800 J	2000 J	2300 J	6500 J
C4 Chrysenes ^(b) C4-Naphthalenes ^(b)	NSL		ug/kg ug/kg	4.5 U 20 J	4.3 U 22 J	440 U 870 J	210 U 210 U	210 U	200 U 200 U	29 U	49 U 71 J	120 U 3300 J	110 U 1700 J	110 U 1600 J	190 U 3800 J
C4-Naphthalenes C4-Phenanthrenes/Anthracenes (b)	NSL		ug/kg	7.1 J	6.4 J	440 U	210 U	210 U 210 U	200 U	110 J 30 J	49 U	2100 J	1700 J	1800 J	4800 J
C4-Phenanthrenes/Anthracenes Chrysene ^{(a)(b)}	166		ug/kg	3.2 J	3.2 J	2600	210 0	970 J-	820	160 J-	310	920	780	770	1400
Dibenzo(a,h)anthracene ^{(a)(b)}	33		ug/kg	4.5 U	4.3 U	440	40 J	180 J	140 J	30	54	140	120	110	190
Fluoranthene ^{(a)(b)}	423		ug/kg	1.8 J	1.8 J	6400	660	1900	1900	320	710	1700	1500	1300	2200
Fluorene ^{(a)(b)}	77		ug/kg	0.89 J	1.6 J	840	990	92 J	180 J	17 J	58	120	97 J	93 J	170 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200		ug/kg	4.5 U	4.3 U	1100	110 J	270 J-	370	60 J-	160	360	320	290	490
Naphthalene ^{(a)(b)}	176		ug/kg	1.4 J	0.51 J	450	570	210 U	55 J	4.6 J	7.1 J	31 J	36 J	44 J	84 J
Perylene ^(b)	NSL		ug/kg	17	9.6	450	45 J	51 J	160 J	12 J	68	160	140	120	190
Phenanthrene ^{(a)(b)}	204		ug/kg	2.5 J	3.6 J	1900	2200	1000	1700	130	510	980	780	740	1300
Pyrene ^{(a)(b)}	195	 	ug/kg	2.3 J	2.4 J	5200	530	1200 J-	1600	170 J-	540	1200	1100	1000	1900
Total PAH17 ND=1/2RL	1,610		ug/kg ug/kg	32.28	32.96	30426	7685	9119	10179	1443.9	3636.6	8475	7425	6904	12100
Total PAH34 ND=1/2RL	1,610		ug/kg	145.41	144.45	46216	11465	14175	14253	2282.7	4948.6	29106	20742	21821	50915
NOTES:	1,010	22,000	~5/ N5		21	10220	11100		11200		13 1010	27200			00720

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value **Bolded and Shaded detected values exceed PEC screening value** Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

Harbortown Upstream Area Characterization

(a) Analytes inleuded in Total 17 PAH calculations

(b) Analytes inleuded in Total 34 PAH calculations

TABLE 3-4 SEDIMENT RESULTS FOR PAHS, HT

	TABLE 3-4 SEDIMENT RESULTS FOR PAHS, HT														
		Loc	cation ID:	HT18-31	HT18-31	HT18-31	HT18-31	HT18-31	HT18-32	HT18-32	HT18-32	HT18-32	HT18-32	HT18-32	HT18-32
		Samj	ple Name:	HT18-31-SURF	HT18-31-0010	HT18-31-1025	HT18-31-2555	HT18-31-5565	HT18-32-SURF	HT18-32-SURF-FD	HT18-32-0010	HT18-32-0010-FD	HT18-32-1030	HT18-32-3050	HT18-32-5070
			nple Date:	10/23/2018	10/25/2018	10/25/2018	10/25/2018	10/25/2018	10/23/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018
		Depth Int	` _	0-0.5	0-1.3	1.3-2.6	2.6-5.7	5.7-6.6	0-0.5	0-0.5	0-1	0-1	1-3	3-5	5-7
Analyte	TEC	PEC	Unit	20 Y	24.7	25.11	2011	2011	1.7				107	4 6 7	101
1-Methylnaphthalene	NSL	NSL	ug/kg	2.8 J	3.1 J-	35 U	3.9 U	3.8 U	1.5 J	4.4 J	5.8 J	5.3 J	1.9 J	1.6 J	1.8 J
2-Methylnaphthalene ^(a)	20.2	NSL	ug/kg	1.9 J	3.3 J-	35 U	3.9 U	3.8 U	1.2 J	2.8 J	6.4 J	5.9 J	1.4 J	1.2 J	1.3 J
Acenaphthene ^{(a)(b)}	6.71	NSL	ug/kg	9 U	1.5 J-	35 U	3.9 U	3.8 U	1.1 J	2.3 J	4 J	3.4 J	0.6 J	0.44 J	4.6 U
Acenaphthylene ^{(a)(b)}	5.87	NSL	ug/kg	1 J-	1.3 J-	35 U	3.9 U	3.8 U	0.92 J-	3 J-	4.1 J	3.5 J	4.4 U	4.5 U	4.6 U
Anthracene ^{(a)(b)}	57.2	845	ug/kg	9 UJ	2.4 J-	35 U	3.9 U	3.8 U	6.8 UJ	2.4 J-	7.1 J	5.9 J	4.4 U	4.5 U	4.6 U
Benzo(a)anthracene ^{(a)(b)}	108	1,050	ug/kg	7.9 J-	14 J-	35 U	3.9 U	3.8 U	5.7 J-	20 J-	43	38	0.99 J	0.62 J	0.73 J
Benzo(a)pyrene ^{(a)(b)}	150	1,450	ug/kg	6.7 J	13 J-	35 U	3.9 U	3.8 U	2.5 J	10	38	35	0.85 J	4.5 U	4.6 U
Benzo(b)fluoranthene(a)(b)	10,400	NSL	ug/kg	17	28 J-	35 U	3.9 U	1 J	9	32	54	51	3.6 J	2.3 J	2.7 J
Benzo(e)pyrene ^(b)	150	1,450	ug/kg	5.2 J	21 J-	35 U	3.9 U	0.87 J	2.8 J	8.5	42	39	3.2 J	1.9 J	2.2 J
Benzo(g,h,i)perylene ^{(a)(b)}	170	NSL	ug/kg	1.9 J-	19 J-	35 U	3.9 U	3.8 U	6.8 UJ	1.7 J-	31	29	4.2 J	2.4 J	2.9 J
Benzo(k)fluoranthene(a)(b)	240	NSL	ug/kg	11	22 J-	35 U	3.9 U	3.8 U	7	21	43	39	4.4 U	4.5 U	4.6 U
C1 Chrysenes ^(b)	NSL	NSL	ug/kg	9 U	14 J-	35 U	3.9 U	3.8 U	6.8 U	15 J	37 J	39 J	6.7 J	4.5 U	4.7 J
C1 Fluorenes ^(b)	NSL	NSL	ug/kg	9 U	5.7 UJ	35 U	3.9 U	3.8 U	6.8 U	6.7 U	11 J	9.9 J	4.4 U	4.5 U	4.6 U
C1-Fluoranthenes/Pyrenes ^(b)	NSL	NSL	ug/kg	13 J	25 J-	35 U	3.9 U	3.8 U	9.5 J	32 J	81 J	78 J	11 J	7.7 J	8.9 J
C1-Naphthalenes ^(b)	NSL	NSL	ug/kg	9 U	5.7 UJ	35 U	3.9 U	3.8 U	6.8 U	6.7 U	8.2 J	9.3 U	4.4 U	4.5 U	4.6 U
C1-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	10 J	21 J-	35 U	3.9 U	3.8 U	6.9 J	24 J	53 J	51 J	9.7 J	7.5 J	12 J
C2 Chrysenes ^(b)	NSL	NSL	ug/kg	9 U	9.2 J-	35 U	3.9 U	3.8 U	6.8 U	12 J	25 J	27 J	6.5 J	4.5 U	4.6 U
C2 Fluorenes ^(b)	NSL	NSL	ug/kg	9 U	8.5 J-	35 U	3.9 U	3.8 U	6.8 U	12 J	17 J	19 J	4.4 U	4.5 U	4.6 U
C2-Fluoranthenes/Pyrenes	NSL	NSL	ug/kg	10 J	19 J-	35 U	3.9 U	3.8 U	7.8 J	24 J	59 J	61 J	11 J	7.7 J	8.5 J
C2-Naphthalenes ^(b)	NSL	NSL	ug/kg	11 J	18 J-	35 U	3.9 U	3.8 U	7.7 J	22 J	29 J	28 J	8.1 J	6.6 J	7.5 J
C2-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	13 J	29 J-	35 U	3.9 U	3.8 U	10 J	34 J	80 J	80 J	17 J	16 J	19 J
C3 Chrysenes ^(b)	NSL	NSL	ug/kg	9 U	6.1 J-	35 U	3.9 U	3.8 U	6.8 U	8.3 J	14 J	15 J	4.4 U	4.5 U	4.6 U
C3 Fluorenes ^(b)	NSL	NSL	ug/kg	9 U	15 J-	35 U	3.9 U	3.8 U	6.8 U	12 J	32 J	33 J	6.9 J	4.5 J	5.5 J
C3-Fluoranthenes/Pyrenes	NSL NSL	NSL NSL	ug/kg	9 U	12 J-	35 U	3.9 U	3.8 U	6.8 U	14 J	39 J	39 J	8 J	6 J	6.6 J
C3-Naphthalenes ^(b)		NSL	ug/kg	20 J	37 J-	35 U	3.9 U	3.8 U	14 J	42 J	54 J	52 J	21 J	15 J	18 J
C3-Phenanthrenes/Anthracenes ^(b)	NSL NSL	NSL	ug/kg	11 J	23 J-	35 U	3.9 U	3.8 U	8.5 J	30 J	79 J	82 J	20 J	12 J	14 J
C4 Chrysenes ^(b)	NSL	NSL	ug/kg	9 U	5.7 UJ	35 U	3.9 U	3.8 U	6.8 U	6.7 U	7.5 U	9.3 U	4.4 U	4.5 U	4.6 U
C4-Naphthalenes ^(b) C4-Phenanthrenes/Anthracenes ^(b)	NSL	NSL	ug/kg	33 J 9 U	47 J-	35 U	3.9 U	3.8 U	18 J	70 J	73 J	71 J	38 J	25 J	28 J
Chrysene ^{(a)(b)}	166	1,290	ug/kg ug/kg	13 J-	17 J- 29 J-	35 U 35 U	3.9 U 3.9 U	3.8 U 1 J	6.9 J 8 J-	20 J 27 J-	60 J 61	64 J 55	13 J 5.8	8.7 J 3.9 J	9.9 J 4.9
Dibenzo(a,h)anthracene ^{(a)(b)}	33	NSL	ug/kg ug/kg	2.5 J	4.6 J-	35 U	3.9 U	3.8 U	1.8 J	5.4 J	10	9.7	0.52 J	4.5 U	4.6 U
Fluoranthene (a)(b)	423	2,230	ug/kg ug/kg	2.5 3	52 J-	35 U	3.9 U	3.8 U	1.6 J	54 5	110	95	3.3 J	2.5 J	
Fluorene ^{(a)(b)}	77	536	ug/kg ug/kg	1.9 J	3.3 J-	35 U	3.9 U	3.8 U	1.5 J	5.4 J	7.5	7.1 J	3.3 J 1.1 J	0.65 J	4 J 1.2 J
Indeno(1,2,3-cd)pyrene ^{(a)(b)}	200	NSL	ug/kg ug/kg	5.2 J-	3.5 J-	35 U	3.9 U	3.8 U	3 J-	9.7 J-	27	25	1.4 J	0.61 J	0.78 J
Naphthalene ^{(a)(b)}	176	561	ug/kg ug/kg	5.2 J	2.3 J-	35 U	3.9 U	3.8 U	0.76 J	9.7 J-	6.8 J	4.9 J	1.4 J 1.7 J	1.4 J	1.4 J
Perylene ^(b)	NSL	NSL	ug/kg ug/kg	1.2 J 1.8 J	2.3 J-	420	12	2.4 J	1.4 J	4.5 J	37	32	10	6.4	5.7
Phenanthrene ^{(a)(b)}	204	1,170	ug/kg ug/kg	1.8 J	22 J-	35 U	3.9 U	0.36 J	5.4 J	22	48	41	2.7 J	2.3 J	4.8
Pyrene ^{(a)(b)}	195	1,520	ug/kg ug/kg	13 J-	22 J- 35 J-	35 U	3.9 U	0.56 J 0.9 J	7.9 J-	27 J-	95	85	4.2 J	3.1 J	4.8 4 J
Total PAH17 ND=1/2RL	1,610	22,800	ug/kg ug/kg	127.2	267.7	297.5	33.15	27.96	77.58	247.4	595.9	533.4	38.96	32.67	42.51
Total PAH14 ND=1/2RL	1,610	22,800	ug/kg ug/kg	283.8	576.75	997.5	76.35	59.73	189.28	600.95	1325.45	1256.7	219.66	158.52	190.41
NOTES:	1,010	22,000	ug/Kg	200.0	370.73	77710	70.00	37.10	107,20	300.73	IOMUITU	12001	217,00	100,02	170171

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value
Bolded and Shaded detected values exceed 2XPEC screening value
Bolded and Shaded detected values exceed PEC screening value
Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

ug/kg = Microgram per kilogram

ND = Non-detect

NSL = No Screening Level

PAH = Polycyclic aromatic hydrocarbon

RL = Reporting limit

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

B = Compound was found in the blank and sample

D = Sample was analyzed at a higher dilution factor

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low

U = Indicates the analyte was analyzed but not detected

*TEC value based on USEPA Region 5 RCRA Ecological Screening Value

(EPA 2003)

(a) Analytes inleuded in Total 17 PAH calculations(b) Analytes inleuded in Total 34 PAH calculations

		Location ID:			HT18-01	HT18-01	HT18-01	HT18-01	HT18-01	HT18-01
			Sample Name:	HT18-01-SURF	HT18-01-SURF-FD	HT18-01-0010	HT18-01-1030	HT18-01-3050	HT18-01-5070	HT18-01-5070-FD
			Sample Date:	10/29/2018	10/29/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018
		Dept	h Interval (ft):	0-0.5	0-0.5	0-1	1-3	3-5	5-7	5-7
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	10.1	8.9	6.4	6.1	6.2	4.7	5.3
Barium	NSL	NSL	mg/kg	74.5	66.3	43.6	47.1	46.9	35.6	45.4
Cadmium	0.99	4.98	mg/kg	1.4 U	0.96 U	0.58 J	1	1.4	0.33 J	0.44 J
Chromium	43.4	111	mg/kg	26.3	24.4	17.6	22.2	25.7	11.8	15.4
Copper	31.6	149	mg/kg	29.7	31	32.4	26.5	28.9	17.3	18.3
Iron	20000	40000	mg/kg	22100	20900	15400	15200	16100	12000	15400
Lead	35.8	128	mg/kg	25.4	24.1	29.7	55	49	29.7	31
Mercury	0.18	1.06	mg/kg	0.057 J	0.049 J	0.056 J	0.11 J	0.11 J	0.12 J	0.066 J
Nickel	22.7	48.6	mg/kg	29.7	28.3	22.8	27.5	26.8	16	21.1
Selenium	NSL	NSL	mg/kg	9.5 U	1.1 J	4.8 U	4.3 U	0.39 J	0.43 J	3.8 U
Silver ^(a)	1.6	2.2	mg/kg	2.7 U	1.9 U	1.4 U	0.09 J	0.11 J	1 U	1.1 U
Zinc	121	459	mg/kg	119	108	85.8	112	101	61.6	70
Total organic carbon	NSL	NSL	mg/kg	29900 J	29300 J	21400	14800 J	4030	113000 J	14800 J

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased low.
- J+ = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-01	HT18-02	HT18-02	HT18-02	HT18-02	HT18-02	HT18-02
		5	Sample Name:	HT18-01-7085	HT18-02-SURF	HT18-02-0010	HT18-02-1030	HT18-02-3060	HT18-02-6080	HT18-02-8090
			Sample Date:	10/30/2018	10/29/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018
		Deptl	h Interval (ft):	7-8.6	0-0.5	0-1	1-3	3-6.1	6.1-7.8	7.8-9.2
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	3	8	7.3	4.9	6.9	8.3	3
Barium	NSL	NSL	mg/kg	23.2	66.9	58	33.4	59.6	72.9	20 J
Cadmium	0.99	4.98	mg/kg	0.17 J	1.1 U	0.73 J	0.31 J	0.33 J	0.44 J	0.21 J
Chromium	43.4	111	mg/kg	7.9	22.6	23.1	11.3	13.8	17.7	7
Copper	31.6	149	mg/kg	9.2	30	27.8	15	35.6	69.9	5.9
Iron	20000	40000	mg/kg	7400	19400	19700	11200	13700	17000	7150
Lead	35.8	128	mg/kg	13.7 J	24.3	28.7	33.4	68.2	85.4	11.7
Mercury	0.18	1.06	mg/kg	0.12 U	0.064 J	0.062 J	0.069 J	0.23 J	0.2 J	0.02 J
Nickel	22.7	48.6	mg/kg	10	26.1	28.8	14.1	17.8	21.1	8.8
Selenium	NSL	NSL	mg/kg	3.2 U	7.5 U	1.1 J	0.61 J	4 U	3.8 U	3.6 U
Silver ^(a)	1.6	2.2	mg/kg	0.92 U	2.2 U	1.7 U	1 U	1.1 U	1.1 U	1 U
Zinc	121	459	mg/kg	29.8	100	104	57.8	81.6	121	26.6
Total organic carbon	NSL	NSL	mg/kg	12600 J	23400 J	26300	8890	9210	27600	6460 J

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-03	HT18-03	HT18-03	HT18-03	HT18-03	HT18-03	HT18-04
		5	Sample Name:	HT18-03-SURF	HT18-03-0010	HT18-03-1030	HT18-03-1030-FD	HT18-03-3045	HT18-03-4560	HT18-04-SURF
			Sample Date:	10/29/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/30/2018	10/29/2018
		Dept	h Interval (ft):	0-0.5	0-1	1-3	1-3	3-4.6	4.6-6	0-0.5
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	7.5	7.8	10.9	11.3	11.6	9.9	5.3
Barium	NSL	NSL	mg/kg	132	162	360	355	421	64.6	40.3
Cadmium	0.99	4.98	mg/kg	6.1	4.9	18.1	18.1	25.1	0.21 J	0.8 U
Chromium	43.4	111	mg/kg	84.6	87.1	191	189	232	18.2	15.6
Copper	31.6	149	mg/kg	113	129	185	174	196	16.8	19.2
Iron	20000	40000	mg/kg	20000	22600	22100	23200	20500	18800	13100
Lead	35.8	128	mg/kg	113	173	437	502	500	10.9	15.4
Mercury	0.18	1.06	mg/kg	0.36	0.52 J	1.2 J	0.95 J	1.5 J	0.1 UJ	0.036 J
Nickel	22.7	48.6	mg/kg	58.8	52.6	87.6	89.8	101	25.9	17.9
Selenium	NSL	NSL	mg/kg	1.8 J	3.5 J	2.1 J	1.6 J	2.2 J	3.5 U	0.93 J
Silver ^(a)	1.6	2.2	mg/kg	0.72 J	2.3	4.8	3.7	3.9	0.99 U	1.6 U
Zinc	121	459	mg/kg	587	566	868	864	1010	46.3	70.9
Total organic carbon	NSL	NSL	mg/kg	53100 J	70900 J	64200 J	74500 J	67100 J	6470 J	17700 J

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-04	HT18-04	HT18-04	HT18-04	HT18-05	HT18-05	HT18-05
		5	Sample Name:	HT18-04-0005	HT18-04-0530	HT18-04-0530-FD	HT18-04-3040	HT18-05-SURF	HT18-05-0010	HT18-05-1030
			Sample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/30/2018	10/30/2018
		Deptl	h Interval (ft):	0-0.6	0.6-3.3	0.6-3.3	3.3-4.3	0-0.5	0-1	1-2.7
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	3	4.1	3.2	4.3	10.1	8.6	10.4
Barium	NSL	NSL	mg/kg	18.6 J	28.3	27.7	14.9 J	126	80.7	119
Cadmium	0.99	4.98	mg/kg	0.6 U	0.67 U	0.52 U	0.47 U	3.9	1.1 J	2.4
Chromium	43.4	111	mg/kg	7.8	10.3	10.7	6.8	53.7	32.9	49.7
Copper					7.7	8.4	3.5	89.1	44.9	72.6
Iron	20000	40000	mg/kg	7190	10500	10400	6110	22200	23400	26300
Lead	35.8	128	mg/kg	6.2	5.8	6	3.1	97.9	54.3	88.2
Mercury	0.18	1.06	mg/kg	0.13 U	0.13 U	0.12 U	0.12 U	0.19 J	0.089 J	0.22 J
Nickel	22.7	48.6	mg/kg	9.8	14.7	15.1	8	54.5	39.8	46.7
Selenium	NSL	NSL	mg/kg	4.2 U	4.7 U	3.6 U	3.3 U	1.4 J	1.2 J	1.2 J
Silver ^(a)	1.6	2.2	mg/kg	1.2 U	1.3 U	1 U	0.94 U	0.55 J	0.14 J	0.6 J
Zinc	121	459	mg/kg	31.5	30.9	29.9	14.6	358	175	298
Total organic carbon	NSL	NSL	mg/kg	6310	11400	7760	2860	41800 J	40800 J	58400 J

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-05	HT18-05	HT18-06	HT18-06	HT18-06	HT18-06	HT18-06
		5	Sample Name:	HT18-05-3050	HT18-05-5060	HT18-06-SURF	HT18-06-0010	HT18-06-1030	HT18-06-1030-FD	HT18-06-3060
			Sample Date:	10/30/2018	10/30/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
		Deptl	h Interval (ft):	2.7-5.1	5.1-5.9	0-0.5	0-1	1-3	1-3	3-6
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	9.6	7.9	9.3	9.6	10.3	10.5	11.1
Barium	NSL	NSL	mg/kg	311	195	92.6	89.1	109	97	172
Cadmium	0.99	4.98	mg/kg	8.3	1.6	1.3 U	1.2 U	1.6	1.8	10.6
Chromium	43.4	111	mg/kg	100	15.3	32.1	30.9	43.1	42	101
Copper	31.6	149	mg/kg	162	109	44.9	38.7	49.1	47.6	100
Iron	20000	40000	mg/kg	18000	9670	21800	25600	24700	25000	26000
Lead	35.8	128	mg/kg	461	327	41.8	35.8	49.1	51	108
Mercury	0.18	1.06	mg/kg	1.2 J	0.59 J	0.12 J	0.25 U	0.35	0.19 U	0.61
Nickel	22.7	48.6	mg/kg	61.5	16.4	35	40	42.3	43.7	63.4
Selenium	NSL	NSL	mg/kg	1.7 J	0.81 J	1.3 J	8.6 U	7.1 U	6.5 U	7.1 U
Silver ^(a)	1.6	2.2	mg/kg	1.8	0.4 J	0.18 J	2.5 U	0.45 J+	0.49 J+	2.9
Zinc	121	459	mg/kg	715	405	169	145	209	201	504
Total organic carbon	NSL	NSL	mg/kg	36200 J	24100 J	47600 J	22700	46200	32500	67100

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.

J+ = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

 $R=\mbox{The data}$ are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-06	HT18-06	HT18-06	HT18-07	HT18-07	HT18-07	HT18-07
		5	Sample Name:	HT18-06-6070	HT18-06-7080	HT18-06-8010	HT18-07-SURF	HT18-07-0020	HT18-07-2050	HT18-07-5070
			Sample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
		Deptl	h Interval (ft):	6-7.1	7.1-8.1	8.1-9.7	0-0.5	0-1.8	1.8-4.8	4.8-7
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	5	8.8	7.5	4.5	2.8	9.4	6.4
Barium	NSL	NSL	mg/kg	456	216	221	40.4	29.3	289	168
Cadmium	0.99	4.98	mg/kg	5.1	7.4	12	0.72	0.86	16.2	7.2
Chromium	43.4	111	mg/kg	39.4	108	117	18.3	13.1	126	76.3
Copper	31.6	149	mg/kg	72.9	76.8	82	23.6	13.9	124	62.3
Iron	20000	40000	mg/kg	8450	13100	15500	9050	5920	19400	14800
Lead	35.8	128	mg/kg	193	317	243	40.8	25.1	248	143
Mercury	0.18	1.06	mg/kg	0.96	0.44	0.55	0.071 J	0.054 J-	0.65	0.36
Nickel	22.7	48.6	mg/kg	33.8	78.9	58.6	15.3	12.4	55.2	38.3
Selenium	NSL	NSL	mg/kg	4.4 U	4 U	4.4 U	4.5 U	3.6 U	4.7 U	4.9 U
Silver ^(a)	1.6	2.2	mg/kg	1.1 J+	1.7	1.7	0.094 J	0.11 J+	1.8	2.1
Zinc	121	459	mg/kg	383	584	433	76.7	70.8	543	282
Total organic carbon	NSL	NSL	mg/kg	16100	18100	42200	19200 J	10600	59400	34100

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.

J+ = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

 $R=\mbox{The data}$ are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-07	HT18-08	HT18-08	HT18-08	HT18-08	HT18-08	HT18-08
		;	Sample Name:	HT18-07-7090	HT18-08-SURF	HT18-08-0010	HT18-08-1020	HT18-08-1020-FD	HT18-08-2045	HT18-08-4565
			Sample Date:	10/29/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018
		Dept	h Interval (ft):	7-8.9	0-0.5	0-1	1-2.3	1-2.3	2.3-4.6	4.6-6.5
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	8.4	7.6	10.3	10	9.4	34.1	3.7
Barium	NSL	NSL	mg/kg	294	64.7	79.5	79.8	71	205	30.4
Cadmium	0.99	4.98	mg/kg	13.2	1.4	1.3 U	1.9	1.4	1.3	0.58 U
Chromium	43.4	111	mg/kg	134	29.6	31.9	31.8	29.7	19.2	10.8
Copper	31.6	149	mg/kg	124	41.6	42.5	62.6	70.1	143	27.6
Iron	20000	40000	mg/kg	16400	21500	25600	18000	22100	12300	10100
Lead	35.8	128	mg/kg	233	37.5 J-	39.4	89.6	47.4	175	20.1
Mercury	0.18	1.06	mg/kg	0.46	0.093 J	0.12 J	0.2	0.24	1.3	0.22
Nickel	22.7	48.6	mg/kg	46.1	37	40.2	31.4	35.1	19.5	12.6
Selenium	NSL	NSL	mg/kg	4 U	1.2 J	1.6 J	1.1 J	4.3 J	2.4 J	4.1 U
Silver ^(a)	1.6	2.2	mg/kg	3.3	0.058 J	0.094 J+	0.97 J+	0.15 J+	0.21 J+	1.2 U
Zinc	121	459	mg/kg	659	158	169	196	180	287	67.7
Total organic carbon	NSL	NSL	mg/kg	46600	34500	35900	36000	35100	49400	33300

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.

J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

R =The data are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-08	HT18-09	HT18-09	HT18-09	HT18-09	HT18-09	HT18-09
		5	Sample Name:	HT18-08-6580	HT18-09-SURF	HT18-09-0010	HT18-09-1030	HT18-09-3050	HT18-09-3050-FD	HT18-09-5070
			Sample Date:	10/23/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018
		Deptl	h Interval (ft):	6.5-8	0-0.5	0-1	1-3	3-5	3-5	5-7
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	2.6	8.3	10.7	10.1	9.1	9.7	12
Barium	NSL	NSL	mg/kg	16.5 J	67.1	93.5	81.9	77	82.6	107
Cadmium	0.99	4.98	mg/kg	0.12 J	1.3 U	1.5	1.3	1.4	1.6	3
Chromium	43.4	111	mg/kg	7.5	27.5	35.9	33.3	34.4	36.4	53
Copper	31.6	149	mg/kg	4.8	34.7	46.2	39.9	42.4	44.4	54.6
Iron	20000	40000	mg/kg	6360	22300	28200	24400	22100	22900	28700
Lead	35.8	128	mg/kg	4.2 J	28 J-	36.4	37.4	45.3	47.4	62.9
Mercury	0.18	1.06	mg/kg	0.11 U	0.063 J	0.079 J	0.14 J	0.18	0.12 J	0.33
Nickel	22.7	48.6	mg/kg	8.8	32.1	42.9	39	37.4	38.6	53.5
Selenium	NSL	NSL	mg/kg	3.5 U	1.2 J	2.2 J	1.3 J	1.3 J	2 J	1.8 J
Silver ^(a)	1.6	2.2	mg/kg	1 U	0.13 J	2.8 U	0.18 J+	0.37 J+	0.36 J+	1.2 J+
Zinc	121	459	mg/kg	19.3	135	176	156	168	180	274
Total organic carbon	NSL	NSL	mg/kg	5120 J	41500	36200	29200	30000	27600	37600

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-09	HT18-10	HT18-10	HT18-11	HT18-11	HT18-11	HT18-11
		5	Sample Name:	HT18-09-7010	HT18-10-SURF	HT18-10-0010	HT18-11-SURF	HT18-11-0010	HT18-11-1030	HT18-11-3050
			Sample Date:	10/23/2018	10/22/2018	10/24/2018	10/22/2018	10/24/2018	10/24/2018	10/24/2018
		Deptl	h Interval (ft):	7-9.7	0-0.5	0-1.1	0-0.5	0-1	1-3	3-5
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	8.4	2.5	2.1	8.8	8.8	9.1	5.3
Barium	NSL	NSL	mg/kg	99.6	11.7 J	11.8 J	74.7	70.6	71.4	44.3
Cadmium	0.99	4.98	mg/kg	5	0.53 U	0.2 J	0.96	0.94 J	1.3	1.1
Chromium	43.4	111	mg/kg	51.8	11.7	6.1	30.4	31	32.3	18
Copper	31.6	149	mg/kg	64.5	5	4.6	41.2	39.3	45.6	21
Iron	20000	40000	mg/kg	19500	6750	4260	23100	25700	21800	11300
Lead	35.8	128	mg/kg	125 J	22.9 J-	11.3	49.4 J-	36.5	45.4	26.1
Mercury	0.18	1.06	mg/kg	0.67	0.024 J	0.11 U	0.16 J	0.097 J-	0.21	0.16 U
Nickel	22.7	48.6	mg/kg	48.7	7.5	5.6	36.3	36.2	34.3	17.6
Selenium	NSL	NSL	mg/kg	0.8 J	3.7 U	3.3 U	1.3 J	1.1 J	6.7 U	5 U
Silver ^(a)	1.6	2.2	mg/kg	0.89 J	1.1 U	0.93 U	0.095 J	0.11 J	0.21 J	0.088 J
Zinc	121	459	mg/kg	273	26.6	18.8	150	149	167	79
Total organic carbon	NSL	NSL	mg/kg	42400 J	2340	4000	49500	32300 J	32900	16300

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-11	HT18-11	HT18-12	HT18-12	HT18-12	HT18-12	HT18-12
		5	Sample Name:	HT18-11-5070	HT18-11-7010	HT18-12-SURF	HT18-12-SURF-FD	HT18-12-0010	HT18-12-1030	HT18-12-3050
			Sample Date:	10/24/2018	10/24/2018	10/22/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018
		Deptl	h Interval (ft):	5-7	7-9.4	0-0.5	0-0.5	0-1	1-3	3-5
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	2.7	2.4	6.5	7.8	9.6	11.1	6.5
Barium	NSL	NSL	mg/kg	20	16.2 J	66.7	72.1	110	169	106
Cadmium	0.99	4.98	mg/kg	0.16 J	0.15 J	1.5	1.5	4.4	9.1	1.2
Chromium	43.4	111	mg/kg	9.3	8.3	30.2	32.7	50.8	82.9	15.7
Copper	31.6	149	mg/kg	6.3	4.7	73.4	79.2	101	156	89.5
Iron	20000	40000	mg/kg	7830	6720	18100	20200	21800	20100	13800
Lead	35.8	128	mg/kg	4.7	4.5 J	73.1 J-	76.7 J-	200	306	176
Mercury	0.18	1.06	mg/kg	0.12 U	0.12 U	0.18 J	0.19 J	0.48	0.8	0.52
Nickel	22.7	48.6	mg/kg	10.5	9.2	29.7	34.1	54	51.4	23
Selenium	NSL	NSL	mg/kg	3.3 U	3.6 U	0.92 J	1.5 J	1.5 J	2.6 J	0.57 J
Silver ^(a)	1.6	2.2	mg/kg	0.94 U	1 U	0.23 J	0.19 J	0.66 J+	1.1 J	0.12 J+
Zinc	121	459	mg/kg	26.5	22	209	227	428	535	391
Total organic carbon	NSL	NSL	mg/kg	10200	5590 J	27500	27400	31700	41700	17600

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-12	HT18-12	HT18-13	HT18-13	HT18-13	HT18-13	HT18-13
		5	Sample Name:	HT18-12-5070	HT18-12-7010	HT18-13-SURF	HT18-13-0010	HT18-13-1030	HT18-13-3050	HT18-13-5060
			Sample Date:	10/23/2018	10/23/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
		Deptl	h Interval (ft):	5-7	7-9.7	0-0.5	0-1	1-3	3-5	5-6.3
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	3.4	2.6	9.3	10.2	12	9.2	9.3
Barium	NSL	NSL	mg/kg	35.3	23.3	82	224	230	127	91.6
Cadmium	0.99	4.98	mg/kg	0.48 U	0.17 J	1.2 U	7	16.8	10.2	1.4
Chromium	43.4	111	mg/kg	12.1	11	32.5	50.7	108	55.1	23.7
Copper	31.6	149	mg/kg	10.2	7	39.6	67.6	100	96.8	53.8
Iron	20000	40000	mg/kg	10500	9490	24700	19900	21400	20100	18300
Lead	35.8	128	mg/kg	8.2	6.5 J	30.8	103	191	139	81.4
Mercury	0.18	1.06	mg/kg	0.011 J	0.12 U	0.1 J	0.19 U	0.54	0.44	0.18
Nickel	22.7	48.6	mg/kg	15.1	13.3	44.1	38.2	42.2	36.5	26.9
Selenium	NSL	NSL	mg/kg	3.4 U	3 U	8.6 U	5.4 U	6 U	4.4 U	5 U
Silver ^(a)	1.6	2.2	mg/kg	0.96 U	0.87 U	2.5 U	0.47 J+	1.3 J+	0.49 J+	1.4 U
Zinc	121	459	mg/kg	38.4	31.3	132	233	465	353	194
Total organic carbon	NSL	NSL	mg/kg	17300	7970 J	33200 J	38900	40700 J	20900 J	16300 J

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-13	HT18-13	HT18-13	HT18-14	HT18-14	HT18-14	HT18-15
		5	Sample Name:	HT18-13-6090	HT18-13-6090-FD	HT18-13-9010	HT18-14-SURF	HT18-14-0010	HT18-14-1020	HT18-15-SURF
			Sample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/30/2018	10/30/2018	10/24/2018
		Deptl	h Interval (ft):	6.3-8.8	6.3-8.8	8.8-10	0-0.5	0-1.3	1.3-1.9	0-0.5
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	8.1	8.4	2.5	3.4	6.2	5.4	3.4
Barium	NSL	NSL	mg/kg	66.4	65.8	25	24.2	133	52.3	32.6
Cadmium	0.99	4.98	mg/kg	0.79	0.68	0.47 U	0.57 U	2.6	0.82	0.7 U
Chromium	43.4	111	mg/kg	19.9	20.7	7.3	8.3	28.4	15.7	10.6
Copper	31.6	149	mg/kg	52.6	50.8	4.8	27.2	40.7	20.4	11.1
Iron	20000	40000	mg/kg	17400	22000	6810	6910	7800	15600	7980
Lead	35.8	128	mg/kg	52.6	59.4	6.2	17.4	87.1	93.5	13.6 J
Mercury	0.18	1.06	mg/kg	0.082 J	0.17	0.12 U	0.017 J	0.13 J	0.11 J	0.055 J
Nickel	22.7	48.6	mg/kg	25.2	23.6	9	9.7	15.4	17.6	11.2
Selenium	NSL	NSL	mg/kg	0.72 J	0.6 J	3.3 U	4 U	0.72 J	3.7 U	4.9 U
Silver ^(a)	1.6	2.2	mg/kg	0.12 J	0.11 J	0.94 U	1.1 U	0.14 J	1.1 U	1.4 U
Zinc	121	459	mg/kg	157	153	26.7	73.2	121	78.2	68.6
Total organic carbon	NSL	NSL	mg/kg	10600 J	8110 J	5460 J	17300 J	21300 J	12800 J	13300

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-15	HT18-15	HT18-15	HT18-15	HT18-16	HT18-17	HT18-17
		5	Sample Name:	HT18-15-0005	HT18-15-0530	HT18-15-3050	HT18-15-3050-FD	HT18-16-SURF	HT18-17-SURF	HT18-17-0010
			Sample Date:	10/25/2018	10/25/2018	10/25/2018	10/25/2018	10/24/2018	10/24/2018	10/25/2018
		Deptl	h Interval (ft):	0-0.5	0.5-3	3-5	3-5	0-0.5	0-0.5	0-1
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	4.1	9.8	7.6	7.6	5.2	3.5	6.8
Barium	NSL	NSL	mg/kg	59.5	100	59.3	53.3	89.5	20.8	83.4
Cadmium	0.99	4.98	mg/kg	0.14 J	0.16 J	0.22 J	0.2 J	1.2	0.48 U	0.14 J
Chromium	43.4	111	mg/kg	8	18.4	21.2	20.3	39.6	11.8	16.6
Copper	31.6	149	mg/kg	9.3	18.1	19.5	19.2	44.3	9.8	15.9
Iron	20000	40000	mg/kg	7630	19200	20500	20600	15700	10200	18200
Lead	35.8	128	mg/kg	10.5	10.2	10.8	9.7	288 J	22.2 J	8.8
Mercury	0.18	1.06	mg/kg	0.013 J-	0.0091 J-	0.12 R	0.0092 J-	0.11 J	0.13 U	0.11 R
Nickel	22.7	48.6	mg/kg	9.2	25.5	26	26	43.8	12.4	22.8
Selenium	NSL	NSL	mg/kg	3.1 U	0.34 J	0.71 J	0.5 J	0.97 J	3.4 U	0.56 J
Silver ^(a)	1.6	2.2	mg/kg	0.89 U	0.84 U	1.2 U	1.2 U	0.16 J	0.96 U	0.91 U
Zinc	121	459	mg/kg	34.5	47.3	54.9	52	139	37.1	47.6
Total organic carbon	NSL	NSL	mg/kg	5690	9790	13400	9460	33600	6220	7280 J+

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-17	HT18-17	HT18-18	HT18-18	HT18-18	HT18-18	HT18-18
		5	Sample Name:	HT18-17-1030	HT18-17-3050	HT18-18-SURF	HT18-18-0020	HT18-18-2030	HT18-18-3035	HT18-18-3555
			Sample Date:	10/25/2018	10/25/2018	10/24/2018	10/25/2018	10/25/2018	10/25/2018	10/25/2018
		Deptl	h Interval (ft):	1-3	3-4.7	0-0.5	0-1.9	1.9-2.8	2.8-3.6	3.6-5.4
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	7.4	9.3	6	9.8	7.6	2.8	9.3
Barium	NSL	NSL	mg/kg	32.5	79.3	85.2	268	47.7	17.5 J	47.8
Cadmium	0.99	4.98	mg/kg	0.21 J	0.14 J	1.9	14.4	0.23 J	0.13 J	1.5
Chromium	43.4	111	mg/kg	18.6	16.2	30.5	36.7	16.4	8.1	19.8
Copper	31.6	149	mg/kg	18.1	18.2	56.6	302	19.8	6.1	19.8
Iron	20000	40000	mg/kg	19600	19300	17900	13000	19100	6840	21200
Lead	35.8	128	mg/kg	10.6	9.6	89.1 J	623 J	9.5 J	8.5 J	9.8
Mercury	0.18	1.06	mg/kg	0.12 R	0.11 R	0.22 U	4.8 J-	0.065 J-	0.012 J-	0.1 R
Nickel	22.7	48.6	mg/kg	25.1	22.2	27.2	42.7	25.4	7.7	26
Selenium	NSL	NSL	mg/kg	0.5 J	0.48 J	0.92 J	1.7 J	0.44 J	3.8 U	0.49 J
Silver ^(a)	1.6	2.2	mg/kg	1 U	0.98 U	0.3 J	2.6	1 U	1.1 U	1.2 U
Zinc	121	459	mg/kg	51.3	45	180	772	55.6	19.4	314
Total organic carbon	NSL	NSL	mg/kg	8010 J+	7570 J+	31100	58100	14300	8730	6120

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-19	HT18-19	HT18-19	HT18-19	HT18-20	HT18-20	HT18-20
		5	Sample Name:	HT18-19-SURF	HT18-19-0010	HT18-19-1020	HT18-19-2030	HT18-20-SURF	HT18-20-0010	HT18-20-1020
			Sample Date:	10/24/2018	10/25/2018	10/25/2018	10/25/2018	10/24/2018	10/25/2018	10/25/2018
		Dept	h Interval (ft):	0-0.5	0-1	1-2.3	2.3-2.8	0-0.5	0-0.8	0.8-1.8
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	2.9	11.4	2.7	3	4.1	5.5	3.8
Barium	NSL	NSL	mg/kg	33.6	240	28.4	19.8 J	61	44.8	61.8
Cadmium	0.99	4.98	mg/kg	0.71	10.8	0.38 J	0.11 J	0.88	3.7	0.21 J
Chromium	43.4	111	mg/kg	18.5	35.1	7.7	6.2	22.3	27.6	21.4
Copper	31.6	149	mg/kg	39	274	45.9	3.1	36.5	125	11.2
Iron	20000	40000	mg/kg	8550	16100	5950	5870	12900	7690	21100
Lead	35.8	128	mg/kg	65.4 J	624	74	4.5	50.9 J	157	12.8
Mercury	0.18	1.06	mg/kg	0.19	3.5 J-	0.84 J-	0.11 R	0.12 J	0.19 J-	0.0098 J-
Nickel	22.7	48.6	mg/kg	12.3	36.7	7.6	5.9	18.7	13	27.2
Selenium	NSL	NSL	mg/kg	3.8 U	1.6 J	3.2 U	0.53 J	5.3 U	0.43 J	0.91 J
Silver ^(a)	1.6	2.2	mg/kg	0.091 J	1.9	0.13 J	1.1 U	1.5 U	0.13 J	1 U
Zinc	121	459	mg/kg	77.3	769	95.3	14.2	108	91.2	60.9
Total organic carbon	NSL	NSL	mg/kg	8060	59800	7680	4720	16700	5310 J	7000

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-20	HT18-20	HT18-21	HT18-21	HT18-23	HT18-23	HT18-23
		5	Sample Name:	HT18-20-2030	HT18-20-2030-FD	HT18-21-SURF	HT18-21-0015	HT18-23-SURF	HT18-23-0010	HT18-23-1030
			Sample Date:	10/25/2018	10/25/2018	10/24/2018	10/25/2018	10/23/2018	10/24/2018	10/24/2018
		Deptl	ı Interval (ft):	1.8-2.8	1.8-2.8	0-0.5	0-1.7	0-0.5	0-1	1-3
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	3.6	3.4	2.8	5.1	8	3.1	2.5
Barium	NSL	NSL	mg/kg	21.4 J	21.2	30.4	102	82.5	20.4 J	11.3 J
Cadmium	0.99	4.98	mg/kg	0.14 J	0.16 J	0.56 U	0.47	1.3 U	0.42 J	0.12 J
Chromium	43.4	111	mg/kg	8.6	8.8	9.1	96.8	29.5	10.4	6.1
Copper	31.6	149	mg/kg	5.8	8.1	25.6	26.5	41.2	11.1	3.4
Iron	20000	40000	mg/kg	7520	8490	7080	21100	23900	7090	5990
Lead	35.8	128	mg/kg	10.4	8.2	15.7 J	143	41.4 J	18.8	3
Mercury	0.18	1.06	mg/kg	0.014 J-	0.022 J-	0.059 J	0.03 J-	0.29 U	0.13 U	0.11 U
Nickel	22.7	48.6	mg/kg	8.5	9.1	8.5	8.2	34.3	10.4	6.6
Selenium	NSL	NSL	mg/kg	3.9 U	3.6 U	3.9 U	4.5	9.2 U	4.5 U	3.9 U
Silver ^(a)	1.6	2.2	mg/kg	1.1 U	1 U	1.1 U	0.92	2.6 U	1.3 U	1.1 U
Zinc	121	459	mg/kg	24.1	22.6	37.4	46.7	146	39.8	14.9
Total organic carbon	NSL	NSL	mg/kg	9870	6290	22600	10800	33000	9430	4160

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equato the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased low.

J+ = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

R =The data are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-23	HT18-23	HT18-23	HT18-24	HT18-24	HT18-24	HT18-24
		5	Sample Name:	HT18-23-3050	HT18-23-5070	HT18-23-7010	HT18-24-SURF	HT18-24-0010	HT18-24-1025	HT18-24-2550
			Sample Date:	10/24/2018	10/24/2018	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018
		Deptl	h Interval (ft):	3-5	5-7	7-9.2	0-0.5	0-1	1-2.7	2.7-5
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	2.6	3.5	3.7	5.1	3	2.9	3.4
Barium	NSL	NSL	mg/kg	14.6 J	28.6	32.6	47.5	22.7	20 J	36.2
Cadmium	0.99	4.98	mg/kg	0.22 J	0.19 J	0.21 J	0.92 U	0.16 J	0.15 J	0.19 J
Chromium	43.4	111	mg/kg	7	10.8	12.2	19.8	7.8	8.4	12.8
Copper	31.6	149	mg/kg	4.5	8.1	9.4	51	6.7	5.7	10.1
Iron	20000	40000	mg/kg	6730	11700	13300	13300	7090	9370	12300
Lead	35.8	128	mg/kg	3.7	6.5	7.7 J	45.5 J	11	4.8	7.9
Mercury	0.18	1.06	mg/kg	0.11 U	0.12 U	0.12 U	1.4	0.045 J-	0.12 R	0.13 R
Nickel	22.7	48.6	mg/kg	8.3	14.5	16.8	19.1	9.3	10.4	16.9
Selenium	NSL	NSL	mg/kg	4 U	4.4 U	4.3 U	0.81 J	3.6 U	3.6 U	3.3 U
Silver ^(a)	1.6	2.2	mg/kg	1.1 U	1.3 U	1.2 U	1.8 U	1 U	1 U	0.95 U
Zinc	121	459	mg/kg	25.9	31.2	34.7	133	34.6	22.3	34.9
Total organic carbon	NSL	NSL	mg/kg	6350	11000	7600 J	26700	7370 J	6950 J	8400 J

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.

J+ = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

 $R=\mbox{The data}$ are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-24	HT18-24	HT18-24	HT18-25	HT18-25	HT18-25	HT18-25
		S	Sample Name:	HT18-24-5065	HT18-24-5065-FD	HT18-24-6575	HT18-25-SURF	HT18-25-0010	HT18-25-1030	HT18-25-3040
			Sample Date:	10/24/2018	10/24/2018	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018
		Deptl	n Interval (ft):	5-6.6	5-6.6	6.6-7.8	0-0.5	0-1	1-3	3-4.2
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	3.1	2.8	5.9	7.9	8.5	12.8	7.8
Barium	NSL	NSL	mg/kg	24	21.6	44.4	65.4	157	259	122
Cadmium	0.99	4.98	mg/kg	0.15 J	0.14 J	0.2 J	1.1 U	10.2	10.3	0.89
Chromium	43.4	111	mg/kg	9.1	8.3	16.7	26.6	76.3	42.6	18.9
Copper	31.6	149	mg/kg	5.5	4.8	17.3	35.7	73.9	217	94.9
Iron	20000	40000	mg/kg	8280	7600	19000	20300	17000	22000	15800
Lead	35.8	128	mg/kg	5.1	4.8	9.1 J	35.2 J	191	524	283
Mercury	0.18	1.06	mg/kg	0.0072 J-	0.005 J-	0.1 U	0.3	0.79 J-	3.4 J-	2.8 J-
Nickel	22.7	48.6	mg/kg	10.4	9.6	24.8	29.2	33.4	39.4	21.1
Selenium	NSL	NSL	mg/kg	3.5 U	3 U	3.1 U	7.7 U	1.3 J	0.94 J	0.72 J
Silver ^(a)	1.6	2.2	mg/kg	1 U	0.85 U	0.87 U	2.2 U	0.91 J	3	2.2
Zinc	121	459	mg/kg	23.4	22.6	48.6	137	326	837	425
Total organic carbon	NSL	NSL	mg/kg	7550 J	6720 J	6920 J	35600	34700 J	67200 J	49500 J

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.

J+ = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

R =The data are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-25	HT18-25	HT18-26	HT18-26	HT18-26	HT18-26	HT18-26
		5	Sample Name:	HT18-25-4070	HT18-25-7010	HT18-26-SURF	HT18-26-0010	HT18-26-1030	HT18-26-3050	HT18-26-3050-FD
			Sample Date:	10/24/2018	10/24/2018	10/23/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018
		Deptl	h Interval (ft):	4.2-7	7-9.5	0-0.5	0-1	1-3	3-5	3-5
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	3.3	3.3	4.2	2.8	2.6	3	3.2
Barium	NSL	NSL	mg/kg	20.9 J	21.4	39.1	21.9 J	13.8 J	20.5 J	21
Cadmium	0.99	4.98	mg/kg	0.15 J	0.14 J	1.8	0.18 J	0.14 J	0.15 J	0.18 J
Chromium	43.4	111	mg/kg	9.1	9.2	21.7	6.5	6.6	9.1	9.6
Copper	31.6	149	mg/kg	6.7	6.6	35.1	8.5	4.5	6.2	6.4
Iron	20000	40000	mg/kg	10100	9660	11200	6230	7080	9310	9050
Lead	35.8	128	mg/kg	5.8	5.3 J	113 J	67.7	4	5	4.7
Mercury	0.18	1.06	mg/kg	0.12 R	0.12 U	0.16 U	0.11 U	0.11 U	0.12 U	0.12 U
Nickel	22.7	48.6	mg/kg	11.7	11.2	19.8	7.5	7.6	11.8	11.7
Selenium	NSL	NSL	mg/kg	4 U	3.6 U	0.6 J	3.9 U	3.6 U	4.2 U	3.4 U
Silver ^(a)	1.6	2.2	mg/kg	1.1 U	1 U	0.18 J	0.047 J	1 U	1.2 U	0.98 U
Zinc	121	459	mg/kg	25.2	24.2	137	40.5	16.5	26.2	25.5
Total organic carbon	NSL	NSL	mg/kg	11400 J	7360 J	13700	7290	12600	9290	7730

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximation concentration of the analyte, but may be biased low.

J+ = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

R =The data are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-26	HT18-26	HT18-27	HT18-27	HT18-29	HT18-29	HT18-30
		5	Sample Name:	HT18-26-5070	HT18-26-7010	HT18-27-0010	HT18-27-1020	HT18-29-SURF	HT18-29-0010	HT18-30-SURF
			Sample Date:	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/22/2018	10/23/2018	10/22/2018
		Deptl	h Interval (ft):	5-7	7-9.5	0-0.8	0.8-2.4	0-0.5	0-1.2	0-0.5
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	3.4	3.3	3.4	8.1	4.6	7.3	9.6
Barium	NSL	NSL	mg/kg	25.5	25.7	70.2	78.1	42.7	72.1	82.6
Cadmium	0.99	4.98	mg/kg	0.17 J	0.15 J	0.55 J	0.39 J	0.52 U	0.58	1.1 U
Chromium	43.4	111	mg/kg	10.7	10.5	38.5	20.5	21.3	12.5	33.5
Copper	31.6	149	mg/kg	6.4	7.3	21.4	25.9	12	36.6	39.6
Iron	20000	40000	mg/kg	10400	10600	12800	24400	11500	10400	27000
Lead	35.8	128	mg/kg	5.3	6.2 J	34.2	52.1	98.7 J-	80.6	38.4 J-
Mercury	0.18	1.06	mg/kg	0.13 U	0.12 U	0.3	0.12 U	0.11 U	0.17	0.13 J
Nickel	22.7	48.6	mg/kg	12.5	13.6	48.8	29.9	9.6	10.8	40.8
Selenium	NSL	NSL	mg/kg	4 U	3.2 U	3.9 U	3.6 U	3.7 U	0.45 J	1.6 J
Silver ^(a)	1.6	2.2	mg/kg	1.2 U	0.92 U	1.1 U	1 U	1 U	1 U	2.2 U
Zinc	121	459	mg/kg	26.2	28.5	98.5	81.9	51.1	96.3	143
Total organic carbon	NSL	NSL	mg/kg	8310	7960 J	15200	14700	9360	8650	25700

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value Bolded and Shaded detected values exceed 2XPEC screening value Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equito the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased low.

J+ = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

R =The data are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-30	HT18-30	HT18-30	HT18-30	HT18-30	HT18-31	HT18-31
		;	Sample Name:	HT18-30-0010	HT18-30-1030	HT18-30-3050	HT18-30-5070	HT18-30-7010	HT18-31-SURF	HT18-31-0010
			Sample Date:	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/25/2018
		Dept	h Interval (ft):	0-1	1-3	3-5	5-7	7-10	0-0.5	0-1.3
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	9.5	12.2	13.6	11.4	10.9	7	6
Barium	NSL	NSL	mg/kg	82.9	228	203	308	186	63.5	43.2
Cadmium	0.99	4.98	mg/kg	1.1 U	10.1	17.4	20	17.4	1.2 U	0.51 J
Chromium	43.4	111	mg/kg	32	96.3	160	89.9	77.9	26.6	19.7
Copper	31.6	149	mg/kg	40	106	134	106	105	30	24.6
Iron	20000	40000	mg/kg	25800	22400	22200	22100	24400	23700	17600
Lead	35.8	128	mg/kg	36.5	203	243	252	227 J	21.1 J-	20.7
Mercury	0.18	1.06	mg/kg	0.11 J	0.61	0.82	1.2	1.2	0.17 J	0.1 J-
Nickel	22.7	48.6	mg/kg	40.1	48.5	50.3	53.6	47.6	33.1	24.8
Selenium	NSL	NSL	mg/kg	1.6 J	2.1 J	2.6 J	2.3 J	1.5 J	1.7 J	0.67 J
Silver ^(a)	1.6	2.2	mg/kg	0.1 J+	1.3 J	1.6	1.3 J	1.2 J	2.3 U	1.2 U
Zinc	121	459	mg/kg	137	414	484	532	464	93.6	74.8
Total organic carbon	NSL	NSL	mg/kg	30800	36400	41100	47000	36300 J	29000	25500 J+

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

- J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.
- J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.
- $R=\mbox{The data}$ are unusable. The compound may or may not be present.
- U = Indicates the analyte was analyzed but not detected
- (a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-31	HT18-31	HT18-31	HT18-32	HT18-32	HT18-32	HT18-32
		5	Sample Name:	HT18-31-1025	HT18-31-2555	HT18-31-5565	HT18-32-SURF	HT18-32-SURF-FD	HT18-32-0010	HT18-32-0010-FD
			Sample Date:	10/25/2018	10/25/2018	10/25/2018	10/23/2018	10/23/2018	10/24/2018	10/24/2018
		Deptl	h Interval (ft):	1.3-2.6	2.6-5.7	5.7-6.6	0-0.5	0-0.5	0-1	0-1
Analyte	TEC	PEC	Unit							
Arsenic	9.79	33	mg/kg	10.6	2.9	4.4	7	6.4	5.3	6.2
Barium	NSL	NSL	mg/kg	70.2	53.2	29.7	49.7	47.1	31.1	31.1
Cadmium	0.99	4.98	mg/kg	0.72 U	0.57 U	0.46 U	0.89	0.82	0.7	0.81
Chromium	43.4	111	mg/kg	13.1	12.9	10.7	23.3	21.7	16.8	16.6
Copper	31.6	149	mg/kg	8.5	7.7	17.5	27.1	25	16.7	25.3
Iron	20000	40000	mg/kg	10200	12000	19200	19700	18400	12700	15800
Lead	35.8	128	mg/kg	6.7	6.7	10	26.6 J-	25.7 J-	22.6	26.6
Mercury	0.18	1.06	mg/kg	0.037 J	0.016 J	0.015 J	2.8	0.28	0.22	0.21
Nickel	22.7	48.6	mg/kg	11.7	13.8	13.5	30.8	28.7	20.5	21.9
Selenium	NSL	NSL	mg/kg	1 J	4 U	3.2 U	1 J	0.97 J	4.2 U	4.8 U
Silver ^(a)	1.6	2.2	mg/kg	1.4 U	1.1 U	0.92 U	1.5 U	1.5 U	1.2 U	1.4 U
Zinc	121	459	mg/kg	28.4	31.6	41.3	98.3	103	64.9	72.8
Total organic carbon	NSL	NSL	mg/kg	46500 J	2180 J	2900 J	21800	23300	16700	14200

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.

J+ = The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

 $R=\mbox{The data}$ are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for

			Location ID:	HT18-32	HT18-32	HT18-32
		5	Sample Name:	HT18-32-1030	HT18-32-3050	HT18-32-5070
			Sample Date:	10/24/2018	10/24/2018	10/24/2018
		Dept	h Interval (ft):	1-3	3-5	5-7
Analyte	TEC	PEC	Unit			
Arsenic	9.79	33	mg/kg	3.4	3.7	6.2
Barium	NSL	NSL	mg/kg	23.4	33.9	39.6
Cadmium	0.99	4.98	mg/kg	0.2 J	0.24 J	0.23 J
Chromium	43.4	111	mg/kg	11.7	14.5	14.3
Copper	31.6	149	mg/kg	7.6	10.5	11.1
Iron	20000	40000	mg/kg	11200	14400	14300
Lead	35.8	128	mg/kg	6.2	8.1	7.9
Mercury	0.18	1.06	mg/kg	0.13 U	0.13 U	0.13 U
Nickel	22.7	48.6	mg/kg	13.4	17.2	17.5
Selenium	NSL	NSL	mg/kg	3.7 U	4.8 U	4.2 U
Silver ^(a) Zinc	1.6	2.2	mg/kg	1 U	1.4 U	1.2 U
Zinc	121	459	mg/kg	33.2	40.3	42.8
Total organic carbon	NSL	NSL	mg/kg	8050	9130	14400

NOTES:

Detected values are Bolded

Bolded and Shaded detected values exceed 3XPEC screening value

Bolded and Shaded detected values exceed 2XPEC screening value

Bolded and Shaded detected values exceed PEC screening value

Bolded and Shaded detected values exceed TEC screening value

FD = Field Duplicate

HT = Harbortown Upstream Area

mg/kg = milligrams per kilogram

NSL = No Screening Level

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

TEC = Threshold effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems

(MacDonald et al. 2000)

D = Sample was analyzed at a higher dilution factor

H = Sample was prepped or analyzed beyond the specified holding time

J = compound was detected, but result is below the reporting limit and greater than or equ to the method detection limit (value is estimated)

J- = The analyte was positively identified; the associated numerical value is an approxima concentration of the analyte, but may be biased low.

J+= The analyte was positively identified; the associated numerical value is an approximation of the analyte, but may be biased high.

R =The data are unusable. The compound may or may not be present.

U = Indicates the analyte was analyzed but not detected

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for Use and Application, Publication No. WT-732 2003, WDNR December 2003

	Location ID:	HT18-01	HT18-01	HT18-02	HT18-03	HT18-04	HT18-05	HT18-06	HT18-07
	Sample Name:	HT18-01-SURF	HT18-01-SURF-FD	HT18-02-SURF	HT18-03-SURF	HT18-04-SURF	HT18-05-SURF	HT18-06-SURF	HT18-07-SURF
	Sample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
	Depth Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
Cadmium	umole/g	0.0069	0.0073	0.006	0.032	0.0052	0.024	0.013	0.0098
Copper	umole/g	0.3	0.31	0.28	1.1	0.2	0.94	0.59	0.28
Lead	umole/g	0.092	0.099	0.083	0.37	0.07	0.37	0.2	0.12
Mercury	umole/g	0.00007 U	0.00007 U	0.000065 U	0.000065 U	0.000055 U	0.000075 U	0.00007 U	0.000045 U
Nickel	umole/g	0.3	0.31	0.26	0.55	0.22	0.54	0.42	0.22
Zinc	umole/g	1.1	1.2	0.94	6	0.75	3.8	2.1	1.1
Acid Volatile Sulfides (AVS)	umole/g	3.8	5.9	12.8	37.5	10.4	25.8	10.5	5.3
SEM/AVS Ratio	none	0.466	0.318	0.122	0.216	0.119	0.219	0.319	0.318

AVS = Acid volatile sulfides

Bolded values exceed 1 SEM/AVS ratio

FD = Field duplicate

HT = Harbortown

SEM = Simultaneously extracted metals

umole/g = micromole per gram

B = Compound was found in the blank and sample

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

U = Indicates the analyte was analyzed but not detected

"--" SEM/AVS not calculated because AVS was not detected.

	Location ID:	HT18-08	HT18-09	HT18-10	HT18-11	HT18-12	HT18-12	HT18-13	HT18-14
	Sample Name:	HT18-08-SURF	HT18-09-SURF	HT18-10-SURF	HT18-11-SURF	HT18-12-SURF	HT18-12-SURF-FD	HT18-13-SURF	HT18-14-SURF
	Sample Date:	10/22/2018	10/22/2018	10/22/2018	10/22/2018	10/22/2018	10/22/2018	10/29/2018	10/29/2018
	Depth Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
Cadmium	umole/g	0.012	0.0082	0.00098 J	0.0089	0.0089	0.012	0.0098	0.0039
Copper	umole/g	0.51	0.43	0.057	0.5	0.67	0.88	0.39	0.24
Lead	umole/g	0.14	0.12	0.1	0.19	0.22	0.3	0.12	0.16
Mercury	umole/g	0.000085 U	0.00008 U	0.000034 U	0.000085 U	0.00007 U	0.00007 U	0.00007 U	0.000023 J
Nickel	umole/g	0.34	0.31	0.099	0.34	0.27	0.35	0.37	0.14
Zinc	umole/g	1.7	1.4	0.25	1.6	1.8	2.3	1.3	0.59
Acid Volatile Sulfides (AVS)	umole/g	14	9.3	0.47 J	8.0	16.3	23.4	7.6	0.71 U
SEM/AVS Ratio	none	0.195	0.239	1.1	0.328	0.182	0.163	0.295	

AVS = Acid volatile sulfides

Bolded values exceed 1 SEM/AVS ratio

FD = Field duplicate

HT = Harbortown

SEM = Simultaneously extracted metals

umole/g = micromole per gram

B = Compound was found in the blank and sample

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

U = Indicates the analyte was analyzed but not detected

[&]quot;--" SEM/AVS not calculated because AVS was not detected.

	Location ID:	HT18-15	HT18-16	HT18-17	HT18-18	HT18-19	HT18-20	HT18-21	HT18-23
	Sample Name:	HT18-15-SURF	HT18-16-SURF	HT18-17-SURF	HT18-18-SURF	HT18-19-SURF	HT18-20-SURF	HT18-21-SURF	HT18-23-SURF
	Sample Date:	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/23/2018
	Depth Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
Cadmium	umole/g	0.0019 J	0.0031	0.0012 J	0.004	0.0044	0.0072	0.0015 J	0.0052
Copper	umole/g	0.14	0.31	0.065	0.3	0.27	0.24	0.15	0.43
Lead	umole/g	0.057	0.11	0.068	0.11	0.26	0.21	0.11	0.16
Mercury	umole/g	0.000045 U	0.00006 U	0.000035 U	0.00006 U	0.000039 U	0.00005 U	0.000036 U	0.00008 U
Nickel	umole/g	0.1	0.18	0.063	0.17	0.11	0.18	0.09 J	0.29
Zinc	umole/g	0.46	1	0.26	0.89	0.78	1.1	0.91	1.4
Acid Volatile Sulfides (AVS)	umole/g	3.3	6.5	0.41 J	5.1	1.1	7.2	2.5	13.5
SEM/AVS Ratio	none	0.231	0.254	1.09	0.292	1.29	0.238	0.506	0.167

AVS = Acid volatile sulfides

Bolded values exceed 1 SEM/AVS ratio

FD = Field duplicate

HT = Harbortown

SEM = Simultaneously extracted metals

umole/g = micromole per gram

B = Compound was found in the blank and sample

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

U = Indicates the analyte was analyzed but not detected

"--" SEM/AVS not calculated because AVS was not detected.

Le	ocation ID:	HT18-01	HT18-01	HT18-02	HT18-03	HT18-04	HT18-05	HT18-06	HT18-07
San	ıple Name:	HT18-01-SURF	HT18-01-SURF-FD	HT18-02-SURF	HT18-03-SURF	HT18-04-SURF	HT18-05-SURF	HT18-06-SURF	HT18-07-SURF
Sa	mple Date:	10/29/18	10/29/18	10/29/18	10/29/18	10/29/18	10/29/18	10/29/18	10/29/18
Depth In	terval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
foc	fraction	0.0299	0.0293	0.0234	0.0531	0.0177	0.0418	0.0476	0.0192
Diesel Range Organics (C10-C20)	mg/kg	45 J	42 J	29 J	930	20 J	320	180	100
DRO Sample-Specific Risk Screening Level	mg/kg	166	162	130	294	98	232	264	106
Oil Range Organics (C20-C36)	mg/kg	53	54	38 J	1300	26 J	460	220	130
ORO Sample-Specific Risk Screening Level	mg/kg	296	290	231	525	175	413	470	190
Σ ΤΡΗ	mg/kg	98	96	67	2230	46	780	400	230

NOTES:

Detected values are Bolded

- Sediment benchmark for DRO used in calculation of sample-specific risk screening level is 5543 mg/kg
- Sediment benchmark for ORO used in calculation of sample-specific risk screening level is 9883 mg/kg

FD = Field duplicate

HT = Harbortown Upstream Area

mg/kg = milligram per kilogram

TPH = Total petroleum hydrocarbon

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

	Location ID:	HT18-08	HT18-09	HT18-10	HT18-11	HT18-12	HT18-12	HT18-13	HT18-14
Sa	ımple Name:	HT18-08-SURF	HT18-09-SURF	HT18-10-SURF	HT18-11-SURF	HT18-12-SURF	HT18-12-SURF-FD	HT18-13-SURF	HT18-14-SURF
S	Sample Date:	10/22/18	10/22/18	10/22/18	10/22/18	10/22/18	10/22/18	10/29/18	10/29/18
Depth	Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
foc	fraction	0.0345	0.0415	0.00234	0.0495	0.0275	0.0274	0.0332	0.0173
Diesel Range Organics (C10-C20)	mg/kg	51 J	64	34	49 J	170	110	42 J	49
DRO Sample-Specific Risk Screening Level	mg/kg	191	230	13	274	152	152	184	96
Oil Range Organics (C20-C36)	mg/kg	56 J	73	34	51 J	180	120	48	60
ORO Sample-Specific Risk Screening Level	mg/kg	341	410	23	489	272	271	328	171
ΣΤΡΗ	mg/kg	107	137	68	100	350	230	90	109
NOTES:									

Detected values are Bolded

- Sediment benchmark for DRO used in calculation of sample-specific risk screening level is 5543 mg/kg
- Sediment benchmark for ORO used in calculation of sample-specific risk screening level is 9883 mg/kg

FD = Field duplicate

HT = Harbortown Upstream Area

mg/kg = milligram per kilogram

TPH = Total petroleum hydrocarbon

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

]	Location ID:	HT18-15	HT18-16	HT18-17	HT18-18	HT18-19	HT18-20	HT18-21	HT18-23
Sa	mple Name:	HT18-15-SURF	HT18-16-SURF	HT18-17-SURF	HT18-18-SURF	HT18-19-SURF	HT18-20-SURF	HT18-21-SURF	HT18-23-SURF
S	ample Date:	10/24/18	10/24/18	10/24/18	10/24/18	10/24/18	10/24/18	10/24/18	10/23/18
Depth :	Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
foc	fraction	0.0133	0.0336	0.00622	0.0311	0.00806	0.0167	0.0226	0.033
Diesel Range Organics (C10-C20)	mg/kg	200	220	33	170	160	130	360	42 J
DRO Sample-Specific Risk Screening Level	mg/kg	74	186	34	172	45	93	125	183
Oil Range Organics (C20-C36)	mg/kg	170	230	38	190	200	140	470	39 J
ORO Sample-Specific Risk Screening Level	mg/kg	131	332	61	307	80	165	223	326
ΣΤΡΗ	mg/kg	370	450	71	360	360	270	830	81
NOTES:									
D (() 1									

Detected values are Bolded

- Sediment benchmark for DRO used in calculation of sample-specific risk screening level is 5543 mg/kg
- Sediment benchmark for ORO used in calculation of sample-specific risk screening level is 9883 mg/kg

FD = Field duplicate

HT = Harbortown Upstream Area

mg/kg = milligram per kilogram

TPH = Total petroleum hydrocarbon

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

Lo	ocation ID:	HT18-24	HT18-25	HT18-26	HT18-29	HT18-30	HT18-31	HT18-32	HT18-32
San	ıple Name:	HT18-24-SURF	HT18-25-SURF	HT18-26-SURF	HT18-29-SURF	HT18-30-SURF	HT18-31-SURF	HT18-32-SURF	HT18-32-SURF-FD
Sa	mple Date:	10/23/18	10/23/18	10/23/18	10/22/18	10/22/18	10/23/18	10/23/18	10/23/18
Depth In	terval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
foc	fraction	0.0267	0.0356	0.0137	0.00936	0.0257	0.029	0.0218	0.0233
Diesel Range Organics (C10-C20)	mg/kg	280	63	180	200	56	67	65	30 J
DRO Sample-Specific Risk Screening Level	mg/kg	148	197	76	52	142	161	121	129
Oil Range Organics (C20-C36)	mg/kg	300	84	180	270	65	61	66	33 J
ORO Sample-Specific Risk Screening Level	mg/kg	264	352	135	93	254	287	215	230
Σ ΤΡΗ	mg/kg	580	147	360	470	121	128	131	63

NOTES:

Detected values are Bolded

- Sediment benchmark for DRO used in calculation of sample-specific risk screening level is 5543 mg/kg
- Sediment benchmark for ORO used in calculation of sample-specific risk screening level is 9883 mg/kg

FD = Field duplicate

HT = Harbortown Upstream Area

mg/kg = milligram per kilogram

TPH = Total petroleum hydrocarbon

J = Compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

	Location ID:	HT18-24	HT18-25	HT18-26	HT18-29	HT18-30	HT18-31	HT18-32	HT18-32
	Sample Name:	HT18-24-SURF	HT18-25-SURF	HT18-26-SURF	HT18-29-SURF	HT18-30-SURF	HT18-31-SURF	HT18-32-SURF	HT18-32-SURF-FD
	Sample Date:	10/23/2018	10/23/2018	10/23/2018	10/22/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018
	Depth Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit								
Cadmium	umole/g	0.0036	0.0058	0.0087	0.003	0.0098	0.006	0.0077	0.0064
Copper	umole/g	0.26	0.46	0.32	0.11	0.46	0.28	0.26	0.21
Lead	umole/g	0.2	0.23	0.49	0.3	0.15	0.076	0.1	0.08
Mercury	umole/g	0.000055 U	0.000075 U	0.000047 U	0.000031 U	0.000065 U	0.00007 U	0.000055 U	0.00005 U
Nickel	umole/g	0.16	0.28	0.18	0.11 J	0.41	0.29	0.3	0.25
Zinc	umole/g	1	1.5	1.4	0.46	1.4	0.78	0.84	0.72
Acid Volatile Sulfides (AVS)	umole/g	6.8	9.4	3	1	8.4	4.8	16.4	14.5
SEM/AVS Ratio	none	0.241	0.261	0.807	0.959	0.282	0.302	0.0926	0.0874

AVS = Acid volatile sulfides

Bolded values exceed 1 SEM/AVS ratio

FD = Field duplicate

HT = Harbortown

SEM = Simultaneously extracted metals

umole/g = micromole per gram

B = Compound was found in the blank and sample

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

U = Indicates the analyte was analyzed but not detected

[&]quot;--" SEM/AVS not calculated because AVS was not detected.

TABLE 3-8 SEDIMENT RESULTS FOR CYANIDE, HT

		Location ID:	HT18-01	HT18-01	HT18-02	HT18-03	HT18-04	HT18-05	HT18-06
		Sample Name:	HT18-01-SURF	HT18-01-SURF-FD	HT18-02-SURF	HT18-03-SURF	HT18-04-SURF	HT18-05-SURF	HT18-06-SURF
		Sample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
	Dep	th Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	EPA Region V RCRA *	Unit							
Cyanide, Weak Acid Dissociable	0.1	mg/kg	2.6 U	2.5 U	0.84 J	1.3 J	0.81 J	1.1 J	2.6 UJ
Cyanide, Total	0.1	mg/kg	2.7 U	1.8 J	2.4 U	2.5 U	2 U	2.9 U	2.7

NOTES:

Source: * EPA Region V Resource Conservation and Recovery Act (EPA 2003).

Bolded and Shaded detected values exceed the RCRA screening value

HT = Harbortown Upstream Area

FD = Field Duplicate

mg/kg = milligrams per kilogram

U = Indicates the analyte was analyzed but not detected.

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

TABLE 3-8 SEDIMENT RESULTS FOR CYANIDE, HT

		Location ID:	HT18-07	HT18-08	HT18-09	HT18-10	HT18-11	HT18-12	HT18-12
		Sample Name:	HT18-07-SURF	HT18-08-SURF	HT18-09-SURF	HT18-10-SURF	HT18-11-SURF	HT18-12-SURF	HT18-12-SURF-FD
	Sample Da		10/29/2018	10/22/2018	10/22/2018	10/22/2018	10/22/2018	10/22/2018	10/22/2018
Depth Interval (f		th Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	EPA Region V RCRA *	Unit							
Cyanide, Weak Acid Dissociable	0.1	mg/kg	1.6 UJ	3.2 U	3 U	1.3 U	3.4 U	2.5 U	2.7 U
Cyanide, Total	0.1	mg/kg	1.7 U	3.1 U	3 U	1.3 U	3.2 U	2.7 U	2.5 U

NOTES:

Source: * EPA Region V Resource Conservation and Recovery Act (EPA 2003).

Bolded and Shaded detected values exceed the RCRA screening value

HT = Harbortown Upstream Area

FD = Field Duplicate

mg/kg = milligrams per kilogram

U = Indicates the analyte was analyzed but not detected.

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

TABLE 3-8 SEDIMENT RESULTS FOR CYANIDE, HT

		Location ID:	HT18-13	HT18-14	HT18-15	HT18-16	HT18-17	HT18-18	HT18-19	HT18-20	HT18-21
		Sample Name:	HT18-13-SURF	HT18-14-SURF	HT18-15-SURF	HT18-16-SURF	HT18-17-SURF	HT18-18-SURF	HT18-19-SURF	HT18-20-SURF	HT18-21-SURF
		Sample Date:	10/29/2018	10/29/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018
	Dep	th Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	EPA Region V RCRA *	Unit									
Cyanide, Weak Acid Dissociable	0.1	mg/kg	2.6 UJ	1.3 U	1.8 U	2.4 U	1.2 U	2.3 U	1.5 U	1.7 U	1.3 U
Cyanide, Total	0.1	mg/kg	2.7 U	1.5 U	1.6 U	1.1 J	1.2 U	2.4 U	0.83 J	1.9 U	1.3 U

NOTES:

Source: * EPA Region V Resource Conservation and Recovery Act (EPA 2003).

Bolded and Shaded detected values exceed the RCRA screening value

HT = Harbortown Upstream Area

FD = Field Duplicate

mg/kg = milligrams per kilogram

U = Indicates the analyte was analyzed but not detected.

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

TABLE 3-8 SEDIMENT RESULTS FOR CYANIDE, HT

		Location ID:	HT18-23	HT18-24	HT18-25	HT18-26	HT18-29	HT18-30	HT18-31	HT18-32	HT18-32
		Sample Name:	HT18-23-SURF	HT18-24-SURF	HT18-25-SURF	HT18-26-SURF	HT18-29-SURF	HT18-30-SURF	HT18-31-SURF	HT18-32-SURF	HT18-32-SURF-FD
		Sample Date:	10/23/2018	10/23/2018	10/23/2018	10/23/2018	10/22/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018
	Dep	th Interval (ft):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	EPA Region V RCRA *	Unit									
Cyanide, Weak Acid Dissociable	0.1	mg/kg	3.1 U	2.1 U	3.1 U	1.6 U	1.2 U	2.5 U	2.6 U	0.89 J	2 U
Cyanide, Total	0.1	mg/kg	2.9 U	2.1 U	2.8 U	1.9 U	1.2 U	2.5 U	2.6 U	2 U	2 U

NOTES

Source: * EPA Region V Resource Conservation and Recovery Act (EPA 2003).

Bolded and Shaded detected values exceed the RCRA screening value

HT = Harbortown Upstream Area

FD = Field Duplicate

mg/kg = milligrams per kilogram

U = Indicates the analyte was analyzed but not detected.

J = compound was detected, but result is below the reporting limit and greater than or equal to the method detection limit (value is estimated)

		Location ID:		H'	Γ18-01		l	HT1	8_01		1	HT1	8 _01	
		Sample Name:			-01-SURF			HT18-01-				HT18-0		
		Sample Date:									1			
		Depth Interval (ft):			29/2018 0-0.5			10/29	/2018		1	10/30		
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final	I	Conc	Coc	Final		Conc	Coc	Final	
	μg/g oc	μg/g oc	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)	μg/g στ 	μg/g στ 	2.99	0.0299		ESDITO FCVI	2.93	0.0293			2.14	0.0214		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)			2.99	0.0299			2.93	0.0293			2.14	0.0214		
1-Methylnaphthalene	446	165,700	0.01	0.27	0.27	0.001	0.005	0.16	0.16	0.00	0.01	0.31	0.31	0.00
2-Methylnaphthalene	447	154,800	0.01	0.27	0.27	0.001	0.003	0.10	0.10	0.0003	0.01	0.00	0.00	0.00
Acenaphthene	491	33,400	0.01	0.23	0.23	0.0005	0.004	0.14	0.14	0.0003	0.04	1.40	1.40	0.00
Acenaphthylene	452	24,000	0.01	0.24	0.24	0.0003	0.01	0.00	0.21	0.000	0.03	0.00	0.00	0.00
Anthracene	594	1,300	0.02	0.43	0.43	0.001	0.01	0.38	0.38	0.000	0.04	1.36	1.36	0.00
Benzo[a]anthracene	841	4,153	0.01	4.01	4.01	0.001	0.01	2.46	2.46	0.001	0.03	10.28	10.28	0.00
Benzo[a]pyrene		· ·							3.14		0.22			
Benzo[b]fluoranthene	965	3,840	0.16	5.35	5.35	0.01	0.09	3.14		0.00		3.74	3.74	0.00
	979	2,169	0.29	9.70	9.70	0.01	0.17	5.80	5.80	0.01	0.30	14.02	14.02	0.01
Benzo[e]pyrene	967	4,300	0.20	6.69	6.69	0.01	0.12	4.10	4.10	0.00	0.22	10.28	10.28	0.01
Benzo[g,h,i]perylene	1,095	648	0.17	5.69	5.69	0.01	0.10	3.28	3.28	0.00	0.21	9.81	9.81	0.01
Benzo[k]fluoranthene	981	1,220	0.22	7.36	7.36	0.01	0.12	4.10	4.10	0.00	0.30	14.02	14.02	0.01
C1-Chrysenes	929		0.07	2.27	2.27	0.002	0.04	1.37	1.37	0.00	0.04	0.00	0.00	0.00
C1-Fluorenes	611		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.16	5.35	5.35	0.01	0.09	3.14	3.14	0.00	0.26	12.15	12.15	0.02
C1-Naphthalenes	444		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.08	2.51	2.51	0.004	0.05	1.54	1.54	0.00	0.11	5.14	5.14	0.01
C2-Chrysenes	1,008		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C2-Fluorenes	686		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.10	3.28	3.28		0.06	1.91	1.91		0.13	6.07	6.07	
C2-Naphthalenes	510		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.06	1.97	1.97	0.003	0.04	1.23	1.23	0.00	0.04	0.00	0.00	0.00
C3-Chrysenes	1,112		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C3-Fluorenes	769		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C3-Naphthalenes	581		0.05	1.81	1.81	0.003	0.03	1.13	1.13	0.00	0.04	0.00	0.00	0.00
C3-Phenanthrenes/Anthracenes	829		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C4-Chrysenes	1,214		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C4-Naphthalenes	657	-	0.07	2.37	2.37	0.004	0.04	1.47	1.47	0.00	0.04	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
Chrysene	844	826	0.27	9.03	9.03	0.01	0.15	5.12	5.12	0.01	0.34	15.89	15.89	0.02
Dibenzo(a,h)anthracene	1,123	2,389	0.05	1.57	1.57	0.001	0.03	0.89	0.89	0.00	0.07	3.41	3.41	0.00
Fluoranthene	707	23,870	0.53	17.73	17.73	0.03	0.31	11	11	0.01	0.71	33.18	33.18	0.05
Fluorene	538	26,000	0.02	0.54	0.54	0.001	0.01	0.34	0.34	0.001	0.04	1.87	1.87	0.00
Naphthalene	385	61,700	0.01	0.28	0.28	0.001	0.01	0.17	0.17	0.000	0.08	3.74	3.74	0.01
Perylene	967	431	0.05	1.71	1.71	0.002	0.03	1.06	1.06	0.00	0.02	0.89	0.89	0.00
Phenanthrene	596	34,300	0.18	6.02	6.02	0.01	0.12	4.10	4.10	0.01	0.40	18.69	18.69	0.03
Pyrene	697	9,090	0.33	11.04	11.04	0.02	0.20	7	7	0.01	0.55	25.70	25.70	0.04
		ESBTU FCVi				0.14				0.08				0.25
Notes:					<u> </u>	1		<u> </u>	<u> </u>					

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

 $\mu g/kg$ - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Location ID:		HII			1	HII				HII		
		Sample Name:		HT18-0				HT18-0				HT18-0		
		Sample Date:			/2018				/2018				/2018	
		Depth Interval (ft):			-3			3-				5-		1
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final	Boness	Conc	Coc	Final	Boness	Conc	Coc	Final	ECP.
	µg/g ос	µg/g ос	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi
Total Organic Carbon (%)			1.48	0.0148			0.403	0.00403			11.3	0.113		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.01	0.52	0.52	0.001	0.01	2.06	2.06	0.005	0.00	0.03	0.03	0.0001
2-Methylnaphthalene	447	154,800	0.01	0.53	0.53	0.001	0.05	11.91	11.91	0.03	0.02	0.19	0.19	0.0004
Acenaphthene	491	33,400	0.04	2.50	2.50	0.01	0.04	8.68	8.68	0.02	0.02	0.19	0.19	0.0004
Acenaphthylene	452	24,000	0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.02	0.02	0.0001
Anthracene	594	1,300	0.09	6.08	6.08	0.01	0.06	15.63	15.63	0.03	0.04	0.32	0.32	0.001
Benzo[a]anthracene	841	4,153	0.25	16.89	16.89	0.02	0.21	52	52	0.06	0.09	1	1	0.001
Benzo[a]pyrene	965	3,840	0.16	10.81	10.81	0.01	0.11	27	27	0.03	0.06	1	1	0.001
Benzo[b]fluoranthene	979	2,169	0.29	19.59	19.59	0.02	0.19	47	47	0.05	0.07	1	1	0.001
Benzo[e]pyrene	967	4,300	0.20	13.51	13.51	0.01	0.14	35	35	0.04	0.06	0	0	0.001
Benzo[g,h,i]perylene	1,095	648	0.14	9.46	9.46	0.01	0.13	32	32	0.03	0.05	0	0	0.0004
Benzo[k]fluoranthene	981	1,220	0.24	16.22	16.22	0.02	0.20	50	50	0.05	0.08	1	1	0.001
C1-Chrysenes	929		0.10	6.55	6.55	0.01	0.09	22	22	0.02	0.04	0	0	0.0004
C1-Fluorenes	611		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.29	19.59	19.59	0.03	0.25	62.03	62.03	0.08	0.12	1.06	1.06	0.001
C1-Naphthalenes	444		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.16	10.81	10.81	0.02	0.13	32	32	0.05	0.07	1	1	0.001
C2-Chrysenes	1,008		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C2-Fluorenes	686		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.14	9.46	9.46		0.12	29.78	29.78		0.05	0.44	0.44	
C2-Naphthalenes	510		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.12	8.11	8.11	0.01	0.09	22.58	22.58	0.03	0.04	0.37	0.37	0.0005
C3-Chrysenes	1,112		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C3-Fluorenes	769		0.03	0.00	0.00	0.00	0.05	12.16	12.16	0.02	0.01	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.03	0.00	0.00	0.00	0.05	12.66	12.66	0.01	0.01	0.00	0.00	0.00
C3-Naphthalenes	581		0.08	5	5	0.01	0.05	12.16	12.16	0.02	0.03	0.22	0.22	0.0004
C3-Phenanthrenes/Anthracenes	829		0.09	5.95	5.95	0.01	0.07	17.37	17.37	0.02	0.01	0.00	0.00	0.00
C4-Chrysenes	1,214		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C4-Naphthalenes	657		0.09	5.74	5.74	0.01	0.05	12.66	12.66	0.02	0.01	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.07	4.66	4.66	0.01	0.05	12.66	12.66	0.01	0.01	0.00	0.00	0.00
Chrysene	844	826	0.32	21.62	21.62	0.03	0.24	60	60	0.07	0.10	1	1	0.001
Dibenzo(a,h)anthracene	1,123	2,389	0.05	3.58	3.58	0.003	0.05	12.41	12.41	0.01	0.02	0.19	0.19	0.0002
Fluoranthene	707	23,870	0.81	55	55	0.08	0.54	134	134	0.19	0.23	2	2	0.003
Fluorene	538	26,000	0.05	3.65	3.65	0.01	0.04	9.18	9.18	0.02	0.02	0.14	0.14	0.0003
Naphthalene	385	61,700	0.01	0.56	0.56	0.001	0.05	11.91	11.91	0.03	0.02	0.19	0.19	0.001
Perylene	967	431	0.07	4.39	4.39	0.005	0.05	11.66	11.66	0.01	0.02	0.21	0.21	0.0002
Phenanthrene	596	34,300	0.53	35.81	35.81	0.06	0.35	87	87	0.15	0.17	2	2	0.003
Pyrene	697	9,090	0.56	38	38	0.05	0.44	109	109	0.16	0.20	2	2	0.003
		ESBTU FCVi				0.44				1.23				0.02
Notes:	•	•		•		,	•	•	ı		•		i .	•

Location ID:

HT18-01

HT18-01

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-01-	-5070-FD			HT18-0	1-7085			HT18-02	2-SURF	
		Sample Date:		10/30	/2018			10/30	/2018			10/29/	2018	
		Depth Interval (ft):		5-	-7			7-8	3.6			0-0	.5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry		h	ESBTU	μg/g dry		h	ESBTU	μg/g dry		h	ESBTU
T + 10	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			1.48	0.0148			1.26	0.0126			2.34	0.0234		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)	115	4.55.500	0.00					0.50	0.70		0.04	2.20	0.00	0.004
1-Methylnaphthalene	446	165,700	0.02	1.42	1.42	0.003	0.01	0.79	0.79	0.002	0.01	0.38	0.38	0.001
2-Methylnaphthalene	447	154,800	0.09	6.08	6.08	0.01	0.01	0.76	0.76	0.002	0.01	0.36	0.36	0.001
Acenaphthene	491	33,400	0.09	6	6	0.01	0.06	5	5	0.01	0.02	0.94	0.94	0.002
Acenaphthylene	452	24,000	0.01	0.81	0.81	0.002	0.02	0.00	0.00	0.00	0.01	0.37	0.37	0.001
Anthracene	594	1,300	0.17	11	11	0.02	0.07	5	5	0.01	0.07	2.86	2.86	0.005
Benzo[a]anthracene	841	4,153	0.40	27	27	0.03	0.18	14	14	0.02	0.21	8.97	8.97	0.01
Benzo[a]pyrene	965	3,840	0.28	19	19	0.02	0.13	10	10	0.01	0.17	7.26	7.26	0.01
Benzo[b]fluoranthene	979	2,169	0.31	21	21	0.02	0.13	10	10	0.01	0.28	11.97	11.97	0.01
Benzo[e]pyrene	967	4,300	0.24	16	16	0.02	0.10	8	8	0.01	0.18	7.69	7.69	0.01
Benzo[g,h,i]perylene	1,095	648	0.23	16	16	0.01	0.04	3.49	3.49	0.003	0.14	5.98	5.98	0.01
Benzo[k]fluoranthene	981	1,220	0.35	24	24	0.02	0.13	10	10	0.01	0.22	9.40	9.40	0.01
C1-Chrysenes	929		0.18	12	12	0.01	0.06	5	5	0.01	0.10	4.10	4.10	0.004
C1-Fluorenes	611		0.05	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.53	35.81	35.81	0.05	0.20	16	16	0.02	0.23	9.83	9.83	0.01
C1-Naphthalenes	444		0.05	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.34	23	23	0.03	0.14	11	11	0.02	0.14	5.98	5.98	0.01
C2-Chrysenes	1,008		0.05	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C2-Fluorenes	686		0.05	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.24	16.22	16.22		0.08	6.51	6.51		0.11	4.70	4.70	
C2-Naphthalenes	510		0.13	9	9	0.02	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.25	17	17	0.02	0.08	6	6	0.01	0.08	3.55	3.55	0.005
C3-Chrysenes	1,112		0.05	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Fluorenes	769		0.10	6.69	6.69	0.01	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.09	6.15	6.15	0.01	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Naphthalenes	581		0.21	14	14	0.02	0.05	4	4	0.01	0.06	2.48	2.48	0.004
C3-Phenanthrenes/Anthracenes	829		0.16	11	11	0.01	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C4-Chrysenes	1,214		0.05	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C4-Naphthalenes	657		0.19	12.84	12.84	0.02	0.02	0.00	0.00	0.00	0.06	2.52	2.52	0.004
C4-Phenanthrenes/Anthracenes	913		0.10	6.76	6.76	0.01	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00
Chrysene	844	826	0.43	29	29	0.03	0.17	13	13	0.02	0.28	11.97	11.97	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.09	6	6	0.01	0.03	2.54	2.54	0.002	0.05	2.01	2.01	0.002
Fluoranthene	707	23,870	1.10	74	74	0.11	0.44	35	35	0.05	0.66	28.21	28.21	0.04
Fluorene	538	26,000	0.08	5	5	0.01	0.05	4	4	0.01	0.04	1.58	1.58	0.003
Naphthalene	385	61,700	0.09	6.08	6.08	0.02	0.01	1.11	1.11	0.003	0.01	0.36	0.36	0.001
Perylene	967	431	0.12	8	8	0.01	0.05	4.21	4.21	0.004	0.06	2.48	2.48	0.003
Phenanthrene	596	34,300	0.75	51	51	0.09	0	31	31	0.05	0.36	15	15	0.03
Pyrene	697	9,090	1	59	59	0.08	0	29	29	0.04	0.44	18.80	18.80	0.03
		ESBTU FCVi				0.73				0.32				0.22
Notes:							1					<u> </u>		

Location ID:

HT18-01

HT18-01

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	2-0010			HT18-0	2-1030			HT18-0	2-3060	
		Sample Date:		10/30	/2018			10/30	/2018			10/30	/2018	
		Depth Interval (ft):		0-	1			1-	-3			3-0	5.1	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry		h	ESBTU	μg/g dry		h	ESBTU	μg/g dry		h	ESBTU
T + 10	µg/g ос	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			2.63	0.0263			0.889	0.00889			0.921	0.00921		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)		4.5-00				0.004		1.00	1.00	0.004		< - 0	-	0.00
1-Methylnaphthalene	446	165,700	0.01	0.22	0.22	0.001	0.02	1.80	1.80	0.004	0.06	6.73	6.73	0.02
2-Methylnaphthalene	447	154,800	0.03	1.25	1.25	0.003	0.05	5.06	5.06	0.011	0.22	23.89	23.89	0.05
Acenaphthene	491	33,400	0.01	0.49	0.49	0.001	0.08	8.89	8.89	0.02	0.44	47.77	47.77	0.10
Acenaphthylene	452	24,000	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	3.58	3.58	0.01
Anthracene	594	1,300	0.03	0.99	0.99	0.002	0.11	12.37	12.37	0.02	0.69	74.92	74.92	0.13
Benzo[a]anthracene	841	4,153	0.12	4.56	4.56	0.01	0.19	21.37	21.37	0.03	0.94	102.06	102.06	0.12
Benzo[a]pyrene	965	3,840	0.10	3.76	3.76	0.004	0.16	18.00	18.00	0.02	0.80	86.86	86.86	0.09
Benzo[b]fluoranthene	979	2,169	0.19	7.22	7.22	0.01	0.14	15.75	15.75	0.02	0.65	70.58	70.58	0.07
Benzo[e]pyrene	967	4,300	0.14	5.32	5.32	0.01	0.11	12.37	12.37	0.01	0.52	56.46	56.46	0.06
Benzo[g,h,i]perylene	1,095	648	0.15	5.70	5.70	0.01	0.10	11.02	11.02	0.01	0.47	51.03	51.03	0.05
Benzo[k]fluoranthene	981	1,220	0.17	6.46	6.46	0.01	0.16	18.00	18.00	0.02	0.75	81.43	81.43	0.08
C1-Chrysenes	929		0.06	2.24	2.24	0.002	0.08	9.11	9.11	0.01	0.40	43.43	43.43	0.05
C1-Fluorenes	611		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.15	5.70	5.70	0.01	0.24	27.00	27.00	0.04	1.30	141.15	141.15	0.18
C1-Naphthalenes	444		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.07	2.66	2.66	0.004	0.16	18.00	18.00	0.03	1.00	109	109	0.16
C2-Chrysenes	1,008		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C2-Fluorenes	686		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.08	3.19	3.19		0.10	11.25	11.25		0.49	53.20	53.20	
C2-Naphthalenes	510		0.02	0.00	0.00	0.00	0.06	6.97	6.97	0.01	0.47	51	51	0.10
C2-Phenanthrenes/Anthracenes	746		0.05	1.94	1.94	0.003	0.08	9	9	0.01	0.49	53	53	0.07
C3-Chrysenes	1,112		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C3-Fluorenes	769		0.04	1.44	1.44	0.002	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C3-Naphthalenes	581		0.05	1.75	1.75	0.003	0.05	5.40	5.40	0.01	0.37	40	40	0.07
C3-Phenanthrenes/Anthracenes	829		0.03	1.25	1.25	0.002	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C4-Chrysenes	1,214		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C4-Naphthalenes	657		0.05	1.83	1.83	0.003	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11	0.00	0.00	0.00
Chrysene	844	826	0.20	7.60	7.60	0.01	0.20	22.50	22.50	0.03	0.97	105.32	105.32	0.12
Dibenzo(a,h)anthracene	1,123	2,389	0.05	1.79	1.79	0.002	0.04	4.39	4.39	0.004	0.18	19.54	19.54	0.02
Fluoranthene	707	23,870	0.36	13.69	13.69	0.02	0.49	55.12	55.12	0.08	2.30	249.73	249.73	0.35
Fluorene	538	26,000	0.02	0.72	0.72	0.001	0.06	6.52	6.52	0.01	0.37	40.17	40.17	0.07
Naphthalene	385	61,700	0.03	1.25	1.25	0.003	0.05	5.06	5.06	0.013	0.22	23.89	23.89	0.06
Perylene	967	431	0.05	1.86	1.86	0.002	0.05	5.51	5.51	0.01	0.22	23.89	23.89	0.02
Phenanthrene	596	34,300	0.17	6.46	6.46	0.01	0.47	52.87	52.87	0.09	2.20	239	239	0.40
Pyrene	697	9,090	0.27	10.27	10.27	0.01	0.42	47.24	47.24	0.07	2.00	217.16	217.16	0.31
		ESBTU FCVi				0.13				0.55				2.75
Notes:								<u> </u>			1	1		

Location ID:

HT18-02

HT18-02

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	02-6080			HT18-0	2-8090			HT18-03	3-SURF	
		Sample Date:		10/30	/2018			10/30	/2018			10/29	/2018	
		Depth Interval (ft):		6.1-	-7.8			7.8-	9.2			0-0).5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			2.76	0.0276			0.646	0.00646			5.31	0.0531		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.04	1.45	1.45	0.003	0.02	2.48	2.48	0.01	0.02	0.43	0.43	0.001
2-Methylnaphthalene	447	154,800	0.21	8	8	0.02	0.10	15.48	15.48	0.03	0.03	0.56	0.56	0.001
Acenaphthene	491	33,400	0.17	6	6	0.01	0.08	12.85	12.85	0.03	0.03	0.58	0.58	0.001
Acenaphthylene	452	24,000	0.04	1.27	1.27	0.003	0.01	1.86	1.86	0.004	0.09	0.00	0.00	0.00
Anthracene	594	1,300	0.24	9	9	0.01	0.15	23.22	23.22	0.04	0.06	1.13	1.13	0.002
Benzo[a]anthracene	841	4,153	0.99	36	36	0.04	0.35	54.18	54.18	0.06	0.56	11	11	0.01
Benzo[a]pyrene	965	3,840	0.38	14	14	0.01	0.21	32.51	32.51	0.03	0.45	8	8	0.01
Benzo[b]fluoranthene	979	2,169	0.72	26	26	0.03	0.26	40.25	40.25	0.04	1.00	19	19	0.02
Benzo[e]pyrene	967	4,300	0.53	19	19	0.02	0.20	30.96	30.96	0.03	0.73	14	14	0.01
Benzo[g,h,i]perylene	1,095	648	0.47	17.03	17.03	0.02	0.19	29.41	29.41	0.03	0.58	11	11	0.01
Benzo[k]fluoranthene	981	1,220	0.87	32	32	0.03	0.28	43.34	43.34	0.04	0.86	16	16	0.02
C1-Chrysenes	929		0.42	15	15	0.02	0.16	24.77	24.77	0.03	0.24	4.52	4.52	0.005
C1-Fluorenes	611		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.09	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		1.30	47.10	47.10	0.06	0.45	69.66	69.66	0.09	0.67	12.62	12.62	0.02
C1-Naphthalenes	444		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.09	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.68	25	25	0.04	0.30	46.44	46.44	0.07	0.33	6	6	0.01
C2-Chrysenes	1,008		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.09	0.00	0.00	0.00
C2-Fluorenes	686		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.09	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.54	19.57	19.57		0.19	29.41	29.41		0.40	7.53	7.53	
C2-Naphthalenes	510		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.17	3.20	3.20	0.01
C2-Phenanthrenes/Anthracenes	746		0.38	14	14	0.02	0.16	24.77	24.77	0.03	0.38	7	7	0.01
C3-Chrysenes	1,112		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.09	0.00	0.00	0.00
C3-Fluorenes	769		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.23	4.33	4.33	0.01
C3-Fluoranthenes/Pyrene	949		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.21	3.95	3.95	0.004
C3-Naphthalenes	581		0.21	8	8	0.01	0.05	0.00	0.00	0.00	0.27	5.08	5.08	0.01
C3-Phenanthrenes/Anthracenes	829		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.33	6.21	6.21	0.01
C4-Chrysenes	1,214		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.09	0.00	0.00	0.00
C4-Naphthalenes	657		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.35	6.59	6.59	0.01
C4-Phenanthrenes/Anthracenes	913		0.11	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.26	4.90	4.90	0.01
Chrysene	844	826	1.10	40	40	0.05	0.37	57.28	57.28	0.07	1.00	19	19	0.02
Dibenzo(a,h)anthracene	1,123	2,389	0.21	7.61	7.61	0.01	0.07	11.30	11.30	0.010	0.17	3.20	3.20	0.003
Fluoranthene	707	23,870	2.40	87	87	0.12	0.89	137.77	137.77	0.19	2.20	41	41	0.06
Fluorene	538	26,000	0.18	7	7	0.01	0.09	13.31	13.31	0.02	0.05	1.00	1.00	0.002
Naphthalene	385	61,700	0.21	7.61	7.61	0.02	0.10	15.48	15.48	0.04	0.03	0.47	0.47	0.001
Perylene	967	431	0.15	5.43	5.43	0.01	0.10	15.17	15.17	0.02	0.16	3.01	3.01	0.003
Phenanthrene	596	34,300	1.60	58	58	0.10	0.73	113.00	113.00	0.19	0.74	14	14	0.02
Pyrene	697	9,090	1.90	69	69	0.10	0.76	117.65	117.65	0.17	1.40	26	26	0.04
		ESBTU FCVi				0.75				1.27				0.33
Notes:							,	<u> </u>				·		

Location ID:

HT18-02

HT18-02

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	3-0010			HT18-0	3-1030			HT18-03-	-1030-FD	
		Sample Date:		10/30	/2018			10/30	/2018			10/30	/2018	
		Depth Interval (ft):		0-	-1			1-	-3			1-	-3	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry		h	ESBTU	μg/g dry		h	ESBTU	μg/g dry		h	ESBTU
	µg/g ос	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			7.09	0.0709			6.42	0.0642			7.45	0.0745		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)								- 44						
1-Methylnaphthalene	446	165,700	0.05	0.72	0.72	0.002	0.36	5.61	5.61	0.01	0.35	4.70	4.70	0.01
2-Methylnaphthalene	447	154,800	0.34	4.80	4.80	0.01	0.30	4.67	4.67	0.01	0.30	4.03	4.03	0.01
Acenaphthene	491	33,400	0.08	1.09	1.09	0.002	0.23	3.58	3.58	0.01	0.24	3.22	3.22	0.01
Acenaphthylene	452	24,000	0.17	0.00	0.00	0.00	0.05	0.83	0.83	0.00	0.05	0.64	0.64	0.001
Anthracene	594	1,300	0.15	2.12	2.12	0.004	0.22	3	3	0.01	0.35	5	5	0.01
Benzo[a]anthracene	841	4,153	0.96	14	14	0.02	0.95	15	15	0.02	0.99	13	13	0.02
Benzo[a]pyrene	965	3,840	1.10	16	16	0.02	0.84	13	13	0.01	0.87	12	12	0.01
Benzo[b]fluoranthene	979	2,169	1.40	20	20	0.02	1.00	16	16	0.02	0.93	12	12	0.01
Benzo[e]pyrene	967	4,300	1.10	16	16	0.02	0.75	12	12	0.01	0.78	10	10	0.01
Benzo[g,h,i]perylene	1,095	648	1.20	17	17	0.02	0.69	11	11	0.01	0.69	9	9	0.01
Benzo[k]fluoranthene	981	1,220	1.30	18	18	0.02	0.91	14	14	0.01	1.00	13	13	0.01
C1-Chrysenes	929		0.54	8	8	0.01	0.92	14	14	0.02	0.94	12.62	12.62	0.01
C1-Fluorenes	611		0.17	0.00	0.00	0.00	0.58	9	9	0.01	0.55	7	7	0.01
C1-Fluoranthenes/pyrene	770		1.20	16.93	16.93	0.02	1.90	29.60	29.60	0.04	1.90	25.50	25.50	0.03
C1-Naphthalenes	444		0.17	0.00	0.00	0.00	0.35	5.45	5.45	0.01	0.33	4.43	4.43	0.01
C1-Phenanthrenes/Anthracenes	670		0.57	8	8	0.01	3.00	47	47	0.07	2.80	38	38	0.06
C2-Chrysenes	1,008		0.17	0.00	0.00	0.00	0.64	9.97	9.97	0.01	0.63	8.46	8.46	0.01
C2-Fluorenes	686		0.17	0.00	0.00	0.00	1.60	25	25	0.04	1.50	20	20	0.03
C2-Fluoranthenes/Pyrene			0.79	11.14	11.14		1.60	24.92	24.92		1.60	21.48	21.48	
C2-Naphthalenes	510		0.36	5	5	0.01	3.80	59.19	59.19	0.12	3.60	48.32	48.32	0.09
C2-Phenanthrenes/Anthracenes	746		0.73	10	10	0.01	4.40	69	69	0.09	4.20	56.38	56.38	0.08
C3-Chrysenes	1,112		0.17	0.00	0.00	0.00	0.48	7.48	7.48	0.01	0.46	6.17	6.17	0.01
C3-Fluorenes	769		0.54	8	8	0.01	2.10	32.71	32.71	0.04	2.00	26.85	26.85	0.03
C3-Fluoranthenes/Pyrene	949		0.38	5.36	5.36	0.01	1.10	17.13	17.13	0.02	1.10	14.77	14.77	0.02
C3-Naphthalenes	581		0.51	7	7	0.01	5.90	91.90	91.90	0.16	5.60	75.17	75.17	0.13
C3-Phenanthrenes/Anthracenes	829		0.74	10	10	0.01	4.00	62.31	62.31	0.08	3.80	51.01	51.01	0.06
C4-Chrysenes	1,214		0.17	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.15	0.00	0.00	0.00
C4-Naphthalenes	657		0.67	9	9	0.01	5.10	79.44	79.44	0.12	5.30	71.14	71.14	0.11
C4-Phenanthrenes/Anthracenes	913		0.57	8	8	0.01	2.90	45.17	45.17	0.05	2.70	36.24	36.24	0.04
Chrysene	844	826	1.60	23	23	0.03	1.40	22	22	0.03	1.40	19	19	0.02
Dibenzo(a,h)anthracene	1,123	2,389	0.38	5.36	5.36	0.005	0.25	3.89	3.89	0.00	0.26	3.49	3.49	0.003
Fluoranthene	707	23,870	2.90	41	41	0.06	2.80	44	44	0.06	2.70	36	36	0.05
Fluorene	538	26,000	0.09	1.20	1.20	0.002	0.23	3.58	3.58	0.01	0.22	2.95	2.95	0.01
Naphthalene	385	61,700	0.34	4.80	4.80	0.01	0.30	4.67	4.67	0.01	0.30	4.03	4.03	0.01
Perylene	967	431	0.31	4.37	4.37	0.005	0.27	4.21	4.21	0.00	0.27	3.62	3.62	0.004
Phenanthrene	596	34,300	1.10	16	16	0.03	1.80	28	28	0.05	1.80	24	24	0.04
Pyrene	697	9,090	2.00	28	28	0.04	2.00	31	31	0.04	2.10	28	28	0.04
		ESBTU FCVi				0.42				1.17				0.99
Notes:					·	•							I	

Location ID:

HT18-03

HT18-03

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Location ID:		HT1	8-03			HT1	8-03			HT1	8-04	
		Sample Name:		HT18-0	3-3045			HT18-0	3-4560			HT18-0	4-SURF	
		Sample Date:		10/30	/2018			10/30/	/2018			10/29	/2018	
		Depth Interval (ft):		3-4				4.6				0-0		
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	µg/g ос	µg/g oc	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi
Total Organic Carbon (%)			6.71	0.0671			0.647	0.00647			1.77	0.0177		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.52	7.75	7.75	0.017	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.0002
2-Methylnaphthalene	447	154,800	0.26	3.87	3.87	0.009	0.00	0.00	0.00	0.00	0.00	0.11	0.11	0.0003
Acenaphthene	491	33,400	0.240	3.58	3.58	0.007	0.00	0.00	0.00	0.00	0.00	0.15	0.15	0.0003
Acenaphthylene	452	24,000	0.047	0.70	0.70	0.0015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.27	4.02	4.02	0.007	0.00	0.00	0.00	0.00	0.01	0.38	0.38	0.0006
Benzo[a]anthracene	841	4,153	0.72	10.73	10.73	0.013	0.00	0.13	0.13	0.0002	0.03	1.81	1.81	0.0021
Benzo[a]pyrene	965	3,840	0.55	8.20	8.20	0.008	0.00	0.00	0.00	0.00	0.03	1.75	1.75	0.0018
Benzo[b]fluoranthene	979	2,169	0.68	10.13	10.13	0.010	0.00	0.00	0.00	0.00	0.05	2.66	2.66	0.0027
Benzo[e]pyrene	967	4,300	0.58	8.64	8.64	0.009	0.00	0.28	0.28	0.0003	0.03	1.86	1.86	0.0019
Benzo[g,h,i]perylene	1,095	648	0.48	7.15	7.15	0.007	0.00	0.49	0.49	0.0005	0.03	1.47	1.47	0.0013
Benzo[k]fluoranthene	981	1,220	0.77	11.48	11.48	0.012	0.00	0.07	0.07	0.0001	0.04	2.15	2.15	0.0022
C1-Chrysenes	929		0.82	12.22	12.22	0.013	0.01	0.79	0.79	0.0008	0.02	0.85	0.85	0.0009
C1-Fluorenes	611		0.60	8.94	8.94	0.015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		1.70	25.34	25.34	0.033	0.01	1.10	1.10	0.0014	0.03	1.64	1.64	0.0021
C1-Naphthalenes	444		0.44	6.56	6.56	0.015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		2.90	43.22	43.22	0.065	0.02	2.32	2.32	0.0035	0.02	1.02	1.02	0.0015
C2-Chrysenes	1,008		0.59	8.79	8.79	0.009	0.00	0.74	0.74	0.0007	0.00	0.00	0.00	0.00
C2-Fluorenes	686		1.60	23.85	23.85	0.03	0.01	1.00	1.00	0.0015	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			1.50	22.35	22.35		0.01	1.70	1.70		0.02	1.19	1.19	
C2-Naphthalenes	510		4.70	70.04	70.04	0.137	0.02	2.63	2.63	0.01	0.00	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		4.30	64.08	64.08	0.086	0.02	3.09	3.09	0.0041	0.01	0.68	0.68	0.0009
C3-Chrysenes	1,112		0.44	6.56	6.56	0.006	0.00	0.63	0.63	0.0006	0.00	0.00	0.00	0.00
C3-Fluorenes	769		2.10	31.30	31.30	0.041	0.01	1.51	1.51	0.0020	0.00	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		1.10	16.39	16.39	0.017	0.01	1.19	1.19	0.0013	0.00	0.00	0.00	0.00
C3-Naphthalenes	581		6.90	102.83	102.83	0.18	0.04	5.87	5.87	0.01	0.01	0.51	0.51	0.0009
C3-Phenanthrenes/Anthracenes	829		3.80	56.63	56.63	0.068	0.02	2.63	2.63	0.0032	0.00	0.00	0.00	0.00
C4-Chrysenes	1,214		0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		5.70	84.95	84.95	0.13	0.06	8.66	8.66	0.01	0.01	0.68	0.68	0.0010
C4-Phenanthrenes/Anthracenes	913		2.60	38.75	38.75	0.042	0.01	1.85	1.85	0.0020	0.00	0.00	0.00	0.00
Chrysene	844	826	1.10	16.39	16.39	0.019	0.00	0.62	0.62	0.0007	0.05	2.66	2.66	0.0031
Dibenzo(a,h)anthracene	1,123	2,389	0.170	2.53	2.53	0.0023	0.00	0.00	0.00	0.00	0.01	0.44	0.44	0.0004
Fluoranthene	707	23,870	2.20	32.79	32.79	0.046	0.00	0.20	0.20	0.0003	0.10	6	6	0.01
Fluorene	538	26,000	0.23	3.43	3.43	0.006	0.00	0.15	0.15	0.0003	0.00	0.24	0.24	0.0004
Naphthalene	385	61,700	0.260	3.87	3.87	0.010	0.00	0.00	0.00	0.00	0.00	0.15	0.15	0.0004
Perylene	967	431	0.19	2.83	2.83	0.003	0.00	0.40	0.40	0.0004	0.01	0.62	0.62	0.0006
Phenanthrene	596	34,300	1.70	25.34	25.34	0.043	0.01	0.83	0.83	0.0014	0.05	2.54	2.54	0.0043
Pyrene	697	9,090	1.70	25.34	25.34	0.036	0.00	0.39	0.39	0.0006	0.07	4	4	0.0043
		ESBTU FCVi				1.12				0.05				0.04
Notes:	l	LODIO PC (1				1.12				1 0.03				0.01

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Location ID:		HT1	8-04			HT1	8-04			HT1	8-04	
		Sample Name:		HT18-0	04-0005			HT18-0	4-0530			HT18-04	-0530-FD	
		Sample Date:		10/29	/2018			10/29	/2018			10/29	/2018	
		Depth Interval (ft):			0.6			0.6-				0.6-		
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	μg/g oc	µg/g ос	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi
Total Organic Carbon (%)			0.631	0.00631			1.14	0.0114			0.776	0.00776		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.17	0.17	0.00	0.00	0.04	0.04	0.00	0.00	0.06	0.06	0.00
2-Methylnaphthalene	447	154,800	0.00	0.14	0.14	0.00	0.002	0.00	0.00	0.00	0.002	0.00	0.00	0.00
Acenaphthene	491	33,400	0.002	0.29	0.29	0.001	0.00	0.03	0.03	0.00	0.00	0.00	0.00	0.00
Acenaphthylene	452	24,000	0.001	0.09	0.09	0.0002	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.46	0.46	0.00	0.002	0.00	0.00	0.00	0.002	0.00	0.00	0.00
Benzo[a]anthracene	841	4,153	0.02	2.38	2.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[a]pyrene	965	3,840	0.02	2.69	2.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[b]fluoranthene	979	2,169	0.03	3.96	3.96	0.00	0.00	0.13	0.13	0.00	0.00	0.11	0.11	0.00
Benzo[e]pyrene	967	4,300	0.01	2.22	2.22	0.00	0.00	0.08	0.08	0.00	0.00	0.08	0.08	0.00
Benzo[g,h,i]perylene	1,095	648	0.00	0.43	0.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[k]fluoranthene	981	1,220	0.02	3.49	3.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Chrysenes	929		0.01	1.24	1.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.02	2.85	2.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.01	1.54	1.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Chrysenes	1,008		0.00	0.68	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.01	1.74	1.74		0.00	0.00	0.00		0.00	0.00	0.00	
C2-Naphthalenes	510		0.00	0.78	0.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.01	1.46	1.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Chrysenes	1,112		0.00	0.00	0.00	0.0000	0.002	0.00	0.00	0.00	0.002	0.00	0.00	0.00
C3-Fluorenes	769		0.00	0.71	0.71	0.00	0.002	0.00	0.00	0.00	0.002	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.01	0.82	0.82	0.001	0.002	0.00	0.00	0.00	0.002	0.00	0.00	0.00
C3-Naphthalenes	581		0.01	1.38	1.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Phenanthrenes/Anthracenes	829		0.01	1.03	1.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.0000	0.002	0.00	0.00	0.00	0.002	0.00	0.00	0.00
C4-Naphthalenes	657		0.01	2.06	2.06	0.00	0.01	0.68	0.68	0.00	0.01	0.88	0.88	0.00
C4-Phenanthrenes/Anthracenes	913		0.00	0.74	0.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrysene	844	826	0.02	3.65	3.65	0.004	0.002	0.18	0.18	0.00	0.002	0.19	0.19	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.005	0.82	0.82	0.0007	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fluoranthene	707	23,870	0.05	7.45	7.45	0.01	0.002	0.16	0.16	0.00	0.001	0.15	0.15	0.00
Fluorene	538	26,000	0.003	0.40	0.40	0.001	0.002	0.00	0.00	0.00	0.002	0.00	0.00	0.00
Naphthalene	385	61,700	0.001	0.10	0.10	0.0003	0.002	0.00	0.00	0.00	0.002	0.00	0.00	0.00
Perylene	967	431	0.01	1.17	1.17	0.001	0.00	0.28	0.28	0.0003	0.00	0.39	0.39	0.0004
Phenanthrene	596	34,300	0.02	2.54	2.54	0.004	0.001	0.09	0.09	0.00	0.001	0.12	0.12	0.00
Pyrene	697	9,090	0.03	5.07	5.07	0.01	0.002	0.15	0.15	0.00	0.001	0.17	0.17	0.00
		ESBTU FCVi				0.07				0.00				0.00
Notes:	•			-	•	•	•			•	•	•		•

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-(14 3040			HT18-0:	SUDE			HT18-0	5 0010	
		-												
		Sample Date:			/2018			10/29					/2018	
	C PAN ECAN	Depth Interval (ft):	-	3.3		1		0-0		1		0-		1
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final	ECDTH	Conc	Coc	Final	ECDTH	Conc	Coc	Final	ECDTH
	µg/g ос	µg/g ос	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			0.286	0.00286			4.18	0.0418			4.08	0.0408		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.11	0.11	0.00	0.02	0.45	0.45	0.00	0.01	0.25	0.25	0.00
2-Methylnaphthalene	447	154,800	0.002	0.00	0.00	0.00	0.02	0.55	0.55	0.00	0.05	1.10	1.10	0.00
Acenaphthene	491	33,400	0.002	0.00	0.00	0.00	0.04	1.03	1.03	0.00	0.01	0.32	0.32	0.00
Acenaphthylene	452	24,000	0.002	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.02	0.00	0.00	0.00
Anthracene	594	1,300	0.002	0.00	0.00	0.00	0.10	2.27	2.27	0.00	0.02	0.47	0.47	0.00
Benzo[a]anthracene	841	4,153	0.00	0.00	0.00	0.00	0.66	16	16	0.02	0.17	4.17	4.17	0.00
Benzo[a]pyrene	965	3,840	0.002	0.00	0.00	0.00	0.69	17	17	0.02	0.16	3.92	3.92	0.00
Benzo[b]fluoranthene	979	2,169	0.00	0.23	0.23	0.00	1.00	24	24	0.02	0.29	7.11	7.11	0.01
Benzo[e]pyrene	967	4,300	0.00	0.17	0.17	0.00	0.70	17	17	0.02	0.21	5.15	5.15	0.01
Benzo[g,h,i]perylene	1,095	648	0.00	0.00	0.00	0.00	0.56	13	13	0.01	0.21	5.15	5.15	0.00
Benzo[k]fluoranthene	981	1,220	0.002	0.00	0.00	0.00	0.81	19	19	0.02	0.25	6.13	6.13	0.01
C1-Chrysenes	929		0.00	0.00	0.00	0.00	0.35	8.37	8.37	0.01	0.14	3.43	3.43	0.00
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.08	0	0	0.00	0.02	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.00	0.00	0.00	0.00	0.68	16.27	16.27	0.02	0.21	5.15	5.15	0.01
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.00	0.00	0.00	0.00	0.31	7	7	0.01	0.09	2.18	2.18	0.00
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.08	0	0	0.00	0.02	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.00	0.00	0.00		0.39	9.33	9.33		0.13	3.19	3.19	
C2-Naphthalenes	510		0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.06	1.35	1.35	0.00
C2-Phenanthrenes/Anthracenes	746		0.00	0.00	0.00	0.00	0.27	6.46	6.46	0.01	0.09	2.08	2.08	0.00
C3-Chrysenes	1,112		0.002	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C3-Fluorenes	769		0.002	0.00	0.00	0.00	0.19	4.55	4.55	0.01	0.08	1.86	1.86	0.00
C3-Fluoranthenes/Pyrene	949		0.002	0.00	0.00	0.00	0.16	3.83	3.83	0.00	0.05	1.30	1.30	0.00
C3-Naphthalenes	581		0.00	0.00	0.00	0.00	0.17	4.07	4.07	0.01	0.08	2.01	2.01	0.00
C3-Phenanthrenes/Anthracenes	829		0.00	0.00	0.00	0.00	0.21	5.02	5.02	0.01	0.07	1.76	1.76	0.00
C4-Chrysenes	1,214		0.002	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C4-Naphthalenes	657		0.01	1.75	1.75	0.00	0.21	5.02	5.02	0.01	0.10	2.43	2.43	0.00
C4-Phenanthrenes/Anthracenes	913		0.00	0.00	0.00	0.00	0.16	3.83	3.83	0.00	0.05	1.27	1.27	0.00
Chrysene	844	826	0.001	0.38	0.38	0.00	1.00	24	24	0.03	0.30	7.35	7.35	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.002	0.00	0.00	0.00	0.17	4.07	4.07	0.00	0.06	1.54	1.54	0.001
Fluoranthene	707	23,870	0.001	0.24	0.24	0.00	2.30	55	55	0.08	0.53	12.99	12.99	0.02
Fluorene	538	26,000	0.002	0.00	0.00	0.00	0.06	1.48	1.48	0.00	0.02	0.47	0.47	0.001
Naphthalene	385	61,700	0.002	0.00	0.00	0.00	0.02	0.55	0.55	0.00	0.02	1.10	1.10	0.003
Perylene	967	431	0.002	0.00	0.77	0.001	0.02	4.78	4.78	0.00	0.05	1.42	1.42	0.003
Phenanthrene	596	34,300	0.002	0.00	0.00	0.001	0.20	20	20	0.00	0.00	5.15	5.15	0.001
Pyrene	697	9,090	0.002	0.00	0.00	0.00	1.40	33	33	0.05	0.21	10.29	10.29	0.01
1 11010		ESBTU FCVi				0.00				0.03				0.01
Notes:	I	ESDIUFUVI				0.01				0.41				0.13

HT18-04

HT18-05

HT18-05

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-(05-1030			HT18-0	5-3050			HT18-0	5-5060	
		Sample Date:		10/30	/2018			10/30	/2018			10/30	/2018	
		Depth Interval (ft):		1-2	2.7			2.7-	5.1			5.1-	5.9	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry		h	ESBTU	μg/g dry		h	ESBTU	μg/g dry			ESBTU
	µg/g ос	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			5.84	0.0584			3.62	0.0362			2.41	0.0241		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.03	0.43	0.43	0.00	0.13	3.59	3.59	0.01	0.10	4.02	4.02	0.01
2-Methylnaphthalene	447	154,800	0.09	1.49	1.49	0.003	0.50	13.81	13.81	0.031	0.22	9.13	9.13	0.020
Acenaphthene	491	33,400	0.03	0.46	0.46	0.001	0.56	15.47	15.47	0.032	0.22	9.13	9.13	0.019
Acenaphthylene	452	24,000	0.04	0.00	0.00	0.000	0.25	0.00	0.00	0.00	0.03	1.16	1.16	0.00
Anthracene	594	1,300	0.03	0.57	0.57	0.00	0.60	16.57	16.57	0.028	0.30	12.45	12.45	0.021
Benzo[a]anthracene	841	4,153	0.26	4.45	4.45	0.01	1.60	44.20	44.20	0.05	1.20	49.79	49.79	0.06
Benzo[a]pyrene	965	3,840	0.28	4.79	4.79	0.00	1.20	33.15	33.15	0.03	0.83	34.44	34.44	0.04
Benzo[b]fluoranthene	979	2,169	0.42	7.19	7.19	0.007	1.20	33.15	33.15	0.034	1.10	45.64	45.64	0.047
Benzo[e]pyrene	967	4,300	0.31	5.31	5.31	0.01	0.87	24.03	24.03	0.02	0.82	34.02	34.02	0.04
Benzo[g,h,i]perylene	1,095	648	0.31	5.31	5.31	0.005	0.68	18.78	18.78	0.02	0.83	34.44	34.44	0.03
Benzo[k]fluoranthene	981	1,220	0.38	6.51	6.51	0.01	1.30	35.91	35.91	0.037	1.10	45.64	45.64	0.047
C1-Chrysenes	929		0.17	2.91	2.91	0.003	0.83	22.93	22.93	0.02	0.69	28.63	28.63	0.03
C1-Fluorenes	611		0.04	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.39	6.68	6.68	0.01	2.30	63.54	63.54	0.08	1.40	58.09	58.09	0.08
C1-Naphthalenes	444		0.04	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.20	3.42	3.42	0.01	1.70	46.96	46.96	0.07	0.79	32.78	32.78	0.05
C2-Chrysenes	1,008		0.04	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.34	14.11	14.11	0.01
C2-Fluorenes	686		0.09	1.61	1.61	0.00	0.68	18.78	18.78	0.03	0.11	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.23	3.94	3.94		1.10	30.39	30.39		0.83	34.44	34.44	
C2-Naphthalenes	510		0.18	3.08	3.08	0.006	1.60	44.20	44.20	0.09	0.50	20.75	20.75	0.04
C2-Phenanthrenes/Anthracenes	746		0.25	4.28	4.28	0.006	1.90	52.49	52.49	0.07	0.80	33.20	33.20	0.04
C3-Chrysenes	1,112		0.04	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C3-Fluorenes	769		0.17	2.91	2.91	0.00	0.81	22.38	22.38	0.03	0.40	16.60	16.60	0.02
C3-Fluoranthenes/Pyrene	949		0.11	1.88	1.88	0.00	0.58	16.02	16.02	0.02	0.44	18.26	18.26	0.02
C3-Naphthalenes	581		0.26	4.45	4.45	0.008	2.60	71.82	71.82	0.12	0.59	24.48	24.48	0.04
C3-Phenanthrenes/Anthracenes	829		0.23	3.94	3.94	0.005	1.60	44.20	44.20	0.05	0.77	31.95	31.95	0.04
C4-Chrysenes	1,214		0.04	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C4-Naphthalenes	657		0.28	4.79	4.79	0.01	2.50	69.06	69.06	0.11	0.55	22.82	22.82	0.03
C4-Phenanthrenes/Anthracenes	913		0.21	3.60	3.60	0.00	1.10	30.39	30.39	0.03	0.71	29.46	29.46	0.03
Chrysene	844	826	0.48	8.22	8.22	0.01	1.80	49.72	49.72	0.06	1.40	58.09	58.09	0.07
Dibenzo(a,h)anthracene	1,123	2,389	0.09	1.61	1.61	0.001	0.31	8.56	8.56	0.008	0.35	14.52	14.52	0.013
Fluoranthene	707	23,870	0.83	14.21	14.21	0.02	4.10	113.26	113.26	0.16	2.60	107.88	107.88	0.15
Fluorene	538	26,000	0.04	0.68	0.68	0.001	0.42	11.60	11.60	0.022	0.24	9.96	9.96	0.019
Naphthalene	385	61,700	0.09	1.49	1.49	0.00	0.50	13.81	13.81	0.04	0.26	10.79	10.79	0.03
Perylene	967	431	0.09	1.58	1.58	0.00	0.32	8.84	8.84	0.01	0.28	11.62	11.62	0.01
Phenanthrene	596	34,300	0.38	6.51	6.51	0.01	3.00	82.87	82.87	0.14	1.80	74.69	74.69	0.13
Pyrene	697	9,090	0.67	11.47	11.47	0.02	3.50	96.69	96.69	0.14	2.10	87.14	87.14	0.13
		ESBTU FCVi				0.16				1.55				1.29
Notes:														

Location ID:

HT18-05

HT18-05

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Samula Nama		11710.0				11710.6				11710		
		Sample Name:		HT18-0				HT18-0					06-1030	
		Sample Date:		10/29				10/29	/2018			10/29	/2018	
		Depth Interval (ft):		0-0).5			0-				1.	-3	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	µg/g ос	μg/g oc	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi
Total Organic Carbon (%)			4.76	0.0476			2.27	0.0227			4.62	0.0462		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)			1.70	0.0170			2.27	0.0227			1.02	0.0102		
1-Methylnaphthalene	446	165,700	0.00	0.09	0.09	0.00	0.01	0.28	0.28	0.00	0.02	0.37	0.37	0.00
2-Methylnaphthalene	447	154,800	0.00	0.10	0.10	0.000	0.01	0.29	0.29	0.001	0.02	0.50	0.50	0.001
Acenaphthene	491	33,400	0.01	0.12	0.12	0.000	0.01	0.32	0.32	0.001	0.01	0.28	0.28	0.001
Acenaphthylene	452	24,000	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.15	0.15	0.00
Anthracene	594	1,300	0.01	0.29	0.29	0.000	0.01	0.53	0.53	0.001	0.02	0.50	0.50	0.001
Benzo[a]anthracene	841	4,153	0.10	2.10	2.10	0.00	0.09	4.01	4.01	0.00	0.14	3.03	3.03	0.00
Benzo[a]pyrene	965	3,840	0.12	2.52	2.52	0.00	0.11	4.85	4.85	0.01	0.15	3.25	3.25	0.00
Benzo[b]fluoranthene	979	2,169	0.17	3.57	3.57	0.004	0.18	7.93	7.93	0.008	0.25	5.41	5.41	0.006
Benzo[e]pyrene	967	4,300	0.12	2.52	2.52	0.00	0.10	4.41	4.41	0.00	0.15	3.25	3.25	0.00
Benzo[g,h,i]perylene	1,095	648	0.10	2.02	2.02	0.00	0.02	1.06	1.06	0.00	0.05	1.08	1.08	0.00
Benzo[k]fluoranthene	981	1,220	0.14	2.94	2.94	0.003	0.13	5.73	5.73	0.006	0.19	4.11	4.11	0.004
C1-Chrysenes	929		0.06	1.34	1.34	0.00	0.04	1.89	1.89	0.00	0.08	1.80	1.80	0.00
C1-Fluorenes	611		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.11	2.31	2.31	0.00	0.11	4.85	4.85	0.01	0.20	4.33	4.33	0.01
C1-Naphthalenes	444		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.05	1.09	1.09	0.00	0.05	2.29	2.29	0.00	0.16	3.46	3.46	0.01
C2-Chrysenes	1,008		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C2-Fluorenes	686		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.09	1.97	1.97	0.00
C2-Fluoranthenes/Pyrene			0.07	1.39	1.39		0.07	2.86	2.86		0.12	2.60	2.60	
C2-Naphthalenes	510		0.02	0.00	0.00	0.00	0.03	1.28	1.28	0.00	0.13	2.81	2.81	0.01
C2-Phenanthrenes/Anthracenes	746		0.05	1.09	1.09	0.00	0.05	2.38	2.38	0.00	0.19	4.11	4.11	0.01
C3-Chrysenes	1,112		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C3-Fluorenes	769		0.04	0.78	0.78	0.00	0.01	0.00	0.00	0.00	0.10	2.14	2.14	0.00
C3-Fluoranthenes/Pyrene	949		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.06	1.36	1.36	0.00
C3-Naphthalenes	581		0.04	0.80	0.80	0.00	0.05	2.20	2.20	0.00	0.23	4.98	4.98	0.01
C3-Phenanthrenes/Anthracenes	829		0.04	0.80	0.80	0.00	0.04	1.72	1.72	0.00	0.16	3.46	3.46	0.00
C4-Chrysenes	1,214		0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C4-Naphthalenes	657		0.05	1.09	1.09	0.00	0.08	3.52	3.52	0.01	0.33	7.14	7.14	0.01
C4-Phenanthrenes/Anthracenes	913		0.02	0.00	0.00	0.00	0.03	1.28	1.28	0.00	0.12	2.60	2.60	0.00
Chrysene	844	826	0.17	3.57	3.57	0.00	0.16	7.05	7.05	0.01	0.24	5.19	5.19	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.03	0.59	0.59	0.001	0.03	1.28	1.28	0.001	0.04	0.89	0.89	0.001
Fluoranthene	707	23,870	0.36	7.56	7.56	0.01	0.31	13.66	13.66	0.02	0.51	11.04	11.04	0.02
Fluorene	538	26,000	0.01	0.19	0.19	0.000	0.01	0.48	0.48	0.001	0.02	0.50	0.50	0.001
Naphthalene	385	61,700	0.00	0.10	0.10	0.00	0.01	0.25	0.25	0.00	0.01	0.26	0.26	0.00
Perylene	967	431	0.04	0.76	0.76	0.00	0.02	1.06	1.06	0.00	0.04	0.87	0.87	0.00
Phenanthrene	596	34,300	0.12	2.52	2.52	0.00	0.11	4.85	4.85	0.01	0.23	4.98	4.98	0.01
Pyrene	697	9,090	0.22	4.62	4.62	0.01	0.22	9.69	9.69	0.01	0.35	7.58	7.58	0.01
		ESBTU FCVi				0.06				0.12				0.13
Notes:														

Location ID:

HT18-06

HT18-06

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-06-	1030 FD			HT18-0	6 3060		-	HT18-0	06 6070	
		^												
		Sample Date:		10/29				10/29					/2018	
	C DAH: ECV:	Depth Interval (ft):		1.		ı		3-		I		6-		
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final	ESBTU	Conc	Coc	Final	ECDTH	Conc	Coc	Final	ECDTH
	µg/g ос	µg/g ос	μg/g dry wt.	μg/g oc	Cocb	FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			3.25	0.0325			6.71	0.0671			1.61	0.0161		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.02	0.46	0.46	0.00	0.09	1.31	1.31	0.00	0.17	10.56	10.56	0.02
2-Methylnaphthalene	447	154,800	0.02	0.62	0.62	0.001	0.13	1.94	1.94	0.004	0.15	9.32	9.32	0.021
Acenaphthene	491	33,400	0.01	0.34	0.34	0.001	0.05	0.73	0.73	0.001	0.11	6.83	6.83	0.014
Acenaphthylene	452	24,000	0.01	0.16	0.16	0.00	0.03	0.48	0.48	0.00	0.03	2.11	2.11	0.00
Anthracene	594	1,300	0.02	0.52	0.52	0.001	0.09	1.28	1.28	0.002	0.16	9.94	9.94	0.017
Benzo[a]anthracene	841	4,153	0.11	3.38	3.38	0.00	0.44	6.56	6.56	0.01	0.43	26.71	26.71	0.03
Benzo[a]pyrene	965	3,840	0.13	4.00	4.00	0.00	0.43	6.41	6.41	0.01	0.40	24.84	24.84	0.03
Benzo[b]fluoranthene	979	2,169	0.22	6.77	6.77	0.007	0.65	9.69	9.69	0.010	0.52	32.30	32.30	0.033
Benzo[e]pyrene	967	4,300	0.13	4.00	4.00	0.00	0.39	5.81	5.81	0.01	0.34	21.12	21.12	0.02
Benzo[g,h,i]perylene	1,095	648	0.04	1.20	1.20	0.00	0.12	1.79	1.79	0.00	0.11	6.83	6.83	0.01
Benzo[k]fluoranthene	981	1,220	0.15	4.62	4.62	0.005	0.48	7.15	7.15	0.007	0.42	26.09	26.09	0.027
C1-Chrysenes	929		0.06	1.88	1.88	0.00	0.23	3.43	3.43	0.00	0.30	18.63	18.63	0.02
C1-Fluorenes	611		0.03	0.89	0.89	0.00	0.24	3.58	3.58	0.01	0.52	32.30	32.30	0.05
C1-Fluoranthenes/pyrene	770		0.16	4.92	4.92	0.01	0.66	9.84	9.84	0.01	0.81	50.31	50.31	0.07
C1-Naphthalenes	444		0.01	0.00	0.00	0.00	0.14	2.09	2.09	0.00	0.20	12.42	12.42	0.03
C1-Phenanthrenes/Anthracenes	670		0.12	3.69	3.69	0.01	0.57	8.49	8.49	0.01	1.60	99.38	99.38	0.15
C2-Chrysenes	1,008		0.04	1.14	1.14	0.00	0.07	0.00	0.00	0.00	0.25	15.53	15.53	0.02
C2-Fluorenes	686		0.07	2.25	2.25	0.00	0.63	9.39	9.39	0.01	1.30	80.75	80.75	0.12
C2-Fluoranthenes/Pyrene			0.10	2.98	2.98		0.41	6.11	6.11		0.62	38.51	38.51	
C2-Naphthalenes	510		0.11	3.38	3.38	0.01	0.80	11.92	11.92	0.02	2.50	155.28	155.28	0.30
C2-Phenanthrenes/Anthracenes	746		0.15	4.62	4.62	0.01	0.80	11.92	11.92	0.02	2.20	136.65	136.65	0.18
C3-Chrysenes	1,112		0.01	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.14	8.70	8.70	0.01
C3-Fluorenes	769		0.08	2.58	2.58	0.00	0.60	8.94	8.94	0.01	1.50	93.17	93.17	0.12
C3-Fluoranthenes/Pyrene	949		0.06	1.91	1.91	0.00	0.22	3.28	3.28	0.00	0.50	31.06	31.06	0.03
C3-Naphthalenes	581		0.19	5.85	5.85	0.01	1.40	20.86	20.86	0.04	4.60	285.71	285.71	0.49
C3-Phenanthrenes/Anthracenes	829		0.13	4.00	4.00	0.00	0.54	8.05	8.05	0.01	1.70	105.59	105.59	0.13
C4-Chrysenes	1,214		0.01	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.04	0.00	0.00	0.00
C4-Naphthalenes	657		0.28	8.62	8.62	0.01	1.90	28.32	28.32	0.04	4.50	279.50	279.50	0.43
C4-Phenanthrenes/Anthracenes	913		0.10	3.08	3.08	0.00	0.32	4.77	4.77	0.01	1.20	74.53	74.53	0.08
Chrysene	844	826	0.20	6.15	6.15	0.01	0.68	10.13	10.13	0.01	0.60	37.27	37.27	0.04
Dibenzo(a,h)anthracene	1,123	2,389	0.03	0.98	0.98	0.001	0.10	1.48	1.48	0.001	0.09	5.34	5.34	0.005
Fluoranthene	707	23,870	0.40	12.31	12.31	0.02	1.50	22.35	22.35	0.03	1.40	86.96	86.96	0.12
Fluorene	538	26,000	0.02	0.62	0.62	0.001	0.11	1.64	1.64	0.003	0.20	12.42	12.42	0.023
Naphthalene	385	61,700	0.01	0.34	0.34	0.00	0.03	0.37	0.37	0.00	0.11	6.83	6.83	0.02
Perylene	967	431	0.04	1.17	1.17	0.00	0.09	1.37	1.37	0.00	0.10	6.15	6.15	0.01
Phenanthrene	596	34,300	0.17	5.23	5.23	0.01	0.79	11.77	11.77	0.02	1.20	74.53	74.53	0.13
Pyrene	697	9,090	0.27	8.31	8.31	0.01	1.00	14.90	14.90	0.02	0.98	60.87	60.87	0.09
		ESBTU FCVi				0.15				0.34				2.82
Notes:	•				1	•	•				•			

Location ID:

HT18-06

HT18-06

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	06-7080			HT18-0	6-8010			HT18-0'	7-SURF	
		Sample Date:		10/29	/2018			10/29	/2018			10/29	/2018	
		Depth Interval (ft):		7.1-	-8.1			8.1-	9.7			0-0).5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
		_	μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			1.81	0.0181			4.22	0.0422			1.92	0.0192		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)		167.700		4- 0-	4- 0-			10.55	10.55			0.4.4	0.1.1	
1-Methylnaphthalene	446	165,700	0.49	27.07	27.07	0.06	0.45	10.66	10.66	0.02	0.00	0.14	0.14	0.00
2-Methylnaphthalene	447	154,800	0.55	30.39	30.39	0.068	0.55	13.03	13.03	0.029	0.00	0.17	0.17	0.000
Acenaphthene	491	33,400	0.13	7.18	7.18	0.015	0.15	3.55	3.55	0.007	0.01	0.30	0.30	0.001
Acenaphthylene	452	24,000	0.05	2.65	2.65	0.01	0.05	1.16	1.16	0.00	0.01	0.00	0.00	0.00
Anthracene	594	1,300	0.16	8.84	8.84	0.015	0.15	3.55	3.55	0.006	0.02	1.04	1.04	0.002
Benzo[a]anthracene	841	4,153	0.46	25.41	25.41	0.03	0.47	11.14	11.14	0.01	0.08	4.32	4.32	0.01
Benzo[a]pyrene	965	3,840	0.37	20.44	20.44	0.02	0.39	9.24	9.24	0.01	0.08	4.01	4.01	0.00
Benzo[b]fluoranthene	979	2,169	0.55	30.39	30.39	0.031	0.54	12.80	12.80	0.013	0.11	5.73	5.73	0.006
Benzo[e]pyrene	967	4,300	0.35	19.34	19.34	0.02	0.34	8.06	8.06	0.01	0.08	3.91	3.91	0.00
Benzo[g,h,i]perylene	1,095	648	0.10	5.52	5.52	0.01	0.10	2.37	2.37	0.00	0.05	2.81	2.81	0.00
Benzo[k]fluoranthene	981	1,220	0.40	22.10	22.10	0.023	0.42	9.95	9.95	0.010	0.09	4.74	4.74	0.005
C1-Chrysenes	929		0.51	28.18	28.18	0.03	0.46	10.90	10.90	0.01	0.03	1.61	1.61	0.00
C1-Fluorenes	611		0.72	39.78	39.78	0.07	0.56	13.27	13.27	0.02	0.01	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		1.10	60.77	60.77	0.08	1.00	23.70	23.70	0.03	0.09	4.43	4.43	0.01
C1-Naphthalenes	444		0.69	38.12	38.12	0.09	0.63	14.93	14.93	0.03	0.01	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		2.40	132.60	132.60	0.20	2.20	52.13	52.13	0.08	0.05	2.34	2.34	0.00
C2-Chrysenes	1,008		0.44	24.31	24.31	0.02	0.38	9.00	9.00	0.01	0.01	0.00	0.00	0.00
C2-Fluorenes	686		1.70	93.92	93.92	0.14	1.30	30.81	30.81	0.04	0.01	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.96	53.04	53.04		0.78	18.48	18.48		0.05	2.55	2.55	
C2-Naphthalenes	510		4.10	226.52	226.52	0.44	4.30	101.90	101.90	0.20	0.01	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		3.40	187.85	187.85	0.25	3.20	75.83	75.83	0.10	0.04	2.08	2.08	0.00
C3-Chrysenes	1,112		0.21	11.60	11.60	0.01	0.12	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C3-Fluorenes	769		1.90	104.97	104.97	0.14	1.40	33.18	33.18	0.04	0.03	1.41	1.41	0.00
C3-Fluoranthenes/Pyrene	949		0.70	38.67	38.67	0.04	0.69	16.35	16.35	0.02	0.03	1.30	1.30	0.00
C3-Naphthalenes	581		6.50	359.12	359.12	0.62	6.50	154.03	154.03	0.27	0.03	1.77	1.77	0.00
C3-Phenanthrenes/Anthracenes	829		2.70	149.17	149.17	0.18	2.70	63.98	63.98	0.08	0.03	1.56	1.56	0.00
C4-Chrysenes	1,214		0.10	5.30	5.30	0.00	0.12	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C4-Naphthalenes	657		6.30	348.07	348.07	0.53	6.40	151.66	151.66	0.23	0.04	1.98	1.98	0.00
C4-Phenanthrenes/Anthracenes	913		1.90	104.97	104.97	0.11	1.90	45.02	45.02	0.05	0.01	0.00	0.00	0.00
Chrysene	844	826	0.70	38.67	38.67	0.05	0.70	16.59	16.59	0.02	0.12	6.25	6.25	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.10	5.25	5.25	0.005	0.08	1.97	1.97	0.002	0.02	1.04	1.04	0.001
Fluoranthene	707	23,870	1.50	82.87	82.87	0.12	1.70	40.28	40.28	0.06	0.27	14.06	14.06	0.02
Fluorene	538	26,000	0.22	12.15	12.15	0.023	0.22	5.21	5.21	0.010	0.01	0.52	0.52	0.001
Naphthalene	385	61,700	0.14	7.73	7.73	0.02	0.04	1.02	1.02	0.00	0.00	0.16	0.16	0.00
Perylene	967	431	0.09	5.19	5.19	0.01	0.09	2.09	2.09	0.00	0.02	1.20	1.20	0.00
Phenanthrene	596	34,300	1.30	71.82	71.82	0.12	1.40	33.18	33.18	0.06	0.12	6.25	6.25	0.01
Pyrene	697	9,090	1.00	55.25	55.25	0.08	1.30	30.81	30.81	0.04	0.18	9.38	9.38	0.01
		ESBTU FCVi				3.50				1.47				0.11
Notes:														

Location ID:

HT18-06

HT18-06

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	07-0020			HT18-0	7-2050			HT18-0	7-5070	
		Sample Date:		10/29	/2018			10/29	/2018			10/29	/2018	
		Depth Interval (ft):		0-1	1.8			1.8-	-4.8			4.8	B-7	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			1.06	0.0106			5.94	0.0594			3.41	0.0341		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.01	1.04	1.04	0.00	0.11	1.85	1.85	0.00	0.15	4.40	4.40	0.01
2-Methylnaphthalene	447	154,800	0.01	1.32	1.32	0.003	0.06	1.08	1.08	0.002	0.15	4.40	4.40	0.010
Acenaphthene	491	33,400	0.03	2.45	2.45	0.005	0.08	1.30	1.30	0.003	0.07	2.14	2.14	0.004
Acenaphthylene	452	24,000	0.04	0.00	0.00	0.00	0.05	0.79	0.79	0.00	0.03	0.91	0.91	0.00
Anthracene	594	1,300	0.05	4.91	4.91	0.008	0.12	2.02	2.02	0.003	0.11	3.23	3.23	0.005
Benzo[a]anthracene	841	4,153	0.22	20.75	20.75	0.02	0.49	8.25	8.25	0.01	0.40	11.73	11.73	0.01
Benzo[a]pyrene	965	3,840	0.19	17.92	17.92	0.02	0.42	7.07	7.07	0.01	0.35	10.26	10.26	0.01
Benzo[b]fluoranthene	979	2,169	0.24	22.64	22.64	0.023	0.54	9.09	9.09	0.009	0.46	13.49	13.49	0.014
Benzo[e]pyrene	967	4,300	0.15	14.15	14.15	0.01	0.35	5.89	5.89	0.01	0.28	8.21	8.21	0.01
Benzo[g,h,i]perylene	1,095	648	0.04	4.15	4.15	0.00	0.10	1.67	1.67	0.00	0.09	2.55	2.55	0.00
Benzo[k]fluoranthene	981	1,220	0.20	18.87	18.87	0.019	0.49	8.25	8.25	0.008	0.34	9.97	9.97	0.010
C1-Chrysenes	929		0.09	8.21	8.21	0.01	0.61	10.27	10.27	0.01	0.33	9.68	9.68	0.01
C1-Fluorenes	611		0.04	0.00	0.00	0.00	0.30	5.05	5.05	0.01	0.23	6.74	6.74	0.01
C1-Fluoranthenes/pyrene	770		0.25	23.58	23.58	0.03	1.20	20.20	20.20	0.03	0.75	21.99	21.99	0.03
C1-Naphthalenes	444		0.04	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.21	6.16	6.16	0.01
C1-Phenanthrenes/Anthracenes	670		0.18	16.98	16.98	0.03	1.80	30.30	30.30	0.05	1.20	35.19	35.19	0.05
C2-Chrysenes	1,008		0.04	0.00	0.00	0.00	0.47	7.91	7.91	0.01	0.28	8.21	8.21	0.01
C2-Fluorenes	686		0.04	0.00	0.00	0.00	1.10	18.52	18.52	0.03	0.71	20.82	20.82	0.03
C2-Fluoranthenes/Pyrene			0.14	13.21	13.21		1.00	16.84	16.84		0.56	16.42	16.42	
C2-Naphthalenes	510		0.12	11.32	11.32	0.02	1.90	31.99	31.99	0.06	1.80	52.79	52.79	0.10
C2-Phenanthrenes/Anthracenes	746		0.21	19.81	19.81	0.03	3.60	60.61	60.61	0.08	2.00	58.65	58.65	0.08
C3-Chrysenes	1,112		0.04	0.00	0.00	0.00	0.30	5.05	5.05	0.00	0.15	4.40	4.40	0.00
C3-Fluorenes	769		0.10	9.34	9.34	0.01	1.30	21.89	21.89	0.03	0.81	23.75	23.75	0.03
C3-Fluoranthenes/Pyrene	949		0.04	0.00	0.00	0.00	0.96	16.16	16.16	0.02	0.47	13.78	13.78	0.01
C3-Naphthalenes	581		0.25	23.58	23.58	0.04	4.00	67.34	67.34	0.12	2.90	85.04	85.04	0.15
C3-Phenanthrenes/Anthracenes	829		0.17	16.04	16.04	0.02	3.40	57.24	57.24	0.07	1.80	52.79	52.79	0.06
C4-Chrysenes	1,214		0.04	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C4-Naphthalenes	657		0.28	26.42	26.42	0.04	4.70	79.12	79.12	0.12	3.20	93.84	93.84	0.14
C4-Phenanthrenes/Anthracenes	913		0.12	11.32	11.32	0.01	2.50	42.09	42.09	0.05	1.20	35.19	35.19	0.04
Chrysene	844	826	0.28	26.42	26.42	0.03	0.74	12.46	12.46	0.01	0.57	16.72	16.72	0.02
Dibenzo(a,h)anthracene	1,123	2,389	0.05	4.25	4.25	0.004	0.09	1.57	1.57	0.001	0.08	2.20	2.20	0.002
Fluoranthene	707	23,870	0.69	65.09	65.09	0.09	1.50	25.25	25.25	0.04	1.30	38.12	38.12	0.05
Fluorene	538	26,000	0.03	2.92	2.92	0.005	0.12	2.02	2.02	0.004	0.11	3.23	3.23	0.006
Naphthalene	385	61,700	0.04	0.00	0.00	0.00	0.02	0.37	0.37	0.00	0.03	0.76	0.76	0.00
Perylene	967	431	0.05	4.53	4.53	0.00	0.11	1.85	1.85	0.00	0.08	2.40	2.40	0.00
Phenanthrene	596	34,300	0.38	35.85	35.85	0.06	0.93	15.66	15.66	0.03	0.92	26.98	26.98	0.05
Pyrene	697	9,090	0.54	50.94	50.94	0.07	1.10	18.52	18.52	0.03	0.93	27.27	27.27	0.04
		ESBTU FCVi				0.64				0.82				1.01
Notes:	l	ESDIUTCVI				0.07				0.02	<u> </u>	_		1.01

Location ID:

HT18-07

HT18-07

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	7-7090			HT18-08	8-SURF			HT18-0	8-0010	
		Sample Date:		10/29	/2018			10/22	/2018			10/23/	/2018	
		Depth Interval (ft):		7-8	8.9			0-0).5			0-	1	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			4.66	0.0466			3.45	0.0345			3.59	0.0359		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.36	7.73	7.73	0.02	0.01	0.35	0.35	0.00	0.01	0.20	0.20	0.00
2-Methylnaphthalene	447	154,800	0.52	11.16	11.16	0.025	0.01	0.28	0.28	0.001	0.01	0.21	0.21	0.000
Acenaphthene	491	33,400	0.10	2.15	2.15	0.004	0.01	0.25	0.25	0.001	0.01	0.20	0.20	0.000
Acenaphthylene	452	24,000	0.05	1.16	1.16	0.00	0.01	0.19	0.19	0.00	0.02	0.00	0.00	0.00
Anthracene	594	1,300	0.12	2.58	2.58	0.004	0.02	0.61	0.61	0.001	0.01	0.19	0.19	0.000
Benzo[a]anthracene	841	4,153	0.38	8.15	8.15	0.01	0.14	4.06	4.06	0.00	0.10	2.79	2.79	0.00
Benzo[a]pyrene	965	3,840	0.32	6.87	6.87	0.01	0.06	1.74	1.74	0.00	0.06	1.73	1.73	0.00
Benzo[b]fluoranthene	979	2,169	0.43	9.23	9.23	0.009	0.27	7.83	7.83	0.008	0.26	7.24	7.24	0.007
Benzo[e]pyrene	967	4,300	0.26	5.58	5.58	0.01	0.05	1.30	1.30	0.00	0.18	5.01	5.01	0.01
Benzo[g,h,i]perylene	1,095	648	0.06	1.35	1.35	0.00	0.01	0.00	0.00	0.00	0.18	5.01	5.01	0.00
Benzo[k]fluoranthene	981	1,220	0.33	7.08	7.08	0.007	0.17	4.93	4.93	0.005	0.20	5.57	5.57	0.006
C1-Chrysenes	929		0.56	12.02	12.02	0.01	0.07	2.00	2.00	0.00	0.06	1.62	1.62	0.00
C1-Fluorenes	611		0.44	9.44	9.44	0.02	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		1.00	21.46	21.46	0.03	0.19	5.51	5.51	0.01	0.15	4.18	4.18	0.01
C1-Naphthalenes	444		0.60	12.88	12.88	0.03	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		2.00	42.92	42.92	0.06	0.09	2.55	2.55	0.00	0.07	1.87	1.87	0.00
C2-Chrysenes	1,008		0.57	12.23	12.23	0.01	0.05	1.42	1.42	0.00	0.02	0.00	0.00	0.00
C2-Fluorenes	686		1.30	27.90	27.90	0.04	0.03	0.81	0.81	0.00	0.02	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			1.10	23.61	23.61		0.13	3.77	3.77		0.10	2.65	2.65	
C2-Naphthalenes	510		4.50	96.57	96.57	0.19	0.05	1.39	1.39	0.00	0.02	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		3.80	81.55	81.55	0.11	0.09	2.61	2.61	0.00	0.08	2.09	2.09	0.00
C3-Chrysenes	1,112		0.33	7.08	7.08	0.01	0.03	0.99	0.99	0.00	0.02	0.00	0.00	0.00
C3-Fluorenes	769		1.70	36.48	36.48	0.05	0.01	0.00	0.00	0.00	0.06	1.75	1.75	0.00
C3-Fluoranthenes/Pyrene	949		1.00	21.46	21.46	0.02	0.06	1.59	1.59	0.00	0.05	1.28	1.28	0.00
C3-Naphthalenes	581		6.00	128.76	128.76	0.22	0.08	2.35	2.35	0.00	0.08	2.09	2.09	0.00
C3-Phenanthrenes/Anthracenes	829		3.70	79.40	79.40	0.10	0.07	1.94	1.94	0.00	0.07	1.84	1.84	0.00
C4-Chrysenes	1,214		0.12	2.58	2.58	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C4-Naphthalenes	657		5.90	126.61	126.61	0.19	0.13	3.77	3.77	0.01	0.10	2.73	2.73	0.00
C4-Phenanthrenes/Anthracenes	913		2.80	60.09	60.09	0.07	0.05	1.39	1.39	0.00	0.02	0.00	0.00	0.00
Chrysene	844	826	0.63	13.52	13.52	0.02	0.21	6.09	6.09	0.01	0.22	6.13	6.13	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.06	1.31	1.31	0.001	0.04	1.22	1.22	0.001	0.04	1.14	1.14	0.001
Fluoranthene	707	23,870	1.20	25.75	25.75	0.04	0.44	12.75	12.75	0.02	0.41	11.42	11.42	0.02
Fluorene	538	26,000	0.19	4.08	4.08	0.008	0.02	0.49	0.49	0.001	0.01	0.36	0.36	0.001
Naphthalene	385	61,700	0.02	0.49	0.49	0.00	0.01	0.17	0.17	0.00	0.00	0.12	0.12	0.00
Perylene	967	431	0.07	1.52	1.52	0.00	0.01	0.19	0.19	0.00	0.04	1.17	1.17	0.00
Phenanthrene	596	34,300	1.00	21.46	21.46	0.04	0.15	4.35	4.35	0.01	0.13	3.62	3.62	0.01
Pyrene	697	9,090	0.90	19.31	19.31	0.03	0.18	5.22	5.22	0.01	0.27	7.52	7.52	0.01
		ESBTU FCVi	-		-	1.32				0.10				0.10
Notes:														

Location ID:

HT18-07

HT18-08

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	08-1020			HT18-08-	-1020-FD			HT18-0	8-2045	
		Sample Date:		10/23	/2018			10/23	/2018			10/23/	/2018	
		Depth Interval (ft):		1-2	2.3			1-2	2.3			2.3-	4.6	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T . 10 0 1 (0)	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.6	0.036			3.51	0.0351			4.94	0.0494		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.04	1.06	1.06	0.00	0.03	0.83	0.83	0.00	0.44	8.91	8.91	0.02
2-Methylnaphthalene	447	154,800	0.05	1.25	1.25	0.003	0.04	1.00	1.00	0.002	0.50	10.12	10.12	0.023
Acenaphthene	491	33,400	0.12	3.33	3.33	0.007	0.09	2.45	2.45	0.005	1.60	32.39	32.39	0.066
Acenaphthylene	452	24,000	0.11	0.00	0.00	0.00	0.02	0.46	0.46	0.00	0.50	0.00	0.00	0.00
Anthracene	594	1,300	0.18	5.00	5.00	0.008	0.14	3.99	3.99	0.007	3.90	78.95	78.95	0.133
Benzo[a]anthracene	841	4,153	0.85	23.61	23.61	0.03	0.69	19.66	19.66	0.02	6.50	131.58	131.58	0.16
Benzo[a]pyrene	965	3,840	0.55	15.28	15.28	0.02	0.46	13.11	13.11	0.01	4.00	80.97	80.97	0.08
Benzo[b]fluoranthene	979	2,169	0.92	25.56	25.56	0.026	0.78	22.22	22.22	0.023	4.20	85.02	85.02	0.087
Benzo[e]pyrene	967	4,300	0.65	18.06	18.06	0.02	0.51	14.53	14.53	0.02	3.10	62.75	62.75	0.06
Benzo[g,h,i]perylene	1,095	648	0.57	15.83	15.83	0.01	0.50	14.25	14.25	0.01	2.20	44.53	44.53	0.04
Benzo[k]fluoranthene	981	1,220	0.84	23.33	23.33	0.024	0.62	17.66	17.66	0.018	4.30	87.04	87.04	0.089
C1-Chrysenes	929		0.31	8.61	8.61	0.01	0.25	7.12	7.12	0.01	3.20	64.78	64.78	0.07
C1-Fluorenes	611		0.11	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.50	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.87	24.17	24.17	0.03	0.68	19.37	19.37	0.03	9.50	192.31	192.31	0.25
C1-Naphthalenes	444		0.11	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.50	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.44	12.22	12.22	0.02	0.33	9.40	9.40	0.01	5.80	117.41	117.41	0.18
C2-Chrysenes	1,008		0.11	0.00	0.00	0.00	0.07	0.00	0.00	0.00	2.10	42.51	42.51	0.04
C2-Fluorenes	686		0.11	0.00	0.00	0.00	0.07	0.00	0.00	0.00	1.50	30.36	30.36	0.04
C2-Fluoranthenes/Pyrene			0.46	12.78	12.78		0.37	10.54	10.54		5.10	103.24	103.24	
C2-Naphthalenes	510		0.11	0.00	0.00	0.00	0.14	3.99	3.99	0.01	2.10	42.51	42.51	0.08
C2-Phenanthrenes/Anthracenes	746		0.32	8.89	8.89	0.01	0.26	7.41	7.41	0.01	5.80	117.41	117.41	0.16
C3-Chrysenes	1,112		0.11	0.00	0.00	0.00	0.07	0.00	0.00	0.00	1.10	22.27	22.27	0.02
C3-Fluorenes	769		0.11	0.00	0.00	0.00	0.14	3.99	3.99	0.01	1.20	24.29	24.29	0.03
C3-Fluoranthenes/Pyrene	949		0.11	0.00	0.00	0.00	0.14	3.99	3.99	0.00	3.10	62.75	62.75	0.07
C3-Naphthalenes	581		0.22	6.11	6.11	0.01	0.17	4.84	4.84	0.01	2.70	54.66	54.66	0.09
C3-Phenanthrenes/Anthracenes	829		0.23	6.39	6.39	0.01	0.18	5.13	5.13	0.01	6.00	121.46	121.46	0.15
C4-Chrysenes	1,214		0.11	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.50	0.00	0.00	0.00
C4-Naphthalenes	657		0.22	6.11	6.11	0.01	0.17	4.84	4.84	0.01	4.40	89.07	89.07	0.14
C4-Phenanthrenes/Anthracenes	913		0.11	0.00	0.00	0.00	0.14	3.99	3.99	0.00	4.70	95.14	95.14	0.10
Chrysene	844	826	1.10	30.56	30.56	0.04	0.85	24.22	24.22	0.03	6.60	133.60	133.60	0.16
Dibenzo(a,h)anthracene	1,123	2,389	0.19	5.28	5.28	0.005	0.17	4.84	4.84	0.004	0.84	17.00	17.00	0.015
Fluoranthene	707	23,870	2.30	63.89	63.89	0.09	1.80	51.28	51.28	0.07	16.00	323.89	323.89	0.46
Fluorene	538	26,000	0.13	3.61	3.61	0.007	0.10	2.71	2.71	0.005	2.20	44.53	44.53	0.083
Naphthalene	385	61,700	0.05	1.31	1.31	0.00	0.03	0.97	0.97	0.00	0.64	12.96	12.96	0.03
Perylene	967	431	0.21	5.83	5.83	0.01	0.17	4.84	4.84	0.01	1.10	22.27	22.27	0.02
Phenanthrene	596	34,300	1.40	38.89	38.89	0.07	0.93	26.50	26.50	0.04	16.00	323.89	323.89	0.54
Pyrene	697	9,090	1.70	47.22	47.22	0.07	1.30	37.04	37.04	0.05	14.00	283.40	283.40	0.41
		ESBTU FCVi				0.53				0.44				3.83
Notes:			·		·	·	· · · · · · · · · · · · · · · · · · ·			·				

Location ID:

HT18-08

HT18-08

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	9.4565		1	HT18-0	8 6580		 	HT18-0		
		Sample Date:												
		Depth Interval (ft):		10/23				10/23/				10/22		
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Cono	4.6-	Final	I	Cono	Coc	Final	1	Conc	Coc	Final	
	Coc, PAHI, FCVI	Coc, PAHI, Maxi	Conc μg/g dry	Coc	rinai	ESBTU	Conc μg/g dry	Coc	FIIIAI	ESBTU	μg/g dry	Coc	rillai	ESBTU
	μg/g oc	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	μg/g ui y wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.33	0.0333			0.512	0.00512			4.15	0.0415		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.10	0.10	0.00	0.00	0.21	0.21	0.00	0.01	0.13	0.13	0.00
2-Methylnaphthalene	447	154,800	0.01	0.15	0.15	0.000	0.00	0.17	0.17	0.000	0.01	0.13	0.13	0.000
Acenaphthene	491	33,400	0.01	0.19	0.19	0.000	0.00	0.12	0.12	0.000	0.03	0.00	0.00	0.000
Acenaphthylene	452	24,000	0.00	0.09	0.09	0.00	0.00	0.00	0.00	0.00	0.05	1.23	1.23	0.00
Anthracene	594	1,300	0.01	0.36	0.36	0.001	0.00	0.00	0.00	0.000	0.01	0.24	0.24	0.000
Benzo[a]anthracene	841	4,153	0.06	1.80	1.80	0.00	0.00	0.39	0.39	0.00	0.11	2.65	2.65	0.00
Benzo[a]pyrene	965	3,840	0.03	1.02	1.02	0.00	0.00	0.29	0.29	0.00	0.14	3.37	3.37	0.00
Benzo[b]fluoranthene	979	2,169	0.05	1.53	1.53	0.002	0.00	0.63	0.63	0.001	0.23	5.54	5.54	0.006
Benzo[e]pyrene	967	4,300	0.04	1.11	1.11	0.00	0.00	0.51	0.51	0.00	0.16	3.86	3.86	0.00
Benzo[g,h,i]perylene	1,095	648	0.03	0.99	0.99	0.00	0.00	0.00	0.00	0.00	0.11	2.65	2.65	0.00
Benzo[k]fluoranthene	981	1,220	0.04	1.17	1.17	0.001	0.00	0.33	0.33	0.000	0.18	4.34	4.34	0.004
C1-Chrysenes	929		0.11	3.30	3.30	0.00	0.01	0.98	0.98	0.00	0.03	0.00	0.00	0.00
C1-Fluorenes	611		0.01	0.42	0.42	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.13	3.90	3.90	0.01	0.01	1.56	1.56	0.00	0.15	3.61	3.61	0.00
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.11	3.30	3.30	0.00	0.01	1.50	1.50	0.00	0.06	1.47	1.47	0.00
C2-Chrysenes	1,008		0.11	3.30	3.30	0.00	0.00	0.82	0.82	0.00	0.03	0.00	0.00	0.00
C2-Fluorenes	686		0.05	1.50	1.50	0.00	0.00	0.82	0.82	0.00	0.03	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.14	4.20	4.20		0.01	1.62	1.62		0.09	2.07	2.07	
C2-Naphthalenes	510		0.04	1.05	1.05	0.00	0.01	0.98	0.98	0.00	0.03	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.27	8.11	8.11	0.01	0.02	2.93	2.93	0.00	0.06	1.33	1.33	0.00
C3-Chrysenes	1,112		0.08	2.31	2.31	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Fluorenes	769		0.11	3.30	3.30	0.00	0.01	1.00	1.00	0.00	0.03	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.11	3.30	3.30	0.00	0.01	1.27	1.27	0.00	0.03	0.00	0.00	0.00
C3-Naphthalenes	581		0.09	2.61	2.61	0.00	0.01	1.95	1.95	0.00	0.03	0.00	0.00	0.00
C3-Phenanthrenes/Anthracenes	829		0.34	10.21	10.21	0.01	0.01	2.73	2.73	0.00	0.03	0.00	0.00	0.00
C4-Chrysenes	1,214		0.02	0.72	0.72	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C4-Naphthalenes	657		0.15	4.50	4.50	0.01	0.02	3.91	3.91	0.01	0.08	2.00	2.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.30	9.01	9.01	0.01	0.01	2.34	2.34	0.00	0.03	0.00	0.00	0.00
Chrysene	844	826	0.08	2.49	2.49	0.00	0.01	0.98	0.98	0.00	0.21	5.06	5.06	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.01	0.33	0.33	0.000	0.00	0.09	0.09	0.000	0.04	0.87	0.87	0.001
Fluoranthene	707	23,870	0.11	3.30	3.30	0.00	0.01	1.00	1.00	0.00	0.38	9.16	9.16	0.01
Fluorene	538	26,000	0.01	0.20	0.20	0.000	0.00	0.23	0.23	0.000	0.01	0.29	0.29	0.001
Naphthalene	385	61,700	0.00	0.10	0.10	0.00	0.00	0.17	0.17	0.00	0.03	0.00	0.00	0.00
Perylene	967	431	0.02	0.48	0.48	0.00	0.01	1.35	1.35	0.00	0.04	1.06	1.06	0.00
Phenanthrene	596	34,300	0.05	1.56	1.56	0.00	0.00	0.63	0.63	0.00	0.15	3.61	3.61	0.01
Pyrene	697	9,090	0.09	2.64	2.64	0.00	0.00	0.96	0.96	0.00	0.31	7.47	7.47	0.01
		ESBTU FCVi				0.10				0.04				0.08
Notes:	L						•				•	1		

HT18-08

HT18-08

HT18-09

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-0	09-0010			HT18-0	9-1030			HT18-0	9-3050	
		Sample Date:		10/23	/2018			10/23	/2018			10/23	/2018	
		Depth Interval (ft):		0-	-1			1-	3			3-	5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.62	0.0362			2.92	0.0292			3	0.03		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)	115	4.55.500						0.44	0.44			0.10	0.10	
1-Methylnaphthalene	446	165,700	0.01	0.27	0.27	0.00	0.01	0.41	0.41	0.00	0.01	0.19	0.19	0.00
2-Methylnaphthalene	447	154,800	0.01	0.30	0.30	0.001	0.01	0.45	0.45	0.001	0.01	0.22	0.22	0.000
Acenaphthene	491	33,400	0.01	0.22	0.22	0.000	0.01	0.48	0.48	0.001	0.01	0.27	0.27	0.001
Acenaphthylene	452	24,000	0.02	0.00	0.00	0.00	0.01	0.23	0.23	0.00	0.02	0.00	0.00	0.00
Anthracene	594	1,300	0.02	0.50	0.50	0.001	0.02	0.68	0.68	0.001	0.03	0.83	0.83	0.001
Benzo[a]anthracene	841	4,153	0.14	3.87	3.87	0.00	0.17	5.82	5.82	0.01	0.10	3.33	3.33	0.00
Benzo[a]pyrene	965	3,840	0.19	5.25	5.25	0.01	0.18	6.16	6.16	0.01	0.11	3.67	3.67	0.00
Benzo[b]fluoranthene	979	2,169	0.33	9.12	9.12	0.009	0.32	10.96	10.96	0.011	0.15	5.00	5.00	0.005
Benzo[e]pyrene	967	4,300	0.23	6.35	6.35	0.01	0.22	7.53	7.53	0.01	0.10	3.33	3.33	0.00
Benzo[g,h,i]perylene	1,095	648	0.24	6.63	6.63	0.01	0.19	6.51	6.51	0.01	0.09	3.10	3.10	0.00
Benzo[k]fluoranthene	981	1,220	0.25	6.91	6.91	0.007	0.25	8.56	8.56	0.009	0.12	4.00	4.00	0.004
C1-Chrysenes	929		0.07	1.88	1.88	0.00	0.09	3.08	3.08	0.00	0.05	1.73	1.73	0.00
C1-Fluorenes	611		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.18	4.97	4.97	0.01	0.23	7.88	7.88	0.01	0.12	4.00	4.00	0.01
C1-Naphthalenes	444		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.08	2.21	2.21	0.00	0.12	4.11	4.11	0.01	0.07	2.40	2.40	0.00
C2-Chrysenes	1,008		0.05	1.41	1.41	0.00	0.05	1.71	1.71	0.00	0.02	0.00	0.00	0.00
C2-Fluorenes	686		0.02	0.00	0.00	0.00	0.07	2.43	2.43	0.00	0.03	1.10	1.10	0.00
C2-Fluoranthenes/Pyrene			0.12	3.31	3.31		0.13	4.45	4.45		0.07	2.27	2.27	
C2-Naphthalenes	510		0.05	1.30	1.30	0.00	0.11	3.77	3.77	0.01	0.05	1.53	1.53	0.00
C2-Phenanthrenes/Anthracenes	746		0.08	2.18	2.18	0.00	0.15	5.14	5.14	0.01	0.08	2.60	2.60	0.00
C3-Chrysenes	1,112		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C3-Fluorenes	769		0.06	1.71	1.71	0.00	0.02	0.00	0.00	0.00	0.05	1.67	1.67	0.00
C3-Fluoranthenes/Pyrene	949		0.05	1.41	1.41	0.00	0.07	2.33	2.33	0.00	0.03	1.10	1.10	0.00
C3-Naphthalenes	581		0.08	2.21	2.21	0.00	0.18	6.16	6.16	0.01	0.08	2.60	2.60	0.00
C3-Phenanthrenes/Anthracenes	829		0.06	1.74	1.74	0.00	0.12	4.11	4.11	0.00	0.06	2.03	2.03	0.00
C4-Chrysenes	1,214		0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C4-Naphthalenes	657		0.10	2.76	2.76	0.00	0.20	6.85	6.85	0.01	0.09	2.87	2.87	0.00
C4-Phenanthrenes/Anthracenes	913		0.05	1.27	1.27	0.00	0.09	3.05	3.05	0.00	0.05	1.73	1.73	0.00
Chrysene	844	826	0.28	7.73	7.73	0.01	0.30	10.27	10.27	0.01	0.15	5.00	5.00	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.06	1.69	1.69	0.002	0.05	1.68	1.68	0.001	0.03	0.97	0.97	0.001
Fluoranthene	707	23,870	0.50	13.81	13.81	0.02	0.57	19.52	19.52	0.03	0.30	10.00	10.00	0.01
Fluorene	538	26,000	0.02	0.47	0.47	0.001	0.03	0.89	0.89	0.002	0.01	0.47	0.47	0.001
Naphthalene	385	61,700	0.01	0.22	0.22	0.00	0.01	0.34	0.34	0.00	0.00	0.12	0.12	0.00
Perylene	967	431	0.06	1.69	1.69	0.00	0.07	2.29	2.29	0.00	0.04	1.17	1.17	0.00
Phenanthrene	596	34,300	0.18	4.97	4.97	0.01	0.23	7.88	7.88	0.01	0.13	4.33	4.33	0.01
Pyrene	697	9,090	0.35	9.67	9.67	0.01	0.43	14.73	14.73	0.02	0.20	6.67	6.67	0.01
		ESBTU FCVi				0.13				0.20				0.10
Notes:														

Location ID:

HT18-09

HT18-09

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-09-	-3050-FD			HT18-0	9-5070			HT18-0	9-7010	
		Sample Date:		10/23	3/2018			10/23	/2018			10/23	/2018	
		Depth Interval (ft):		3-	-5			5-	7			7-9). 7	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	µg/g ос	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			2.76	0.0276			3.76	0.0376			4.24	0.0424		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.02	0.65	0.65	0.00	0.03	0.72	0.72	0.00	0.13	3.07	3.07	0.01
2-Methylnaphthalene	447	154,800	0.02	0.80	0.80	0.002	0.04	0.98	0.98	0.002	0.16	3.77	3.77	0.008
Acenaphthene	491	33,400	0.04	1.34	1.34	0.003	0.02	0.53	0.53	0.001	0.06	1.51	1.51	0.003
Acenaphthylene	452	24,000	0.01	0.36	0.36	0.00	0.02	0.43	0.43	0.00	0.04	0.94	0.94	0.00
Anthracene	594	1,300	0.07	2.57	2.57	0.004	0.05	1.28	1.28	0.002	0.16	3.77	3.77	0.006
Benzo[a]anthracene	841	4,153	0.32	11.59	11.59	0.01	0.21	5.59	5.59	0.01	0.52	12.26	12.26	0.01
Benzo[a]pyrene	965	3,840	0.32	11.59	11.59	0.01	0.24	6.38	6.38	0.01	0.49	11.56	11.56	0.01
Benzo[b]fluoranthene	979	2,169	0.45	16.30	16.30	0.017	0.35	9.31	9.31	0.010	0.70	16.51	16.51	0.017
Benzo[e]pyrene	967	4,300	0.29	10.51	10.51	0.01	0.24	6.38	6.38	0.01	0.47	11.08	11.08	0.01
Benzo[g,h,i]perylene	1,095	648	0.27	9.78	9.78	0.01	0.23	6.12	6.12	0.01	0.29	6.84	6.84	0.01
Benzo[k]fluoranthene	981	1,220	0.32	11.59	11.59	0.012	0.28	7.45	7.45	0.008	0.51	12.03	12.03	0.012
C1-Chrysenes	929		0.13	4.71	4.71	0.01	0.13	3.46	3.46	0.00	0.39	9.20	9.20	0.01
C1-Fluorenes	611		0.03	0.00	0.00	0.00	0.08	2.10	2.10	0.00	0.40	9.43	9.43	0.02
C1-Fluoranthenes/pyrene	770		0.35	12.68	12.68	0.02	0.28	7.45	7.45	0.01	0.88	20.75	20.75	0.03
C1-Naphthalenes	444		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.20	4.72	4.72	0.01
C1-Phenanthrenes/Anthracenes	670		0.22	7.97	7.97	0.01	0.22	5.85	5.85	0.01	1.40	33.02	33.02	0.05
C2-Chrysenes	1,008		0.07	2.64	2.64	0.00	0.06	1.70	1.70	0.00	0.38	8.96	8.96	0.01
C2-Fluorenes	686		0.11	3.99	3.99	0.01	0.25	6.65	6.65	0.01	1.10	25.94	25.94	0.04
C2-Fluoranthenes/Pyrene			0.22	7.97	7.97		0.19	5.05	5.05		0.74	17.45	17.45	
C2-Naphthalenes	510		0.13	4.71	4.71	0.01	0.27	7.18	7.18	0.01	1.70	40.09	40.09	0.08
C2-Phenanthrenes/Anthracenes	746		0.22	7.97	7.97	0.01	0.29	7.71	7.71	0.01	2.10	49.53	49.53	0.07
C3-Chrysenes	1,112		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.20	4.72	4.72	0.00
C3-Fluorenes	769		0.17	6.16	6.16	0.01	0.30	7.98	7.98	0.01	1.50	35.38	35.38	0.05
C3-Fluoranthenes/Pyrene	949		0.10	3.48	3.48	0.00	0.09	2.42	2.42	0.00	0.58	13.68	13.68	0.01
C3-Naphthalenes	581		0.21	7.61	7.61	0.01	0.45	11.97	11.97	0.02	3.50	82.55	82.55	0.14
C3-Phenanthrenes/Anthracenes	829		0.17	6.16	6.16	0.01	0.22	5.85	5.85	0.01	1.80	42.45	42.45	0.05
C4-Chrysenes	1,214		0.03	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C4-Naphthalenes	657		0.24	8.70	8.70	0.01	0.46	12.23	12.23	0.02	3.90	91.98	91.98	0.14
C4-Phenanthrenes/Anthracenes	913		0.14	5.07	5.07	0.01	0.20	5.32	5.32	0.01	1.50	35.38	35.38	0.04
Chrysene	844	826	0.44	15.94	15.94	0.02	0.34	9.04	9.04	0.01	0.77	18.16	18.16	0.02
Dibenzo(a,h)anthracene	1,123	2,389	0.09	3.15	3.15	0.003	0.07	1.76	1.76	0.002	0.12	2.83	2.83	0.003
Fluoranthene	707	23,870	0.92	33.33	33.33	0.05	0.69	18.35	18.35	0.03	1.50	35.38	35.38	0.05
Fluorene	538	26,000	0.05	1.88	1.88	0.004	0.05	1.22	1.22	0.002	0.14	3.30	3.30	0.006
Naphthalene	385	61,700	0.02	0.83	0.83	0.00	0.01	0.27	0.27	0.00	0.05	1.27	1.27	0.00
Perylene	967	431	0.10	3.62	3.62	0.00	0.07	1.81	1.81	0.00	0.15	3.54	3.54	0.00
Phenanthrene	596	34,300	0.50	18.12	18.12	0.03	0.32	8.51	8.51	0.01	0.95	22.41	22.41	0.04
Pyrene	697	9,090	0.64	23.19	23.19	0.03	0.46	12.23	12.23	0.02	1.10	25.94	25.94	0.04
		ESBTU FCVi				0.34				0.25				0.98
Notes:														

HT18-09

HT18-09

HT18-09

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-1	0-SURF			HT18-1	0-0010			HT18-1	1-SURF	
		Sample Date:		10/22	/2018			10/24	/2018			10/22	/2018	
		Depth Interval (ft):		0-0	0.5			0-1	.1			0-0).5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	µg/g ос	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			0.234	0.00234			0.4	0.004			4.95	0.0495		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)		4.55.500		• 0 6	• 0 6			2.20	0.00			0.00		
1-Methylnaphthalene	446	165,700	0.01	2.86	2.86	0.01	0.00	0.28	0.28	0.00	0.01	0.20	0.20	0.00
2-Methylnaphthalene	447	154,800	0.01	2.78	2.78	0.006	0.00	0.28	0.28	0.001	0.01	0.15	0.15	0.000
Acenaphthene	491	33,400	0.05	20.51	20.51	0.042	0.00	1.13	1.13	0.002	0.01	0.22	0.22	0.000
Acenaphthylene	452	24,000	0.04	18.80	18.80	0.04	0.00	0.50	0.50	0.00	0.01	0.11	0.11	0.00
Anthracene	594	1,300	0.10	42.31	42.31	0.071	0.00	0.83	0.83	0.001	0.02	0.38	0.38	0.001
Benzo[a]anthracene	841	4,153	0.20	85.47	85.47	0.10	0.01	3.50	3.50	0.00	0.12	2.42	2.42	0.00
Benzo[a]pyrene	965	3,840	0.07	28.63	28.63	0.03	0.01	3.00	3.00	0.00	0.08	1.68	1.68	0.00
Benzo[b]fluoranthene	979	2,169	0.14	59.83	59.83	0.061	0.02	4.75	4.75	0.005	0.23	4.65	4.65	0.005
Benzo[e]pyrene	967	4,300	0.04	15.81	15.81	0.02	0.01	3.50	3.50	0.00	0.07	1.49	1.49	0.00
Benzo[g,h,i]perylene	1,095	648	0.02	0.00	0.00	0.00	0.01	2.75	2.75	0.00	0.02	0.40	0.40	0.00
Benzo[k]fluoranthene	981	1,220	0.11	47.01	47.01	0.048	0.02	3.75	3.75	0.004	0.15	3.03	3.03	0.003
C1-Chrysenes C1-Fluorenes	929 611		0.08	35.90	35.90	0.04	0.02	5.00	5.00	0.01	0.06	1.21	1.21	0.00
			0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Fluoranthenes/pyrene C1-Naphthalenes	770		0.25	106.84	106.84	0.14	0.03	7.50	7.50	0.01	0.15	3.03	3.03	0.00
C1-Phenanthrenes/Anthracenes	444		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C2-Chrysenes	670		0.19	81.20	81.20	0.12	0.02	5.25 4.75	5.25 4.75	0.01	0.09	1.78	1.78	0.00
C2-Fluorenes	1,008 686		0.05 0.02	20.51 0.00	20.51 0.00	0.02	0.02	1.83	1.83	0.00	0.04	0.71	0.71	0.00
C2-Fluoranthenes/Pyrene			0.02	47.01	47.01		0.01	7.00	7.00		0.01	2.22	2.22	1
C2-Naphthalenes	510		0.11	27.35	27.35	0.05	0.03	2.10	2.10	0.00	0.11	0.85	0.85	0.00
C2-Phenanthrenes/Anthracenes	746		0.00	55.56	55.56	0.03	0.01	9.50	9.50	0.00	0.04	1.70	1.70	0.00
C3-Chrysenes	1,112		0.13	0.00	0.00	0.00	0.04	2.30	2.30	0.01	0.08	0.00	0.00	0.00
C3-Fluorenes	769		0.02	0.00	0.00	0.00	0.01	4.00	4.00	0.00	0.01	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.02	20.51	20.51	0.00	0.02	6.25	6.25	0.01	0.01	0.89	0.89	0.00
C3-Naphthalenes	581		0.08	33.76	33.76	0.06	0.02	5.00	5.00	0.01	0.07	1.39	1.39	0.00
C3-Phenanthrenes/Anthracenes	829		0.06	26.50	26.50	0.03	0.04	10.75	10.75	0.01	0.06	1.21	1.21	0.00
C4-Chrysenes	1,214		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C4-Naphthalenes	657		0.07	31.62	31.62	0.05	0.03	6.50	6.50	0.01	0.11	2.22	2.22	0.00
C4-Phenanthrenes/Anthracenes	913		0.02	0.00	0.00	0.00	0.03	8.50	8.50	0.01	0.04	0.79	0.79	0.00
Chrysene	844	826	0.17	72.65	72.65	0.09	0.02	5.50	5.50	0.01	0.19	3.84	3.84	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.03	11.54	11.54	0.010	0.00	0.95	0.95	0.001	0.04	0.79	0.79	0.001
Fluoranthene	707	23,870	0.43	183.76	183.76	0.26	0.04	9.50	9.50	0.01	0.37	7.47	7.47	0.01
Fluorene	538	26,000	0.06	26.07	26.07	0.048	0.00	0.70	0.70	0.001	0.02	0.36	0.36	0.001
Naphthalene	385	61,700	0.00	1.97	1.97	0.01	0.00	0.35	0.35	0.00	0.00	0.09	0.09	0.00
Perylene	967	431	0.01	4.27	4.27	0.00	0.01	3.50	3.50	0.00	0.02	0.34	0.34	0.00
Phenanthrene	596	34,300	0.36	153.85	153.85	0.26	0.02	5.50	5.50	0.01	0.16	3.23	3.23	0.01
Pyrene	697	9,090	0.24	102.56	102.56	0.15	0.03	7.25	7.25	0.01	0.20	4.04	4.04	0.01
		ESBTU FCVi				1.83				0.17				0.07
Notes:					1	1		<u> </u>				<u> </u>		

HT18-10

HT18-10

HT18-11

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-1	11-0010			HT18-1	1-1030			HT18-1	1-3050	
		Sample Date:		10/24	/2018			10/24	/2018			10/24	/2018	
		Depth Interval (ft):		0-	-1			1-	3			3-	-5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.23	0.0323			3.29	0.0329			1.63	0.0163		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.01	0.16	0.16	0.00	0.01	0.36	0.36	0.00	0.01	0.40	0.40	0.00
2-Methylnaphthalene	447	154,800	0.01	0.18	0.18	0.000	0.01	0.36	0.36	0.001	0.01	0.38	0.38	0.001
Acenaphthene	491	33,400	0.02	0.56	0.56	0.001	0.02	0.52	0.52	0.001	0.01	0.74	0.74	0.001
Acenaphthylene	452	24,000	0.01	0.00	0.00	0.00	0.01	0.27	0.27	0.00	0.00	0.29	0.29	0.00
Anthracene	594	1,300	0.01	0.25	0.25	0.000	0.03	1.00	1.00	0.002	0.02	1.29	1.29	0.002
Benzo[a]anthracene	841	4,153	0.06	1.98	1.98	0.00	0.19	5.78	5.78	0.01	0.11	6.75	6.75	0.01
Benzo[a]pyrene	965	3,840	0.09	2.69	2.69	0.00	0.20	6.08	6.08	0.01	0.11	6.75	6.75	0.01
Benzo[b]fluoranthene	979	2,169	0.15	4.64	4.64	0.005	0.28	8.51	8.51	0.009	0.13	7.98	7.98	0.008
Benzo[e]pyrene	967	4,300	0.10	3.10	3.10	0.00	0.19	5.78	5.78	0.01	0.10	5.83	5.83	0.01
Benzo[g,h,i]perylene	1,095	648	0.09	2.91	2.91	0.00	0.18	5.47	5.47	0.00	0.08	5.03	5.03	0.00
Benzo[k]fluoranthene	981	1,220	0.12	3.72	3.72	0.004	0.24	7.29	7.29	0.007	0.12	7.36	7.36	0.008
C1-Chrysenes	929		0.03	0.93	0.93	0.00	0.09	2.67	2.67	0.00	0.07	4.05	4.05	0.00
C1-Fluorenes	611		0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.09	2.63	2.63	0.00	0.23	6.99	6.99	0.01	0.14	8.59	8.59	0.01
C1-Naphthalenes	444		0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.04	1.27	1.27	0.00	0.14	4.26	4.26	0.01	0.09	5.21	5.21	0.01
C2-Chrysenes	1,008		0.02	0.71	0.71	0.00	0.05	1.58	1.58	0.00	0.03	1.84	1.84	0.00
C2-Fluorenes	686		0.02	0.74	0.74	0.00	0.07	2.25	2.25	0.00	0.04	2.15	2.15	0.00
C2-Fluoranthenes/Pyrene			0.06	1.70	1.70		0.14	4.26	4.26		0.08	5.03	5.03	
C2-Naphthalenes	510		0.02	0.74	0.74	0.00	0.09	2.80	2.80	0.01	0.05	2.94	2.94	0.01
C2-Phenanthrenes/Anthracenes	746		0.04	1.27	1.27	0.00	0.15	4.56	4.56	0.01	0.10	6.07	6.07	0.01
C3-Chrysenes	1,112		0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C3-Fluorenes	769		0.01	0.00	0.00	0.00	0.11	3.34	3.34	0.00	0.06	3.44	3.44	0.00
C3-Fluoranthenes/Pyrene	949		0.03	0.80	0.80	0.00	0.07	2.22	2.22	0.00	0.04	2.64	2.64	0.00
C3-Naphthalenes	581		0.04	1.21	1.21	0.00	0.16	4.86	4.86	0.01	0.09	5.46	5.46	0.01
C3-Phenanthrenes/Anthracenes	829		0.03	0.93	0.93	0.00	0.12	3.65	3.65	0.00	0.09	5.28	5.28	0.01
C4-Chrysenes	1,214		0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C4-Naphthalenes	657		0.05	1.49	1.49	0.00	0.15	4.56	4.56	0.01	0.10	6.13	6.13	0.01
C4-Phenanthrenes/Anthracenes	913		0.02	0.65	0.65	0.00	0.10	3.04	3.04	0.00	0.07	4.05	4.05	0.00
Chrysene	844	826	0.13	4.02	4.02	0.00	0.28	8.51	8.51	0.01	0.15	9.20	9.20	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.03	0.84	0.84	0.001	0.06	1.70	1.70	0.002	0.03	1.72	1.72	0.002
Fluoranthene	707	23,870	0.24	7.43	7.43	0.01	0.57	17.33	17.33	0.02	0.29	17.79	17.79	0.03
Fluorene	538	26,000	0.01	0.24	0.24	0.000	0.03	0.85	0.85	0.002	0.02	1.04	1.04	0.002
Naphthalene	385	61,700	0.01	0.17	0.17	0.00	0.01	0.33	0.33	0.00	0.01	0.35	0.35	0.00
Perylene	967	431	0.03	0.87	0.87	0.00	0.06	1.88	1.88	0.00	0.05	2.76	2.76	0.00
Phenanthrene	596	34,300	0.09	2.69	2.69	0.00	0.27	8.21	8.21	0.01	0.15	9.20	9.20	0.02
Pyrene	697	9,090	0.17	5.26	5.26	0.01	0.38	11.55	11.55	0.02	0.22	13.50	13.50	0.02
		ESBTU FCVi				0.07				0.18				0.20
Notes:														

HT18-11

HT18-11

HT18-11

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-1	1 5070		-	HT18-1	1 7010			HT18-12		
		-												
		Sample Date:		10/24				10/24/				10/22		
	C PAIR ECVI	Depth Interval (ft):		5-		I	C .	7-9			C .	0-0		I
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final	ESBTU	Conc	Coc	Final	ECDTH	Conc	Coc	Final	ECDTH
	µg/g ос	µg/g ос	μg/g dry wt.	μg/g oc	Cocb	FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			1.02	0.0102			0.559	0.00559			2.75	0.0275		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.08	0.08	0.00	0.00	0.20	0.20	0.00	0.01	0.51	0.51	0.00
2-Methylnaphthalene	447	154,800	0.00	0.07	0.07	0.000	0.00	0.13	0.13	0.000	0.01	0.47	0.47	0.001
Acenaphthene	491	33,400	0.00	0.06	0.06	0.000	0.00	0.00	0.00	0.000	0.02	0.69	0.69	0.001
Acenaphthylene	452	24,000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.55	0.55	0.00
Anthracene	594	1,300	0.00	0.06	0.06	0.000	0.00	0.00	0.00	0.000	0.04	1.45	1.45	0.002
Benzo[a]anthracene	841	4,153	0.00	0.24	0.24	0.00	0.00	0.00	0.00	0.00	0.22	8.00	8.00	0.01
Benzo[a]pyrene	965	3,840	0.00	0.22	0.22	0.00	0.00	0.10	0.10	0.00	0.11	4.00	4.00	0.00
Benzo[b]fluoranthene	979	2,169	0.00	0.36	0.36	0.000	0.00	0.32	0.32	0.000	0.25	9.09	9.09	0.009
Benzo[e]pyrene	967	4,300	0.00	0.25	0.25	0.00	0.00	0.29	0.29	0.00	0.08	3.05	3.05	0.00
Benzo[g,h,i]perylene	1,095	648	0.00	0.24	0.24	0.00	0.00	0.00	0.00	0.00	0.02	0.69	0.69	0.00
Benzo[k]fluoranthene	981	1,220	0.00	0.00	0.00	0.000	0.00	0.15	0.15	0.000	0.19	6.91	6.91	0.007
C1-Chrysenes	929		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	4.00	4.00	0.00
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.01	0.53	0.53	0.00	0.00	0.77	0.77	0.00	0.26	9.45	9.45	0.01
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.00	0.46	0.46	0.00	0.01	0.97	0.97	0.00	0.16	5.82	5.82	0.01
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	2.22	2.22	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.00	0.42	0.42		0.00	0.84	0.84		0.17	6.18	6.18	
C2-Naphthalenes	510		0.00	0.00	0.00	0.00	0.00	0.86	0.86	0.00	0.07	2.62	2.62	0.01
C2-Phenanthrenes/Anthracenes	746		0.01	0.71	0.71	0.00	0.01	1.66	1.66	0.00	0.16	5.82	5.82	0.01
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C3-Fluorenes	769		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	2.80	2.80	0.00
C3-Naphthalenes	581		0.01	0.66	0.66	0.00	0.01	1.97	1.97	0.00	0.12	4.36	4.36	0.01
C3-Phenanthrenes/Anthracenes	829		0.01	0.59	0.59	0.00	0.01	1.34	1.34	0.00	0.12	4.36	4.36	0.01
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C4-Naphthalenes	657		0.01	0.93	0.93	0.00	0.02	3.04	3.04	0.00	0.16	5.82	5.82	0.01
C4-Phenanthrenes/Anthracenes	913		0.00	0.45	0.45	0.00	0.01	1.11	1.11	0.00	0.08	2.84	2.84	0.00
Chrysene	844	826	0.00	0.42	0.42	0.00	0.00	0.50	0.50	0.00	0.24	8.73	8.73	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.05	0.05	0.000	0.00	0.00	0.00	0.000	0.05	1.64	1.64	0.001
Fluoranthene	707	23,870	0.01	0.69	0.69	0.00	0.00	0.48	0.48	0.00	0.55	20.00	20.00	0.03
Fluorene	538	26,000	0.00	0.07	0.07	0.000	0.00	0.15	0.15	0.000	0.03	1.24	1.24	0.002
Naphthalene	385	61,700	0.00	0.10	0.10	0.00	0.00	0.12	0.12	0.00	0.01	0.40	0.40	0.00
Perylene	967	431	0.01	1.18	1.18	0.00	0.02	4.29	4.29	0.00	0.02	0.73	0.73	0.00
Phenanthrene	596	34,300	0.00	0.37	0.37	0.00	0.00	0.43	0.43	0.00	0.26	9.45	9.45	0.02
Pyrene	697	9,090	0.01	0.55	0.55	0.00	0.00	0.43	0.43	0.00	0.31	11.27	11.27	0.02
		ESBTU FCVi				0.01				0.03				0.18
Notes:	<u> </u>	LODIO PCVI	<u> </u>	I	<u> </u>	1 0.01	I	<u> </u>		0.03	I			0.10

Location ID:

HT18-11

HT18-11

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

Methodophishishes			Sample Name:		HT18-12-	SURF-FD			HT18-1	12-0010			HT18-1	2-1030	
Performance			Sample Date:		10/22	/2018			10/23	/2018			10/23	/2018	
Purple of Purp			Depth Interval (ft):		0-0	0.5			0-	-1			1.	-3	
Page		Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
Transferición (Propositic Carbona (PAS) 1998		ug/g oc	ug/g oc	l	na/a oc	Coch			ug/g oc	Coch			na/a oc	Coch	
Proback-special base	Total Organic Carbon (%)														
Medical publishes	<u> </u>				0.027			5117	0.0017			,	010 117		
Selection 447	1-Methylnaphthalene	446	165,700	0.01	0.51	0.51	0.00	0.03	1.01	1.01	0.00	0.07	1.63	1.63	0.00
Accumplishons	2-Methylnaphthalene						 				.	i			
Authracene	Acenaphthene	491	33,400		0.73	0.73	1		1.96	1.96		•	4.56	4.56	0.009
Revord player Set	Acenaphthylene	452	24,000	0.01	0.44	0.44	0.00	0.02	0.69	0.69	0.00	0.07	1.58	1.58	0.00
Benofallymore	Anthracene	594	1,300	0.05	1.90	1.90	0.003	0.18	5.68	5.68	0.010	0.28	6.71	6.71	0.011
Ravoll/Discardience	Benzo[a]anthracene	841	4,153	0.23	8.39	8.39	0.01	0.62	19.56	19.56	0.02	1.20	28.78	28.78	0.03
BeznofgLippores	Benzo[a]pyrene	965	3,840	0.08	2.74	2.74	0.00	0.48	15.14	15.14	0.02	0.79	18.94	18.94	0.02
Remorphisms	Benzo[b]fluoranthene	979	2,169	0.26	9.49	9.49	0.010	0.55	17.35	17.35	0.018	1.20	28.78	28.78	0.029
Revoratify the carefulation 981 1,220 0.20 7.30 7.30 0.007 0.46 14.51 14.51 0.015 1.00 23.98 23.98 0.024 1.005	Benzo[e]pyrene	967	4,300	0.05	1.72	1.72	0.00	0.40	12.62	12.62	0.01	0.87	20.86	20.86	0.02
CI-Chyeners 929	Benzo[g,h,i]perylene	1,095	648	0.01	0.19	0.19	0.00	0.31	9.78	9.78	0.01	0.67	16.07	16.07	0.01
CI-Finemens	Benzo[k]fluoranthene	981	1,220	0.20	7.30	7.30	0.007	0.46	14.51	14.51	0.015	1.00	23.98	23.98	0.024
CI-Fluoramthenes/pyrene	C1-Chrysenes	929		0.12	4.38	4.38	0.00	0.27	8.52	8.52	0.01	0.77	18.47	18.47	0.02
CI-Naphthalenes 444	C1-Fluorenes	611		0.02	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.14	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	C1-Fluoranthenes/pyrene	770		0.27	9.85	9.85	0.01	0.64	20.19	20.19	0.03	1.70	40.77	40.77	0.05
C2-Chrysenes	C1-Naphthalenes	444		0.02	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.14	0.00	0.00	0.00
C2-Fluorenes	C1-Phenanthrenes/Anthracenes	670		0.16	5.84	5.84	0.01	0.52	16.40	16.40	0.02	1.50	35.97	35.97	0.05
C2-Fibroranthenes/Pyrene	C2-Chrysenes	1,008		0.06	2.34	2.34	0.00	0.18	5.68	5.68	0.01	0.66	15.83	15.83	0.02
C2-Naphthalenes 510	C2-Fluorenes	686		0.02	0.00	0.00	0.00	0.16	5.05	5.05	0.01	0.60	14.39	14.39	0.02
C2-Phenanthrenes/Anthracenes 746 0.16 5.84 5.84 0.01 0.51 16.09 16.09 0.02 2.30 55.16 55.16 0.07 C3-Chrysenes 1,112 0.02 0.00 0.00 0.00 0.00 0.00 0.00	C2-Fluoranthenes/Pyrene			0.17	6.20	6.20		0.47	14.83	14.83		1.30	31.18	31.18	
C3-Chrysenes	C2-Naphthalenes	510		0.08	2.81	2.81	0.01	0.20	6.31	6.31	0.01	0.74	17.75	17.75	0.03
C3-Fluorenes	C2-Phenanthrenes/Anthracenes	746		0.16	5.84	5.84	0.01	0.51	16.09	16.09	0.02	2.30	55.16	55.16	0.07
C3-Fluoranthenes/Pyrene	C3-Chrysenes			0.02	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.48	11.51	11.51	0.01
C3-Naphthalenes	C3-Fluorenes														
C3-Phenanthrenes/Anthracenes							1								
C4-Chrysenes												 			
C4-Naphthalenes															
C4-Phenanthrenes/Anthracenes 913 0.09 3.43 3.43 0.00 0.36 11.36 11.36 0.01 2.20 52.76 52.76 0.06 Chrysene 844 826 0.26 9.49 9.49 0.01 0.67 21.14 21.14 0.03 1.50 35.97 35.97 0.04 Dibenzo(a,h)anthracene 1,123 2,389 0.06 2.08 2.08 0.002 0.11 3.47 3.47 0.003 0.25 6.00 6.00 0.05 Fluoranthene 707 23,870 0.53 19.34 19.34 0.03 1.50 47.32 47.32 0.07 3.00 71.94 71.94 0.10 Fluorene 538 26,000 0.04 1.28 1.28 0.002 0.07 2.27 2.27 0.004 0.19 4.56 4.56 0.008 Naphthalene Naphthalene 385 61,700 0.01 0.51 0.51 0.00 0.03 0.88 0.88 0.00 0.08 1.92 1.92 0.00 Perylene 967 431 0.01 0.29 0.29 0.00 0.15 4.73 4.73 0.00 0.29 6.95 6.95 0.01 Phenanthrene 596 34,300 0.26 9.49 9.49 0.02 0.96 30.28 30.28 30.28 0.05 1.90 45.56 45.56 0.08 Pyrene 697 9,090 0.25 9.12 9.12 0.01 1.20 37.85 37.85 0.05 2.40 57.55 57.55 0.08	-	· ·													
Chrysene 844 826 0.26 9.49 9.49 0.01 0.67 21.14 21.14 0.03 1.50 35.97 35.97 0.04 Dibenzo(a,h)anthracene 1,123 2,389 0.06 2.08 2.08 0.002 0.11 3.47 3.47 0.003 0.25 6.00 6.00 0.005 Fluoranthene 707 23,870 0.53 19.34 19.34 0.03 1.50 47.32 47.32 0.07 3.00 71.94 71.94 0.10 Fluorene 538 26,000 0.04 1.28 1.28 0.002 0.07 2.27 2.27 0.004 0.19 4.56 4.56 0.008 Naphthalene 385 61,700 0.01 0.51 0.51 0.51 0.00 0.03 0.88 0.88 0.00 0.08 1.92 1.92 0.00 Perylene 967 431 0.01 0.29 0.29 0.00 0.15 4.73 4.73 0.00 0.29 6.95 6.95 0.01 Phenanthrene 596 34,300 0.26 9.49 9.49 0.02 0.96 30.28 30.28 0.05 1.90 45.56 45.56 0.08 Pyrene 697 9,090 0.25 9.12 9.12 0.01 1.20 37.85 37.85 0.05 2.40 57.55 57.55 0.08	-														
Diberzo(a,h)anthracene				ļ											
Fluoranthene Fluor				!											
Fluorene 538 26,000 0.04 1.28 1.28 0.002 0.07 2.27 2.27 0.004 0.19 4.56 4.56 0.008 Naphthalene 385 61,700 0.01 0.51 0.51 0.00 0.03 0.88 0.88 0.00 0.08 1.92 1.92 0.00 Perylene 967 431 0.01 0.29 0.29 0.00 0.15 4.73 4.73 0.00 0.29 6.95 6.95 0.01 Phenanthrene 596 34,300 0.26 9.49 9.49 0.02 0.96 30.28 30.28 0.05 1.90 45.56 45.56 0.08 Pyrene 697 9,090 0.25 9.12 9.12 0.01 1.20 37.85 37.85 0.05 2.40 57.55 57.55 0.08 ESBTU FCVi 0.18 0.52 1.11			· ·	ļ							ļ				
Naphthalene 385 61,700 0.01 0.51 0.51 0.00 0.03 0.88 0.88 0.00 0.08 1.92 1.92 0.00 Perylene 967 431 0.01 0.29 0.29 0.00 0.15 4.73 4.73 0.00 0.29 6.95 6.95 0.01 Phenanthrene 596 34,300 0.26 9.49 9.49 0.02 0.96 30.28 30.28 0.05 1.90 45.56 45.56 0.08 Pyrene 697 9,090 0.25 9.12 9.12 0.01 1.20 37.85 37.85 0.05 2.40 57.55 57.55 0.08 ESBTU FCVi 0.18 0.52 1.11			· · · · · · · · · · · · · · · · · · ·									 			
Perylene 967 431 0.01 0.29 0.29 0.00 0.15 4.73 4.73 0.00 0.29 6.95 6.95 0.01 Phenanthrene 596 34,300 0.26 9.49 9.49 0.02 0.96 30.28 30.28 0.05 1.90 45.56 45.56 0.08 Pyrene 697 9,090 0.25 9.12 9.12 0.01 1.20 37.85 37.85 0.05 2.40 57.55 57.55 0.08 ESBTU FCVi 0.18 0.52 1.11			· ·												
Phenanthrene 596 34,300 0.26 9.49 9.49 0.02 0.96 30.28 30.28 0.05 1.90 45.56 45.56 0.08 Pyrene 697 9,090 0.25 9.12 9.12 0.01 1.20 37.85 37.85 0.05 2.40 57.55 57.55 0.08 ESBTU FCVi 0.18 0.52 1.11			· ·												
Pyrene 697 9,090 0.25 9.12 9.12 0.01 1.20 37.85 37.85 0.05 2.40 57.55 57.55 0.08 ESBTU FCVi 0.18 0.52 1.11															
ESBTU FCVi 0.18 0.52 1.11			· ·												
	1 yiene		·	 											
	Notes:		ESBIU FCVI				0.18				0.52				1.11

Location ID:

HT18-12

HT18-12

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Location ID:		HII				HII				HII		
		Sample Name:		HT18-1				HT18-1				HT18-1		
		Sample Date:		10/23				10/23				10/23		
		Depth Interval (ft):		3-				5-				7-9		
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	µg/g ос	μg/g oc	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			1.76	0.0176			1.73	0.0173			0.797	0.00797		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.22	12.50	12.50	0.03	0.00	0.06	0.06	0.00	0.00	0.15	0.15	0.00
2-Methylnaphthalene	447	154,800	0.08	4.49	4.49	0.010	0.00	0.04	0.04	0.000	0.00	0.10	0.10	0.000
Acenaphthene	491	33,400	0.33	18.75	18.75	0.038	0.01	0.35	0.35	0.001	0.00	0.00	0.00	0.000
Acenaphthylene	452	24,000	0.05	2.90	2.90	0.01	0.00	0.06	0.06	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.35	19.89	19.89	0.033	0.00	0.25	0.25	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	1.20	68.18	68.18	0.08	0.02	0.98	0.98	0.00	0.00	0.00	0.00	0.00
Benzo[a]pyrene	965	3,840	0.49	27.84	27.84	0.03	0.01	0.46	0.46	0.00	0.00	0.00	0.00	0.00
Benzo[b]fluoranthene	979	2,169	1.00	56.82	56.82	0.058	0.02	0.92	0.92	0.001	0.00	0.20	0.20	0.000
Benzo[e]pyrene	967	4,300	0.73	41.48	41.48	0.04	0.01	0.64	0.64	0.00	0.00	0.15	0.15	0.00
Benzo[g,h,i]perylene	1,095	648	0.56	31.82	31.82	0.03	0.01	0.58	0.58	0.00	0.00	0.00	0.00	0.00
Benzo[k]fluoranthene	981	1,220	0.88	50.00	50.00	0.051	0.01	0.75	0.75	0.001	0.00	0.09	0.09	0.000
C1-Chrysenes	929		0.51	28.98	28.98	0.03	0.01	0.52	0.52	0.00	0.00	0.00	0.00	0.00
C1-Fluorenes	611		0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		1.50	85.23	85.23	0.11	0.02	1.27	1.27	0.00	0.00	0.00	0.00	0.00
C1-Naphthalenes	444		0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		1.20	68.18	68.18	0.10	0.02	0.98	0.98	0.00	0.01	0.65	0.65	0.00
C2-Chrysenes	1,008		0.31	17.61	17.61	0.02	0.01	0.29	0.29	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.86	48.86	48.86		0.01	0.75	0.75		0.00	0.55	0.55	
C2-Naphthalenes	510		0.78	44.32	44.32	0.09	0.01	0.64	0.64	0.00	0.00	0.61	0.61	0.00
C2-Phenanthrenes/Anthracenes	746		0.92	52.27	52.27	0.07	0.02	1.04	1.04	0.00	0.01	1.04	1.04	0.00
C3-Chrysenes	1,112		0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.34	19.32	19.32	0.03	0.01	0.35	0.35	0.00	0.00	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.36	20.45	20.45	0.02	0.01	0.35	0.35	0.00	0.00	0.00	0.00	0.00
C3-Naphthalenes	581		0.65	36.93	36.93	0.06	0.01	0.81	0.81	0.00	0.01	1.38	1.38	0.00
C3-Phenanthrenes/Anthracenes	829		0.64	36.36	36.36	0.04	0.02	0.92	0.92	0.00	0.01	0.88	0.88	0.00
C4-Chrysenes	1,214		0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.45	25.57	25.57	0.04	0.01	0.75	0.75	0.00	0.02	2.01	2.01	0.00
C4-Phenanthrenes/Anthracenes	913		0.50	28.41	28.41	0.03	0.01	0.75	0.75	0.00	0.01	0.66	0.66	0.00
Chrysene	844	826	1.30	73.86	73.86	0.09	0.02	1.10	1.10	0.00	0.00	0.31	0.31	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.21	11.93	11.93	0.011	0.00	0.18	0.18	0.000	0.00	0.00	0.00	0.000
Fluoranthene	707	23,870	3.20	181.82	181.82	0.26	0.05	2.60	2.60	0.00	0.00	0.28	0.28	0.00
Fluorene	538	26,000	0.46	26.14	26.14	0.049	0.00	0.21	0.21	0.000	0.00	0.10	0.10	0.000
Naphthalene	385	61,700	0.12	6.82	6.82	0.02	0.00	0.05	0.05	0.00	0.00	0.10	0.10	0.00
Perylene	967	431	0.21	11.93	11.93	0.01	0.02	1.04	1.04	0.00	0.02	2.89	2.89	0.00
Phenanthrene	596	34,300	3.10	176.14	176.14	0.30	0.03	1.97	1.97	0.00	0.00	0.28	0.28	0.00
Pyrene	697	9,090	2.60	147.73	147.73	0.21	0.03	1.85	1.85	0.00	0.00	0.24	0.24	0.00
		ESBTU FCVi				1.96				0.03				0.02
Notes:	1						1				1			

Location ID:

HT18-12

HT18-12

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

and its Affiliate EA Science and Technology

HT18-13

		Sample Name:		HT18-1	3-SURF			HT18-1	3-0010			HT18-1	3-1030	
		Sample Date:		10/29	/2018			10/29	/2018			10/29	/2018	
		Depth Interval (ft):		0-0	0.5			0-	1			1-	3	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
		_	μg/g dry			ESBTU	μg/g dry	_		ESBTU	μg/g dry	_		ESBTU
	µg/g ос	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.32	0.0332			3.89	0.0389			4.07	0.0407		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.09	0.09	0.00	0.02	0.41	0.41	0.00	0.03	0.69	0.69	0.00
2-Methylnaphthalene	447	154,800	0.00	0.09	0.09	0.000	0.02	0.57	0.57	0.001	0.04	0.86	0.86	0.002
Acenaphthene	491	33,400	0.00	0.09	0.09	0.000	0.04	1.05	1.05	0.002	0.06	1.45	1.45	0.003
Acenaphthylene	452	24,000	0.00	0.06	0.06	0.00	0.02	0.59	0.59	0.00	0.04	0.88	0.88	0.00
Anthracene	594	1,300	0.01	0.20	0.20	0.000	0.07	1.80	1.80	0.003	0.10	2.46	2.46	0.004
Benzo[a]anthracene	841	4,153	0.05	1.45	1.45	0.00	0.38	9.77	9.77	0.01	0.51	12.53	12.53	0.01
Benzo[a]pyrene	965	3,840	0.05	1.60	1.60	0.00	0.36	9.25	9.25	0.01	0.45	11.06	11.06	0.01
Benzo[b]fluoranthene	979	2,169	0.09	2.71	2.71	0.003	0.42	10.80	10.80	0.011	0.59	14.50	14.50	0.015
Benzo[e]pyrene	967	4,300	0.06	1.87	1.87	0.00	0.28	7.20	7.20	0.01	0.38	9.34	9.34	0.01
Benzo[g,h,i]perylene	1,095	648	0.05	1.51	1.51	0.00	0.07	1.77	1.77	0.00	0.11	2.70	2.70	0.00
Benzo[k]fluoranthene	981	1,220	0.07	2.11	2.11	0.002	0.40	10.28	10.28	0.010	0.39	9.58	9.58	0.010
C1-Chrysenes	929		0.03	0.90	0.90	0.00	0.28	7.20	7.20	0.01	0.51	12.53	12.53	0.01
C1-Fluorenes	611		0.01	0.00	0.00	0.00	0.08	2.11	2.11	0.00	0.14	3.44	3.44	0.01
C1-Fluoranthenes/pyrene	770		0.06	1.69	1.69	0.00	0.65	16.71	16.71	0.02	1.00	24.57	24.57	0.03
C1-Naphthalenes	444		0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.03	0.93	0.93	0.00	0.55	14.14	14.14	0.02	1.00	24.57	24.57	0.04
C2-Chrysenes	1,008		0.02	0.51	0.51	0.00	0.17	4.37	4.37	0.00	0.37	9.09	9.09	0.01
C2-Fluorenes	686		0.01	0.00	0.00	0.00	0.28	7.20	7.20	0.01	0.56	13.76	13.76	0.02
C2-Fluoranthenes/Pyrene			0.04	1.05	1.05		0.44	11.31	11.31		0.83	20.39	20.39	
C2-Naphthalenes	510		0.02	0.45	0.45	0.00	0.22	5.66	5.66	0.01	0.38	9.34	9.34	0.02
C2-Phenanthrenes/Anthracenes	746		0.03	0.93	0.93	0.00	1.10	28.28	28.28	0.04	2.30	56.51	56.51	0.08
C3-Chrysenes	1,112		0.01	0.00	0.00	0.00	0.10	2.57	2.57	0.00	0.22	5.41	5.41	0.00
C3-Fluorenes	769		0.02	0.57	0.57	0.00	0.43	11.05	11.05	0.01	1.00	24.57	24.57	0.03
C3-Fluoranthenes/Pyrene	949		0.02	0.48	0.48	0.00	0.35	9.00	9.00	0.01	0.79	19.41	19.41	0.02
C3-Naphthalenes	581		0.03	0.81	0.81	0.00	0.82	21.08	21.08	0.04	1.20	29.48	29.48	0.05
C3-Phenanthrenes/Anthracenes	829		0.02	0.69	0.69	0.00	1.10	28.28	28.28	0.03	2.50	61.43	61.43	0.07
C4-Chrysenes	1,214		0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C4-Naphthalenes	657		0.04	1.08	1.08	0.00	1.30	33.42	33.42	0.05	2.10	51.60	51.60	0.08
C4-Phenanthrenes/Anthracenes	913		0.02	0.45	0.45	0.00	0.80	20.57	20.57	0.02	1.90	46.68	46.68	0.05
Chrysene	844	826	0.09	2.62	2.62	0.00	0.52	13.37	13.37	0.02	0.71	17.44	17.44	0.02
Dibenzo(a,h)anthracene	1,123	2,389	0.01	0.42	0.42	0.000	0.08	2.01	2.01	0.002	0.10	2.46	2.46	0.002
Fluoranthene	707	23,870	0.18	5.42	5.42	0.01	1.10	28.28	28.28	0.04	1.40	34.40	34.40	0.05
Fluorene	538	26,000	0.01	0.16	0.16	0.000	0.07	1.70	1.70	0.003	0.09	2.19	2.19	0.004
Naphthalene	385	61,700	0.00	0.09	0.09	0.00	0.01	0.36	0.36	0.00	0.03	0.64	0.64	0.00
Perylene	967	431	0.02	0.54	0.54	0.00	0.09	2.24	2.24	0.00	0.11	2.70	2.70	0.00
Phenanthrene	596	34,300	0.05	1.63	1.63	0.00	0.55	14.14	14.14	0.02	0.70	17.20	17.20	0.03
Pyrene	697	9,090	0.10	3.01	3.01	0.00	0.85	21.85	21.85	0.03	1.10	27.03	27.03	0.04
		ESBTU FCVi				0.05				0.46				0.73
Notes:	1			1	I.	1		<u> </u>		<u> </u>	1	<u> </u>		<u> </u>

Location ID:

HT18-13

HT18-13

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-1	3-3050			HT18-1	13-5060			HT18-1	3-6090	
		Sample Date:		10/29	/2018			10/29	/2018			10/29	/2018	
		Depth Interval (ft):		3-	-5			5-0	6.3			6.3-	-8.8	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	µg/g ос	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			2.09	0.0209			1.63	0.0163			1.06	0.0106		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.03	1.29	1.29	0.00	0.01	0.74	0.74	0.00	0.01	0.47	0.47	0.00
2-Methylnaphthalene	447	154,800	0.03	1.58	1.58	0.004	0.02	1.10	1.10	0.002	0.01	0.72	0.72	0.002
Acenaphthene	491	33,400	0.05	2.54	2.54	0.005	0.03	1.66	1.66	0.003	0.02	1.70	1.70	0.003
Acenaphthylene	452	24,000	0.03	1.29	1.29	0.00	0.01	0.67	0.67	0.00	0.00	0.32	0.32	0.00
Anthracene	594	1,300	0.11	5.26	5.26	0.009	0.06	3.37	3.37	0.006	0.02	1.98	1.98	0.003
Benzo[a]anthracene	841	4,153	0.43	20.57	20.57	0.02	0.21	12.88	12.88	0.02	0.06	5.75	5.75	0.01
Benzo[a]pyrene	965	3,840	0.35	16.75	16.75	0.02	0.18	11.04	11.04	0.01	0.04	3.40	3.40	0.00
Benzo[b]fluoranthene	979	2,169	0.44	21.05	21.05	0.022	0.20	12.27	12.27	0.013	0.06	5.57	5.57	0.006
Benzo[e]pyrene	967	4,300	0.28	13.40	13.40	0.01	0.15	9.20	9.20	0.01	0.04	4.15	4.15	0.00
Benzo[g,h,i]perylene	1,095	648	0.06	2.82	2.82	0.00	0.04	2.58	2.58	0.00	0.03	2.45	2.45	0.00
Benzo[k]fluoranthene	981	1,220	0.38	18.18	18.18	0.019	0.19	11.66	11.66	0.012	0.05	4.62	4.62	0.005
C1-Chrysenes	929		0.68	32.54	32.54	0.04	0.30	18.40	18.40	0.02	0.11	10.38	10.38	0.01
C1-Fluorenes	611		0.12	5.74	5.74	0.01	0.05	3.13	3.13	0.01	0.02	2.08	2.08	0.00
C1-Fluoranthenes/pyrene	770		1.00	47.85	47.85	0.06	0.51	31.29	31.29	0.04	0.14	13.21	13.21	0.02
C1-Naphthalenes	444		0.04	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.98	46.89	46.89	0.07	0.37	22.70	22.70	0.03	0.16	15.09	15.09	0.02
C2-Chrysenes	1,008		0.65	31.10	31.10	0.03	0.24	14.72	14.72	0.01	0.09	8.40	8.40	0.01
C2-Fluorenes	686		0.39	18.66	18.66	0.03	0.15	9.20	9.20	0.01	0.06	5.66	5.66	0.01
C2-Fluoranthenes/Pyrene			1.00	47.85	47.85		0.45	27.61	27.61		0.15	14.15	14.15	
C2-Naphthalenes	510		0.37	17.70	17.70	0.03	0.18	11.04	11.04	0.02	0.08	7.45	7.45	0.01
C2-Phenanthrenes/Anthracenes	746		2.20	105.26	105.26	0.14	0.69	42.33	42.33	0.06	0.30	28.30	28.30	0.04
C3-Chrysenes	1,112		0.36	17.22	17.22	0.02	0.16	9.82	9.82	0.01	0.06	5.75	5.75	0.01
C3-Fluorenes	769		0.63	30.14	30.14	0.04	0.24	14.72	14.72	0.02	0.12	11.32	11.32	0.01
C3-Fluoranthenes/Pyrene	949		0.93	44.50	44.50	0.05	0.40	24.54	24.54	0.03	0.13	12.26	12.26	0.01
C3-Naphthalenes	581		0.98	46.89	46.89	0.08	0.40	24.54	24.54	0.04	0.17	16.04	16.04	0.03
C3-Phenanthrenes/Anthracenes	829		2.60	124.40	124.40	0.15	0.81	49.69	49.69	0.06	0.35	33.02	33.02	0.04
C4-Chrysenes	1,214		0.17	8.13	8.13	0.01	0.07	4.17	4.17	0.00	0.02	2.08	2.08	0.00
C4-Naphthalenes	657		1.50	71.77	71.77	0.11	0.53	32.52	32.52	0.05	0.20	18.87	18.87	0.03
C4-Phenanthrenes/Anthracenes	913		2.20	105.26	105.26	0.12	0.71	43.56	43.56	0.05	0.31	29.25	29.25	0.03
Chrysene	844	826	0.59	28.23	28.23	0.03	0.26	15.95	15.95	0.02	0.08	7.83	7.83	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.08	3.92	3.92	0.003	0.04	2.33	2.33	0.002	0.01	0.90	0.90	0.001
Fluoranthene	707	23,870	1.10	52.63	52.63	0.07	0.48	29.45	29.45	0.04	0.20	18.87	18.87	0.03
Fluorene	538	26,000	0.08	3.97	3.97	0.007	0.04	2.70	2.70	0.005	0.03	2.36	2.36	0.004
Naphthalene	385	61,700	0.02	1.05	1.05	0.00	0.01	0.74	0.74	0.00	0.00	0.45	0.45	0.00
Perylene	967	431	0.08	3.97	3.97	0.00	0.04	2.58	2.58	0.00	0.01	1.04	1.04	0.00
Phenanthrene	596	34,300	0.57	27.27	27.27	0.05	0.28	17.18	17.18	0.03	0.16	15.09	15.09	0.03
Pyrene	697	9,090	0.79	37.80	37.80	0.05	0.41	25.15	25.15	0.04	0.13	12.26	12.26	0.02
		ESBTU FCVi				1.28				0.65				0.40
Notes:			<u></u>	<u></u>	<u></u>	<u></u>	<u></u> _	<u></u>	<u></u>	<u></u>		<u></u>	<u></u>	<u></u>

Location ID:

HT18-13

HT18-13

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Location ID:		HT1	8-13			HT1	8-13			HT1	8-14	
		Sample Name:		HT18-13-	-6090-FD			HT18-1	3-9010			HT18-1	4-SURF	
		Sample Date:		10/29	/2018			10/29	/2018			10/29	/2018	
		Depth Interval (ft):		6.3				8.8				0-(
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	µg/g ос	µg/g ос	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			0.811	0.00811			0.546	0.00546			1.73	0.0173		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.01	0.73	0.73	0.00	0.00	0.64	0.64	0.00	0.00	0.23	0.23	0.00
2-Methylnaphthalene	447	154,800	0.01	1.17	1.17	0.003	0.00	0.55	0.55	0.001	0.01	0.29	0.29	0.001
Acenaphthene	491	33,400	0.02	2.59	2.59	0.005	0.01	2.56	2.56	0.005	0.01	0.49	0.49	0.001
Acenaphthylene	452	24,000	0.00	0.58	0.58	0.00	0.00	0.57	0.57	0.00	0.01	0.31	0.31	0.00
Anthracene	594	1,300	0.03	3.58	3.58	0.006	0.03	5.68	5.68	0.010	0.03	1.56	1.56	0.003
Benzo[a]anthracene	841	4,153	0.09	10.60	10.60	0.01	0.08	14.10	14.10	0.02	0.17	9.83	9.83	0.01
Benzo[a]pyrene	965	3,840	0.06	7.64	7.64	0.01	0.07	11.90	11.90	0.01	0.10	5.78	5.78	0.01
Benzo[b]fluoranthene	979	2,169	0.09	10.85	10.85	0.011	0.07	12.45	12.45	0.013	0.18	10.40	10.40	0.011
Benzo[e]pyrene	967	4,300	0.06	7.52	7.52	0.01	0.04	7.69	7.69	0.01	0.12	6.94	6.94	0.01
Benzo[g,h,i]perylene	1,095	648	0.04	4.44	4.44	0.00	0.01	1.83	1.83	0.00	0.08	4.80	4.80	0.00
Benzo[k]fluoranthene	981	1,220	0.07	8.26	8.26	0.008	0.06	11.54	11.54	0.012	0.15	8.67	8.67	0.009
C1-Chrysenes	929		0.16	19.73	19.73	0.02	0.04	6.41	6.41	0.01	0.07	4.28	4.28	0.00
C1-Fluorenes	611		0.03	3.45	3.45	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.19	23.43	23.43	0.03	0.10	17.58	17.58	0.02	0.16	9.25	9.25	0.01
C1-Naphthalenes	444		0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.21	25.89	25.89	0.04	0.07	12.09	12.09	0.02	0.08	4.34	4.34	0.01
C2-Chrysenes	1,008		0.15	18.50	18.50	0.02	0.01	0.00	0.00	0.00	0.03	1.79	1.79	0.00
C2-Fluorenes	686		0.08	9.74	9.74	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.20	24.66	24.66		0.04	7.69	7.69		0.08	4.68	4.68	
C2-Naphthalenes	510		0.10	12.21	12.21	0.02	0.02	3.66	3.66	0.01	0.01	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.41	50.55	50.55	0.07	0.05	8.79	8.79	0.01	0.05	2.89	2.89	0.00
C3-Chrysenes	1,112		0.09	11.22	11.22	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C3-Fluorenes	769		0.16	19.73	19.73	0.03	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.15	18.50	18.50	0.02	0.01	0.00	0.00	0.00	0.04	2.08	2.08	0.00
C3-Naphthalenes	581		0.21	25.89	25.89	0.04	0.03	5.49	5.49	0.01	0.03	1.50	1.50	0.00
C3-Phenanthrenes/Anthracenes	829		0.49	60.42	60.42	0.07	0.03	4.95	4.95	0.01	0.03	1.68	1.68	0.00
C4-Chrysenes	1,214		0.03	3.70	3.70	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C4-Naphthalenes	657		0.26	32.06	32.06	0.05	0.04	6.41	6.41	0.01	0.03	1.50	1.50	0.00
C4-Phenanthrenes/Anthracenes	913		0.43	53.02	53.02	0.06	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Chrysene	844	826	0.12	14.80	14.80	0.02	0.08	14.47	14.47	0.02	0.19	10.98	10.98	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.01	1.60	1.60	0.001	0.01	2.56	2.56	0.002	0.04	2.02	2.02	0.002
Fluoranthene	707	23,870	0.28	34.53	34.53	0.05	0.20	36.63	36.63	0.05	0.40	23.12	23.12	0.03
Fluorene	538	26,000	0.03	3.70	3.70	0.007	0.02	3.11	3.11	0.006	0.02	0.92	0.92	0.002
Naphthalene	385	61,700	0.01	0.75	0.75	0.00	0.00	0.71	0.71	0.00	0.01	0.46	0.46	0.00
Perylene	967	431	0.02	2.10	2.10	0.00	0.03	5.31	5.31	0.01	0.04	2.14	2.14	0.00
Phenanthrene	596	34,300	0.19	23.43	23.43	0.04	0.13	23.81	23.81	0.04	0.15	8.67	8.67	0.01
Pyrene	697	9,090	0.19	22.19	22.19	0.03	0.15	27.47	27.47	0.04	0.13	16.18	16.18	0.01
<u> </u>		ESBTU FCVi				0.70				0.34				0.02
Notes:	<u> </u>	LODICIC		I .		0.70				I 0.5 T	I			0.10

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-1	14-0010			HT18-1	4-1020			HT18-15	5-SURF	
		Sample Date:		10/30	/2018			10/30	/2018			10/24	/2018	
		Depth Interval (ft):		0-3	1.3			1.3-	1.9			0-0).5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			2.13	0.0213			1.28	0.0128			1.33	0.0133		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.56	26.29	26.29	0.06	0.02	1.56	1.56	0.00	0.06	4.59	4.59	0.01
2-Methylnaphthalene	447	154,800	0.84	39.44	39.44	0.088	0.09	6.88	6.88	0.015	0.07	4.96	4.96	0.011
Acenaphthene	491	33,400	0.68	31.92	31.92	0.065	0.10	7.81	7.81	0.016	0.18	13.53	13.53	0.028
Acenaphthylene	452	24,000	0.42	0.00	0.00	0.00	0.01	0.94	0.94	0.00	0.06	0.00	0.00	0.00
Anthracene	594	1,300	1.10	51.64	51.64	0.087	0.12	9.38	9.38	0.016	0.31	23.31	23.31	0.039
Benzo[a]anthracene	841	4,153	2.80	131.46	131.46	0.16	0.36	28.13	28.13	0.03	0.48	36.09	36.09	0.04
Benzo[a]pyrene	965	3,840	2.20	103.29	103.29	0.11	0.24	18.75	18.75	0.02	0.25	18.80	18.80	0.02
Benzo[b]fluoranthene	979	2,169	2.00	93.90	93.90	0.096	0.25	19.53	19.53	0.020	0.32	24.06	24.06	0.025
Benzo[e]pyrene	967	4,300	1.60	75.12	75.12	0.08	0.21	16.41	16.41	0.02	0.19	14.29	14.29	0.01
Benzo[g,h,i]perylene	1,095	648	1.20	56.34	56.34	0.05	0.17	13.28	13.28	0.01	0.05	3.61	3.61	0.00
Benzo[k]fluoranthene	981	1,220	2.60	122.07	122.07	0.124	0.30	23.44	23.44	0.024	0.32	24.06	24.06	0.025
C1-Chrysenes	929		1.60	75.12	75.12	0.08	0.22	17.19	17.19	0.02	0.18	13.53	13.53	0.01
C1-Fluorenes	611		0.42	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		4.50	211.27	211.27	0.27	0.65	50.78	50.78	0.07	0.45	33.83	33.83	0.04
C1-Naphthalenes	444		0.89	41.78	41.78	0.09	0.04	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		2.90	136.15	136.15	0.20	0.43	33.59	33.59	0.05	0.49	36.84	36.84	0.05
C2-Chrysenes	1,008		0.42	0.00	0.00	0.00	0.10	7.81	7.81	0.01	0.06	0.00	0.00	0.00
C2-Fluorenes	686		0.42	0.00	0.00	0.00	0.09	7.03	7.03	0.01	0.06	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			2.30	107.98	107.98		0.31	24.22	24.22		0.21	15.79	15.79	
C2-Naphthalenes	510		2.10	98.59	98.59	0.19	0.13	10.16	10.16	0.02	0.23	17.29	17.29	0.03
C2-Phenanthrenes/Anthracenes	746		2.80	131.46	131.46	0.18	0.39	30.47	30.47	0.04	0.22	16.54	16.54	0.02
C3-Chrysenes	1,112		0.42	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C3-Fluorenes	769		0.98	46.01	46.01	0.06	0.12	9.38	9.38	0.01	0.06	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		1.10	51.64	51.64	0.05	0.15	11.72	11.72	0.01	0.06	0.00	0.00	0.00
C3-Naphthalenes	581		2.40	112.68	112.68	0.19	0.24	18.75	18.75	0.03	0.16	12.03	12.03	0.02
C3-Phenanthrenes/Anthracenes	829		2.20	103.29	103.29	0.12	0.31	24.22	24.22	0.03	0.06	0.00	0.00	0.00
C4-Chrysenes	1,214		0.42	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C4-Naphthalenes	657		2.20	103.29	103.29	0.16	0.27	21.09	21.09	0.03	0.06	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		1.50	70.42	70.42	0.08	0.23	17.97	17.97	0.02	0.06	0.00	0.00	0.00
Chrysene	844	826	3.20	150.23	150.23	0.18	0.40	31.25	31.25	0.04	0.46	34.59	34.59	0.04
Dibenzo(a,h)anthracene	1,123	2,389	0.54	25.35	25.35	0.023	0.07	5.31	5.31	0.005	0.06	4.81	4.81	0.004
Fluoranthene	707	23,870	7.00	328.64	328.64	0.46	0.96	75.00	75.00	0.11	1.40	105.26	105.26	0.15
Fluorene	538	26,000	0.79	37.09	37.09	0.069	0.07	5.08	5.08	0.009	0.24	18.05	18.05	0.034
Naphthalene	385	61,700	1.00	46.95	46.95	0.12	0.09	6.88	6.88	0.02	0.09	6.47	6.47	0.02
Perylene	967	431	0.57	26.76	26.76	0.03	0.09	7.27	7.27	0.01	0.06	4.66	4.66	0.00
Phenanthrene	596	34,300	5.30	248.83	248.83	0.42	0.76	59.38	59.38	0.10	1.60	120.30	120.30	0.20
Pyrene	697	9,090	6.10	286.38	286.38	0.41	0.84	65.63	65.63	0.09	0.91	68.42	68.42	0.10
		ESBTU FCVi				4.16				0.89				0.95
Notes:					1			<u> </u>						

Location ID:

HT18-14

HT18-14

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-1	15-0005			HT18-1	5-0530			HT18-1	5-3050	
		Sample Date:		10/25	5/2018			10/25	/2018			10/25/	/2018	
		Depth Interval (ft):		0-0	0.5			0.5	5-3			3-	5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			0.569	0.00569			0.979	0.00979			1.34	0.0134		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.19	0.19	0.00	0.00	0.42	0.42	0.00	0.00	0.25	0.25	0.00
2-Methylnaphthalene	447	154,800	0.00	0.21	0.21	0.000	0.01	0.53	0.53	0.001	0.00	0.28	0.28	0.001
Acenaphthene	491	33,400	0.00	0.49	0.49	0.001	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Acenaphthylene	452	24,000	0.00	0.09	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.58	0.58	0.001	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	0.01	1.27	1.27	0.00	0.00	0.05	0.05	0.00	0.00	0.04	0.04	0.00
Benzo[a]pyrene	965	3,840	0.00	0.76	0.76	0.00	0.00	0.06	0.06	0.00	0.00	0.04	0.04	0.00
Benzo[b]fluoranthene	979	2,169	0.01	1.35	1.35	0.001	0.00	0.16	0.16	0.000	0.00	0.11	0.11	0.000
Benzo[e]pyrene	967	4,300	0.01	1.09	1.09	0.00	0.00	0.20	0.20	0.00	0.00	0.15	0.15	0.00
Benzo[g,h,i]perylene	1,095	648	0.01	1.04	1.04	0.00	0.00	0.34	0.34	0.00	0.00	0.22	0.22	0.00
Benzo[k]fluoranthene	981	1,220	0.01	1.25	1.25	0.001	0.00	0.11	0.11	0.000	0.00	0.08	0.08	0.000
C1-Chrysenes	929		0.01	1.62	1.62	0.00	0.00	0.46	0.46	0.00	0.00	0.32	0.32	0.00
C1-Fluorenes	611		0.00	0.70	0.70	0.00	0.00	0.39	0.39	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.02	2.81	2.81	0.00	0.01	0.74	0.74	0.00	0.01	0.52	0.52	0.00
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.01	0.65	0.65	0.00	0.00	0.36	0.36	0.00
C1-Phenanthrenes/Anthracenes	670		0.02	2.81	2.81	0.00	0.02	1.53	1.53	0.00	0.02	1.19	1.19	0.00
C2-Chrysenes	1,008		0.01	1.35	1.35	0.00	0.00	0.48	0.48	0.00	0.00	0.36	0.36	0.00
C2-Fluorenes	686		0.01	1.51	1.51	0.00	0.01	0.58	0.58	0.00	0.01	0.45	0.45	0.00
C2-Fluoranthenes/Pyrene			0.01	2.28	2.28		0.01	1.00	1.00		0.01	0.74	0.74	
C2-Naphthalenes	510		0.01	1.60	1.60	0.00	0.02	2.15	2.15	0.00	0.02	1.42	1.42	0.00
C2-Phenanthrenes/Anthracenes	746		0.03	4.39	4.39	0.01	0.02	2.15	2.15	0.00	0.02	1.64	1.64	0.00
C3-Chrysenes	1,112		0.00	0.72	0.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.01	2.11	2.11	0.00	0.01	0.89	0.89	0.00	0.01	0.67	0.67	0.00
C3-Fluoranthenes/Pyrene	949		0.01	1.65	1.65	0.00	0.01	0.93	0.93	0.00	0.01	0.66	0.66	0.00
C3-Naphthalenes	581		0.03	4.39	4.39	0.01	0.04	4.19	4.19	0.01	0.04	3.06	3.06	0.01
C3-Phenanthrenes/Anthracenes	829		0.03	4.39	4.39	0.01	0.02	1.84	1.84	0.00	0.02	1.42	1.42	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.04	7.56	7.56	0.01	0.06	6.33	6.33	0.01	0.07	4.85	4.85	0.01
C4-Phenanthrenes/Anthracenes	913		0.02	3.51	3.51	0.00	0.01	1.33	1.33	0.00	0.01	0.97	0.97	0.00
Chrysene	844	826	0.01	2.11	2.11	0.00	0.00	0.35	0.35	0.00	0.00	0.27	0.27	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.26	0.26	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Fluoranthene	707	23,870	0.03	4.75	4.75	0.01	0.00	0.15	0.15	0.00	0.00	0.08	0.08	0.00
Fluorene	538	26,000	0.00	0.42	0.42	0.001	0.00	0.12	0.12	0.000	0.00	0.08	0.08	0.000
Naphthalene	385	61,700	0.00	0.15	0.15	0.00	0.01	0.54	0.54	0.00	0.00	0.24	0.24	0.00
Perylene	967	431	0.01	1.09	1.09	0.00	0.00	0.25	0.25	0.00	0.00	0.18	0.18	0.00
Phenanthrene	596	34,300	0.01	1.93	1.93	0.00	0.01	0.55	0.55	0.00	0.01	0.37	0.37	0.00
Pyrene	697	9,090	0.02	3.34	3.34	0.00	0.00	0.26	0.26	0.00	0.00	0.18	0.18	0.00
		ESBTU FCVi				0.08				0.04				0.03
Notes:	-				-	•	-			-	-	•		

HT18-15

HT18-15

HT18-15

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name		HT18-15	3050 FD			HT18-1	CUDE			HT-18-1	7_SHDE	
		Sample Name:												
		Sample Date:			/2018			10/24				10/24		
	C PAH: ECA:	Depth Interval (ft):	C	3.		ı		0-0		ı	C	0-0		ı
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final	ESBTU	Conc	Coc	Final	ECDTH	Conc	Coc	Final	ECDTH
	µg/g ос	µg/g ос	μg/g dry wt.	μg/g oc	Cocb	FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			0.946	0.00946			3.36	0.0336			0.622	0.00622		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.37	0.37	0.00	0.00	0.14	0.14	0.00	0.00	0.24	0.24	0.00
2-Methylnaphthalene	447	154,800	0.00	0.43	0.43	0.001	0.01	0.17	0.17	0.000	0.00	0.27	0.27	0.001
Acenaphthene	491	33,400	0.00	0.00	0.00	0.000	0.01	0.26	0.26	0.001	0.01	0.82	0.82	0.002
Acenaphthylene	452	24,000	0.00	0.00	0.00	0.00	0.00	0.13	0.13	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.00	0.00	0.000	0.02	0.51	0.51	0.001	0.01	0.92	0.92	0.002
Benzo[a]anthracene	841	4,153	0.00	0.07	0.07	0.00	0.10	2.98	2.98	0.00	0.03	4.66	4.66	0.01
Benzo[a]pyrene	965	3,840	0.00	0.07	0.07	0.00	0.10	2.98	2.98	0.00	0.01	1.77	1.77	0.00
Benzo[b]fluoranthene	979	2,169	0.00	0.17	0.17	0.000	0.15	4.46	4.46	0.005	0.04	5.95	5.95	0.006
Benzo[e]pyrene	967	4,300	0.00	0.22	0.22	0.00	0.11	3.27	3.27	0.00	0.03	4.02	4.02	0.00
Benzo[g,h,i]perylene	1,095	648	0.00	0.34	0.34	0.00	0.05	1.43	1.43	0.00	0.01	1.93	1.93	0.00
Benzo[k]fluoranthene	981	1,220	0.00	0.10	0.10	0.000	0.13	3.87	3.87	0.004	0.04	5.63	5.63	0.006
C1-Chrysenes	929		0.00	0.52	0.52	0.00	0.05	1.61	1.61	0.00	0.02	2.41	2.41	0.00
C1-Fluorenes	611		0.00	0.42	0.42	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.01	0.85	0.85	0.00	0.11	3.27	3.27	0.00	0.03	4.50	4.50	0.01
C1-Naphthalenes	444		0.01	0.55	0.55	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.02	1.69	1.69	0.00	0.06	1.67	1.67	0.00	0.02	2.89	2.89	0.00
C2-Chrysenes	1,008		0.00	0.52	0.52	0.00	0.04	1.07	1.07	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.01	0.72	0.72	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.01	1.16	1.16		0.08	2.50	2.50		0.02	3.05	3.05	
C2-Naphthalenes	510		0.02	2.11	2.11	0.00	0.04	1.10	1.10	0.00	0.00	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.02	2.33	2.33	0.00	0.05	1.55	1.55	0.00	0.01	2.25	2.25	0.00
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.01	1.06	1.06	0.00	0.05	1.46	1.46	0.00	0.01	1.77	1.77	0.00
C3-Fluoranthenes/Pyrene	949		0.01	0.99	0.99	0.00	0.04	1.22	1.22	0.00	0.00	0.00	0.00	0.00
C3-Naphthalenes	581		0.04	4.55	4.55	0.01	0.07	2.08	2.08	0.00	0.01	1.93	1.93	0.00
C3-Phenanthrenes/Anthracenes	829		0.02	2.11	2.11	0.00	0.04	1.22	1.22	0.00	0.01	1.59	1.59	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.07	7.19	7.19	0.01	0.08	2.41	2.41	0.00	0.02	2.41	2.41	0.00
C4-Phenanthrenes/Anthracenes	913		0.01	1.48	1.48	0.00	0.03	0.83	0.83	0.00	0.00	0.00	0.00	0.00
Chrysene	844	826	0.00	0.41	0.41	0.00	0.17	5.06	5.06	0.01	0.04	6.43	6.43	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.00	0.00	0.000	0.03	0.95	0.95	0.001	0.01	1.32	1.32	0.001
Fluoranthene	707	23,870	0.00	0.14	0.14	0.00	0.37	11.01	11.01	0.02	0.10	16.08	16.08	0.02
Fluorene	538	26,000	0.00	0.12	0.12	0.000	0.01	0.33	0.33	0.001	0.01	0.82	0.82	0.002
Naphthalene	385	61,700	0.00	0.39	0.39	0.00	0.00	0.13	0.13	0.00	0.00	0.23	0.23	0.002
Perylene	967	431	0.00	0.27	0.27	0.00	0.03	0.74	0.74	0.00	0.00	0.23	0.23	0.00
Phenanthrene	596	34,300	0.00	0.56	0.56	0.00	0.03	4.76	4.76	0.00	0.01	9.16	9.16	0.00
Pyrene	697	9,090	0.00	0.30	0.30	0.00	0.10	6.85	6.85	0.01	0.06	10.29	10.29	0.02
1 110110		ESBTU FCVi				0.00				0.01				0.01
Notes:		ESBIUFUVI				0.04				0.09				0.12

Location ID:

HT18-15

HT18-16

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT-18-	17-0010			HT-18-	17-1030			HT-18-1	17-3050	
		Sample Date:		10/25	/2018			10/25	/2018			10/25/	/2018	
		Depth Interval (ft):		0-	-1			1-	3			3-4	1.7	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	µg/g ос	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			0.728	0.00728			0.801	0.00801			0.757	0.00757		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.01	0.81	0.81	0.00	0.01	0.62	0.62	0.00	0.01	0.70	0.70	0.00
2-Methylnaphthalene	447	154,800	0.01	0.91	0.91	0.002	0.01	0.69	0.69	0.002	0.01	0.75	0.75	0.002
Acenaphthene	491	33,400	0.00	0.54	0.54	0.001	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Acenaphthylene	452	24,000	0.00	0.06	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.01	1.28	1.28	0.002	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	0.02	2.61	2.61	0.00	0.00	0.10	0.10	0.00	0.00	0.13	0.13	0.00
Benzo[a]pyrene	965	3,840	0.02	2.20	2.20	0.00	0.00	0.08	0.08	0.00	0.00	0.16	0.16	0.00
Benzo[b]fluoranthene	979	2,169	0.02	2.20	2.20	0.002	0.00	0.27	0.27	0.000	0.00	0.36	0.36	0.000
Benzo[e]pyrene	967	4,300	0.01	1.65	1.65	0.00	0.00	0.31	0.31	0.00	0.00	0.45	0.45	0.00
Benzo[g,h,i]perylene	1,095	648	0.01	1.65	1.65	0.00	0.00	0.50	0.50	0.00	0.00	0.65	0.65	0.00
Benzo[k]fluoranthene	981	1,220	0.01	1.92	1.92	0.002	0.00	0.14	0.14	0.000	0.00	0.16	0.16	0.000
C1-Chrysenes	929		0.01	1.92	1.92	0.00	0.01	0.72	0.72	0.00	0.01	0.90	0.90	0.00
C1-Fluorenes	611		0.01	1.21	1.21	0.00	0.01	0.62	0.62	0.00	0.01	0.85	0.85	0.00
C1-Fluoranthenes/pyrene	770		0.04	4.81	4.81	0.01	0.01	1.20	1.20	0.00	0.01	1.72	1.72	0.00
C1-Naphthalenes	444		0.01	1.18	1.18	0.00	0.01	0.90	0.90	0.00	0.01	1.00	1.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.04	5.08	5.08	0.01	0.02	2.50	2.50	0.00	0.02	3.17	3.17	0.00
C2-Chrysenes	1,008		0.01	1.17	1.17	0.00	0.01	0.76	0.76	0.00	0.01	0.99	0.99	0.00
C2-Fluorenes	686		0.02	2.06	2.06	0.00	0.01	0.97	0.97	0.00	0.01	1.31	1.31	0.00
C2-Fluoranthenes/Pyrene			0.02	3.30	3.30		0.01	1.62	1.62		0.02	2.25	2.25	
C2-Naphthalenes	510		0.03	4.40	4.40	0.01	0.03	3.25	3.25	0.01	0.03	3.70	3.70	0.01
C2-Phenanthrenes/Anthracenes	746		0.04	5.91	5.91	0.01	0.03	3.37	3.37	0.00	0.03	4.23	4.23	0.01
C3-Chrysenes	1,112		0.01	0.74	0.74	0.00	0.00	0.51	0.51	0.00	0.01	0.73	0.73	0.00
C3-Fluorenes	769		0.02	2.75	2.75	0.00	0.01	1.50	1.50	0.00	0.02	1.98	1.98	0.00
C3-Fluoranthenes/Pyrene	949		0.02	2.34	2.34	0.00	0.01	1.37	1.37	0.00	0.01	1.85	1.85	0.00
C3-Naphthalenes	581		0.07	9.20	9.20	0.02	0.05	6.74	6.74	0.01	0.06	8.19	8.19	0.01
C3-Phenanthrenes/Anthracenes	829		0.04	4.81	4.81	0.01	0.02	2.87	2.87	0.00	0.03	3.70	3.70	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.10	13.74	13.74	0.02	0.08	10.36	10.36	0.02	0.10	13.21	13.21	0.02
C4-Phenanthrenes/Anthracenes	913		0.03	3.43	3.43	0.00	0.02	2.00	2.00	0.00	0.02	2.64	2.64	0.00
Chrysene	844	826	0.02	3.16	3.16	0.00	0.00	0.59	0.59	0.00	0.01	0.74	0.74	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.51	0.51	0.000	0.00	0.06	0.06	0.000	0.00	0.08	0.08	0.000
Fluoranthene	707	23,870	0.06	7.83	7.83	0.01	0.00	0.20	0.20	0.00	0.00	0.26	0.26	0.00
Fluorene	538	26,000	0.00	0.62	0.62	0.001	0.00	0.19	0.19	0.000	0.00	0.26	0.26	0.000
Naphthalene	385	61,700	0.01	0.71	0.71	0.00	0.00	0.55	0.55	0.00	0.01	0.70	0.70	0.00
Perylene	967	431	0.01	1.04	1.04	0.00	0.00	0.36	0.36	0.00	0.00	0.46	0.46	0.00
Phenanthrene	596	34,300	0.03	4.12	4.12	0.01	0.01	0.86	0.86	0.00	0.01	1.18	1.18	0.00
Pyrene	697	9,090	0.05	6.46	6.46	0.01	0.00	0.41	0.41	0.00	0.00	0.57	0.57	0.00
		ESBTU FCVi				0.14				0.06				0.08
Notes:														

Location ID:

HT18-17

HT18-17

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-1	8-SURF			HT18-1	8-0020			HT18-1	8-2030	
		Sample Date:		10/24	/2018			10/25	/2018			10/25/	/2018	
		Depth Interval (ft):		0-0	0.5			0-1	1.9			1.9-	2.8	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.11	0.0311			5.81	0.0581			1.43	0.0143		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)		467.700						0.40	0.40			0.50	0.70	
1-Methylnaphthalene	446	165,700	0.01	0.32	0.32	0.00	0.49	8.43	8.43	0.02	0.01	0.50	0.50	0.00
2-Methylnaphthalene	447	154,800	0.01	0.32	0.32	0.001	0.34	5.85	5.85	0.013	0.01	0.54	0.54	0.001
Acenaphthene	491	33,400	0.03	1.03	1.03	0.002	1.10	18.93	18.93	0.039	0.01	0.91	0.91	0.002
Acenaphthylene	452	24,000	0.04	0.00	0.00	0.00	0.14	2.41	2.41	0.01	0.00	0.27	0.27	0.00
Anthracene	594	1,300	0.07	2.35	2.35	0.004	1.80	30.98	30.98	0.052	0.02	1.19	1.19	0.002
Benzo[a]anthracene	841	4,153	0.32	10.29	10.29	0.01	6.90	118.76	118.76	0.14	0.01	0.77	0.77	0.00
Benzo[a]pyrene	965	3,840	0.27	8.68	8.68	0.01	4.80	82.62	82.62	0.09	0.01	0.59	0.59	0.00
Benzo[b]fluoranthene	979	2,169	0.35	11.25	11.25	0.011	6.40	110.15	110.15	0.113	0.01	0.50	0.50	0.001
Benzo[e]pyrene	967	4,300	0.25	8.04	8.04	0.01	4.30	74.01	74.01	0.08	0.01	0.49	0.49	0.00
Benzo[g,h,i]perylene	1,095	648	0.15	4.82	4.82	0.00	3.10	53.36	53.36	0.05	0.01	0.77	0.77	0.00
Benzo[k]fluoranthene	981	1,220	0.33	10.61	10.61	0.011	5.10	87.78	87.78	0.089	0.01	0.45	0.45	0.000
C1-Chrysenes	929		0.15	4.82	4.82	0.01	3.30	56.80	56.80	0.06	0.01	0.91	0.91	0.00
C1-Fluorenes	611		0.04	0.00	0.00	0.00	1.10	18.93	18.93	0.03	0.01	0.98	0.98	0.00
C1-Fluoranthenes/pyrene	770		0.30	9.65	9.65	0.01	10.00	172.12	172.12	0.22	0.03	1.96	1.96	0.00
C1-Naphthalenes	444		0.04	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.01	0.70	0.70	0.00
C1-Phenanthrenes/Anthracenes	670		0.17	5.47	5.47	0.01	8.10	139.41	139.41	0.21	0.07	4.55	4.55	0.01
C2-Chrysenes	1,008		0.04	0.00	0.00	0.00	2.30	39.59	39.59	0.04	0.01	0.77	0.77	0.00
C2-Fluorenes	686		0.04	0.00	0.00	0.00	2.80	48.19	48.19	0.07	0.02	1.33	1.33	0.00
C2-Fluoranthenes/Pyrene			0.17	5.47	5.47		5.40	92.94	92.94		0.02	1.47	1.47	
C2-Naphthalenes	510		0.04	0.00	0.00	0.00	4.60	79.17	79.17	0.16	0.06	4.20	4.20	0.01
C2-Phenanthrenes/Anthracenes	746		0.12	3.86	3.86	0.01	11.00	189.33	189.33	0.25	0.06	4.34	4.34	0.01
C3-Chrysenes	1,112		0.04	0.00	0.00	0.00	1.10	18.93	18.93	0.02	0.01	0.50	0.50	0.00
C3-Fluorenes	769		0.04	0.00	0.00	0.00	4.10	70.57	70.57	0.09	0.02	1.61	1.61	0.00
C3-Fluoranthenes/Pyrene	949		0.08	2.60	2.60	0.00	3.70	63.68	63.68	0.07	0.02	1.26	1.26	0.00
C3-Naphthalenes	581		0.04	0.00	0.00	0.00	11.00	189.33	189.33	0.33	0.12	8.39	8.39	0.01
C3-Phenanthrenes/Anthracenes	829		0.04	0.00	0.00	0.00	8.90	153.18	153.18	0.18	0.05	3.15	3.15	0.00
C4-Chrysenes	1,214		0.04	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.08	2.70	2.70	0.00	9.00	154.91	154.91	0.24	0.17	11.89	11.89	0.02
C4-Phenanthrenes/Anthracenes	913		0.04	0.00	0.00	0.00	6.00	103.27	103.27	0.11	0.03	2.17	2.17	0.00
Chrysene	844	826	0.40	12.86	12.86	0.02	8.10	139.41	139.41	0.17	0.02	1.05	1.05	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.08	2.54	2.54	0.002	1.30	22.38	22.38	0.020	0.00	0.13	0.13	0.000
Fluoranthene	707	23,870	0.95	30.55	30.55	0.04	18.00	309.81	309.81	0.44	0.03	2.24	2.24	0.00
Fluorene	538	26,000	0.04	1.32	1.32	0.002	1.10	18.93	18.93	0.035	0.01	0.84	0.84	0.002
Naphthalene	385	61,700	0.01	0.42	0.42	0.00	0.24	4.13	4.13	0.01	0.01	0.55	0.55	0.00
Perylene	967	431	0.09	2.73	2.73	0.00	1.40	24.10	24.10	0.02	0.00	0.31	0.31	0.00
Phenanthrene	596	34,300	0.50	16.08	16.08	0.03	11.00	189.33	189.33	0.32	0.06	4.06	4.06	0.01
Pyrene	697	9,090	0.56	18.01	18.01	0.03	14.00	240.96	240.96	0.35	0.03	2.17	2.17	0.00
		ESBTU FCVi				0.22				4.07				0.10
Notes:														

HT18-18

HT18-18

HT18-18

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

Sample Sample Sample Sample Depth Interver Coc, PAHi, FCVi Coc, PAHi, Mi µg/g oc µg/g oc µg/g oc Palicia	Date: Il (ft): xi ^a Conc μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00 0.07	μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.01 0.07 0.00	HT18-1 10/25, 2.8- Coc μg/g oc 0.00873 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 1.37 8.13 0.00	/2018	ESBTU FCVi 0.00 0.001 0.003 0.004 0.001 0.004 0.000 0.004 0.00 0.00	Conc µg/g dry wt. 0.612 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	HT18-1 10/25 3.6- Coc μg/g oc 0.00612 0.85 0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	/2018	0.00 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Conc µg/g dry wt. 0.806 0.01 0.09 0.13 0.19 1.20 1.00 1.20 0.97 0.58 1.20	10/24/ 0-0 Coc μg/g oc 0.00806 1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35 71.96	/2018	0.00 0.000 0.001 0.04 0.040 0.18 0.13 0.152 0.12
Total Organic Carbon (%)	(ft):	μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.01 0.07 0.00	2.8- Coc μg/g oc 0.00873 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	3.6 Final Cocb 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 1.37 8.13	0.00 0.001 0.003 0.004 0.001 0.004 0.000 0.004 0.000 0.000 0.0004 0.000 0.000	μg/g dry wt. 0.612 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0	3.6- Coc µg/g oc 0.00612 0.85 0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	5.4 Final Cocb 0.85 0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.00 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	μg/g dry wt. 0.806 0.01 0.09 0.09 0.13 0.19 1.20 1.20 0.97 0.58	0-0 Coc μg/g oc 0.00806 1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.00 0.000 0.021 0.04 0.040 0.18 0.13
Coc, PAHi, FCVi³ Coc, PAHi, Magg oc μg/g oc μg/g oc Total Organic Carbon (%) Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg) 1-Methylnaphthalene 446 165,700 2-Methylnaphthalene 447 154,800 Acenaphthene 491 33,400 Acenaphthylene 452 24,000 Anthracene 594 1,300 Benzo[a]pyrene 965 3,840 Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[c]gyrene 967 4,300 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluoranthenes/pyrene 770 C1-Fluoranthenes/pyrene 770 C1-Phenanthrenes/Anthracenes 686 C2-Fluorenes 1,008 C2-Fluorenes 510 C2-Fluoranthenes/Pyrene C2-Phenanthrenes/Anthracenes	Conc μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.01 0.07 0.00	Coc μg/g oc 0.00873 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	Cocb 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.00 0.001 0.003 0.004 0.001 0.004 0.000 0.004 0.000 0.000 0.0004 0.000 0.000	μg/g dry wt. 0.612 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0	Coc μg/g oc 0.00612 0.85 0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	Cocb 0.85 0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.00 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	μg/g dry wt. 0.806 0.01 0.09 0.09 0.13 0.19 1.20 1.20 0.97 0.58	Coc μg/g oc 0.00806 1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	Tinal Cocb 1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.00 0.000 0.021 0.04 0.040 0.18 0.13
Total Organic Carbon (%) - <th>μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.03 0.02 0.03 0.01 0.07 0.00 0.07</th> <th>μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.01 0.07 0.00</th> <th>μg/g oc 0.00873 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13</th> <th>Cocb 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13</th> <th>0.00 0.001 0.003 0.004 0.001 0.004 0.000 0.004 0.000 0.000 0.0004 0.000 0.000</th> <th>μg/g dry wt. 0.612 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0</th> <th>μg/g oc 0.00612 0.85 0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08</th> <th>0.85 0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78</th> <th>0.00 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</th> <th>μg/g dry wt. 0.806 0.01 0.09 0.09 0.13 0.19 1.20 1.20 0.97 0.58</th> <th>μg/g oc 0.00806 1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35</th> <th>1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35</th> <th>0.00 0.000 0.021 0.04 0.040 0.18 0.13</th>	μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.03 0.02 0.03 0.01 0.07 0.00 0.07	μg/g dry wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.01 0.07 0.00	μg/g oc 0.00873 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	Cocb 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.00 0.001 0.003 0.004 0.001 0.004 0.000 0.004 0.000 0.000 0.0004 0.000 0.000	μg/g dry wt. 0.612 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0	μg/g oc 0.00612 0.85 0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.85 0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78	0.00 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	μg/g dry wt. 0.806 0.01 0.09 0.09 0.13 0.19 1.20 1.20 0.97 0.58	μg/g oc 0.00806 1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.00 0.000 0.021 0.04 0.040 0.18 0.13
Total Organic Carbon (%) Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg) 1-Methylnaphthalene 446 165,700 2-Methylnaphthalene 447 154,800 Acenaphthene 491 33,400 Acenaphthylene 452 24,000 Anthracene 594 1,300 Benzo[a]anthracene 841 4,153 Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[c]pyrene 967 4,300 Benzo[c]pyrene 967 4,300 Benzo[c]hfluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C2-Fluoranthenes/Pyrene C2-Fluoranthenes/Pyrene C2-Phenanthrenes/Anthracenes 510 C3-Fluorenes 1,112 <tr< th=""><th>wt. 0.873 0.00 0.01 0.02 0.04 0.04 0.03 0.03 0.01 0.07 0.00</th><th>wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.03 0.02 0.03 0.01 0.07 0.00</th><th>0.00873 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13</th><th>0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13</th><th>0.00 0.001 0.003 0.004 0.001 0.004 0.000 0.004 0.000 0.000 0.0004 0.000 0.000</th><th>wt. 0.612 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01</th><th>0.00612 0.85 0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08</th><th>0.85 0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23</th><th>0.00 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</th><th>wt. 0.806 0.01 0.09 0.09 0.13 0.19 1.20 1.20 0.97 0.58</th><th>0.00806 1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35</th><th>1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35</th><th>0.00 0.000 0.021 0.04 0.040 0.18 0.13</th></tr<>	wt. 0.873 0.00 0.01 0.02 0.04 0.04 0.03 0.03 0.01 0.07 0.00	wt. 0.873 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.03 0.02 0.03 0.01 0.07 0.00	0.00873 0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.00 0.001 0.003 0.004 0.001 0.004 0.000 0.004 0.000 0.000 0.0004 0.000 0.000	wt. 0.612 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01	0.00612 0.85 0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.85 0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.00 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	wt. 0.806 0.01 0.09 0.09 0.13 0.19 1.20 1.20 0.97 0.58	0.00806 1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.00 0.000 0.021 0.04 0.040 0.18 0.13
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg) 1-Methylnaphthalene 446 165,700 2-Methylnaphthalene 447 154,800 Acenaphthene 491 33,400 Acenaphthylene 452 24,000 Anthracene 594 1,300 Benzo[a]anthracene 841 4,153 Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[c]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Fluoranthenes/Pyrene C2-Fluoranthenes/Pyrene C2-Phenanthrenes/Anthracenes 510 C3-Chrysenes 1,112 C3-Fluorenes 746 C3	0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.44 0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.00 0.001 0.003 0.00 0.004 0.01 0.00 0.004 0.00 0.004 0.00 0.004	0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.85 0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.85 0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.00 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.01 0.09 0.09 0.13 0.19 1.20 1.20 0.97 0.58	1.74 0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.00 0.000 0.021 0.04 0.040 0.18 0.13 0.152
I-Methylnaphthalene	0.00 0.01 0.00 0.02 0.05 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.001 0.003 0.00 0.004 0.01 0.00 0.004 0.00 0.000 0.004 0.000 0.000	0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.09 0.09 0.13 0.19 1.20 1.00 1.20 0.97 0.58	0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.000 0.021 0.04 0.040 0.18 0.13
2-Methylnaphthalene 447 154,800 Acenaphthene 491 33,400 Acenaphthylene 452 24,000 Anthracene 594 1,300 Benzo[a]anthracene 841 4,153 Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[c]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[g,h,i]perylene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Phenanthrenes/Anthracenes 510 C3-Chrysenes 1,112 C3-Fluoranthenes/Pyrene 769 C3-Fluoranthenes/Pyrene 949	0.00 0.01 0.00 0.02 0.05 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.00 0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.47 1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.001 0.003 0.00 0.004 0.01 0.00 0.004 0.00 0.000 0.004 0.000 0.000	0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.98 0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.98 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.09 0.09 0.13 0.19 1.20 1.00 1.20 0.97 0.58	0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.00 10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.000 0.021 0.04 0.040 0.18 0.13
Acenaphthene 491 33,400 Acenaphthylene 452 24,000 Anthracene 594 1,300 Benzo[a]anthracene 841 4,153 Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[c]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Phenanthrenes/Anthracenes 746 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.01 0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	1.49 0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.003 0.00 0.004 0.01 0.00 0.004 0.00 0.004 0.00 0.004 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.00 0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.000 0.00 0.000 0.00 0.00 0.000 0.000 0.000	0.09 0.13 0.19 1.20 1.00 1.20 0.97 0.58	10.55 16.13 23.57 148.88 124.07 148.88 120.35	10.55 16.13 23.57 148.88 124.07 148.88 120.35	0.021 0.04 0.040 0.18 0.13 0.152
Acenaphthylene 452 24,000 Anthracene 594 1,300 Benzo[a]anthracene 841 4,153 Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[c]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Phenanthrenes/Anthracenes 510 C3-Chrysenes 1,112 C3-Fluoranthenes/Pyrene 769 C3-Fluoranthenes/Pyrene 949	0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.00 0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.30 2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.00 0.004 0.01 0.00 0.004 0.00 0.004 0.004 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.00 0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.00 0.000 0.00 0.00 0.000 0.000 0.000	0.13 0.19 1.20 1.00 1.20 0.97 0.58	16.13 23.57 148.88 124.07 148.88 120.35	16.13 23.57 148.88 124.07 148.88 120.35	0.04 0.040 0.18 0.13 0.152
Anthracene 594 1,300 Benzo[a]anthracene 841 4,153 Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[e]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Phenanthrenes/Anthracenes 510 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00 0.07	0.02 0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	2.18 5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.004 0.01 0.00 0.004 0.00 0.00 0.004 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.00 0.13 0.18 0.39 0.51 0.78 0.23	0.000 0.00 0.00 0.000 0.000 0.000	0.19 1.20 1.00 1.20 0.97 0.58	23.57 148.88 124.07 148.88 120.35	23.57 148.88 124.07 148.88 120.35	0.040 0.18 0.13 0.152
Benzo[a]anthracene 841 4,153 Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[e]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Phenanthrenes/Anthracenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Fluorenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00 0.07	0.05 0.04 0.04 0.03 0.02 0.03 0.03 0.03 0.01 0.07 0.00	5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	5.27 4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.01 0.00 0.004 0.00 0.00 0.004 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01	0.13 0.18 0.39 0.51 0.78 0.23 1.08	0.13 0.18 0.39 0.51 0.78 0.23	0.00 0.00 0.000 0.00 0.00 0.000	1.20 1.00 1.20 0.97 0.58	148.88 124.07 148.88 120.35	148.88 124.07 148.88 120.35	0.18 0.13 0.152
Benzo[a]pyrene 965 3,840 Benzo[b]fluoranthene 979 2,169 Benzo[e]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Phenanthrenes/Anthracenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00 0.07	0.04 0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	4.12 4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.00 0.004 0.00 0.00 0.004 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.18 0.39 0.51 0.78 0.23 1.08	0.18 0.39 0.51 0.78 0.23	0.00 0.000 0.00 0.00 0.000	1.00 1.20 0.97 0.58	124.07 148.88 120.35	124.07 148.88 120.35	0.13 0.152
Benzo[b]fluoranthene 979 2,169 Benzo[e]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluorenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00 0.07	0.04 0.03 0.02 0.03 0.03 0.01 0.07 0.00	4.24 3.09 2.29 3.44 3.44 1.37 8.13	4.24 3.09 2.29 3.44 3.44 1.37 8.13	0.004 0.00 0.00 0.004 0.00 0.00	0.00 0.00 0.00 0.00 0.01	0.39 0.51 0.78 0.23 1.08	0.39 0.51 0.78 0.23	0.000 0.00 0.00 0.000	1.20 0.97 0.58	148.88 120.35	148.88 120.35	0.152
Benzo[e]pyrene 967 4,300 Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.03 0.02 0.03 0.03 0.01 0.07 0.00 0.07	0.03 0.02 0.03 0.03 0.01 0.07 0.00	3.09 2.29 3.44 3.44 1.37 8.13	3.09 2.29 3.44 3.44 1.37 8.13	0.00 0.00 0.004 0.00 0.00	0.00 0.00 0.00 0.01	0.51 0.78 0.23 1.08	0.51 0.78 0.23	0.00 0.00 0.000	0.97 0.58	120.35	120.35	
Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.02 0.03 0.03 0.01 0.07 0.00 0.07	0.02 0.03 0.03 0.01 0.07 0.00	2.29 3.44 3.44 1.37 8.13	2.29 3.44 3.44 1.37 8.13	0.00 0.004 0.00 0.00	0.00 0.00 0.01	0.78 0.23 1.08	0.78 0.23	0.00	0.58			0.12
Benzo[g,h,i]perylene 1,095 648 Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.03 0.03 0.01 0.07 0.00 0.07	0.03 0.03 0.01 0.07 0.00	3.44 3.44 1.37 8.13	3.44 3.44 1.37 8.13	0.004 0.00 0.00	0.00 0.01	0.23 1.08	0.23	0.000		71.96	71.96	
Benzo[k]fluoranthene 981 1,220 C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C3-Chrysenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.03 0.01 0.07 0.00 0.07	0.03 0.01 0.07 0.00	3.44 3.44 1.37 8.13	3.44 3.44 1.37 8.13	0.00	0.01	1.08			1.20			0.07
C1-Chrysenes 929 C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.03 0.01 0.07 0.00 0.07	0.03 0.01 0.07 0.00	3.44 1.37 8.13	3.44 1.37 8.13	0.00	0.01				1.20	148.88	148.88	0.152
C1-Fluorenes 611 C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.01 0.07 0.00 0.07	0.01 0.07 0.00	1.37 8.13	1.37 8.13	0.00				0.00	0.56	69.48	69.48	0.07
C1-Fluoranthenes/pyrene 770 C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.07 0.00 0.07	0.07 0.00	8.13	8.13			0.87	0.87	0.00	0.09	0.00	0.00	0.00
C1-Naphthalenes 444 C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.00 0.07	0.00				0.01	1.80	1.80	0.00	0.87	107.94	107.94	0.14
C1-Phenanthrenes/Anthracenes 670 C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.07		0.00	().()()	0.00	0.01	1.24	1.24	0.00	0.09	0.00	0.00	0.00
C2-Chrysenes 1,008 C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949		1/1//	7.67	7.67	0.01	0.02	3.59	3.59	0.01	0.38	47.15	47.15	0.07
C2-Fluorenes 686 C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.02		1.72	1.72	0.00	0.01	1.14	1.14	0.00	0.38	47.15	47.15	0.05
C2-Fluoranthenes/Pyrene C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.02		2.29	2.29	0.00	0.01	1.49	1.49	0.00	0.09	0.00	0.00	0.00
C2-Naphthalenes 510 C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.04		4.47	4.47		0.01	2.29	2.29		0.56	69.48	69.48	
C2-Phenanthrenes/Anthracenes 746 C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.03		3.89	3.89	0.01	0.03	4.90	4.90	0.01	0.09	0.00	0.00	0.00
C3-Chrysenes 1,112 C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.07		8.48	8.48	0.01	0.03	4.90	4.90	0.01	0.26	32.26	32.26	0.04
C3-Fluorenes 769 C3-Fluoranthenes/Pyrene 949	0.00		0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.25	31.02	31.02	0.03
C3-Fluoranthenes/Pyrene 949	0.03		2.98	2.98	0.00	0.00	2.12	2.12	0.00	0.09	0.00	0.00	0.00
	0.03		2.75	2.75	0.00	0.01	2.12	2.12	0.00	0.36	44.67	44.67	0.05
	0.08		9.51	9.51	0.02	0.06	9.97	9.97	0.00	0.09	0.00	0.00	0.00
C3-Phenanthrenes/Anthracenes 829	0.06		6.30	6.30	0.01	0.03	4.25	4.25	0.01	0.09	0.00	0.00	0.00
C4-Chrysenes 1,214	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00
C4-Naphthalenes 657	0.10		11.45	11.45	0.02	0.09	14.22	14.22	0.02	0.09	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes 913	0.04		4.24	4.24	0.00	0.02	2.94	2.94	0.00	0.09	0.00	0.00	0.00
Chrysene 844 826	0.05		6.07	6.07	0.00	0.02	0.83	0.83	0.00	1.30	161.29	161.29	0.19
Dibenzo(a,h)anthracene 1,123 2,389	0.03		0.89	0.89	0.001	0.00	0.10	0.10	0.000	0.26	32.26	32.26	0.029
Fluoranthene 707 23,870	0.01		12.60	12.60	0.001	0.00	0.10	0.38	0.000	2.70	334.99	334.99	0.029
	0.11		1.37		0.02	0.00	0.38		0.001	0.10			0.47
7711				1.37				0.28			12.41	12.41	
	0.00		0.53	0.53	0.00	0.00	0.80	0.80	0.00	0.09	0.00	0.00	0.00
Perylene 967 431	0.01		1.60	1.60	0.00	0.00	0.57	0.57	0.00	0.33	40.94	40.94	0.04
Phenanthrene 596 34,300	0.08		9.28	9.28	0.02	0.01	1.32	1.32	0.00	1.10	136.48	136.48	0.23
Pyrene 697 9,090			10.88	10.88	0.02	0.00	0.62	0.62	0.00	1.80	223.33	223.33	0.32
Notes: ESBTU FCV	0.10				0.20				0.09				2.72

Location ID:

HT18-18

HT18-18

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

HT18-19

		Sample Name:		HT18-1	9-0010			HT18-1	19-1020			HT18-1	9-2030	
		Sample Date:		10/25	/2018			10/25	/2018			10/25	/2018	
		Depth Interval (ft):		0-	-1			1-2	2.3			2.3-	2.8	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	µg/g ос	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			5.98	0.0598			0.768	0.00768			0.472	0.00472		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.26	4.35	4.35	0.01	0.41	0.00	0.00	0.00	0.00	0.34	0.34	0.00
2-Methylnaphthalene	447	154,800	0.41	6.86	6.86	0.015	0.41	0.00	0.00	0.000	0.00	0.40	0.40	0.001
Acenaphthene	491	33,400	2.10	35.12	35.12	0.072	0.82	106.77	106.77	0.217	0.01	2.06	2.06	0.004
Acenaphthylene	452	24,000	1.05	0.00	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	2.10	35.12	35.12	0.059	1.30	169.27	169.27	0.285	0.01	2.97	2.97	0.005
Benzo[a]anthracene	841	4,153	8.10	135.45	135.45	0.16	3.30	429.69	429.69	0.51	0.04	9.11	9.11	0.01
Benzo[a]pyrene	965	3,840	5.40	90.30	90.30	0.09	2.40	312.50	312.50	0.32	0.04	7.42	7.42	0.01
Benzo[b]fluoranthene	979	2,169	6.90	115.38	115.38	0.118	2.70	351.56	351.56	0.359	0.04	7.84	7.84	0.008
Benzo[e]pyrene	967	4,300	5.00	83.61	83.61	0.09	2.00	260.42	260.42	0.27	0.03	5.93	5.93	0.01
Benzo[g,h,i]perylene	1,095	648	3.80	63.55	63.55	0.06	1.60	208.33	208.33	0.19	0.03	5.72	5.72	0.01
Benzo[k]fluoranthene	981	1,220	6.10	102.01	102.01	0.104	2.60	338.54	338.54	0.345	0.04	7.42	7.42	0.008
C1-Chrysenes	929		5.10	85.28	85.28	0.09	1.30	169.27	169.27	0.18	0.02	4.66	4.66	0.01
C1-Fluorenes	611		1.05	0.00	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		12.00	200.67	200.67	0.26	3.80	494.79	494.79	0.64	0.06	12.50	12.50	0.02
C1-Naphthalenes	444		1.05	0.00	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		11.00	183.95	183.95	0.27	2.30	299.48	299.48	0.45	0.05	10.17	10.17	0.02
C2-Chrysenes	1,008		3.20	53.51	53.51	0.05	0.41	0.00	0.00	0.00	0.01	2.97	2.97	0.00
C2-Fluorenes	686		3.80	63.55	63.55	0.09	0.41	0.00	0.00	0.00	0.01	2.54	2.54	0.00
C2-Fluoranthenes/Pyrene			6.80	113.71	113.71		1.40	182.29	182.29		0.03	6.14	6.14	
C2-Naphthalenes	510		5.70	95.32	95.32	0.19	0.41	0.00	0.00	0.00	0.02	4.03	4.03	0.01
C2-Phenanthrenes/Anthracenes	746		15.00	250.84	250.84	0.34	1.70	221.35	221.35	0.30	0.05	11.23	11.23	0.02
C3-Chrysenes	1,112		1.05	0.00	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		5.30	88.63	88.63	0.12	0.41	0.00	0.00	0.00	0.02	3.81	3.81	0.00
C3-Fluoranthenes/Pyrene	949		5.10	85.28	85.28	0.09	0.41	0.00	0.00	0.00	0.02	3.81	3.81	0.00
C3-Naphthalenes	581		16.00	267.56	267.56	0.46	0.93	121.09	121.09	0.21	0.04	9.32	9.32	0.02
C3-Phenanthrenes/Anthracenes	829		13.00	217.39	217.39	0.26	1.10	143.23	143.23	0.17	0.04	8.90	8.90	0.01
C4-Chrysenes	1,214		1.05	0.00	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		15.00	250.84	250.84	0.38	0.83	108.07	108.07	0.16	0.04	9.32	9.32	0.01
C4-Phenanthrenes/Anthracenes	913		7.70	128.76	128.76	0.14	0.41	0.00	0.00	0.00	0.03	6.99	6.99	0.01
Chrysene	844	826	9.30	155.52	155.52	0.18	3.50	455.73	455.73	0.54	0.05	10.38	10.38	0.01
Dibenzo(a,h)anthracene	1,123	2,389	1.50	25.08	25.08	0.022	0.58	75.52	75.52	0.067	0.01	1.86	1.86	0.002
Fluoranthene	707	23,870	22.00	367.89	367.89	0.52	8.90	1158.85	1158.85	1.64	0.11	23.31	23.31	0.03
Fluorene	538	26,000	1.50	25.08	25.08	0.047	0.47	61.20	61.20	0.114	0.01	1.38	1.38	0.003
Naphthalene	385	61,700	0.27	4.52	4.52	0.01	0.41	0.00	0.00	0.00	0.00	0.44	0.44	0.00
Perylene	967	431	1.60	26.76	26.76	0.03	0.73	95.05	95.05	0.10	0.02	4.45	4.45	0.00
Phenanthrene	596	34,300	13.00	217.39	217.39	0.36	6.50	846.35	846.35	1.42	0.07	15.04	15.04	0.03
Pyrene	697	9,090	18.00	301.00	301.00	0.43	7.50	976.56	976.56	1.40	0.09	18.86	18.86	0.03
		ESBTU FCVi	1		-	5.07			-	10.08				0.29
Notes:									<u> </u>					

HT18-19

Location ID:

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Samula Nama.		HT18-2	0 CUDE		1	HT18-2	0.0010			HT18-2		
		Sample Name:												
		Sample Date:		10/24				10/25					/2018	
		Depth Interval (ft):		0-0				0-0		1		0.8-		1
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	μg/g oc	μg/g oc	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			1.67	0.0167	-		0.531	0.00531			0.7	0.007		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.01	0.53	0.53	0.00	0.01	2.64	2.64	0.01	0.00	0.26	0.26	0.00
2-Methylnaphthalene	447	154,800	0.01	0.60	0.60	0.001	0.02	3.39	3.39	0.008	0.00	0.37	0.37	0.001
Acenaphthene	491	33,400	0.04	2.63	2.63	0.005	0.08	15.44	15.44	0.031	0.01	1.86	1.86	0.004
Acenaphthylene	452	24,000	0.01	0.48	0.48	0.00	0.01	2.64	2.64	0.01	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.09	5.15	5.15	0.009	0.10	18.83	18.83	0.032	0.01	0.76	0.76	0.001
Benzo[a]anthracene	841	4,153	0.33	19.76	19.76	0.02	0.40	75.33	75.33	0.09	0.01	1.23	1.23	0.00
Benzo[a]pyrene	965	3,840	0.27	16.17	16.17	0.02	0.26	48.96	48.96	0.05	0.01	0.96	0.96	0.00
Benzo[b]fluoranthene	979	2,169	0.34	20.36	20.36	0.021	0.40	75.33	75.33	0.077	0.01	0.91	0.91	0.001
Benzo[e]pyrene	967	4,300	0.22	13.17	13.17	0.01	0.28	52.73	52.73	0.05	0.00	0.63	0.63	0.00
Benzo[g,h,i]perylene	1,095	648	0.07	4.25	4.25	0.00	0.21	39.55	39.55	0.04	0.00	0.50	0.50	0.00
Benzo[k]fluoranthene	981	1,220	0.31	18.56	18.56	0.019	0.35	65.91	65.91	0.067	0.01	1.01	1.01	0.001
C1-Chrysenes	929		0.12	7.19	7.19	0.01	0.17	32.02	32.02	0.03	0.00	0.64	0.64	0.00
C1-Fluorenes	611		0.03	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.28	16.77	16.77	0.02	0.48	90.40	90.40	0.12	0.01	1.57	1.57	0.00
C1-Naphthalenes	444		0.03	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.17	10.18	10.18	0.02	0.25	47.08	47.08	0.07	0.01	1.36	1.36	0.00
C2-Chrysenes	1,008		0.03	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.03	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.15	8.98	8.98		0.23	43.31	43.31		0.01	0.87	0.87	
C2-Naphthalenes	510		0.03	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.01	0.96	0.96	0.00
C2-Phenanthrenes/Anthracenes	746		0.10	5.75	5.75	0.01	0.21	39.55	39.55	0.05	0.01	0.83	0.83	0.00
C3-Chrysenes	1,112		0.03	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.03	0.00	0.00	0.00	0.09	16.01	16.01	0.02	0.00	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.03	0.00	0.00	0.00	0.10	18.27	18.27	0.02	0.00	0.00	0.00	0.00
C3-Naphthalenes	581		0.03	0.00	0.00	0.00	0.11	20.72	20.72	0.04	0.01	0.77	0.77	0.00
C3-Phenanthrenes/Anthracenes	829		0.03	0.00	0.00	0.00	0.13	24.48	24.48	0.03	0.00	0.00	0.00	0.00
C4-Chrysenes	1,214		0.03	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.03	0.00	0.00	0.00	0.10	18.83	18.83	0.03	0.00	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.03	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrysene	844	826	0.39	23.35	23.35	0.03	0.46	86.63	86.63	0.10	0.01	1.27	1.27	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.07	4.43	4.43	0.004	0.07	13.94	13.94	0.012	0.00	0.20	0.20	0.000
Fluoranthene	707	23,870	0.95	56.89	56.89	0.08	1.10	207.16	207.16	0.29	0.02	2.86	2.86	0.00
Fluorene	538	26,000	0.05	2.93	2.93	0.005	0.06	11.68	11.68	0.022	0.01	0.81	0.81	0.002
Naphthalene	385	61,700	0.02	1.08	1.08	0.00	0.03	4.71	4.71	0.01	0.01	0.76	0.76	0.00
Perylene	967	431	0.07	4.07	4.07	0.00	0.09	17.70	17.70	0.02	0.01	2.00	2.00	0.00
Phenanthrene	596	34,300	0.54	32.34	32.34	0.05	0.60	112.99	112.99	0.19	0.03	3.86	3.86	0.01
Pyrene	697	9,090	0.63	37.72	37.72	0.05	0.84	158.19	158.19	0.23	0.02	2.14	2.14	0.00
-		ESBTU FCVi				0.41				1.75				0.04
Notes:		1												1

Location ID:

HT18-20

HT18-20

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Names		HT18-2	0.2020			HT18-20-	2020 ED			HT18-2	1 CLIDE	
		Sample Name:												
		Sample Date:		10/25				10/25					/2018	
	G 7 177 7 577 19	Depth Interval (ft):		1.8-		ı	~	1.8-		I	~	0-0		I
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final	ECDELL	Conc	Coc	Final	ECDEN	Conc	Coc	Final	ECDELL
	µg/g ос	µg/g ос	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			0.987	0.00987			0.629	0.00629			2.26	0.0226		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.15	0.15	0.00	0.00	0.37	0.37	0.00	0.01	0.44	0.44	0.00
2-Methylnaphthalene	447	154,800	0.00	0.19	0.19	0.000	0.00	0.41	0.41	0.001	0.02	0.71	0.71	0.002
Acenaphthene	491	33,400	0.02	1.72	1.72	0.004	0.02	3.50	3.50	0.007	0.03	1.46	1.46	0.003
Acenaphthylene	452	24,000	0.00	0.14	0.14	0.00	0.00	0.38	0.38	0.00	0.02	0.00	0.00	0.00
Anthracene	594	1,300	0.02	1.82	1.82	0.003	0.03	5.41	5.41	0.009	0.11	4.87	4.87	0.008
Benzo[a]anthracene	841	4,153	0.04	3.85	3.85	0.00	0.07	10.65	10.65	0.01	0.20	8.85	8.85	0.01
Benzo[a]pyrene	965	3,840	0.03	3.04	3.04	0.00	0.05	7.95	7.95	0.01	0.14	6.19	6.19	0.01
Benzo[b]fluoranthene	979	2,169	0.03	2.84	2.84	0.003	0.05	7.15	7.15	0.007	0.16	7.08	7.08	0.007
Benzo[e]pyrene	967	4,300	0.02	2.23	2.23	0.00	0.04	5.56	5.56	0.01	0.16	7.08	7.08	0.01
Benzo[g,h,i]perylene	1,095	648	0.02	1.82	1.82	0.00	0.03	4.61	4.61	0.00	0.04	1.55	1.55	0.00
Benzo[k]fluoranthene	981	1,220	0.03	3.04	3.04	0.003	0.05	8.27	8.27	0.008	0.12	5.31	5.31	0.005
C1-Chrysenes	929		0.02	1.82	1.82	0.00	0.03	4.93	4.93	0.01	0.16	7.08	7.08	0.01
C1-Fluorenes	611		0.01	0.87	0.87	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.06	5.67	5.67	0.01	0.09	14.94	14.94	0.02	0.36	15.93	15.93	0.02
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.05	4.66	4.66	0.01	0.07	11.13	11.13	0.02	0.19	8.41	8.41	0.01
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.22	9.73	9.73	0.01
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.02	2.23	2.23		0.04	5.88	5.88		0.44	19.47	19.47	
C2-Naphthalenes	510		0.01	1.32	1.32	0.00	0.02	2.86	2.86	0.01	0.07	3.23	3.23	0.01
C2-Phenanthrenes/Anthracenes	746		0.03	3.14	3.14	0.00	0.05	7.15	7.15	0.01	0.13	5.75	5.75	0.01
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.20	8.85	8.85	0.01
C3-Fluorenes	769		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.01	0.98	0.98	0.00	0.01	0.00	0.00	0.00	0.29	12.83	12.83	0.01
C3-Naphthalenes	581		0.02	2.13	2.13	0.00	0.03	4.45	4.45	0.01	0.08	3.45	3.45	0.01
C3-Phenanthrenes/Anthracenes	829		0.02	1.62	1.62	0.00	0.02	3.82	3.82	0.00	0.14	6.19	6.19	0.01
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.09	3.94	3.94	0.00
C4-Naphthalenes	657		0.02	2.23	2.23	0.00	0.03	4.13	4.13	0.01	0.05	2.26	2.26	0.00
C4-Phenanthrenes/Anthracenes	913		0.01	1.11	1.11	0.00	0.02	3.18	3.18	0.00	0.13	5.75	5.75	0.01
Chrysene	844	826	0.04	4.05	4.05	0.00	0.07	10.81	10.81	0.01	0.22	9.73	9.73	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.01	0.63	0.63	0.001	0.01	1.75	1.75	0.002	0.04	1.68	1.68	0.001
Fluoranthene	707	23,870	0.10	10.13	10.13	0.01	0.17	27.03	27.03	0.04	0.58	25.66	25.66	0.04
Fluorene	538	26,000	0.00	0.44	0.44	0.001	0.01	1.35	1.35	0.003	0.05	2.12	2.12	0.004
Naphthalene	385	61,700	0.00	0.27	0.27	0.00	0.00	0.59	0.59	0.00	0.01	0.35	0.35	0.00
Perylene	967	431	0.04	3.55	3.55	0.00	0.04	5.56	5.56	0.01	0.03	1.46	1.46	0.00
Phenanthrene	596	34,300	0.09	8.92	8.92	0.01	0.13	20.67	20.67	0.03	0.51	22.57	22.57	0.04
Pyrene	697	9,090	0.09	8.61	8.61	0.01	0.13	22.26	22.26	0.03	0.40	17.70	17.70	0.04
- y		ESBTU FCVi				0.01				0.03				0.03
Notes:	I	ESDIUTCVI	<u> </u>			0.11			_ -	0.20	_ 	- -		0.27

Location ID:

HT18-20

HT18-21

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-2	21-0015			HT18-2	3-SURF			HT18-2	3-0010	
		Sample Date:		10/25	/2018			10/23	/2018			10/24	/2018	
		Depth Interval (ft):		0-1	1.7			0-0).5			0-	1	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			1.08	0.0108			3.3	0.033			0.943	0.00943		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.01	0.75	0.75	0.00	0.01	0.20	0.20	0.00	0.00	0.19	0.19	0.00
2-Methylnaphthalene	447	154,800	0.01	1.30	1.30	0.003	0.01	0.19	0.19	0.000	0.00	0.21	0.21	0.000
Acenaphthene	491	33,400	0.02	1.39	1.39	0.003	0.01	0.30	0.30	0.001	0.00	0.38	0.38	0.001
Acenaphthylene	452	24,000	0.00	0.36	0.36	0.00	0.03	0.00	0.00	0.00	0.00	0.16	0.16	0.00
Anthracene	594	1,300	0.02	1.67	1.67	0.003	0.02	0.67	0.67	0.001	0.01	0.74	0.74	0.001
Benzo[a]anthracene	841	4,153	0.07	6.76	6.76	0.01	0.15	4.55	4.55	0.01	0.05	4.88	4.88	0.01
Benzo[a]pyrene	965	3,840	0.06	5.93	5.93	0.01	0.17	5.15	5.15	0.01	0.04	4.14	4.14	0.00
Benzo[b]fluoranthene	979	2,169	0.08	7.41	7.41	0.008	0.24	7.27	7.27	0.007	0.07	7.10	7.10	0.007
Benzo[e]pyrene	967	4,300	0.15	13.89	13.89	0.01	0.18	5.45	5.45	0.01	0.04	4.56	4.56	0.00
Benzo[g,h,i]perylene	1,095	648	0.09	7.96	7.96	0.01	0.14	4.24	4.24	0.00	0.04	3.92	3.92	0.00
Benzo[k]fluoranthene	981	1,220	0.07	6.30	6.30	0.006	0.22	6.67	6.67	0.007	0.05	5.41	5.41	0.006
C1-Chrysenes	929		0.18	16.67	16.67	0.02	0.07	2.09	2.09	0.00	0.02	2.12	2.12	0.00
C1-Fluorenes	611		0.01	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.31	28.70	28.70	0.04	0.16	4.85	4.85	0.01	0.06	6.36	6.36	0.01
C1-Naphthalenes	444		0.02	1.39	1.39	0.00	0.03	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.11	10.19	10.19	0.02	0.08	2.36	2.36	0.00	0.03	3.50	3.50	0.01
C2-Chrysenes	1,008		0.33	30.56	30.56	0.03	0.03	0.00	0.00	0.00	0.01	1.38	1.38	0.00
C2-Fluorenes	686		0.04	3.61	3.61	0.01	0.03	0.00	0.00	0.00	0.01	1.27	1.27	0.00
C2-Fluoranthenes/Pyrene			0.55	50.93	50.93		0.09	2.76	2.76		0.04	3.82	3.82	
C2-Naphthalenes	510		0.06	5.83	5.83	0.01	0.03	0.00	0.00	0.00	0.01	1.27	1.27	0.00
C2-Phenanthrenes/Anthracenes	746		0.22	20.37	20.37	0.03	0.06	1.88	1.88	0.00	0.06	6.15	6.15	0.01
C3-Chrysenes	1,112		0.26	24.07	24.07	0.02	0.03	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C3-Fluorenes	769		0.08	7.13	7.13	0.01	0.03	0.00	0.00	0.00	0.02	2.33	2.33	0.00
C3-Fluoranthenes/Pyrene	949		0.48	44.44	44.44	0.05	0.03	0.00	0.00	0.00	0.02	2.01	2.01	0.00
C3-Naphthalenes	581		0.08	7.22	7.22	0.01	0.03	0.00	0.00	0.00	0.03	2.86	2.86	0.00
C3-Phenanthrenes/Anthracenes	829		0.35	32.41	32.41	0.04	0.03	0.00	0.00	0.00	0.04	4.24	4.24	0.01
C4-Chrysenes	1,214		0.13	12.04	12.04	0.01	0.03	0.00	0.00	0.00	0.01	0.00	0.00	0.00
C4-Naphthalenes	657		0.09	8.24	8.24	0.01	0.06	1.88	1.88	0.00	0.04	4.24	4.24	0.01
C4-Phenanthrenes/Anthracenes	913		0.34	31.48	31.48	0.03	0.03	0.00	0.00	0.00	0.03	2.76	2.76	0.00
Chrysene	844	826	0.13	12.04	12.04	0.01	0.26	7.88	7.88	0.01	0.06	6.79	6.79	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.03	2.31	2.31	0.002	0.05	1.55	1.55	0.001	0.01	1.27	1.27	0.001
Fluoranthene	707	23,870	0.15	13.89	13.89	0.02	0.57	17.27	17.27	0.02	0.13	13.79	13.79	0.02
Fluorene	538	26,000	0.02	1.57	1.57	0.003	0.02	0.52	0.52	0.001	0.00	0.40	0.40	0.001
Naphthalene	385	61,700	0.01	0.91	0.91	0.00	0.03	0.00	0.00	0.00	0.00	0.20	0.20	0.00
Perylene	967	431	0.02	1.94	1.94	0.00	0.05	1.61	1.61	0.00	0.02	2.01	2.01	0.00
Phenanthrene	596	34,300	0.12	11.11	11.11	0.02	0.21	6.36	6.36	0.01	0.06	6.04	6.04	0.01
Pyrene	697	9,090	0.15	13.89	13.89	0.02	0.34	10.30	10.30	0.01	0.11	11.66	11.66	0.02
		ESBTU FCVi				0.43				0.12				0.15
Notes:					I		1							

Location ID:

HT18-21

HT18-23

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-2	23-1030			HT18-2	3-3050			HT18-2	3-5070	
		Sample Date:		10/24	/2018			10/24	/2018			10/24	/2018	
		Depth Interval (ft):		1-	-3			3-	5			5-	.7	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			0.416	0.00416			0.635	0.00635			1.1	0.011		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.00	0.00	0.00	0.00	0.06	0.06	0.00	0.00	0.06	0.06	0.00
2-Methylnaphthalene	447	154,800	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.05	0.05	0.000
Acenaphthene	491	33,400	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.04	0.04	0.000
Acenaphthylene	452	24,000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[a]pyrene	965	3,840	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[b]fluoranthene	979	2,169	0.00	0.19	0.19	0.000	0.00	0.16	0.16	0.000	0.00	0.15	0.15	0.000
Benzo[e]pyrene	967	4,300	0.00	0.12	0.12	0.00	0.00	0.12	0.12	0.00	0.00	0.11	0.11	0.00
Benzo[g,h,i]perylene	1,095	648	0.00	0.15	0.15	0.00	0.00	0.13	0.13	0.00	0.00	0.12	0.12	0.00
Benzo[k]fluoranthene	981	1,220	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
C1-Chrysenes	929		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.44	0.44	0.00
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00	
C2-Naphthalenes	510		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.69	0.69	0.00
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Naphthalenes	581		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.69	0.69	0.00
C3-Phenanthrenes/Anthracenes	829		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.58	0.58	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.00	0.99	0.99	0.00	0.01	1.13	1.13	0.00	0.01	1.18	1.18	0.00
C4-Phenanthrenes/Anthracenes	913		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrysene	844	826	0.00	0.20	0.20	0.00	0.00	0.22	0.22	0.00	0.00	0.21	0.21	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Fluoranthene	707	23,870	0.00	0.14	0.14	0.00	0.00	0.16	0.16	0.00	0.00	0.11	0.11	0.00
Fluorene	538	26,000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.06	0.06	0.000
Naphthalene	385	61,700	0.00	0.00	0.00	0.00	0.00	0.09	0.09	0.00	0.00	0.07	0.07	0.00
Perylene	967	431	0.00	0.53	0.53	0.00	0.00	0.57	0.57	0.00	0.00	0.43	0.43	0.00
Phenanthrene	596	34,300	0.00	0.12	0.12	0.00	0.00	0.24	0.24	0.00	0.00	0.20	0.20	0.00
Pyrene	697	9,090	0.00	0.16	0.16	0.00	0.00	0.19	0.19	0.00	0.00	0.16	0.16	0.00
		ESBTU FCVi				0.00				0.00				0.01
Notes:														

Location ID:

HT18-23

HT18-23

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		C IN		1111				HT10.2				HT10.2		
		Sample Name:		HT18-2			-	HT18-2				HT18-2		
		Sample Date:		10/24				10/23				10/24	/2018	
		Depth Interval (ft):		7-9		T	<u> </u>	0-0				0-		1
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	μg/g oc	μg/g oc	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			0.76	0.0076			2.67	0.0267			0.737	0.00737		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.25	0.25	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
2-Methylnaphthalene	447	154,800	0.00	0.14	0.14	0.000	0.07	0.00	0.00	0.000	0.03	0.00	0.00	0.000
Acenaphthene	491	33,400	0.00	0.06	0.06	0.000	0.06	2.10	2.10	0.004	0.04	5.83	5.83	0.012
Acenaphthylene	452	24,000	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.00	0.00	0.000	0.15	5.62	5.62	0.009	0.08	10.45	10.45	0.018
Benzo[a]anthracene	841	4,153	0.00	0.11	0.11	0.00	0.60	22.47	22.47	0.03	0.34	46.13	46.13	0.05
Benzo[a]pyrene	965	3,840	0.00	0.12	0.12	0.00	0.45	16.85	16.85	0.02	0.16	21.71	21.71	0.02
Benzo[b]fluoranthene	979	2,169	0.00	0.46	0.46	0.000	0.57	21.35	21.35	0.022	0.35	47.49	47.49	0.049
Benzo[e]pyrene	967	4,300	0.00	0.39	0.39	0.00	0.39	14.61	14.61	0.02	0.23	31.21	31.21	0.03
Benzo[g,h,i]perylene	1,095	648	0.00	0.00	0.00	0.00	0.27	10.11	10.11	0.01	0.18	24.42	24.42	0.02
Benzo[k]fluoranthene	981	1,220	0.00	0.13	0.13	0.000	0.55	20.60	20.60	0.021	0.28	37.99	37.99	0.039
C1-Chrysenes	929		0.01	0.76	0.76	0.00	0.18	6.74	6.74	0.01	0.11	14.93	14.93	0.02
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.01	1.24	1.24	0.00	0.47	17.60	17.60	0.02	0.35	47.49	47.49	0.06
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.01	1.58	1.58	0.00	0.23	8.61	8.61	0.01	0.20	27.14	27.14	0.04
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C2-Fluorenes	686		0.01	0.70	0.70	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.01	1.28	1.28		0.19	7.12	7.12		0.11	14.93	14.93	
C2-Naphthalenes	510		0.01	1.11	1.11	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.02	2.76	2.76	0.00	0.07	0.00	0.00	0.00	0.11	14.93	14.93	0.02
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Fluorenes	769		0.01	0.87	0.87	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.01	1.00	1.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Naphthalenes	581		0.02	2.76	2.76	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Phenanthrenes/Anthracenes	829		0.02	2.11	2.11	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C4-Naphthalenes	657		0.04	4.87	4.87	0.01	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.01	1.45	1.45	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
Chrysene	844	826	0.01	0.71	0.71	0.00	0.74	27.72	27.72	0.03	0.42	56.99	56.99	0.07
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.00	0.00	0.000	0.12	4.49	4.49	0.004	0.07	9.91	9.91	0.009
Fluoranthene	707	23,870	0.00	0.42	0.42	0.00	2.20	82.40	82.40	0.12	1.10	149.25	149.25	0.21
Fluorene	538	26,000	0.00	0.24	0.24	0.000	0.09	3.18	3.18	0.006	0.03	4.61	4.61	0.009
Naphthalene	385	61,700	0.00	0.10	0.10	0.00	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00
Perylene	967	431	0.01	1.30	1.30	0.00	0.13	4.87	4.87	0.01	0.06	8.68	8.68	0.01
Phenanthrene	596	34,300	0.00	0.47	0.47	0.00	1.20	44.94	44.94	0.08	0.58	78.70	78.70	0.13
Pyrene	697	9,090	0.00	0.57	0.57	0.00	1.20	44.94	44.94	0.06	0.66	89.55	89.55	0.13
		ESBTU FCVi				0.04				0.48				0.98
Notes:					ı				1					

Location ID:

HT18-24

HT18-24

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-2	24-1025			HT18-2	4-2550			HT18-2	4-5065	
		Sample Date:		10/24	/2018			10/24	/2018			10/24	/2018	
		Depth Interval (ft):		1-3	2.7			2.7	'-5			5-6	5.6	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			0.695	0.00695			0.84	0.0084			0.755	0.00755		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.07	0.07	0.00	0.00	0.07	0.07	0.00	0.00	0.06	0.06	0.00
2-Methylnaphthalene	447	154,800	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Acenaphthene	491	33,400	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Acenaphthylene	452	24,000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	0.00	0.08	0.08	0.00	0.00	0.10	0.10	0.00	0.00	0.00	0.00	0.00
Benzo[a]pyrene	965	3,840	0.00	0.00	0.00	0.00	0.00	0.06	0.06	0.00	0.00	0.00	0.00	0.00
Benzo[b]fluoranthene	979	2,169	0.00	0.19	0.19	0.000	0.00	0.19	0.19	0.000	0.00	0.10	0.10	0.000
Benzo[e]pyrene	967	4,300	0.00	0.12	0.12	0.00	0.00	0.17	0.17	0.00	0.00	0.07	0.07	0.00
Benzo[g,h,i]perylene	1,095	648	0.00	0.20	0.20	0.00	0.00	0.10	0.10	0.00	0.00	0.00	0.00	0.00
Benzo[k]fluoranthene	981	1,220	0.00	0.12	0.12	0.000	0.00	0.11	0.11	0.000	0.00	0.00	0.00	0.000
C1-Chrysenes	929		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.00	0.00	0.00	0.00	0.00	0.54	0.54	0.00	0.00	0.00	0.00	0.00
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00	
C2-Naphthalenes	510		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.01	1.04	1.04	0.00	0.01	0.83	0.83	0.00	0.01	0.72	0.72	0.00
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Naphthalenes	581		0.01	1.11	1.11	0.00	0.01	1.05	1.05	0.00	0.01	0.83	0.83	0.00
C3-Phenanthrenes/Anthracenes	829		0.00	0.71	0.71	0.00	0.01	0.61	0.61	0.00	0.00	0.00	0.00	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.02	2.45	2.45	0.00	0.02	1.90	1.90	0.00	0.01	1.72	1.72	0.00
C4-Phenanthrenes/Anthracenes	913		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrysene	844	826	0.00	0.27	0.27	0.00	0.00	0.30	0.30	0.00	0.00	0.19	0.19	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Fluoranthene	707	23,870	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fluorene	538	26,000	0.00	0.10	0.10	0.000	0.00	0.10	0.10	0.000	0.00	0.06	0.06	0.000
Naphthalene	385	61,700	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Perylene	967	431	0.00	0.24	0.24	0.00	0.00	0.38	0.38	0.00	0.00	0.17	0.17	0.00
Phenanthrene	596	34,300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pyrene	697	9,090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		ESBTU FCVi				0.01				0.01				0.01
Notes:												•		

Location ID:

HT18-24

HT18-24

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Location ID:		HT1	8-24			HT1	8-24			HT1	8-25	
		Sample Name:		HT18-24	-5065-FD			HT18-2	4-6575			HT18-2	5-SURF	
		Sample Date:		10/24	/2018			10/24	/2018			10/23	/2018	
		Depth Interval (ft):			6.6			6.6-				0-0		
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	µg/g ос	µg/g ос	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi
Total Organic Carbon (%)			0.672	0.00672			0.692	0.00692			3.56	0.0356		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.09	0.09	0.00	0.00	0.62	0.62	0.00	0.01	0.15	0.15	0.00
2-Methylnaphthalene	447	154,800	0.00	0.00	0.00	0.000	0.00	0.65	0.65	0.001	0.01	0.17	0.17	0.000
Acenaphthene	491	33,400	0.00	0.00	0.00	0.000	0.00	0.05	0.05	0.000	0.03	0.70	0.70	0.001
Acenaphthylene	452	24,000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.00	0.00	0.000	0.00	0.08	0.08	0.000	0.06	1.60	1.60	0.003
Benzo[a]anthracene	841	4,153	0.00	0.00	0.00	0.00	0.00	0.12	0.12	0.00	0.26	7.30	7.30	0.01
Benzo[a]pyrene	965	3,840	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.00	0.24	6.74	6.74	0.01
Benzo[b]fluoranthene	979	2,169	0.00	0.18	0.18	0.000	0.00	0.39	0.39	0.000	0.32	8.99	8.99	0.009
Benzo[e]pyrene	967	4,300	0.00	0.09	0.09	0.00	0.00	0.52	0.52	0.00	0.21	5.90	5.90	0.01
Benzo[g,h,i]perylene	1,095	648	0.00	0.00	0.00	0.00	0.00	0.64	0.64	0.00	0.15	4.21	4.21	0.00
Benzo[k]fluoranthene	981	1,220	0.00	0.11	0.11	0.000	0.00	0.11	0.11	0.000	0.25	7.02	7.02	0.007
C1-Chrysenes	929		0.00	0.00	0.00	0.00	0.01	1.08	1.08	0.00	0.10	2.81	2.81	0.00
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.01	0.81	0.81	0.00	0.03	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.00	0.00	0.00	0.00	0.01	1.73	1.73	0.00	0.23	6.46	6.46	0.01
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.01	0.87	0.87	0.00	0.03	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.00	0.00	0.00	0.00	0.02	3.18	3.18	0.00	0.11	3.09	3.09	0.00
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.01	1.10	1.10	0.00	0.03	0.00	0.00	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.01	1.59	1.59	0.00	0.03	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.00	0.00	0.00		0.02	2.31	2.31		0.11	3.09	3.09	
C2-Naphthalenes	510		0.00	0.00	0.00	0.00	0.03	3.76	3.76	0.01	0.03	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.01	1.09	1.09	0.00	0.03	4.48	4.48	0.01	0.06	1.63	1.63	0.00
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.01	0.88	0.88	0.00	0.03	0.00	0.00	0.00
C3-Fluorenes	769		0.00	0.00	0.00	0.00	0.01	2.02	2.02	0.00	0.03	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.00	0.00	0.00	0.00	0.01	1.59	1.59	0.00	0.03	0.00	0.00	0.00
C3-Naphthalenes	581		0.01	1.28	1.28	0.00	0.06	8.53	8.53	0.01	0.03	0.00	0.00	0.00
C3-Phenanthrenes/Anthracenes	829		0.01	0.82	0.82	0.00	0.03	4.05	4.05	0.00	0.03	0.00	0.00	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C4-Naphthalenes	657		0.02	2.68	2.68	0.00	0.10	13.73	13.73	0.02	0.03	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.00	0.65	0.65	0.00	0.02	2.89	2.89	0.00	0.03	0.00	0.00	0.00
Chrysene	844	826	0.00	0.28	0.28	0.00	0.01	0.82	0.82	0.00	0.35	9.83	9.83	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.00	0.00	0.000	0.00	0.10	0.10	0.000	0.07	1.85	1.85	0.002
Fluoranthene	707	23,870	0.00	0.00	0.00	0.00	0.00	0.35	0.35	0.00	0.77	21.63	21.63	0.03
Fluorene	538	26,000	0.00	0.09	0.09	0.000	0.00	0.23	0.23	0.000	0.03	0.87	0.87	0.002
Naphthalene	385	61,700	0.00	0.00	0.00	0.00	0.00	0.32	0.32	0.00	0.01	0.25	0.25	0.00
Perylene	967	431	0.00	0.19	0.19	0.00	0.00	0.55	0.55	0.00	0.07	1.85	1.85	0.00
Phenanthrene	596	34,300	0.00	0.00	0.00	0.00	0.01	1.05	1.05	0.00	0.35	9.83	9.83	0.02
Pyrene	697	9,090	0.00	0.00	0.00	0.00	0.00	0.62	0.62	0.00	0.46	12.92	12.92	0.02
		ESBTU FCVi				0.01				0.08				0.15
Notes:	•	<u>. </u>		•			•	<u> </u>			•			•

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

HT18-25

		Sample Name:		HT18-2	5-0010			HT18-2	25-1030			HT18-2	25-3040	
		Sample Date:		10/24	/2018			10/24	/2018			10/24	/2018	
		Depth Interval (ft):		0-	1			1-	-3			3-4	1.2	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	µg/g ос	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.47	0.0347			6.72	0.0672			4.95	0.0495		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.06	1.59	1.59	0.00	0.23	3.42	3.42	0.01	1.30	0.00	0.00	0.00
2-Methylnaphthalene	447	154,800	0.08	2.16	2.16	0.005	0.14	2.08	2.08	0.005	1.30	0.00	0.00	0.000
Acenaphthene	491	33,400	0.13	3.75	3.75	0.008	0.46	6.85	6.85	0.014	1.20	24.24	24.24	0.049
Acenaphthylene	452	24,000	0.19	0.00	0.00	0.00	0.09	1.40	1.40	0.00	1.30	0.00	0.00	0.00
Anthracene	594	1,300	0.27	7.78	7.78	0.013	0.79	11.76	11.76	0.020	3.00	60.61	60.61	0.102
Benzo[a]anthracene	841	4,153	1.60	46.11	46.11	0.05	2.80	41.67	41.67	0.05	8.80	177.78	177.78	0.21
Benzo[a]pyrene	965	3,840	1.00	28.82	28.82	0.03	2.10	31.25	31.25	0.03	6.90	139.39	139.39	0.14
Benzo[b]fluoranthene	979	2,169	1.60	46.11	46.11	0.047	2.50	37.20	37.20	0.038	7.20	145.45	145.45	0.149
Benzo[e]pyrene	967	4,300	0.79	22.77	22.77	0.02	1.80	26.79	26.79	0.03	5.30	107.07	107.07	0.11
Benzo[g,h,i]perylene	1,095	648	0.09	2.62	2.62	0.00	1.10	16.37	16.37	0.01	4.20	84.85	84.85	0.08
Benzo[k]fluoranthene	981	1,220	1.30	37.46	37.46	0.038	2.10	31.25	31.25	0.032	6.80	137.37	137.37	0.140
C1-Chrysenes	929		1.20	34.58	34.58	0.04	2.70	40.18	40.18	0.04	3.90	78.79	78.79	0.08
C1-Fluorenes	611		0.19	0.00	0.00	0.00	0.62	9.23	9.23	0.02	1.30	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		2.10	60.52	60.52	0.08	4.10	61.01	61.01	0.08	8.80	177.78	177.78	0.23
C1-Naphthalenes	444		0.19	0.00	0.00	0.00	0.31	0.00	0.00	0.00	1.30	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		1.80	51.87	51.87	0.08	4.60	68.45	68.45	0.10	5.60	113.13	113.13	0.17
C2-Chrysenes	1,008		0.60	17.29	17.29	0.02	1.70	25.30	25.30	0.03	1.30	0.00	0.00	0.00
C2-Fluorenes	686		0.59	17.00	17.00	0.02	2.00	29.76	29.76	0.04	1.30	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			1.50	43.23	43.23		3.00	44.64	44.64		3.50	70.71	70.71	
C2-Naphthalenes	510		0.71	20.46	20.46	0.04	2.70	40.18	40.18	0.08	1.30	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		3.10	89.34	89.34	0.12	7.40	110.12	110.12	0.15	4.60	92.93	92.93	0.12
C3-Chrysenes	1,112		0.19	0.00	0.00	0.00	1.10	16.37	16.37	0.01	1.30	0.00	0.00	0.00
C3-Fluorenes	769		1.20	34.58	34.58	0.04	3.40	50.60	50.60	0.07	1.30	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		1.00	28.82	28.82	0.03	2.00	29.76	29.76	0.03	1.30	0.00	0.00	0.00
C3-Naphthalenes	581		1.80	51.87	51.87	0.09	8.30	123.51	123.51	0.21	1.30	0.00	0.00	0.00
C3-Phenanthrenes/Anthracenes	829		3.30	95.10	95.10	0.11	7.00	104.17	104.17	0.13	3.80	76.77	76.77	0.09
C4-Chrysenes	1,214		0.19	0.00	0.00	0.00	0.31	0.00	0.00	0.00	1.30	0.00	0.00	0.00
C4-Naphthalenes	657		2.20	63.40	63.40	0.10	8.60	127.98	127.98	0.19	1.30	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		2.40	69.16	69.16	0.08	4.40	65.48	65.48	0.07	3.00	60.61	60.61	0.07
Chrysene	844	826	2.10	60.52	60.52	0.07	3.40	50.60	50.60	0.06	10.00	202.02	202.02	0.24
Dibenzo(a,h)anthracene	1,123	2,389	0.33	9.51	9.51	0.008	0.54	8.04	8.04	0.007	1.50	30.30	30.30	0.027
Fluoranthene	707	23,870	4.40	126.80	126.80	0.18	7.90	117.56	117.56	0.17	26.00	525.25	525.25	0.74
Fluorene	538	26,000	0.18	5.19	5.19	0.010	0.59	8.78	8.78	0.016	1.70	34.34	34.34	0.064
Naphthalene	385	61,700	0.05	1.50	1.50	0.00	0.08	1.19	1.19	0.00	1.30	0.00	0.00	0.00
Perylene	967	431	0.16	4.61	4.61	0.00	0.53	7.89	7.89	0.01	2.00	40.40	40.40	0.04
Phenanthrene	596	34,300	1.90	54.76	54.76	0.09	4.50	66.96	66.96	0.11	16.00	323.23	323.23	0.54
Pyrene	697	9,090	2.80	80.69	80.69	0.12	5.00	74.40	74.40	0.11	16.00	323.23	323.23	0.46
		ESBTU FCVi				1.54				1.95				3.95
Notes:	1					<u> </u>	<u>. </u>							

HT18-25

Location ID:

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-2	25-4070			HT18-2	5-7010			HT18-2	6-SURF	
		Sample Date:		10/24	/2018			10/24	/2018			10/23	/2018	
		Depth Interval (ft):		4.2	2-7			7-9	0.5			0-0).5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	µg/g ос	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			1.14	0.0114			0.736	0.00736			1.37	0.0137		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.06	0.06	0.00	0.00	0.13	0.13	0.00	0.01	0.51	0.51	0.00
2-Methylnaphthalene	447	154,800	0.00	0.04	0.04	0.000	0.00	0.08	0.08	0.000	0.01	0.60	0.60	0.001
Acenaphthene	491	33,400	0.02	1.49	1.49	0.003	0.00	0.05	0.05	0.000	0.02	1.68	1.68	0.003
Acenaphthylene	452	24,000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.36	0.36	0.001	0.00	0.00	0.00	0.000	0.05	3.28	3.28	0.006
Benzo[a]anthracene	841	4,153	0.00	0.18	0.18	0.00	0.00	0.12	0.12	0.00	0.30	21.90	21.90	0.03
Benzo[a]pyrene	965	3,840	0.00	0.11	0.11	0.00	0.00	0.12	0.12	0.00	0.24	17.52	17.52	0.02
Benzo[b]fluoranthene	979	2,169	0.00	0.25	0.25	0.000	0.00	0.30	0.30	0.000	0.41	29.93	29.93	0.031
Benzo[e]pyrene	967	4,300	0.00	0.21	0.21	0.00	0.00	0.24	0.24	0.00	0.25	18.25	18.25	0.02
Benzo[g,h,i]perylene	1,095	648	0.02	1.32	1.32	0.00	0.00	0.00	0.00	0.00	0.07	5.33	5.33	0.00
Benzo[k]fluoranthene	981	1,220	0.00	0.17	0.17	0.000	0.00	0.12	0.12	0.000	0.32	23.36	23.36	0.024
C1-Chrysenes	929		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	10.22	10.22	0.01
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.00	0.40	0.40	0.00	0.01	0.82	0.82	0.00	0.27	19.71	19.71	0.03
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.01	0.69	0.69	0.00	0.01	1.05	1.05	0.00	0.14	10.22	10.22	0.02
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.00	0.00	0.00		0.01	0.77	0.77		0.15	10.95	10.95	
C2-Naphthalenes	510		0.01	0.54	0.54	0.00	0.00	0.64	0.64	0.00	0.03	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.01	0.83	0.83	0.00	0.02	2.31	2.31	0.00	0.14	10.22	10.22	0.01
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C3-Fluorenes	769		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	6.20	6.20	0.01
C3-Fluoranthenes/Pyrene	949		0.00	0.00	0.00	0.00	0.00	0.61	0.61	0.00	0.07	4.82	4.82	0.01
C3-Naphthalenes	581		0.01	0.96	0.96	0.00	0.01	1.63	1.63	0.00	0.08	5.62	5.62	0.01
C3-Phenanthrenes/Anthracenes	829		0.01	0.55	0.55	0.00	0.01	1.35	1.35	0.00	0.12	8.76	8.76	0.01
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
C4-Naphthalenes	657		0.02	1.67	1.67	0.00	0.02	2.99	2.99	0.00	0.09	6.50	6.50	0.01
C4-Phenanthrenes/Anthracenes	913		0.00	0.41	0.41	0.00	0.01	0.96	0.96	0.00	0.08	6.13	6.13	0.01
Chrysene	844	826	0.00	0.34	0.34	0.00	0.00	0.49	0.49	0.00	0.43	31.39	31.39	0.04
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.06	0.06	0.000	0.00	0.00	0.00	0.000	0.08	6.13	6.13	0.005
Fluoranthene	707	23,870	0.01	0.96	0.96	0.00	0.00	0.43	0.43	0.00	0.84	61.31	61.31	0.09
Fluorene	538	26,000	0.00	0.32	0.32	0.001	0.00	0.18	0.18	0.000	0.03	2.04	2.04	0.004
Naphthalene	385	61,700	0.00	0.00	0.00	0.00	0.00	0.08	0.08	0.00	0.01	0.88	0.88	0.00
Perylene	967	431	0.00	0.37	0.37	0.00	0.01	1.18	1.18	0.00	0.06	4.53	4.53	0.00
Phenanthrene	596	34,300	0.04	3.77	3.77	0.01	0.00	0.49	0.49	0.00	0.32	23.36	23.36	0.04
Pyrene	697	9,090	0.01	0.61	0.61	0.00	0.00	0.49	0.49	0.00	0.51	37.23	37.23	0.05
		ESBTU FCVi				0.02				0.02				0.49
Notes:			·	·		·								

Location ID:

HT18-25

HT18-25

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Samula Namas		HT10 1	06 0010		<u> </u>	HT18-2	6 1020			HT10 1		
		Sample Name:		HT18-2			1					HT18-2		
		Sample Date:			/2018			10/24				10/24		
		Depth Interval (ft):		0-				1-		1		3-		1
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	µg/g ос	μg/g oc	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			0.729	0.00729	1		1.26	0.0126			0.929	0.00929		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.10	0.00	0.00	0.00	0.00	0.07	0.07	0.00	0.00	0.13	0.13	0.00
2-Methylnaphthalene	447	154,800	0.10	0.00	0.00	0.000	0.00	0.06	0.06	0.000	0.00	0.10	0.10	0.000
Acenaphthene	491	33,400	0.09	11.66	11.66	0.024	0.00	0.10	0.10	0.000	0.00	0.06	0.06	0.000
Acenaphthylene	452	24,000	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.32	43.90	43.90	0.074	0.00	0.22	0.22	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	0.89	122.09	122.09	0.15	0.01	0.87	0.87	0.00	0.00	0.12	0.12	0.00
Benzo[a]pyrene	965	3,840	0.69	94.65	94.65	0.10	0.01	0.78	0.78	0.00	0.00	0.09	0.09	0.00
Benzo[b]fluoranthene	979	2,169	0.81	111.11	111.11	0.113	0.01	0.87	0.87	0.001	0.00	0.27	0.27	0.000
Benzo[e]pyrene	967	4,300	0.56	76.82	76.82	0.08	0.01	0.65	0.65	0.00	0.00	0.24	0.24	0.00
Benzo[g,h,i]perylene	1,095	648	0.49	67.22	67.22	0.06	0.01	0.67	0.67	0.00	0.00	0.23	0.23	0.00
Benzo[k]fluoranthene	981	1,220	0.68	93.28	93.28	0.095	0.01	0.79	0.79	0.001	0.00	0.00	0.00	0.000
C1-Chrysenes	929		0.34	46.64	46.64	0.05	0.01	0.58	0.58	0.00	0.00	0.00	0.00	0.00
C1-Fluorenes	611		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		1.00	137.17	137.17	0.18	0.02	1.19	1.19	0.00	0.01	0.68	0.68	0.00
C1-Naphthalenes	444		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.55	75.45	75.45	0.11	0.01	0.74	0.74	0.00	0.01	0.58	0.58	0.00
C2-Chrysenes	1,008		0.10	0.00	0.00	0.00	0.00	0.39	0.39	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.36	49.38	49.38		0.01	0.70	0.70		0.01	0.62	0.62	
C2-Naphthalenes	510		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.51	0.51	0.00
C2-Phenanthrenes/Anthracenes	746		0.42	57.61	57.61	0.08	0.01	0.95	0.95	0.00	0.01	0.98	0.98	0.00
C3-Chrysenes	1,112		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.10	0.00	0.00	0.00	0.00	0.33	0.33	0.00	0.00	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.10	0.00	0.00	0.00	0.01	0.48	0.48	0.00	0.00	0.50	0.50	0.00
C3-Naphthalenes	581		0.10	0.00	0.00	0.00	0.01	0.77	0.77	0.00	0.01	1.08	1.08	0.00
C3-Phenanthrenes/Anthracenes	829		0.28	38.41	38.41	0.05	0.02	1.27	1.27	0.00	0.01	1.08	1.08	0.00
C4-Chrysenes	1,214		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.10	0.00	0.00	0.00	0.02	1.19	1.19	0.00	0.02	1.83	1.83	0.00
C4-Phenanthrenes/Anthracenes	913		0.10	0.00	0.00	0.00	0.01	0.74	0.74	0.00	0.01	0.71	0.71	0.00
Chrysene	844	826	0.97	133.06	133.06	0.16	0.01	1.11	1.11	0.00	0.00	0.41	0.41	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.17	23.32	23.32	0.021	0.00	0.17	0.17	0.000	0.00	0.00	0.00	0.000
Fluoranthene	707	23,870	2.40	329.22	329.22	0.47	0.03	2.14	2.14	0.00	0.00	0.36	0.36	0.00
Fluorene	538	26,000	0.05	6.45	6.45	0.012	0.00	0.08	0.08	0.000	0.00	0.06	0.06	0.000
Naphthalene	385	61,700	0.10	0.00	0.00	0.00	0.00	0.09	0.09	0.00	0.00	0.14	0.14	0.00
Perylene	967	431	0.21	28.81	28.81	0.03	0.01	0.79	0.79	0.00	0.01	0.85	0.85	0.00
Phenanthrene	596	34,300	1.40	192.04	192.04	0.32	0.01	1.03	1.03	0.00	0.00	0.31	0.31	0.00
Pyrene	697	9,090	2.00	274.35	274.35	0.39	0.02	1.67	1.67	0.00	0.00	0.38	0.38	0.00
-		ESBTU FCVi				2.61				0.03				0.02
Notes:			1		1		1	<u> </u>		1	1			

Location ID:

HT18-26

HT18-26

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-26	-3050-FD			HT18-2	6-5070			HT18-2	6-7010	
		Sample Date:		10/24	/2018			10/24	/2018			10/24	/2018	
		Depth Interval (ft):		3.	-5			5-	7			7-9	0.5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			0.773	0.00773			0.831	0.00831			0.796	0.00796		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.14	0.14	0.00	0.00	0.18	0.18	0.00	0.00	0.13	0.13	0.00
2-Methylnaphthalene	447	154,800	0.00	0.12	0.12	0.000	0.00	0.12	0.12	0.000	0.00	0.08	0.08	0.000
Acenaphthene	491	33,400	0.00	0.06	0.06	0.000	0.00	0.06	0.06	0.000	0.00	0.00	0.00	0.000
Acenaphthylene	452	24,000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	0.00	0.12	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[a]pyrene	965	3,840	0.00	0.08	0.08	0.00	0.00	0.14	0.14	0.00	0.00	0.00	0.00	0.00
Benzo[b]fluoranthene	979	2,169	0.00	0.34	0.34	0.000	0.00	0.24	0.24	0.000	0.00	0.23	0.23	0.000
Benzo[e]pyrene	967	4,300	0.00	0.22	0.22	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00
Benzo[g,h,i]perylene	1,095	648	0.00	0.34	0.34	0.00	0.00	0.24	0.24	0.00	0.00	0.00	0.00	0.00
Benzo[k]fluoranthene	981	1,220	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.08	0.08	0.000
C1-Chrysenes	929		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.01	0.71	0.71	0.00	0.01	0.76	0.76	0.00	0.01	0.69	0.69	0.00
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.01	0.67	0.67	0.00	0.01	0.85	0.85	0.00	0.01	0.90	0.90	0.00
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.01	0.66	0.66		0.01	0.72	0.72		0.01	0.70	0.70	
C2-Naphthalenes	510		0.00	0.00	0.00	0.00	0.00	0.59	0.59	0.00	0.00	0.62	0.62	0.00
C2-Phenanthrenes/Anthracenes	746		0.01	1.05	1.05	0.00	0.01	1.32	1.32	0.00	0.02	1.88	1.88	0.00
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.54	0.54	0.00
C3-Naphthalenes	581		0.01	1.19	1.19	0.00	0.01	1.32	1.32	0.00	0.01	1.76	1.76	0.00
C3-Phenanthrenes/Anthracenes	829		0.01	1.13	1.13	0.00	0.01	1.20	1.20	0.00	0.01	1.09	1.09	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.02	2.33	2.33	0.00	0.02	2.41	2.41	0.00	0.02	2.76	2.76	0.00
C4-Phenanthrenes/Anthracenes	913		0.01	0.76	0.76	0.00	0.01	0.85	0.85	0.00	0.01	0.80	0.80	0.00
Chrysene	844	826	0.00	0.44	0.44	0.00	0.00	0.39	0.39	0.00	0.00	0.40	0.40	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.12	0.12	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Fluoranthene	707	23,870	0.00	0.38	0.38	0.00	0.00	0.22	0.22	0.00	0.00	0.23	0.23	0.00
Fluorene	538	26,000	0.00	0.07	0.07	0.000	0.00	0.11	0.11	0.000	0.00	0.15	0.15	0.000
Naphthalene	385	61,700	0.00	0.16	0.16	0.00	0.00	0.17	0.17	0.00	0.00	0.06	0.06	0.00
Perylene	967	431	0.01	0.92	0.92	0.00	0.02	2.05	2.05	0.00	0.01	1.21	1.21	0.00
Phenanthrene	596	34,300	0.00	0.28	0.28	0.00	0.00	0.30	0.30	0.00	0.00	0.45	0.45	0.00
Pyrene	697	9,090	0.00	0.39	0.39	0.00	0.00	0.28	0.28	0.00	0.00	0.30	0.30	0.00
		ESBTU FCVi				0.02				0.02				0.02
Notes:												•		

Location ID:

HT18-26

HT18-26

HT18-26

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-2	27-0010			HT18-2	27-1020			HT18-29)-SURF	
		Sample Date:		10/24	/2018			10/24	/2018			10/22	/2018	
		Depth Interval (ft):		0-0	0.8			0.8-	2.4			0-0).5	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			1.52	0.0152			1.47	0.0147			0.936	0.00936		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)		467.700		A = < <	• • • • •			10.11	10.11			4.00		
1-Methylnaphthalene	446	165,700	0.39	25.66	25.66	0.06	0.59	40.14	40.14	0.09	0.02	1.82	1.82	0.00
2-Methylnaphthalene	447	154,800	0.49	32.24	32.24	0.072	0.54	36.73	36.73	0.082	0.11	0.00	0.00	0.000
Acenaphthene	491	33,400	1.00	65.79	65.79	0.134	0.57	38.78	38.78	0.079	0.04	3.95	3.95	0.008
Acenaphthylene	452	24,000	0.08	5.00	5.00	0.01	0.11	0.00	0.00	0.00	0.09	9.40	9.40	0.02
Anthracene	594	1,300	0.53	34.87	34.87	0.059	0.29	19.73	19.73	0.033	0.18	19.23	19.23	0.032
Benzo[a]anthracene	841	4,153	2.60	171.05	171.05	0.20	0.20	13.61	13.61	0.02	1.20	128.21	128.21	0.15
Benzo[a]pyrene	965	3,840	1.60	105.26	105.26	0.11	0.14	9.52	9.52	0.01	0.32	34.19	34.19	0.04
Benzo[b]fluoranthene	979	2,169	2.00	131.58	131.58	0.134	0.17	11.56	11.56	0.012	0.68	72.65	72.65	0.074
Benzo[e]pyrene	967	4,300	1.50	98.68	98.68	0.10	0.14	9.52	9.52	0.01	0.24	25.64	25.64	0.03
Benzo[g,h,i]perylene	1,095	648	1.20	78.95	78.95	0.07	0.14	9.52	9.52	0.01	0.04	4.49	4.49	0.00
Benzo[k]fluoranthene	981	1,220	2.00	131.58	131.58	0.134	0.21	14.29	14.29	0.015	0.75	80.13	80.13	0.082
C1-Chrysenes	929		0.99	65.13	65.13	0.07	0.11	0.00	0.00	0.00	0.53	56.62	56.62	0.06
C1-Fluorenes	611		0.44	28.95	28.95	0.05	0.11	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		3.40	223.68	223.68	0.29	0.25	17.01	17.01	0.02	1.40	149.57	149.57	0.19
C1-Naphthalenes	444		0.59	38.82	38.82	0.09	0.76	51.70	51.70	0.12	0.11	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		1.60	105.26	105.26	0.16	0.29	19.73	19.73	0.03	0.86	91.88	91.88	0.14
C2-Chrysenes	1,008		0.22	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.23	24.57	24.57	0.02
C2-Fluorenes	686		0.22	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			1.00	65.79	65.79		0.11	0.00	0.00		0.90	96.15	96.15	
C2-Naphthalenes	510		1.60	105.26	105.26	0.21	1.30	88.44	88.44	0.17	0.11	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		1.30	85.53	85.53	0.11	0.11	0.00	0.00	0.00	0.52	55.56	55.56	0.07
C3-Chrysenes	1,112		0.22	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C3-Fluorenes	769		0.22	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.22	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.31	33.12	33.12	0.03
C3-Naphthalenes	581		1.60	105.26	105.26	0.18	0.38	25.85	25.85	0.04	0.28	29.91	29.91	0.05
C3-Phenanthrenes/Anthracenes	829		0.62	40.79	40.79	0.05	0.11	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C4-Chrysenes	1,214		0.22	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C4-Naphthalenes	657		0.87	57.24	57.24	0.09	0.11	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.22	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.11	0.00	0.00	0.00
Chrysene	844	826	2.60	171.05	171.05	0.20	0.22	14.97	14.97	0.02	0.97	103.63	103.63	0.12
Dibenzo(a,h)anthracene	1,123	2,389	0.44	28.95	28.95	0.026	0.04	2.72	2.72	0.002	0.18	19.23	19.23	0.017
Fluoranthene	707	23,870	6.40	421.05	421.05	0.60	0.66	44.90	44.90	0.06	1.90	202.99	202.99	0.29
Fluorene	538	26,000	0.84	55.26	55.26	0.103	0.99	67.35	67.35	0.125	0.09	9.83	9.83	0.018
Naphthalene	385	61,700	0.45	29.61	29.61	0.08	0.57	38.78	38.78	0.10	0.11	0.00	0.00	0.00
Perylene	967	431	0.45	29.61	29.61	0.03	0.05	3.06	3.06	0.00	0.05	5.45	5.45	0.01
Phenanthrene	596	34,300	1.90	125.00	125.00	0.21	2.20	149.66	149.66	0.25	1.00	106.84	106.84	0.18
Pyrene	697	9,090	5.20	342.11	342.11	0.49	0.53	36.05	36.05	0.05	1.20	128.21	128.21	0.18
		ESBTU FCVi				4.05				1.19				1.82
Notes:														

Location ID:

HT18-27

HT18-27

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:		HT18-2	29-0010			HT18-3	0-SURF			HT18-3	0-0010	
		Sample Date:		10/23	/2018			10/22	/2018			10/23	/2018	
		Depth Interval (ft):		0-:	1.2			0-0).5			0-	1	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	µg/g ос	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			0.865	0.00865			2.57	0.0257			3.08	0.0308		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.04	4.28	4.28	0.01	0.01	0.34	0.34	0.00	0.01	0.39	0.39	0.00
2-Methylnaphthalene	447	154,800	0.04	4.16	4.16	0.009	0.01	0.28	0.28	0.001	0.01	0.32	0.32	0.001
Acenaphthene	491	33,400	0.18	20.81	20.81	0.042	0.01	0.32	0.32	0.001	0.04	1.14	1.14	0.002
Acenaphthylene	452	24,000	0.03	3.24	3.24	0.01	0.00	0.19	0.19	0.00	0.02	0.00	0.00	0.00
Anthracene	594	1,300	0.32	36.99	36.99	0.062	0.02	0.66	0.66	0.001	0.08	2.53	2.53	0.004
Benzo[a]anthracene	841	4,153	0.77	89.02	89.02	0.11	0.12	4.67	4.67	0.01	0.24	7.79	7.79	0.01
Benzo[a]pyrene	965	3,840	0.48	55.49	55.49	0.06	0.06	2.45	2.45	0.00	0.17	5.52	5.52	0.01
Benzo[b]fluoranthene	979	2,169	0.60	69.36	69.36	0.071	0.18	7.00	7.00	0.007	0.29	9.42	9.42	0.010
Benzo[e]pyrene	967	4,300	0.46	53.18	53.18	0.05	0.06	2.18	2.18	0.00	0.20	6.49	6.49	0.01
Benzo[g,h,i]perylene	1,095	648	0.39	45.09	45.09	0.04	0.01	0.47	0.47	0.00	0.18	5.84	5.84	0.01
Benzo[k]fluoranthene	981	1,220	0.61	70.52	70.52	0.072	0.14	5.45	5.45	0.006	0.26	8.44	8.44	0.009
C1-Chrysenes	929		0.29	33.53	33.53	0.04	0.06	2.22	2.22	0.00	0.09	2.79	2.79	0.00
C1-Fluorenes	611		0.10	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.85	98.27	98.27	0.13	0.15	5.84	5.84	0.01	0.26	8.44	8.44	0.01
C1-Naphthalenes	444		0.10	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.65	75.14	75.14	0.11	0.08	2.92	2.92	0.00	0.16	5.19	5.19	0.01
C2-Chrysenes	1,008		0.10	0.00	0.00	0.00	0.03	1.28	1.28	0.00	0.02	0.00	0.00	0.00
C2-Fluorenes	686		0.10	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.48	55.49	55.49		0.09	3.62	3.62		0.13	4.22	4.22	
C2-Naphthalenes	510		0.10	0.00	0.00	0.00	0.04	1.63	1.63	0.00	0.06	2.01	2.01	0.00
C2-Phenanthrenes/Anthracenes	746		0.37	42.77	42.77	0.06	0.07	2.76	2.76	0.00	0.09	3.02	3.02	0.00
C3-Chrysenes	1,112		0.10	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C3-Fluorenes	769		0.10	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.10	0.00	0.00	0.00	0.04	1.36	1.36	0.00	0.02	0.00	0.00	0.00
C3-Naphthalenes	581		0.10	0.00	0.00	0.00	0.07	2.84	2.84	0.00	0.08	2.47	2.47	0.00
C3-Phenanthrenes/Anthracenes	829		0.23	26.59	26.59	0.03	0.05	1.95	1.95	0.00	0.05	1.62	1.62	0.00
C4-Chrysenes	1,214		0.10	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
C4-Naphthalenes	657		0.10	0.00	0.00	0.00	0.11	4.28	4.28	0.01	0.07	2.31	2.31	0.00
C4-Phenanthrenes/Anthracenes	913		0.10	0.00	0.00	0.00	0.03	1.17	1.17	0.00	0.02	0.00	0.00	0.00
Chrysene	844	826	0.82	94.80	94.80	0.11	0.16	6.23	6.23	0.01	0.31	10.06	10.06	0.01
Dibenzo(a,h)anthracene	1,123	2,389	0.14	16.18	16.18	0.014	0.03	1.17	1.17	0.001	0.05	1.75	1.75	0.002
Fluoranthene	707	23,870	1.90	219.65	219.65	0.31	0.32	12.45	12.45	0.02	0.71	23.05	23.05	0.03
Fluorene	538	26,000	0.18	20.81	20.81	0.039	0.02	0.66	0.66	0.001	0.06	1.88	1.88	0.004
Naphthalene	385	61,700	0.06	6.36	6.36	0.02	0.00	0.18	0.18	0.00	0.01	0.23	0.23	0.00
Perylene	967	431	0.16	18.50	18.50	0.02	0.01	0.47	0.47	0.00	0.07	2.21	2.21	0.00
Phenanthrene	596	34,300	1.70	196.53	196.53	0.33	0.13	5.06	5.06	0.01	0.51	16.56	16.56	0.03
Pyrene	697	9,090	1.60	184.97	184.97	0.27	0.17	6.61	6.61	0.01	0.54	17.53	17.53	0.03
		ESBTU FCVi				2.02				0.11				0.20
Notes:			·	·	·	·	· · · · · · · · · · · · · · · · · · ·							

Location ID:

HT18-29

HT18-30

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:					HT18-30-3050				HT18-30-5070			
		Sample Date:		10/23	/2018			10/23	/2018			10/23	/2018	
		Depth Interval (ft):		1-	-3			3-	-5			5-	-7	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	µg/g ос	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.64	0.0364			4.11	0.0411			4.7	0.047		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.05	1.37	1.37	0.00	0.04	1.00	1.00	0.00	0.06	1.21	1.21	0.00
2-Methylnaphthalene	447	154,800	0.05	1.35	1.35	0.003	0.04	1.05	1.05	0.002	0.06	1.34	1.34	0.003
Acenaphthene	491	33,400	0.08	2.14	2.14	0.004	0.06	1.41	1.41	0.003	0.07	1.47	1.47	0.003
Acenaphthylene	452	24,000	0.05	1.29	1.29	0.00	0.04	1.00	1.00	0.00	0.04	0.74	0.74	0.00
Anthracene	594	1,300	0.15	4.12	4.12	0.007	0.11	2.68	2.68	0.005	0.11	2.34	2.34	0.004
Benzo[a]anthracene	841	4,153	0.64	17.58	17.58	0.02	0.56	13.63	13.63	0.02	0.55	11.70	11.70	0.01
Benzo[a]pyrene	965	3,840	0.45	12.36	12.36	0.01	0.42	10.22	10.22	0.01	0.41	8.72	8.72	0.01
Benzo[b]fluoranthene	979	2,169	0.67	18.41	18.41	0.019	0.66	16.06	16.06	0.016	0.56	11.91	11.91	0.012
Benzo[e]pyrene	967	4,300	0.49	13.46	13.46	0.01	0.43	10.46	10.46	0.01	0.42	8.94	8.94	0.01
Benzo[g,h,i]perylene	1,095	648	0.37	10.16	10.16	0.01	0.33	8.03	8.03	0.01	0.31	6.60	6.60	0.01
Benzo[k]fluoranthene	981	1,220	0.57	15.66	15.66	0.016	0.47	11.44	11.44	0.012	0.45	9.57	9.57	0.010
C1-Chrysenes	929		0.49	13.46	13.46	0.01	0.37	9.00	9.00	0.01	0.50	10.64	10.64	0.01
C1-Fluorenes	611		0.21	5.77	5.77	0.01	0.12	2.92	2.92	0.00	0.12	2.55	2.55	0.00
C1-Fluoranthenes/pyrene	770		1.10	30.22	30.22	0.04	0.91	22.14	22.14	0.03	1.00	21.28	21.28	0.03
C1-Naphthalenes	444		0.06	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		1.30	35.71	35.71	0.05	0.86	20.92	20.92	0.03	0.99	21.06	21.06	0.03
C2-Chrysenes	1,008		0.41	11.26	11.26	0.01	0.30	7.30	7.30	0.01	0.40	8.51	8.51	0.01
C2-Fluorenes	686		0.78	21.43	21.43	0.03	0.48	11.68	11.68	0.02	0.45	9.57	9.57	0.01
C2-Fluoranthenes/Pyrene			0.91	25.00	25.00		0.70	17.03	17.03		0.89	18.94	18.94	
C2-Naphthalenes	510		0.75	20.60	20.60	0.04	0.39	9.49	9.49	0.02	0.63	13.40	13.40	0.03
C2-Phenanthrenes/Anthracenes	746		2.60	71.43	71.43	0.10	1.80	43.80	43.80	0.06	2.10	44.68	44.68	0.06
C3-Chrysenes	1,112		0.27	7.42	7.42	0.01	0.21	5.11	5.11	0.00	0.26	5.53	5.53	0.00
C3-Fluorenes	769		1.20	32.97	32.97	0.04	0.84	20.44	20.44	0.03	0.88	18.72	18.72	0.02
C3-Fluoranthenes/Pyrene	949		0.80	21.98	21.98	0.02	0.58	14.11	14.11	0.01	0.72	15.32	15.32	0.02
C3-Naphthalenes	581		2.60	71.43	71.43	0.12	1.20	29.20	29.20	0.05	1.30	27.66	27.66	0.05
C3-Phenanthrenes/Anthracenes	829		2.80	76.92	76.92	0.09	2.00	48.66	48.66	0.06	2.30	48.94	48.94	0.06
C4-Chrysenes	1,214		0.06	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.06	0.00	0.00	0.00
C4-Naphthalenes	657		3.30	90.66	90.66	0.14	1.70	41.36	41.36	0.06	1.60	34.04	34.04	0.05
C4-Phenanthrenes/Anthracenes	913		2.10	57.69	57.69	0.06	1.50	36.50	36.50	0.04	1.80	38.30	38.30	0.04
Chrysene	844	826	0.92	25.27	25.27	0.03	0.78	18.98	18.98	0.02	0.77	16.38	16.38	0.02
Dibenzo(a,h)anthracene	1,123	2,389	0.14	3.85	3.85	0.003	0.12	2.92	2.92	0.003	0.11	2.34	2.34	0.002
Fluoranthene	707	23,870	1.70	46.70	46.70	0.07	1.50	36.50	36.50	0.05	1.30	27.66	27.66	0.04
Fluorene	538	26,000	0.12	3.30	3.30	0.006	0.10	2.36	2.36	0.004	0.09	1.98	1.98	0.004
Naphthalene	385	61,700	0.03	0.85	0.85	0.00	0.04	0.88	0.88	0.00	0.04	0.94	0.94	0.00
Perylene	967	431	0.16	4.40	4.40	0.00	0.14	3.41	3.41	0.00	0.12	2.55	2.55	0.00
Phenanthrene	596	34,300	0.98	26.92	26.92	0.05	0.78	18.98	18.98	0.03	0.74	15.74	15.74	0.03
Pyrene	697	9,090	1.20	32.97	32.97	0.05	1.10	26.76	26.76	0.04	1.00	21.28	21.28	0.03
		ESBTU FCVi				1.08				0.67				0.61
Notes:							<u> </u>							

Location ID:

HT18-30

HT18-30

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:				HT18-31-SURF				HT18-31-0010				
		Sample Date:		10/23	/2018			10/23	/2018			10/25	/2018	
		Depth Interval (ft):		7-	10			0-0).5			0-1	1.3	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
	μg/g oc	µg/g ос	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			3.63	0.0363			2.9	0.029			2.55	0.0255		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.17	4.68	4.68	0.01	0.00	0.10	0.10	0.00	0.00	0.12	0.12	0.00
2-Methylnaphthalene	447	154,800	0.17	4.68	4.68	0.010	0.00	0.07	0.07	0.000	0.00	0.13	0.13	0.000
Acenaphthene	491	33,400	0.11	3.03	3.03	0.006	0.00	0.00	0.00	0.000	0.00	0.06	0.06	0.000
Acenaphthylene	452	24,000	0.06	1.54	1.54	0.00	0.00	0.03	0.03	0.00	0.00	0.05	0.05	0.00
Anthracene	594	1,300	0.25	6.89	6.89	0.012	0.00	0.00	0.00	0.000	0.00	0.09	0.09	0.000
Benzo[a]anthracene	841	4,153	0.90	24.79	24.79	0.03	0.01	0.27	0.27	0.00	0.01	0.55	0.55	0.00
Benzo[a]pyrene	965	3,840	0.72	19.83	19.83	0.02	0.01	0.23	0.23	0.00	0.01	0.51	0.51	0.00
Benzo[b]fluoranthene	979	2,169	0.91	25.07	25.07	0.026	0.02	0.59	0.59	0.001	0.03	1.10	1.10	0.001
Benzo[e]pyrene	967	4,300	0.66	18.18	18.18	0.02	0.01	0.18	0.18	0.00	0.02	0.82	0.82	0.00
Benzo[g,h,i]perylene	1,095	648	0.49	13.50	13.50	0.01	0.00	0.07	0.07	0.00	0.02	0.75	0.75	0.00
Benzo[k]fluoranthene	981	1,220	0.76	20.94	20.94	0.021	0.01	0.38	0.38	0.000	0.02	0.86	0.86	0.001
C1-Chrysenes	929		1.10	30.30	30.30	0.03	0.00	0.00	0.00	0.00	0.01	0.55	0.55	0.00
C1-Fluorenes	611		0.30	8.26	8.26	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		2.80	77.13	77.13	0.10	0.01	0.45	0.45	0.00	0.03	0.98	0.98	0.00
C1-Naphthalenes	444		0.25	6.89	6.89	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		2.60	71.63	71.63	0.11	0.01	0.34	0.34	0.00	0.02	0.82	0.82	0.00
C2-Chrysenes	1,008		0.91	25.07	25.07	0.02	0.00	0.00	0.00	0.00	0.01	0.36	0.36	0.00
C2-Fluorenes	686		1.20	33.06	33.06	0.05	0.00	0.00	0.00	0.00	0.01	0.33	0.33	0.00
C2-Fluoranthenes/Pyrene			2.30	63.36	63.36		0.01	0.34	0.34		0.02	0.75	0.75	
C2-Naphthalenes	510		2.20	60.61	60.61	0.12	0.01	0.38	0.38	0.00	0.02	0.71	0.71	0.00
C2-Phenanthrenes/Anthracenes	746		5.50	151.52	151.52	0.20	0.01	0.45	0.45	0.00	0.03	1.14	1.14	0.00
C3-Chrysenes	1,112		0.48	13.22	13.22	0.01	0.00	0.00	0.00	0.00	0.01	0.24	0.24	0.00
C3-Fluorenes	769		1.70	46.83	46.83	0.06	0.00	0.00	0.00	0.00	0.02	0.59	0.59	0.00
C3-Fluoranthenes/Pyrene	949		1.70	46.83	46.83	0.05	0.00	0.00	0.00	0.00	0.01	0.47	0.47	0.00
C3-Naphthalenes	581		3.90	107.44	107.44	0.18	0.02	0.69	0.69	0.00	0.04	1.45	1.45	0.00
C3-Phenanthrenes/Anthracenes	829		6.50	179.06	179.06	0.22	0.01	0.38	0.38	0.00	0.02	0.90	0.90	0.00
C4-Chrysenes	1,214		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		3.80	104.68	104.68	0.16	0.03	1.14	1.14	0.00	0.05	1.84	1.84	0.00
C4-Phenanthrenes/Anthracenes	913		4.80	132.23	132.23	0.14	0.00	0.00	0.00	0.00	0.02	0.67	0.67	0.00
Chrysene	844	826	1.40	38.57	38.57	0.05	0.01	0.45	0.45	0.00	0.03	1.14	1.14	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.19	5.23	5.23	0.005	0.00	0.09	0.09	0.000	0.00	0.18	0.18	0.000
Fluoranthene	707	23,870	2.20	60.61	60.61	0.09	0.02	0.79	0.79	0.00	0.05	2.04	2.04	0.00
Fluorene	538	26,000	0.17	4.68	4.68	0.009	0.00	0.07	0.07	0.000	0.00	0.13	0.13	0.000
Naphthalene	385	61,700	0.08	2.31	2.31	0.01	0.00	0.04	0.04	0.00	0.00	0.09	0.09	0.00
Perylene	967	431	0.19	5.23	5.23	0.01	0.00	0.06	0.06	0.00	0.01	0.51	0.51	0.00
Phenanthrene	596	34,300	1.30	35.81	35.81	0.06	0.01	0.38	0.38	0.00	0.02	0.86	0.86	0.00
Pyrene	697	9,090	1.90	52.34	52.34	0.08	0.01	0.45	0.45	0.00	0.04	1.37	1.37	0.00
		ESBTU FCVi			-	1.89				0.01				0.03
Notes:	_													

Location ID:

HT18-30

HT18-31

HT18-31

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

	Sample Nam							HT18-31-2555			HT18-31-5565			
		Sample Date:		10/25	7/2018			10/25/	/2018			10/25	/2018	
		Depth Interval (ft):		1.3-	-2.6			2.6-	5.7			5.7-	6.6	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
		_	μg/g dry			ESBTU	μg/g dry	_		ESBTU	μg/g dry			ESBTU
	µg/g ос	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			4.65	0.0465			0.218	0.00218			0.29	0.0029		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2-Methylnaphthalene	447	154,800	0.02	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Acenaphthene	491	33,400	0.02	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Acenaphthylene	452	24,000	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.02	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[a]pyrene	965	3,840	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[b]fluoranthene	979	2,169	0.02	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.34	0.34	0.000
Benzo[e]pyrene	967	4,300	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	0.00
Benzo[g,h,i]perylene	1,095	648	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[k]fluoranthene	981	1,220	0.02	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
C1-Chrysenes	929		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluorenes	611		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Naphthalenes	444		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Chrysenes	1,008		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.02	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00	
C2-Naphthalenes	510		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Phenanthrenes/Anthracenes	746		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Chrysenes	1,112		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluoranthenes/Pyrene	949		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Naphthalenes	581		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Phenanthrenes/Anthracenes	829		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Chrysenes	1,214		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Phenanthrenes/Anthracenes	913		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrysene	844	826	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.34	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.02	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Fluoranthene	707	23,870	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fluorene	538	26,000	0.02	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Naphthalene	385	61,700	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Perylene	967	431	0.42	9.03	9.03	0.01	0.01	5.50	5.50	0.01	0.00	0.83	0.83	0.00
Phenanthrene	596	34,300	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.12	0.00
Pyrene	697	9,090	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.31	0.31	0.00
		ESBTU FCVi				0.01				0.01				0.00
Notes:														

Location ID:

HT18-31

HT18-31

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

		Sample Name:				HT18-32-SURF-FD				HT18-32-0010				
		Sample Date:		10/23	/2018			10/23	/2018			10/24	/2018	
		Depth Interval (ft):		0-0	0.5			0-0).5			0-	1	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
			μg/g dry			ESBTU	μg/g dry			ESBTU	μg/g dry			ESBTU
T + 10	μg/g oc	μg/g oc	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi	wt.	μg/g oc	Cocb	FCVi
Total Organic Carbon (%)			2.18	0.0218			2.33	0.0233			1.67	0.0167		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)														
1-Methylnaphthalene	446	165,700	0.00	0.07	0.07	0.00	0.00	0.19	0.19	0.00	0.01	0.35	0.35	0.00
2-Methylnaphthalene	447	154,800	0.00	0.06	0.06	0.000	0.00	0.12	0.12	0.000	0.01	0.38	0.38	0.001
Acenaphthene	491	33,400	0.00	0.05	0.05	0.000	0.00	0.10	0.10	0.000	0.00	0.24	0.24	0.000
Acenaphthylene	452	24,000	0.00	0.04	0.04	0.00	0.00	0.13	0.13	0.00	0.00	0.25	0.25	0.00
Anthracene	594	1,300	0.00	0.00	0.00	0.000	0.00	0.10	0.10	0.000	0.01	0.43	0.43	0.001
Benzo[a]anthracene	841	4,153	0.01	0.26	0.26	0.00	0.02	0.86	0.86	0.00	0.04	2.57	2.57	0.00
Benzo[a]pyrene	965	3,840	0.00	0.11	0.11	0.00	0.01	0.43	0.43	0.00	0.04	2.28	2.28	0.00
Benzo[b]fluoranthene	979	2,169	0.01	0.41	0.41	0.000	0.03	1.37	1.37	0.001	0.05	3.23	3.23	0.003
Benzo[e]pyrene	967	4,300	0.00	0.13	0.13	0.00	0.01	0.36	0.36	0.00	0.04	2.51	2.51	0.00
Benzo[g,h,i]perylene	1,095	648	0.00	0.00	0.00	0.00	0.00	0.07	0.07	0.00	0.03	1.86	1.86	0.00
Benzo[k]fluoranthene	981	1,220	0.01	0.32	0.32	0.000	0.02	0.90	0.90	0.001	0.04	2.57	2.57	0.003
C1-Chrysenes	929		0.00	0.00	0.00	0.00	0.02	0.64	0.64	0.00	0.04	2.22	2.22	0.00
C1-Fluorenes	611		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.66	0.66	0.00
C1-Fluoranthenes/pyrene	770		0.01	0.44	0.44	0.00	0.03	1.37	1.37	0.00	0.08	4.85	4.85	0.01
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.49	0.49	0.00
C1-Phenanthrenes/Anthracenes	670		0.01	0.32	0.32	0.00	0.02	1.03	1.03	0.00	0.05	3.17	3.17	0.00
C2-Chrysenes	1,008		0.00	0.00	0.00	0.00	0.01	0.52	0.52	0.00	0.03	1.50	1.50	0.00
C2-Fluorenes	686		0.00	0.00	0.00	0.00	0.01	0.52	0.52	0.00	0.02	1.02	1.02	0.00
C2-Fluoranthenes/Pyrene			0.01	0.36	0.36		0.02	1.03	1.03		0.06	3.53	3.53	
C2-Naphthalenes	510		0.01	0.35	0.35	0.00	0.02	0.94	0.94	0.00	0.03	1.74	1.74	0.00
C2-Phenanthrenes/Anthracenes	746		0.01	0.46	0.46	0.00	0.03	1.46	1.46	0.00	0.08	4.79	4.79	0.01
C3-Chrysenes	1,112		0.00	0.00	0.00	0.00	0.01	0.36	0.36	0.00	0.01	0.84	0.84	0.00
C3-Fluorenes	769		0.00	0.00	0.00	0.00	0.01	0.52	0.52	0.00	0.03	1.92	1.92	0.00
C3-Fluoranthenes/Pyrene	949		0.00	0.00	0.00	0.00	0.01	0.60	0.60	0.00	0.04	2.34	2.34	0.00
C3-Naphthalenes	581		0.01	0.64	0.64	0.00	0.04	1.80	1.80	0.00	0.05	3.23	3.23	0.01
C3-Phenanthrenes/Anthracenes	829		0.01	0.39	0.39	0.00	0.03	1.29	1.29	0.00	0.08	4.73	4.73	0.01
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.02	0.83	0.83	0.00	0.07	3.00	3.00	0.00	0.07	4.37	4.37	0.01
C4-Phenanthrenes/Anthracenes	913		0.01	0.32	0.32	0.00	0.02	0.86	0.86	0.00	0.06	3.59	3.59	0.00
Chrysene	844	826	0.01	0.37	0.37	0.00	0.03	1.16	1.16	0.00	0.06	3.65	3.65	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.00	0.08	0.08	0.000	0.01	0.23	0.23	0.000	0.01	0.60	0.60	0.001
Fluoranthene	707	23,870	0.02	0.69	0.69	0.00	0.05	2.32	2.32	0.00	0.11	6.59	6.59	0.01
Fluorene	538	26,000	0.00	0.07	0.07	0.000	0.01	0.23	0.23	0.000	0.01	0.45	0.45	0.001
Naphthalene	385	61,700	0.00	0.03	0.03	0.00	0.00	0.07	0.07	0.00	0.01	0.41	0.41	0.00
Perylene	967	431	0.00	0.06	0.06	0.00	0.00	0.19	0.19	0.00	0.04	2.22	2.22	0.00
Phenanthrene	596	34,300	0.01	0.25	0.25	0.00	0.02	0.94	0.94	0.00	0.05	2.87	2.87	0.00
Pyrene	697	9,090	0.01	0.36	0.36	0.00	0.03	1.16	1.16	0.00	0.10	5.69	5.69	0.01
		ESBTU FCVi				0.01				0.03				0.10
Notes:														

Location ID:

HT18-32

HT18-32

Notes:

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

EA Engineering, Science, and Technology, (MI) PLC
and its Affiliate EA Science and Technology

		Location ID:		HT1	8-32			HT1	8-32			HT1	8-32			HT1	18-32	
		Sample Name:		HT18-32-	-0010-FD			HT18-3	32-1030			HT18-3	32-3050			HT18-3	32-5070	
		Sample Date:		10/24	/2018			10/24	/2018			10/24	/2018			10/24	1/2018	
		Depth Interval (ft):		0-	-1			1-	-3			3-	-5			5-	-7	
	Coc, PAHi, FCVi ^a	Coc, PAHi, Maxi ^a	Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final		Conc	Coc	Final	
	μg/g oc	μg/g oc	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	µg/g ос	Cocb	ESBTU FCVi	μg/g dry wt.	μg/g oc	Cocb	ESBTU FCVi
Total Organic Carbon (%)			1.42	0.0142			0.805	0.00805			0.913	0.00913			1.44	0.0144		
Polycyclic Aromatic Hydrocarbons (PAH) (μg/kg)																		
1-Methylnaphthalene	446	165,700	0.01	0.37	0.37	0.00	0.00	0.24	0.24	0.00	0.00	0.18	0.18	0.00	0.00	0.13	0.13	0.00
2-Methylnaphthalene	447	154,800	0.01	0.42	0.42	0.001	0.00	0.17	0.17	0.000	0.00	0.13	0.13	0.000	0.00	0.09	0.09	0.000
Acenaphthene	491	33,400	0.00	0.24	0.24	0.000	0.00	0.07	0.07	0.000	0.00	0.05	0.05	0.000	0.00	0.00	0.00	0.000
Acenaphthylene	452	24,000	0.00	0.25	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anthracene	594	1,300	0.01	0.42	0.42	0.001	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Benzo[a]anthracene	841	4,153	0.04	2.68	2.68	0.00	0.00	0.12	0.12	0.00	0.00	0.07	0.07	0.00	0.00	0.05	0.05	0.00
Benzo[a]pyrene	965	3,840	0.04	2.46	2.46	0.00	0.00	0.11	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Benzo[b]fluoranthene	979	2,169	0.05	3.59	3.59	0.004	0.00	0.45	0.45	0.000	0.00	0.25	0.25	0.000	0.00	0.19	0.19	0.000
Benzo[e]pyrene	967	4,300	0.04	2.75	2.75	0.00	0.00	0.40	0.40	0.00	0.00	0.21	0.21	0.00	0.00	0.15	0.15	0.00
Benzo[g,h,i]perylene	1,095	648	0.03	2.04	2.04	0.00	0.00	0.52	0.52	0.00	0.00	0.26	0.26	0.00	0.00	0.20	0.20	0.00
Benzo[k]fluoranthene	981	1,220	0.04	2.75	2.75	0.003	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
C1-Chrysenes	929		0.04	2.75	2.75	0.00	0.01	0.83	0.83	0.00	0.00	0.00	0.00	0.00	0.00	0.33	0.33	0.00
C1-Fluorenes	611		0.01	0.70	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Fluoranthenes/pyrene	770		0.08	5.49	5.49	0.01	0.01	1.37	1.37	0.00	0.01	0.84	0.84	0.00	0.01	0.62	0.62	0.00
C1-Naphthalenes	444		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1-Phenanthrenes/Anthracenes	670		0.05	3.59	3.59	0.01	0.01	1.20	1.20	0.00	0.01	0.82	0.82	0.00	0.01	0.83	0.83	0.00
C2-Chrysenes	1,008		0.03	1.90	1.90	0.00	0.01	0.81	0.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluorenes	686		0.02	1.34	1.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2-Fluoranthenes/Pyrene			0.06	4.30	4.30		0.01	1.37	1.37		0.01	0.84	0.84		0.01	0.59	0.59	
C2-Naphthalenes	510		0.03	1.97	1.97	0.00	0.01	1.01	1.01	0.00	0.01	0.72	0.72	0.00	0.01	0.52	0.52	0.00
C2-Phenanthrenes/Anthracenes	746		0.08	5.63	5.63	0.01	0.02	2.11	2.11	0.00	0.02	1.75	1.75	0.00	0.02	1.32	1.32	0.00
C3-Chrysenes	1,112	-	0.02	1.06	1.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3-Fluorenes	769		0.03	2.32	2.32	0.00	0.01	0.86	0.86	0.00	0.00	0.49	0.49	0.00	0.01	0.38	0.38	0.00
C3-Fluoranthenes/Pyrene	949		0.04	2.75	2.75	0.00	0.01	0.99	0.99	0.00	0.01	0.66	0.66	0.00	0.01	0.46	0.46	0.00
C3-Naphthalenes	581		0.05	3.66	3.66	0.01	0.02	2.61	2.61	0.00	0.02	1.64	1.64	0.00	0.02	1.25	1.25	0.00
C3-Phenanthrenes/Anthracenes	829		0.08	5.77	5.77	0.01	0.02	2.48	2.48	0.00	0.01	1.31	1.31	0.00	0.01	0.97	0.97	0.00
C4-Chrysenes	1,214		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4-Naphthalenes	657		0.07	5.00	5.00	0.01	0.04	4.72	4.72	0.01	0.03	2.74	2.74	0.00	0.03	1.94	1.94	0.00
C4-Phenanthrenes/Anthracenes	913		0.06	4.51	4.51	0.00	0.01	1.61	1.61	0.00	0.01	0.95	0.95	0.00	0.01	0.69	0.69	0.00
Chrysene	844	826	0.06	3.87	3.87	0.00	0.01	0.72	0.72	0.00	0.00	0.43	0.43	0.00	0.00	0.34	0.34	0.00
Dibenzo(a,h)anthracene	1,123	2,389	0.01	0.68	0.68	0.001	0.00	0.06	0.06	0.000	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
Fluoranthene	707	23,870	0.10	6.69	6.69	0.01	0.00	0.41	0.41	0.00	0.00	0.27	0.27	0.00	0.00	0.28	0.28	0.00
Fluorene	538	26,000	0.01	0.50	0.50	0.001	0.00	0.14	0.14	0.000	0.00	0.07	0.07	0.000	0.00	0.08	0.08	0.000
Naphthalene	385	61,700	0.00	0.35	0.35	0.00	0.00	0.21	0.21	0.00	0.00	0.15	0.15	0.00	0.00	0.10	0.10	0.00
Perylene	967	431	0.03	2.25	2.25	0.00	0.01	1.24	1.24	0.00	0.01	0.70	0.70	0.00	0.01	0.40	0.40	0.00
Phenanthrene	596	34,300	0.04	2.89	2.89	0.00	0.00	0.34	0.34	0.00	0.00	0.25	0.25	0.00	0.00	0.33	0.33	0.00
Pyrene	697	9,090	0.09	5.99	5.99	0.01	0.00	0.52	0.52	0.00	0.00	0.34	0.34	0.00	0.00	0.28	0.28	0.00
		ESBTU FCVi				0.11				0.03				0.02				0.02
Notes:																	-	

Notes:

^aPAHs and corresponding Coc PAHi, FCVi and Coc PAHi, Maxi values are from Table 3-4 in EPA, 2003).

^b COC,PAHi,Maxi is the maximum solubility limited PAH concentration in

ESBTU= equilibrium sediment benchmark toxic unit.

FCV= final chronic value.

Koc = organic carbon-water partition coefficient.

μg/kg - micrograms per kilogram.

I:\WO\START3\451\41807TBL3-4.XLS

1 of 1

62561.36

	Location ID:	HT18-01	HT18-01	HT18-02	HT18-03	HT18-04	HT18-05	HT18-06
	Sample Name:	HT18-01-SURF	HT18-01-SURF-FD	HT18-02-SURF	HT18-03-SURF	HT18-04-SURF	HT18-05-SURF	HT18-06-SURF
	Sample Date:	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018	10/29/2018
	Depth Interval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit							
SEM/AVS Ratio	none	0.47	0.32	0.12	0.22	0.12	0.22	0.32
Σ SEM	μmole/g dry	1.7990	1.9264	1.5691	8.0521	1.2453	5.6741	3.3231
AVS	μmole/g dry	3.8	5.9	12.8	37.5	10.4	25.8	10.5
foc	fraction	0.0299	0.0293	0.0234	0.0531	0.0177	0.0418	0.0476
$(\Sigma \text{ SEM - AVS}) / \text{ foc}$	μmole/g dry	-67	-136	-480	-555	-517	-481	-151

NOTES:

Bolded values exceed 1 SEM/AVS ratio.

Bolded and shaded values exceed 130 µmole/g_{oc.}

μmole/g dry = micromole per gram dry weight basis.

AVS = Acid Volatile Sulfides.

foc = fraction organic carbon.

FD = Field Duplicate.

SEM = Simultaneously Extracted Metals.

Qualifier:

	Location ID:	HT18-07	HT18-08	HT18-09	HT18-10	HT18-11	HT18-12
	Sample Name:	HT18-07-SURF	HT18-08-SURF	HT18-09-SURF	HT18-10-SURF	HT18-11-SURF	HT18-12-SURF
	Sample Date:	10/29/2018	10/22/2018	10/22/2018	10/22/2018	10/22/2018	10/22/2018
	Depth Interval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit						
SEM/AVS Ratio	none	0.32	0.20	0.24	1.10	0.33	0.18
Σ SEM	μmole/g dry	1.7298	2.7021	2.2683	0.5070	2.6390	2.9690
AVS	μmole/g dry	5.3	14	9.3	0.47 J	8	16.3
foc	fraction	0.0192	0.0345	0.0415	0.0023	0.0495	0.0275
$(\Sigma SEM - AVS) / foc$	μmole/g dry	-186	-327	-169	16	-108	-485

NOTES:

Bolded values exceed 1 SEM/AVS ratio. Bolded and shaded values exceed 130 $\mu mole/g_{oc.}$

μmole/g dry = micromole per gram dry weight basis.

AVS = Acid Volatile Sulfides.

foc = fraction organic carbon.

FD = Field Duplicate.

SEM = Simultaneously Extracted Metals.

Qualifier:

	Location ID:	HT18-12	HT18-13	HT18-14	HT18-15	HT18-16	HT18-17	HT18-18
	Sample Name:	HT18-12-SURF-FD	HT18-13-SURF	HT18-14-SURF	HT18-15-SURF	HT18-16-SURF	HT18-17-SURF	HT18-18-SURF
	Sample Date:	10/22/2018	10/29/2018	10/29/2018	10/24/2018	10/24/2018	10/24/2018	10/24/2018
	Depth Interval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit							
SEM/AVS Ratio	none	0.16	0.30		0.23	0.25	1.09	0.29
ΣSEM	μmole/g dry	3.8421	2.1899	1.1339	0.7589	1.6032	0.4572	1.4741
AVS	μmole/g dry	23.4	7.6	0.71 U	3.3	6.5	0.41 J	5.1
foc	fraction	0.0274	0.0332	0.0173	0.0133	0.0336	0.0062	0.0311
$(\Sigma \text{ SEM - AVS}) / \text{ foc}$	μmole/g dry	-714	-163	25	-191	-146	8	-117

NOTES:

Bolded values exceed 1 SEM/AVS ratio.

Bolded and shaded values exceed 130 µmole/g_{oc.}

μmole/g dry = micromole per gram dry weight basis.

AVS = Acid Volatile Sulfides.

foc = fraction organic carbon.

FD = Field Duplicate.

SEM = Simultaneously Extracted Metals.

Qualifier:

	Location ID:	HT18-19	HT18-20	HT18-21	HT18-23	HT18-24	HT18-25	HT18-26
	Sample Name:	HT18-19-SURF	HT18-20-SURF	HT18-21-SURF	HT18-23-SURF	HT18-24-SURF	HT18-25-SURF	HT18-26-SURF
	Sample Date:	10/24/2018	10/24/2018	10/24/2018	10/23/2018	10/23/2018	10/23/2018	10/23/2018
	Depth Interval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit							
SEM/AVS Ratio	none	1.29	0.24	0.51	0.17	0.24	0.26	0.81
Σ SEM	μmole/g dry	1.4244	1.7373	1.2615	2.2853	1.6237	2.4759	2.3987
AVS	μmole/g dry	1.1	7.2	2.5	13.5	6.8	9.4	3
foc	fraction	0.0081	0.0167	0.0226	0.0330	0.0267	0.0356	0.0137
$(\Sigma \text{ SEM - AVS}) / \text{ foc}$	μmole/g dry	40	-327	-55	-340	-194	-194	-44

NOTES:

Bolded values exceed 1 SEM/AVS ratio.

Bolded and shaded values exceed 130 µmole/g_{oc.}

μmole/g dry = micromole per gram dry weight basis.

AVS = Acid Volatile Sulfides.

foc = fraction organic carbon.

FD = Field Duplicate.

SEM = Simultaneously Extracted Metals.

Qualifier:

	Location ID:	HT18-29	HT18-30	HT18-31	HT18-32	HT18-32
	Sample Name:	HT18-29-SURF	HT18-30-SURF	HT18-31-SURF	HT18-32-SURF	HT18-32-SURF-FD
	Sample Date:	10/22/2018	10/22/2018	10/23/2018	10/23/2018	10/23/2018
	Depth Interval (feet):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analyte	Unit					
SEM/AVS Ratio	none	0.96	0.28	0.30	0.09	0.09
SEM	μmole/g dry	0.9830	2.4299	1.4321	1.5078	1.2665
AVS	μmole/g dry	1	8.4	4.8	16.4	14.5
oc	fraction	0.0094	0.0257	0.0290	0.0218	0.0233
Σ SEM - AVS) / foc	μmole/g dry	-2	-232	-116	-683	-568

Bolded values exceed 1 SEM/AVS ratio.

Bolded and shaded values exceed 130 µmole/g_{oc.}

μmole/g dry = micromole per gram dry weight basis.

AVS = Acid Volatile Sulfides.

foc = fraction organic carbon.

FD = Field Duplicate.

SEM = Simultaneously Extracted Metals.

Qualifier:

			PEC-Q Total 17PAHs ND=	PEC-Q Total PCBs	mean PEC-
Location ID	Field Sample ID	mean PEC-Q metals	1/2	ND=0	Q
HT18-01	HT18-01-0010	0.23	0.16	0.07	0.16
HT18-01	HT18-01-1030	0.25	0.16	0.11	0.18
HT18-01	HT18-01-3050	0.26	0.12	0.14	0.17
HT18-01	HT18-01-5070	0.18	0.06	0.00	0.08
HT18-01	HT18-01-5070-FD	0.20	0.24	0.00	0.15
HT18-01	HT18-01-7085	0.11	0.10	0.00	0.07
HT18-01	HT18-01-SURF	0.32	0.11	0.05	0.16
HT18-01	HT18-01-SURF-FD	0.28	0.07	0.05	0.13
HT18-02	HT18-02-0010	0.27	0.09	0.07	0.15
HT18-02	HT18-02-1030	0.17	0.12	0.00	0.10
HT18-02	HT18-02-3060	0.25	0.60	0.00	0.28
HT18-02	HT18-02-6080	0.32	0.53	0.00	0.28
HT18-02	HT18-02-8090	0.10	0.21	0.00	0.10
HT18-02	HT18-02-SURF	0.27	0.14	0.05	0.15
HT18-03	HT18-03-0010	0.86	0.71	0.67	0.75
HT18-03	HT18-03-1030	1.79	0.64	2.80	1.74
HT18-03	HT18-03-1030-FD	1.77	0.65	4.29	2.24
HT18-03	HT18-03-3045	2.07	0.52	1.48	1.36 0.07
HT18-03 HT18-03	HT18-03-4560 HT18-03-SURF	0.21 0.75	0.00 0.43	0.00	0.07
HT18-03	HT18-03-SURF HT18-04-0005	0.73	0.43	0.33	0.30
HT18-04 HT18-04	HT18-04-0003	0.11	0.00	0.00	0.04
HT18-04	HT18-04-0530-FD	0.14	0.00	0.00	0.03
HT18-04	HT18-04-3040	0.13	0.00	0.00	0.04
HT18-04	HT18-04-SURF	0.09	0.00	0.00	0.03
HT18-05	HT18-05-0010	0.34	0.13	0.02	0.00
HT18-05	HT18-05-1030	0.52	0.21	0.31	0.34
HT18-05	HT18-05-3050	1.28	0.98	2.62	1.62
HT18-05	HT18-05-5060	0.62	0.68		0.64
HT18-05	HT18-05-SURF	0.58	0.45		
HT18-06	HT18-06-0010	0.37	0.07	0.14	0.19
HT18-06	HT18-06-1030	0.42	0.10	0.48	0.34
HT18-06	HT18-06-1030-FD	0.41	0.08	0.26	0.25
HT18-06	HT18-06-3060	0.98	0.31	1.05	0.78
HT18-06	HT18-06-6070	0.67	0.31	1.72	0.90
HT18-06	HT18-06-7080	1.01	0.35	8.88	3.41
HT18-06	HT18-06-8010	1.00	0.37	1.58	0.98
HT18-06	HT18-06-SURF	0.32	0.07	0.09	0.16
HT18-07	HT18-07-0020	0.13	0.14	0.49	0.25
HT18-07	HT18-07-2050	1.17	0.31	2.37	1.28
HT18-07	HT18-07-5070	0.69	0.27	1.07	0.68
HT18-07	HT18-07-7090	1.15	0.29	0.31	0.58
HT18-07	HT18-07-SURF	0.17	0.05	0.12	0.12

Location ID	Field Sample ID	mean PEC-Q metals	PEC-Q Total 17PAHs ND= 1/2	PEC-Q Total PCBs ND=0	mean PEC- Q
HT18-08	HT18-08-0010	0.33	0.09	0.04	0.15
HT18-08	HT18-08-1020	0.42	0.51	0.11	0.35
HT18-08	HT18-08-1020-FD	0.36	0.39	0.08	0.28
HT18-08	HT18-08-2045	0.65	3.78	0.02	1.48
HT18-08	HT18-08-4565	0.17	0.03	0.00	0.07
HT18-08	HT18-08-6580	0.09	0.00	0.00	0.03
HT18-08	HT18-08-SURF	0.31	0.08	0.05	0.15
HT18-09	HT18-09-0010	0.42	0.12	0.04	0.20
HT18-09	HT18-09-1030	0.34	0.13	0.10	0.19
HT18-09	HT18-09-3050	0.35	0.07	0.12	0.18
HT18-09	HT18-09-3050-FD	0.36	0.21	0.17	0.25
HT18-09	HT18-09-5070	0.56	0.16	0.22	0.31
HT18-09	HT18-09-7010	0.63	0.35	0.68	0.55
HT18-09	HT18-09-SURF	0.27	0.09	0.07	0.14
HT18-10	HT18-10-0010	0.08	0.01	0.00	0.03
HT18-10	HT18-10-SURF	0.11	0.09	0.01	0.07
HT18-11	HT18-11-0010	0.31	0.06	0.06	0.14
HT18-11	HT18-11-1030	0.34	0.13	0.05	0.17
HT18-11	HT18-11-3050	0.18	0.07	0.09	0.11
HT18-11	HT18-11-5070	0.10	0.00	0.00	0.03
HT18-11	HT18-11-7010	0.09	0.00	0.00	0.03
HT18-11	HT18-11-SURF	0.32	0.07	0.02	0.14
HT18-12	HT18-12-0010	0.72	0.33	0.18	0.41
HT18-12	HT18-12-1030	1.03	0.68	0.32	0.68
HT18-12	HT18-12-3050	0.48	0.72	0.00	0.40
HT18-12	HT18-12-5070	0.13	0.01	0.00	0.05
HT18-12	HT18-12-7010	0.11	0.00	0.00	0.04
HT18-12	HT18-12-SURF	0.36	0.11	0.13	0.20
HT18-12	HT18-12-SURF-FD	0.39	0.10	0.14	0.21
HT18-13	HT18-13-0010	0.55	0.23	0.22	0.33
HT18-13	HT18-13-1030	1.04	0.29	0.12	0.48
HT18-13	HT18-13-3050	0.72	0.23	0.02	0.33
HT18-13	HT18-13-5060	0.37	0.11	0.00	0.16
HT18-13	HT18-13-6090	0.28	0.04	0.00	0.11
HT18-13	HT18-13-6090-FD	0.30	0.06	0.00	0.12
HT18-13	HT18-13-9010	0.10	0.04	0.00	0.05
HT18-13	HT18-13-SURF	0.37	0.04	0.04	0.15
HT18-14	HT18-14-0010	0.29	1.71	0.19	0.73
HT18-14	HT18-14-1020	0.26	0.22	0.02	0.17
HT18-14	HT18-14-SURF	0.14	0.08	0.03	0.08
HT18-15	HT18-15-0005	0.10	0.01	0.01	0.04
HT18-15	HT18-15-0530	0.20	0.00	0.00	0.07
HT18-15	HT18-15-3050	0.22	0.00	0.00	0.07
HT18-15	HT18-15-3050-FD	0.21	0.00	0.00	0.07

Location ID	Field Sample ID	mean PEC-Q metals	PEC-Q Total 17PAHs ND= 1/2	PEC-Q Total PCBs ND=0	mean PEC- Q
HT18-15	HT18-15-SURF	0.14	0.31	0.07	0.17
HT18-16	HT18-16-SURF	0.51	0.07	0.03	0.20
HT18-17	HT18-17-0010	0.19	0.01	0.00	0.07
HT18-17	HT18-17-1030	0.21	0.00	0.00	0.07
HT18-17	HT18-17-3050	0.20	0.00	0.00	0.07
HT18-17	HT18-17-SURF	0.14	0.02	0.02	0.06
HT18-18	HT18-18-0020	1.90	3.81	0.01	1.91
HT18-18	HT18-18-2030	0.20	0.01	0.00	0.07
HT18-18	HT18-18-3035	0.09	0.03	0.00	0.04
HT18-18	HT18-18-3555	0.31	0.00	0.00	0.10
HT18-18	HT18-18-SURF	0.36	0.19	0.04	0.19
HT18-19	HT18-19-0010	1.65	4.62	0.00	2.09
HT18-19	HT18-19-1020	0.25	1.97	0.00	0.74
HT18-19	HT18-19-2030	0.09	0.02	0.00	0.04
HT18-19	HT18-19-SURF	0.20	0.61	0.03	0.28
HT18-20	HT18-20-0010	0.41	0.23	0.31	0.32
HT18-20	HT18-20-1020	0.20	0.01	0.00	0.07
HT18-20	HT18-20-2030	0.10	0.02	0.00	0.04
HT18-20	HT18-20-2030-FD	0.10	0.04	0.00	0.05
HT18-20	HT18-20-SURF	0.25	0.19	0.02	0.16
HT18-21	HT18-21-0015	0.37	0.05	0.04	0.15
HT18-21	HT18-21-SURF	0.13	0.12	0.01	0.09
HT18-23	HT18-23-0010	0.13	0.03	0.04	0.07
HT18-23	HT18-23-1030	0.08	0.00	0.00	0.03
HT18-23	HT18-23-3050	0.09	0.00	0.00	0.03
HT18-23	HT18-23-5070	0.14	0.00	0.00	0.05
HT18-23	HT18-23-7010	0.15	0.00	0.00	0.05
HT18-23	HT18-23-SURF	0.36	0.11	0.02	0.16
HT18-24	HT18-24-0010	0.10			
HT18-24	HT18-24-1025	0.11	0.00	0.00	
HT18-24	HT18-24-2550	0.15	0.00	0.00	0.05
HT18-24	HT18-24-5065	0.10	0.00	0.00	0.03
HT18-24	HT18-24-5065-FD	0.09	0.00	0.00	0.03
HT18-24	HT18-24-6575	0.19	0.00	0.00	0.06
HT18-24	HT18-24-SURF	0.39	0.38	0.04	0.27
HT18-25	HT18-25-0010	0.80	0.83	0.03	0.55
HT18-25	HT18-25-1030	1.61	1.56		1.06
HT18-25	HT18-25-3040	0.88	5.15	0.00	2.01
HT18-25	HT18-25-4070	0.12	0.01	0.00	0.04
HT18-25	HT18-25-7010	0.11	0.00	0.00	0.04
HT18-25	HT18-25-SURF	0.33	0.16	0.00	0.16
HT18-26	HT18-26-0010	0.12	0.51	0.00	0.21
HT18-26	HT18-26-1030	0.09	0.01	0.00	0.03
HT18-26	HT18-26-3050	0.11	0.00	0.00	0.04

Location ID	Field Sample ID	mean PEC-Q metals	PEC-Q Total 17PAHs ND= 1/2	PEC-Q Total PCBs ND=0	mean PEC- Q
HT18-26	HT18-26-3050-FD	0.11	0.00	0.00	0.04
HT18-26	HT18-26-5070	0.12	0.00	0.00	0.04
HT18-26	HT18-26-7010	0.12	0.00	0.00	0.04
HT18-26	HT18-26-SURF	0.29	0.17	0.07	0.18
HT18-27	HT18-27-0010	0.30	1.33	0.03	0.56
HT18-27	HT18-27-1020	0.28	0.34	0.00	0.20
HT18-29	HT18-29-0010	0.24	0.45	0.03	0.24
HT18-29	HT18-29-SURF	0.21	0.40	0.04	0.22
HT18-30	HT18-30-0010	0.32	0.16	0.02	0.16
HT18-30	HT18-30-1030	0.92	0.37	0.18	0.49
HT18-30	HT18-30-3050	1.23	0.33	0.10	0.55
HT18-30	HT18-30-5070	1.24	0.30	0.10	0.55
HT18-30	HT18-30-7010	1.13	0.53	0.04	0.57
HT18-30	HT18-30-SURF	0.37	0.06	0.05	0.16
HT18-31	HT18-31-0010	0.23	0.01	0.06	0.10
HT18-31	HT18-31-1025	0.15	0.01	0.00	0.06
HT18-31	HT18-31-2555	0.13	0.00	0.00	0.04
HT18-31	HT18-31-5565	0.15	0.00	0.00	0.05
HT18-31	HT18-31-SURF	0.31	0.01	0.03	0.12
HT18-32	HT18-32-0010	0.21	0.03	0.03	0.09
HT18-32	HT18-32-0010-FD	0.24	0.02	0.03	0.10
HT18-32	HT18-32-1030	0.13	0.00	0.00	0.04
HT18-32	HT18-32-3050	0.16	0.00	0.00	0.05
HT18-32	HT18-32-5070	0.16	0.00	0.00	0.06
HT18-32	HT18-32-SURF	0.53	0.00	0.01	0.18
HT18-32	HT18-32-SURF-FD	0.28	0.01	0.03	0.11

NOTES:

FD = Field Duplicate.

ND = Non Detect.

PAH = Polycyclic aromatic hydrocarbon.

PCB = Polychlorinated biphenyl.

PEC-Q = Probable effects concentration quotient.

Mean PEC-Q = mean PEC-Q metals + PEC-Q Total 17PAHs + PEC-Q Total PCBs/3.

EA Engineering, Science, and Technology, (MI) PLC and its Affiliate EA Science and Technology

	Location ID:	HT18-01	HT18-02	HT18-03	HT18-04	HT18-05	HT18-06	HT18-07	HT18-08	HT18-09
Analyte	PEC									
PAHs (μg/kg)										
Total PAH17 ND=1/2RL	22800	5570	13693	16202	490.35	22260	8515	7112	86080	7898
PCB Aroclors (μg/kg)										
Total PCBs ND=0	676	93	48	2900	11	1770	6000	1600	75	460
Metals (mg/kg)										
Arsenic	33	10.1	8.3	11.6	5.3	10.4	11.1	9.4	34.1	12
Cadmium	4.98	1.4	1.1 U	25.1	0.8 U	8.3	12	16.2	1.9	5
Chromium	111	26.3	23.1	232	15.6	100	117	134	31.9	53
Copper	149	32.4	69.9	196	19.2	162	100	124	143	64.5
Iron	40000	22100	19700	23200	13100	26300	26000	19400	25600	28700
Lead	128	55	85.4	502	15.4	461	317	248	175	125 J
Mercury	1.06	0.12 U	0.23 J	1.5 J	0.13 U	1.2 J	0.96	0.65	1.3	0.67
Nickel	48.6	29.7	28.8	101	17.9	61.5	78.9	55.2	40.2	53.5
Silver	2.2	2.7 U	2.2 U	4.8	1.6 U	1.8	2.9	3.3	1.2 U	2.8 U
Zinc	459	119	121	1010	70.9	715	584	659	287	274

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for Use and Application, Publication No. WT-732

2003, WDNR December 2003.

Bolded and shaded detected values ≥ PEC screening value.

Bolded and shaded detected values ≥ 2X PEC screening value.

Bolded and shaded detected values \geq 3X PEC screening value.

NOTES:

 μ g/kg = micrograms per kilogram.

mg/kg = milligrams per kilogram.

PAH = Polycyclic aromatic hydrocarbon.

PCB = Polychlorinated biphenyl.

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater

Ecosystems (MacDonald et al. 2000).

EA Engineering, Science, and Technology, (MI) PLC and its Affiliate EA Science and Technology

	Location ID:	HT18-10	HT18-11	HT18-12	HT18-14	HT18-15	HT18-16	HT18-17	HT18-18	HT18-19	HT18-20	HT18-21	HT18-23	HT18-24
Analyte	PEC													
PAHs (μg/kg)														
Total PAH17 ND=1/2RL	22800	2071.1	2925.9	16470	38970	6964	1637.9	440.9	86820	105330	5205	2738.8	2620.4	8741
PCB Aroclors (μg/kg)														
Total PCBs ND=0	676	8.2	58	218	130	49	18	11	24	22	210	25	24	29
Metals (mg/kg)														
Arsenic	33	2.5	9.1	11.1	6.2	9.8	5.2	9.3	9.8	11.4	5.5	5.1	8	5.9
Cadmium	4.98	0.53 U	1.3	9.1	2.6	0.7 U	1.2	0.48 U	14.4	10.8	3.7	0.56 U	1.3 U	0.92 U
Chromium	111	11.7	32.3	82.9	28.4	21.2	39.6	18.6	36.7	35.1	27.6	96.8	29.5	19.8
Copper	149	5	45.6	156	40.7	19.5	44.3	18.2	302	274	125	26.5	41.2	51
Iron	40000	6750	25700	21800	15600	20600	15700	19600	21200	16100	21100	21100	23900	19000
Lead	128	22.9 J-	49.4 J-	306	93.5	13.6 J	288 J	22.2 J	623 J	624	157	143	41.4 J	45.5 J
Mercury	1.06	0.11 U	0.21	0.8	0.13 J	0.12 R	0.11 J	0.13 U	4.8 J-	3.5 J-	0.19 J-	0.059 J	0.29 U	1.4
Nickel	48.6	7.5	36.3	54	17.6	26	43.8	25.1	42.7	36.7	27.2	8.5	34.3	24.8
Silver	2.2	1.1 U	1 U	1.1 J	1.1 U	1.4 U	0.16 J	1 U	2.6	1.9	1.5 U	1.1 U	2.6 U	1.8 U
Zinc	459	26.6	167	535	121	68.6	139	51.3	772	769	108	46.7	146	133

(a) Source: Consensus-Based Sediment Quality Guidelines,

Recommendations for Use and Application, Publication No. WT-732

2003, WDNR December 2003.

Bolded and shaded detected values \geq PEC screening value.

Bolded and shaded detected values \geq 2X PEC screening value.

Bolded and shaded detected values \geq 3X PEC screening value.

NOTES:

 μ g/kg = micrograms per kilogram.

mg/kg = milligrams per kilogram.

PAH = Polycyclic aromatic hydrocarbon.

PCB = Polychlorinated biphenyl.

PEC = Probable effect concentration. Development and Evaluation of

Consensus-Based Sediment Quality Guidelines for Freshwater

Ecosystems (MacDonald et al. 2000).

	Location ID:	HT18-25	HT18-26	HT18-27	HT18-29	HT18-30	HT18-31	HT18-32
Analyte	PEC							
PAHs (μg/kg)								
Total PAH17 ND=1/2RL	22800	117500	11712	30426	10179	12100	297.5	595.9
PCB Aroclors (μg/kg)								
Total PCBs ND=0	676	21.3	50	18	25	120	41	23.6
Metals (mg/kg)								
Arsenic	33	12.8	4.2	8.1	7.3	13.6	10.6	7
Cadmium	4.98	10.3	1.8	0.55 J	0.58	20	1.2 U	0.89
Chromium	111	76.3	21.7	38.5	21.3	160	26.6	23.3
Copper	149	217	35.1	25.9	36.6	134	30	27.1
Iron	40000	22000	11200	24400	11500	27000	23700	19700
Lead	128	524	113 J	52.1	98.7 J-	252	21.1 J-	26.6
Mercury	1.06	3.4 J-	0.16 U	0.3	0.17	1.2	0.17 J	2.8
Nickel	48.6	39.4	19.8	48.8	10.8	53.6	33.1	30.8
Silver	2.2	3	1.2 U	1.1 U	1 U	2.2 U	2.3 U	1.5 U
Zinc	459	837	137	98.5	96.3	532	93.6	103

(a) Source: Consensus-Based Sediment Quality Guidelines, Recommendations for Use and Application, Publication No. WT-732 2003, WDNR December 2003.

Bolded and shaded detected values ≥ PEC screening value.

Bolded and shaded detected values ≥ 2X PEC screening value.

Bolded and shaded detected values ≥ 3X PEC screening value.

NOTES:

 μ g/kg = micrograms per kilogram.

mg/kg = milligrams per kilogram.

PAH = Polycyclic aromatic hydrocarbon.

PCB = Polychlorinated biphenyl.

PEC = Probable effect concentration. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000).

EA Engineering, Science, and Technology, (MI) PLC and its Affiliate EA Science and Technology

	HT18-01	HT18-02	HT18-03	HT18-04	HT18-05	HT18-06	HT18-07	HT18-08	HT18-09	HT18-10
Analyte										
PAH ESBTUs	1.23	2.75	1.17	0.07	1.55	3.50	1.32	3.83	0.98	1.83
	HT18-11	HT18-12	HT18-13	HT18-14	HT18-15	HT18-16	HT18-17	HT18-18	HT18-19	HT18-20
Analyte										
PAH ESBTUs	0.20	1.96	1.28	4.16	0.95	0.09	0.14	4.07	10.08	1.75
	HT18-21	HT18-23	HT18-24	HT18-25	HT18-26	HT18-27	HT18-29	HT18-30	HT18-31	HT18-32
Analyte										
PAH ESBTUs	0.43	0.15	0.98	3.95	2.61	4.05	2.02	1.89	0.03	0.11

Bolded and shaded values 1≤ ESBTU < 7.5. Bolded and shaded values 7.5 ≤ ESBTU < 10.

Bolded and shaded values ≥ 10 ESBTU.

NOTES:

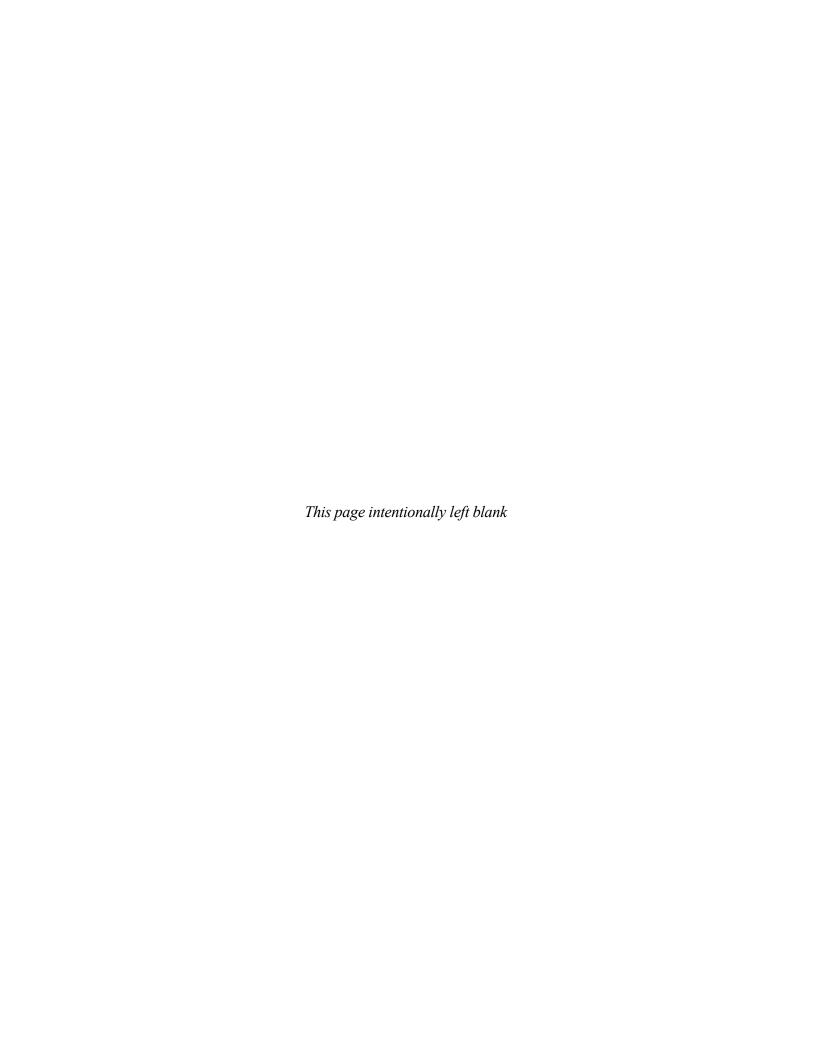
ESBTU = Equilibrium Partitioning Sediment Benchmark Toxic Unit

PAH = Polycyclic aromatic hydrocarbon.

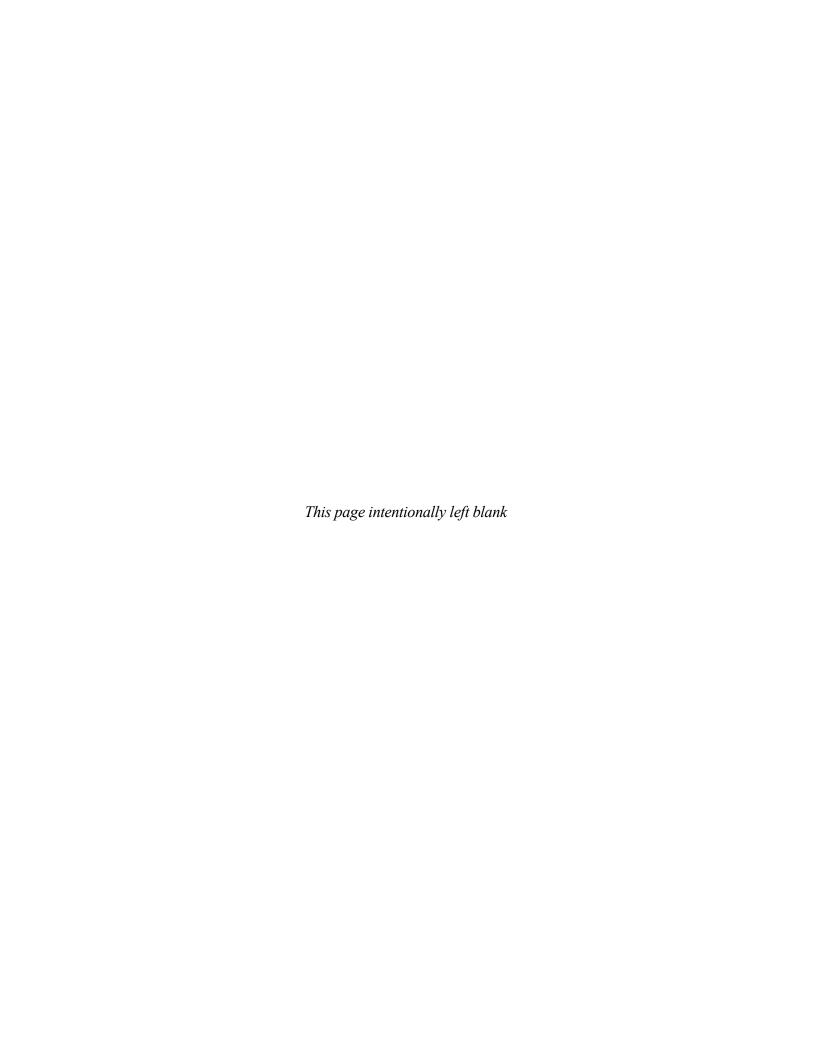
	HT18-01	HT18-02	HT18-03	HT18-04	HT18-05	HT18-06	HT18-07	HT18-08	HT18-09	HT18-10
Analyte										
PEC-Qs	0.08	0.10	0.07	0.08	1.62	3.41	1.28	0.07	0.55	0.07
	HT18-11	HT18-12	HT18-13	HT18-14	HT18-15	HT18-16	HT18-17	HT18-18	HT18-19	HT18-20
Analyte										
PEC-Qs	0.03	0.05	0.05	0.08	0.07	0.20	0.07	0.07	0.04	0.07
	HT18-21	HT18-23	HT18-24	HT18-25	HT18-26	HT18-27	HT18-29	HT18-30	HT18-31	HT18-32
Analyte		•			•		•	•	•	
PEC-Qs	0.09	0.05	0.06	0.04	0.04	0.56	0.24	0.57	0.10	0.10

Bolded and shaded values 0.5 ≤ PECQ < 1. Bolded and shaded values 1 ≤ PECQ < 5.

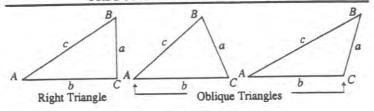
Bolded and shaded values \geq 5 PECQ.


NOTES:

HT = Harbortown

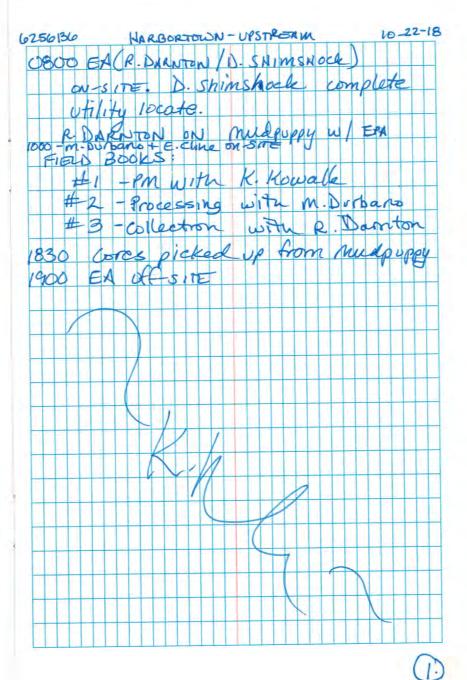

PAH = Polycyclic aromatic hydrocarbon.

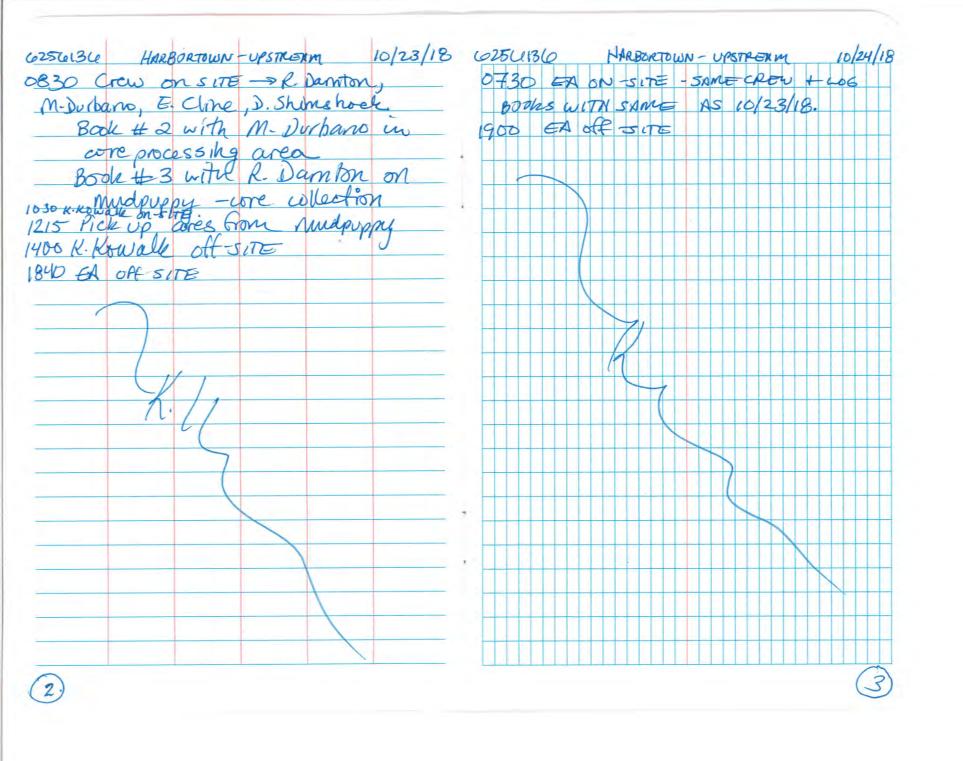
PEC-Q = Probable effects concentration quotient.

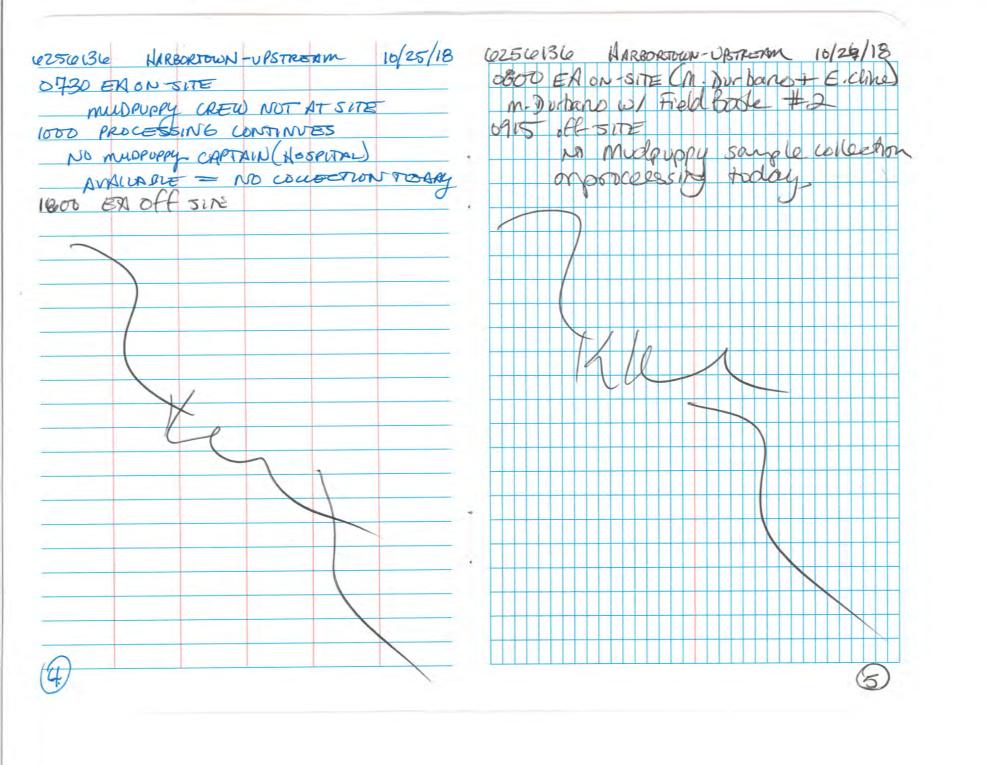

Appendix A Field Logbooks and Data Collection Forms

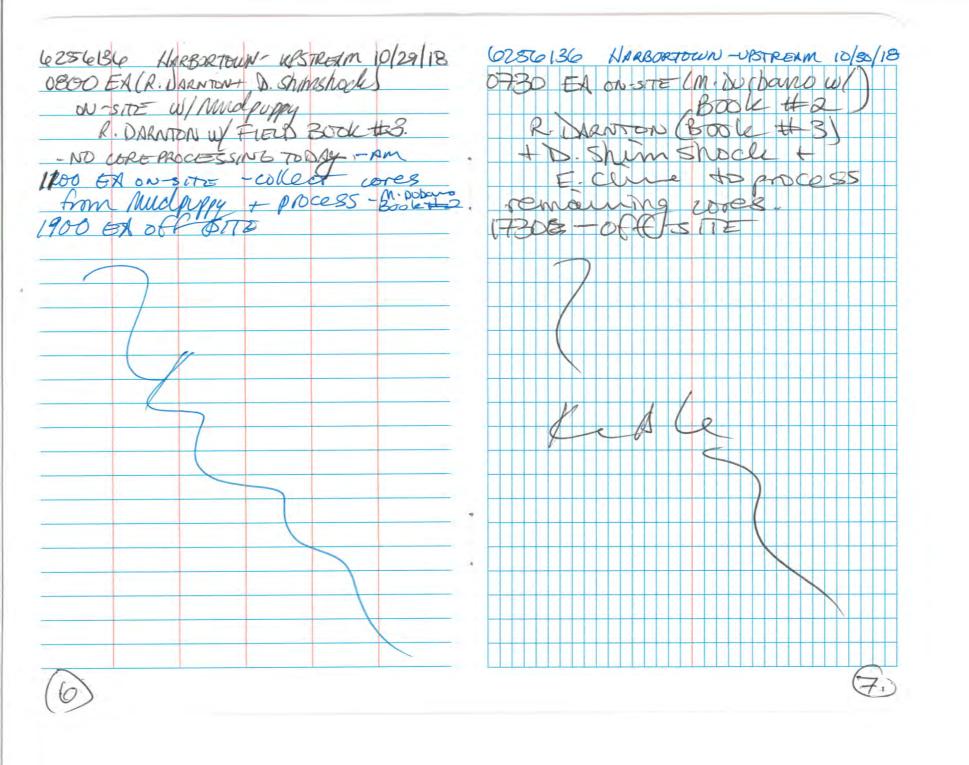
TRIGONOMETRIC FORMULÆ

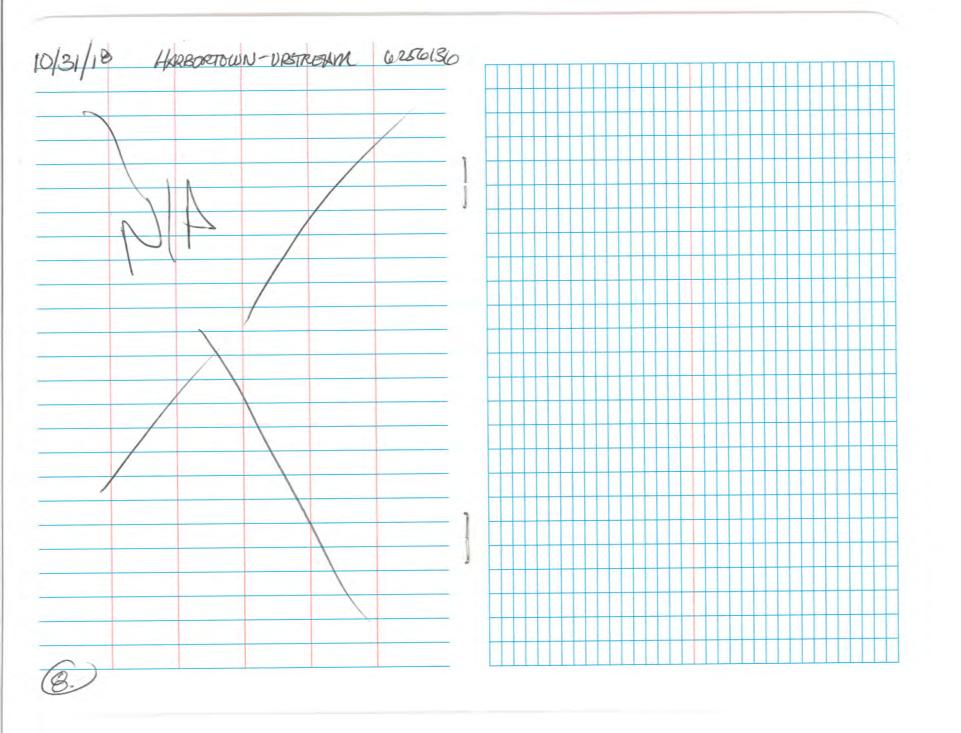
Solution of Right Triangles

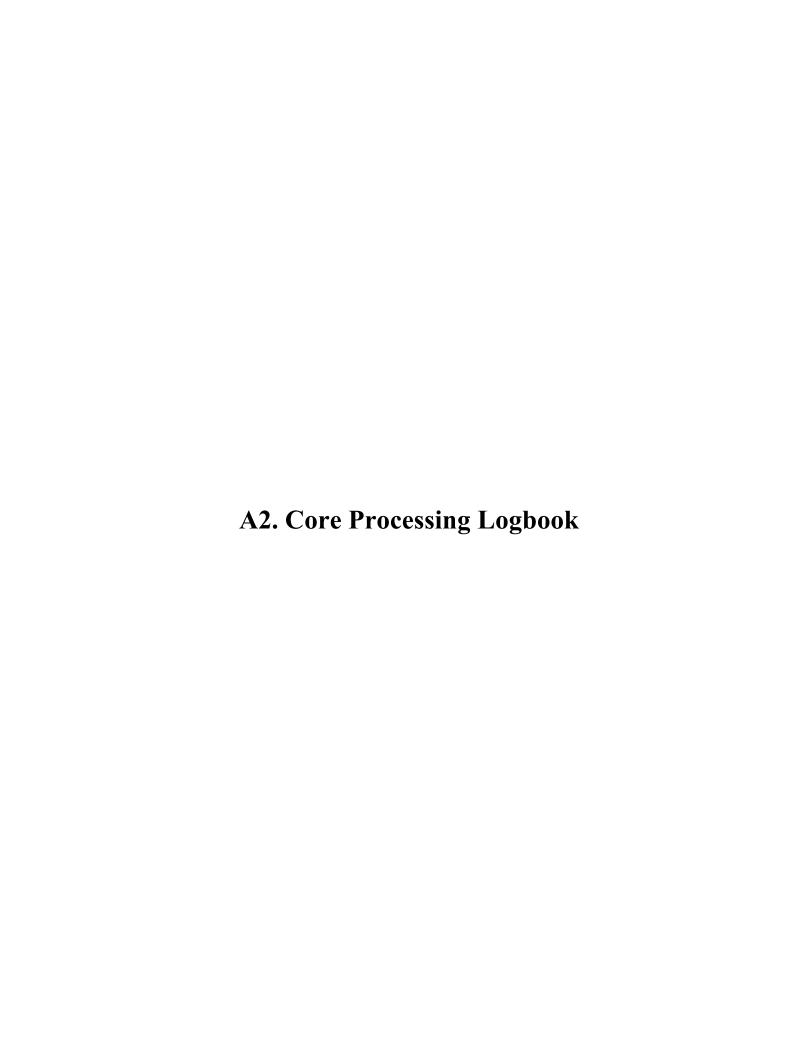

For Angle A.
$$\sin = \frac{a}{c}$$
, $\cos = \frac{b}{c}$, $\tan = \frac{a}{b}$, $\cot = \frac{b}{a}$, $\sec = \frac{c}{b}$, $\csc = \frac{c}{a}$

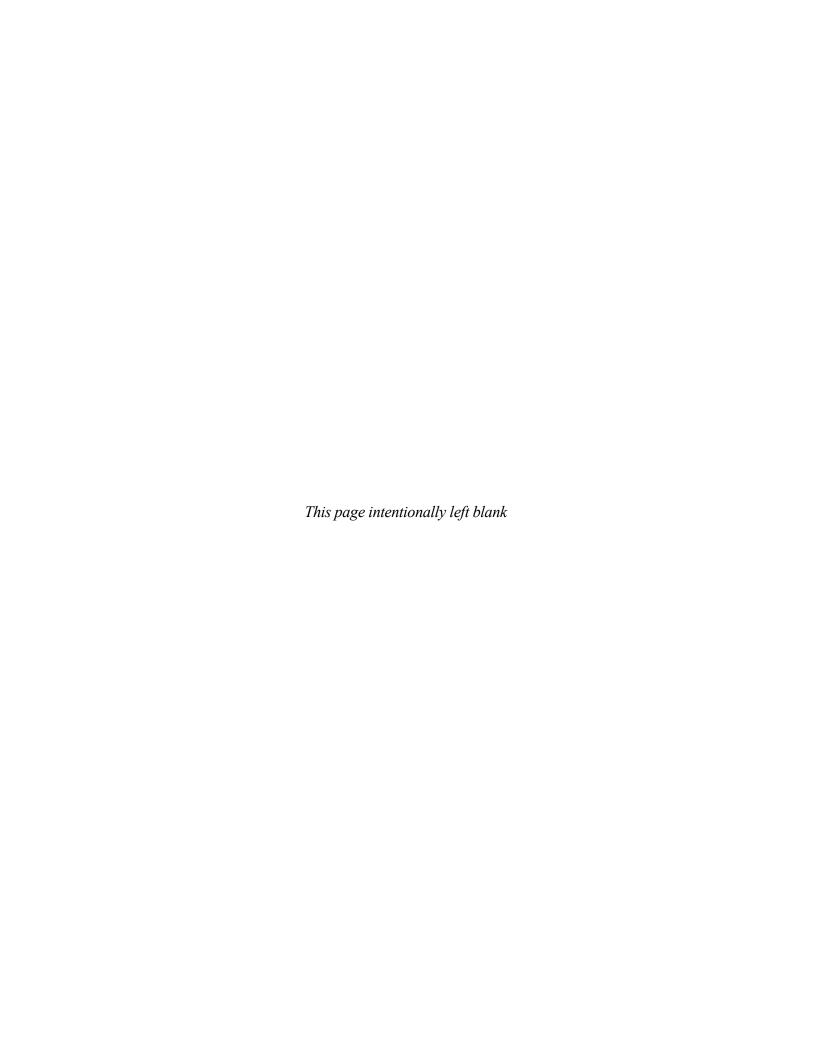

Given	Required	
a, b	A, B, c	$\tan A = \frac{a}{b} = \cot B, c = \sqrt{a^2 + b^2} = a\sqrt{1 + \frac{b^2}{a^2}}$
a, c	A, B, b	$\sin A = \frac{a}{c} = \cos B, b = \sqrt{(c+a)(c-a)} = c\sqrt{1 - \frac{a^2}{c^2}}$
A, a	B, b, c	$B = 90^{\circ} - A$, $b = a \cot A$, $c = \frac{a}{\sin A}$.
A, b	B, a, c	$B = 90^{\circ} - A$, $a = b \tan A$, $c = \frac{b}{\cos A}$.
A.C	B. a. b	$B = 90^{\circ} - A, a = c \sin A, b = c \cos A,$


Solution of Oblique Triangles


Given	Required	a sin C
A, B, a	b, c, C	$b = \frac{a \sin B}{\sin A}$, $C = 180^{\circ} - (A + B)$, $c = \frac{a \sin C}{\sin A}$
A, a, b		$\sin B = \frac{b \sin A}{a}$, $C = 180^{\circ} - (A + B)$, $c = \frac{a \sin C}{\sin A}$
a, b, C	A, B, c	$A + B = 180^{\circ} - C$, $\tan \frac{1}{2} (A - B) = \frac{(a-b) \tan \frac{1}{2} (A+B)}{a+b}$
a, b, c		$c = \frac{a \sin C}{\sin A}$ $s = \frac{a+b+c}{2}, \sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{b c}},$ $\sin \frac{1}{2}B = \sqrt{\frac{(s-a)(s-c)}{a c}}, C = 180^{\circ} - (A+B)$
a, b, c	Area	$s = \frac{a+b+c}{2}, \text{ area } = \sqrt{s(s-a)(s-b)(s-c)}$
A, b, c	Area	$area = \frac{b c \sin A}{2}$
A, B, C, a	Area	$area = \frac{a^2 \sin B \sin C}{2 \sin A}$


MADE IN CHINA





CONTENTS

PAGE	REFERENCE	DATE
	-	
		/
		Se .
	4-1	
- "		

Location	DeTrat	Date 10/22
	EALDI	-
Project / C	lient LAN NO	

3

	_	_				_	_	_	_			
1200												
process	ng	fac	11	ty		W	10	1	Ry	de	1	
Truck.												
		Δ.										
crew;												
		cline	1									
		Shims		ell								
1300		ne			120	-	11-	4	T	0		
1500		11105		14			VVI	31		70	DY	
-												
1430	+ 1.	S	B	rie	Kil	197		Se	tti	ng	u	0
core												
			-	7	-	21	a					
15 40	1	UMS	0	UN)	rol	10	1+	-	æl	UP)	10-6
. 0) 3		2 (1)	0					, ,				. 4
1830	PI	, loc	ųр	-	100	23	- 1	10	M	<i>S</i> 7,	De	14
Street	box	V	am	0								
1900	SCAL	£	511	us	0	ina	0	60	h	rle		
	100					1	-	0			-	
					/	1	11	1	0			
				/	/	1	//	9				
									1	2_	0	

0830	assive	2 01	5.7t.	e -	
Creu	i E	A		35° F	SUNNY
	m. Du	ni MShoc	is a		
		line			
	*				
0950				ned	
PID		brate			DID FOR
1035	col	lected			1,7
			3-5	ft	3.3
1.7			5-7	ff	6.3
-			7-10	- archi	ve Hu7
1135	HI	8-20	Pa	ened	
1700				0-14) pt
1700	177 18	PI	0=0,8		

Project / Client FPA R5

HI18-09 opened conected . 0-1 AT 7-10 archive 1500 HT 18-12 OPENED 1540 collected. 1650 opened HT18-08 collected: 0-1 1710 1-7-1-2.31-40 2-4- 2,3-46 4566-4.6-6.5 65-80-65-80 archive Rite in the Rain

Location Belle ISIe, MI Date 10/24 7
Project / Client FPA R5

0730 arrive on site 300F cloud Crew: EA M. Our bono E. Cline D. Shimshock 680 HT18 11 spened 0830 collected; 7-10 archive 0905 TA courier pick up 0930 opened UT18-10 0940 collected; 0-1 Rite in the Rain

Location Belle Iste, MI	Date 6/24
Project / Client FA R5	

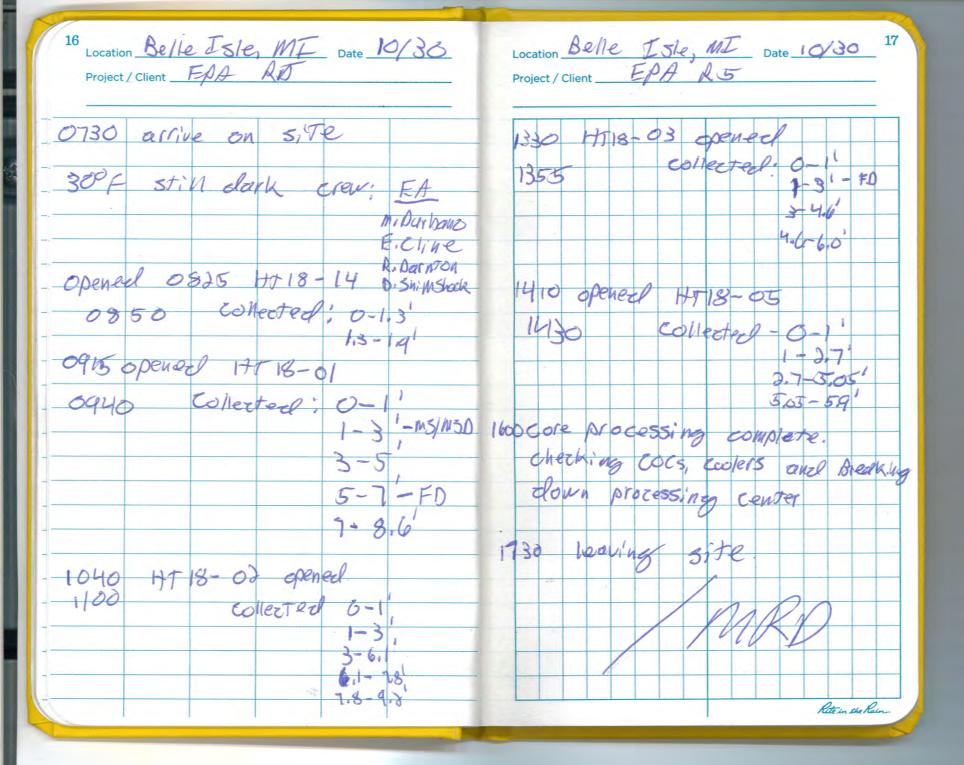
55	55	C	pe	nez	0	H	TI	8-	2	6					
161	0		C	oli	ez	re.	D;	0	-1						
								1-	3	6		2			
					-				-7	b		V			
										a	151	ve			
163			-												
1710	2		6	0	lec	d-e	d	1-)-1 -2'						
61	ly	0	1	of.	æ	Col	very	1	205	56	R	elve	au		
d	OV	n	· V	1	Cel	e	56	e	C	de	lo	85			
+	01	1	rua	e	i N	100	Ma	010	7).						
17	42		d	ЮN	ed)	HT	18	1	32					-
18	α	>		(Tol	100	Te	1	1	7)-	-1		FΛ		
										1-	3		. T		
										3-					
		5								5-	7				
190	0	B	sea	ld el	OU	N	ì	edi	in	8	51	te			
										1				-	
										-		0	4.	. 0.	

Location Belle Isle, MT Date 1985

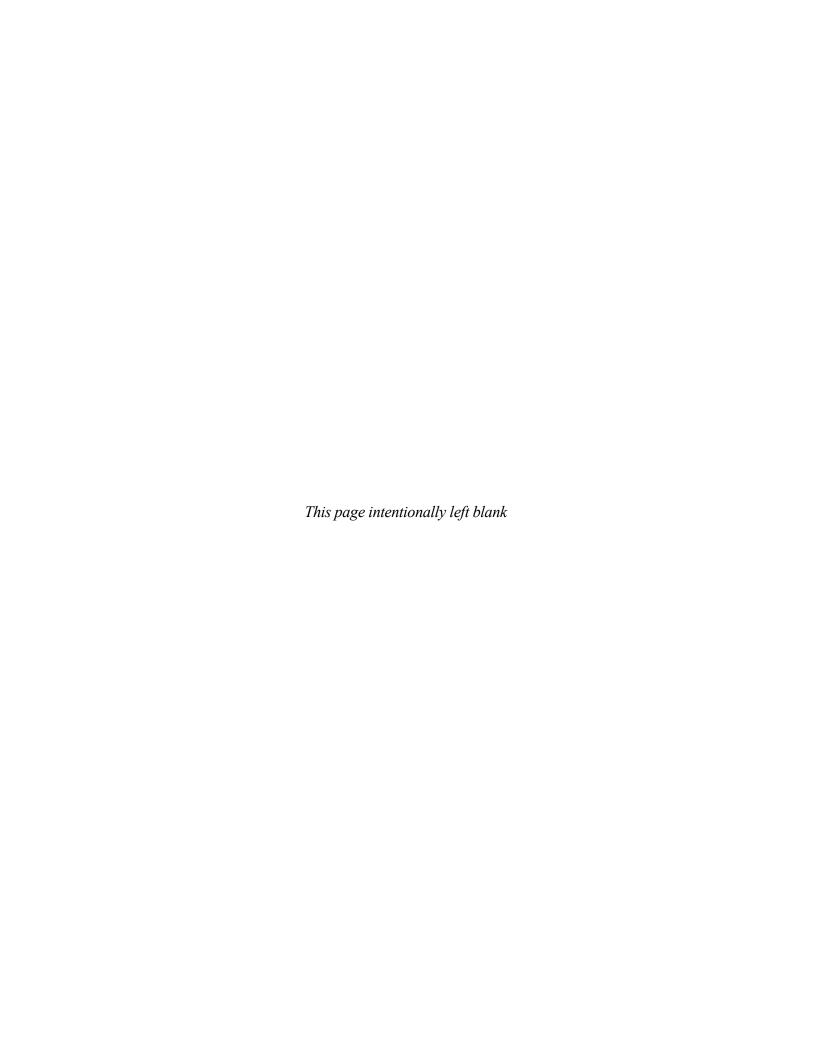
Project / Client EAA R5 0730 asvive on site crew; EA 3008 Sunny m.Darbano E.cline D. Shinswell 5, Bital 0825 opened 47 18-31 Collected: 0-1', 0830 ogo TA consier pick up 1600 opened HT 18-15 601120 ed: 0-0,5 0,5-3,0-115/115D 3-51-FD 00 1105 opened HT 18-17 collected; 0-1 1180

Location _	Belle	e Ish	e,	MI	Date	10/25 11	
		EAH					

1150	opene	0	HT	10-	10			
	9						0	-
1005		1		COL		1,9		
						3.6	3.6	
					- 24	316	214	
1420	орене	0	11	100	10			
						1		
1435		Col	leas	20	:0-	9		
					19-	2.3'	1	
					2.3	910		
117-								
לטדו	genezi	110	118	- (70			
500	5	1	Olla	Dy To	2.	0-0	o!	-
			-	0	,	0.8-	100	
								-0
			+				18-	FU
535	opene	el	Ho	18-	91			
							(
1600	partho	MA	40	for	en	do	1	
	da			1	n,	1		+
	day			//	11/	3		
							Ito in the K	2


Project / Client FPA R5 Date 1989 13

300= eloudy crev: Ex yeler track with 1240 wait 15 on costs collected 345 opend HT18-06 collectel. 400 Rite in the Rain


Project/Client EPA RE

Date 10/29 15

1840 cores isacled into rysler Truck core collection complete 22 + 28 abandoned 1900 Scanning daily sheets

Location Detroit, MI Date 15 October 2018 Project/Client Harbor town - Upstream/ EPA GLNPO SOF cloudy 1045- Et onsite at AB Ford Park, Lateured St enfrance for utility entra
locate MISSDIG Joint Meet. 1130 - No utilities at meet. Move know Move to the entrance to Riverfidet -Likewed Est Park to see if any utilities went there justead as address on ficket was ambiguous. - Nextel and Light Tower Filer Networks closel tickets while. we're waiting. 215 - EA offsite from Joint Meet. 1300 - Investigate shoreline access around GLWA and OTE Corner Crest Plant sites to look for any signage indicating where pipe crossings might be located. Per petober 15,2018

Location Detroit, MI Date 1900 2018 Project/Client Harbortown - Upstream/EPA GINPO 45°F mostly cloudy scale 0800 - EA onsite at AB Ford Park 0900 - OTE Gas (Pennis) arrives orsite for utility meet, Unable to identity utilities of clear the ticket OTE is attempting to contain a superviser to determine if the ticket can be clearled, 1030 - Travel to Belle Isle Stuging areas Coordinate with MONR and off load an initial set of equipme and supplies. - Contact Mahar Abbas, with City o Definit regarding willing for unter willities have been marked.

Project/Client Harbortowa - Wpstream/EPA GLNPO

SS & F partly clowy Scale

1200 - Offlord samples at Octrat Police Station on Bette Isle 1230 - Tiemp at Kean's marina for lunch 355 - Depart Keans marina 1405 - Anchors down On location

HIT 18-12,

On Rush, Full

push, recover 9,784, no los 2135 Collect ponar. Dark gray/ from s. with some SAV. Collected FD 1: ve juvenile lamprey in grab. Too photos, Depart HT18-12 - tied up along seawall for HTT8unth a few pieces of SAV. - Sjavs 1921 - Collect core, no refusal, 10+1
push, 9, 4 net recovery.
1535 - Depart from HT 18-11 1540 - Anchous down In location

Location Detroit, MD Date 22 Oct 2018 Project/Client Harbortown-Upstream/EPA 6LNPO 55°F mostly clear 1555- Collect core. Refusal at 2,084 gross recovery 1,35 Ft, net recovery 1.05 of 1610 - Collect ponar, mostly sand brown /gray sand with a few pieces of SAV 1620 - Anchors up. Depart location HT18-10 - Discussion with EPA (Rose Ellisan) regarding relocating locations HT18-20 and HT18-22 from their current coordinates to points. within Connor Creek. 1628 - Anchors down, On location at HT18-09 1635 - Collect Ponar, Gray (Grown 3:1+ Collect MS/MSD -+ 13 jars 1655 - Collect core. Full 10ft push, no refusal. Net recovery 705 - Anchors up, Depart From HT18-09 720 - Anchors down, On location at HT 18-08 Water Lepth 8,8 ft

Location Detroit MI Date 220ct 2018 Project/Client Harbortown-Upstream/EPA 62NPO 55°F mostly clear 1730 - Collect core, Full 10 ft puth, no refusal. 8,0 ft net recovery. 745 - collect poner. Gray/6, www silt 7795 - Anchors up. Depart From 4+18-08 1805 - Transfer samples and cores EA personnel anshore at St. Jean. Boot ramp 1815 - Tie up at Keans marna, of nemaining gear 1835 - Restock decon chemicals scan data sheets at proce

Location Detroit, MI Date 23 Oct 2018 Project/Client Harbortown-Upstream/EPA GLNPO 47 F partly cloudy 0745- EA onsite at Keans Marina. 0800 - Load equipment onto Mudpuppy 0830- Until depart from Kean's marinaafter checking GPS reference point. 0845 - anchors down on location at HT18-28, Problem indicated hard pack sand, EPA opted to abandon the location and move; t elsewhere. 0900 - Anchors up. HT18-28 abandoned but may be established at a different location per EPA, 0905 - Anchors down, On location at HT18-17 probing indicates gravel, 1st attempt will be with a SA core tube. 3 popar attempts yielded plasst all mussel shells with < 10% sund. No 0935-0935 Eva 1st attempt core unsuccessful -no recovery shift x 10st toward shore for Indatempt RWB

Project/Client Harbortown - Upstream / EPA GLNPO

50 ° F sung and clear wind NN 5-10 Scale

0945 - 2nd attempt core, refusal at 3ft, net recovery at 69 1.0 3 additioned attempts at getting a surface grab after shifting 151061 during coving. Mussels and some very little recovery, Nos 1015 - Anchors up a Depart HTTB-27 1040 - Anchors down. On location of HT18-32 1030 - Collect ponar, darkgrag silt will
some clay, a Con pieces of organic
detribus. Collect PD - 10 Jans
1050 - Collect care. 7.6 800 Refusel at 1115 - Anchors down, On togetion at HT18-31 1105 - Collect core. Refusal at 6.75 ft net recovery 6.6 ft. 1135 - collect ponder a dark grows silt brown surface tager Film, a few piece 1155 - Anchors up. Deport 14718-31, 1010 - The up at police dock, Offlood cores and surface samples to EA processing personnel and

Location Detroit, MI Date 130cf 2018 Project/Client Harbortown - Upstream / EPAGLNPO S2°F partly cloudy 1220 - Measure reterence point west of Mackether Bridge. 1245 - Tie up at Sinded & for lunch, 1400 - Untile and Depart from Sinbad's 1470 - Anghors down . On location at HT18-26 425 - Collect ponar, Two attempts consolidated into one tray, gray/brown silt with sand and mussel shell fragments with a few pieces of SAV. + Siars 1440 - Collect core, full 10 & push, no recovery (refusal, net recovery 9,5 ft, hydrocarbon odor and sheen +51450 - Anchors up. Depart HT18-26 1455 - tie up along servall for HT18-25 1500- Collect core, full 10 ft push, no refusal, net recovery 9,5 ft 1510 - Collect Ponor, gray / Brown silt with some very fine sand and SAV Collect MS/MSD -+ 13 jars 1330 - Anchors up, Depart HT18-25 1535- Anchors down, On location at HT18-24 RWO

Project/Client Har box fown - Upstream /EPAGLNPO StoF partly cloudy Northwindcas goh 1545 - Coilect poner, gray/brown sil 1600 - 15 core attempt. Used Set tule; no refusal, soved but noted 1610 - 2nd attempt core, necknow using net recovery 7,8ft. 1630 - Archars up, Depart HT18-24 1640 - Anchors down on location at 74118-23 1655 - 15 core attempt, refusal at 3,59 net recovery 1,7 Ft 1700 - 2nd core attempt using 5 starbe. Feel s & push, no elfusel 1715-3rd attempt core full 10 ft tube net recovery 9,2 st. 1730-collect ponar, gray silt with SAV - Sjars 1745 - Anchors up. Depart HT18-23 1800 - Offlood samples and year a Detroit Police Bock, EA (Meinting)

Location Detroit, MI Date 23 OCT2018 11

12 Location Defroit MI Date 23 02+ 2018 Project/Client Harbortown - Upstream/EPA 64NP6 disembarks from R/V Mudpuppy.

1830- Fransfer samples to fridge
truck. Restock supplies for
the next day of sampling, Detober 73,2018

Project/Client Harbortown-Upstream/EPA GLNPO HOF surry and clear Scale	.3
0730 EA (AWD) onsite at Reun: Marina 0800 - Load surpling gear and prep	
0945 - Unie from dock depart Plans Mos	14
0915 - Collect ponar, four attempts consolidated into one tray to	21
get adequate volume. Brown /gra sitt, sand, gravel mix with SA	Y

and one swentle goby

part — 45) avs

0925 0930

0925 15t a ttempt core, penetration elfot
poor recovery, material not bee

0930 2 nd attempt core, before at 2+4,

Next recovery 1.75 ft,

0955 - Anchors up, Depart titl8-21

1000 - Anchors down, On location at
titl8-20, EPA shifted location
- Depth 25,9 ft

1015 - collect core, refusal at 3 2564

Next recovery 3.0 ft

Project/Client Har Gortswn - Upstream/EPA 6LNPO

H2°F mostly clear, sunny North wind 5 mph
Scale

1220 Anchors up. Depart HT18-18 1230 Tie up at st. Jean boat launch transfer cores and surface sample to EA personnel on share at St. Jean Boat Ramp 1245 - Te up at Kean? Marina for line 1425 - Unfie from dock Depart Reans Marina. 1435 - Archers down, On location at HT18-17, Localion shifted Manogian Marsier (Detroit Moyor's
Residence) ports - collect poner brown /gray sand/silt mix with mussel shells and invertebrates - & Sjars 500 - Collect core, fail ser pash 15 sufficient because 6 mon material oppears to be not re refusal at 4,5 ft, net recovery 4,6 ft SIS Anchors up. Depart HT18-17

- no core rollected

1545 - Collect ponar, gray sitt/sand mix with brown film, a few mussel shells and SAV - Sjavs

1605 - Anchors up. Depart Fram HT18-16 1615 - Anchors down On location at

HT 18-15. Location shifted west

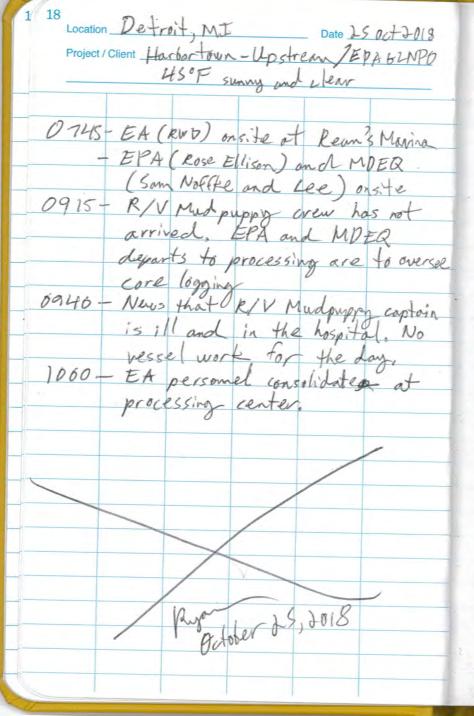
to avoid water pipeline. 1635 + Collect Ponar, gray / Grown 5:1+ with sand, mussel shells and a

Few pieces of SAV - 5 jars 1650 - Collect core, refusal at 6,5 ft

RWD

net recovery 6.8 ft 1715 - Anchois ap. Depart from HT 18-15

Location Detroity MI Date 240ct 2018 17 Project/Client Harbortown-Upstream/EPAGINFO


118°F partly cloudy Nound Small

730 - I e up at St. Jean Bout Rung Offloid cores, Sample and equipment to EA onshire

personnel EA disembars

EA (RWD) disembars him

2/V Madpuppy restock supplies for next day

Location Detroit, MI	Date 29 Oct 2018 19
Project / Client Harbortown -	Upstream/EPA GLAPO
44°Fclo	udy North wind Smoh
	5) onsite at Reans
800 - Load equi	oment and sample jars
On 70 R/V	Mulpypi).
	rt dock, Crow!
EPA (Ros	(Joe Banem, Kaitin, Marie)
EA (Ryan	Parnon Ping Shinshall
0840 - Anchors down	no on location at
0855 - First core at	tempt, 21 ft penetration
0900 - Inditore att	empt, refusal at 36+
0910 - Collect pe	trecovery 1, 9 ct
shee (RW)	tinto one tray.
	D. Ocpart 4118-15
0930 - Anchors d	own. On location at
	50

1/20 - Collect core. Full lost push,

no refugal, net recovery 9. 24

Project/Client Har bortown-Upstream/EPA 6LNPO

45 F cloudy wind WNW 5-10 rscale

HT 18-05-04 CWD

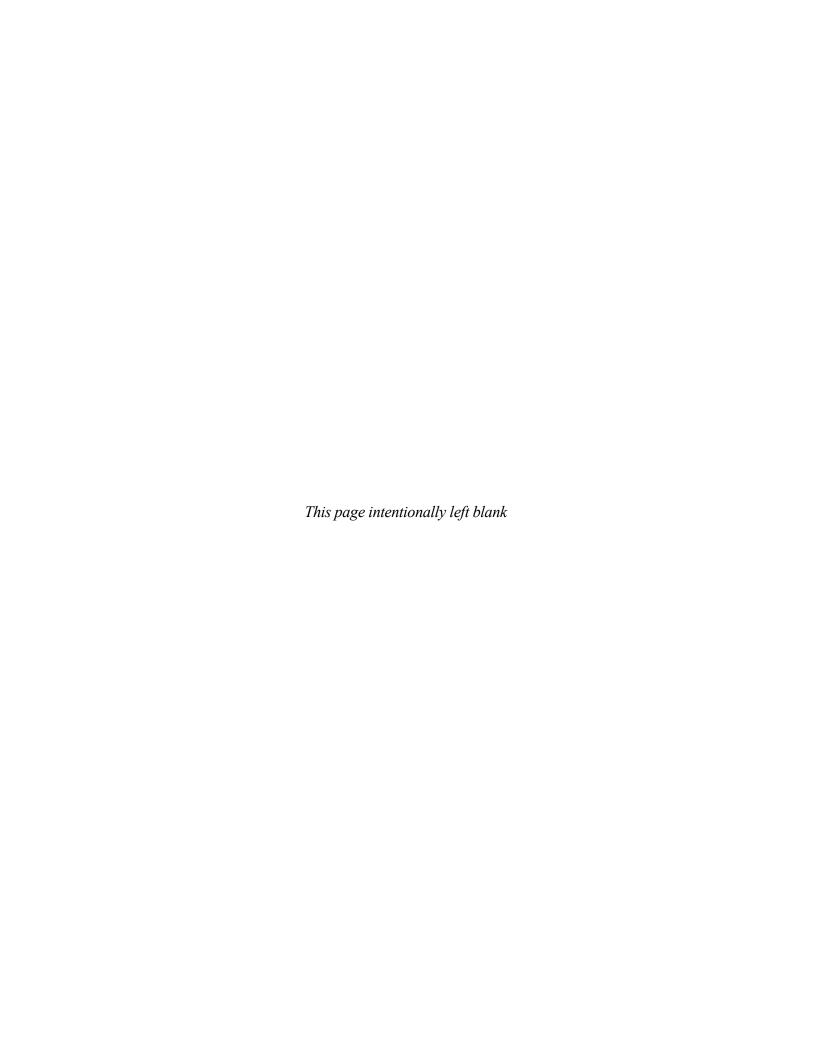
- SE DP BASNIAN XACHT CLIMB, Sh

250 CH SOUTH DET EPA 1155 - Collect core 15t attempt refusal, 1200 - Collect poner. Oray Brown
Sit with Some oragines ous
Sond Trace Oraganics Brown
Film Stars. 1215 - Anchors up. Depart From Ht 18-04 1230 - The up at Ken's Maria gas lock Offlood cores and savface Samples to to truck on shore. 240 - Tie up at Kean's Marina stip for lunch 1405 - Untie Deport Kean's Marina Crew, Joe, Caillin, Mark (Cotoccan) Ruse Ellison (EPA)
Ryan Parnton (EA) 1440- Creck 685 reference point at AB Ford 1130 - Anchors down, On location at 4+18-01

Location Defrait, MI Date 2900018 Project/Client Harbortown-Upstream/EPA GLNPO partly cloudy Sd F wind NW 10 mph 1435 - Collect ponder. brown/gray silt with trace organics, Collect FD - 10 jars 1510 - Collect core, refusal at 8.75 ft, net recovery 8.2 ft, 1525 - Anchors up. Depart HT18-01 1535 - Anchors down, Onsite location af H+18-02 1545 - Collect core full 10 ft push, no refusal, net recovery 9,054 \$555 - collect ponar dark gray silt with fibrous organics and trace sand light brown film on top 1610 - Anchors up, Depart H+18-02 1620 - Anchors down on location at HT18-05, Month of Conner Creek, 1625 - Collect ponar, dark from silt with trace organic fibers, light brown film on top. sewage smell. 1635- Collect core, refusal at 6.5 Ft, net recovery 5,5ft. DWD.

Project/Client Harbortown - Upstream/EPA GLNPD

partly cloudy St of wind NW 10 mg/sale


1650 Anchols up Depart Frana HT 18-05 1700 Anchors down on location at HT12-03 Location moved in to Connor Creek rocks close to out fall. Anchors up

to shift location father downstream within Commer Creek, 1715 Anchors down, On location at HT18-03 1720 - Collect core, Full 10 St push (RV) no refusal Refusal at 6,25 Rs 1725 Collect ponar, black 5.14, sewage odor. - Sjavs 1750 Anchors up. Depart HT18-03 EPAT Cocations HT18-22 and HT18-28 a bandoned/not sampled

per EPM field guidance, Vessel

based sampling complete 1800 - The up at St. Tem boat ramp. Officed cores to EA truck onshows 1810 - EA disemberts complex at processing Pyr October 29, 2018 Rete in the Rain

	LITHOLOGIC LOG ment Collection Log	Client Name and Project Name GLAES	HT18- (1	Sheet of 1
EA Engineering, Science, & Tea Geologist Name/Signature	chnology, Inc., PBC	Harbortown - Upstream Project Number		CORE COLLECTION II	NFO	
Geologist Namerolghatare		i Tojost Humbsi	8 Date/Time C			ed
Emily Cline &	EACE	6256136	290ct. 18	3/1510 3000	+18/	1940
Drilling Subcontractor/Equipment O	perator	6 Latitude/Northing/Grid		Elevation 568.2	, ,	1
		-	10 Coordinate S		83 \/	NAVD88
EPA R/V Mudpup	, py	42°21.360451'N	11 Depth of Wa		00 V	INAVEOU
Operator Name (License # If Requi	ired)	7 Longitude/Easting/Grid	7.1			
Joe Bonem				mp, circle conditions, wir		
		82° 56.568433'W	52°F			
Sampling Equipment and Methodol	logy (Check One)		13 Boring Dept	th (ft) 14 Recovery (ft) 15 % F	Recovery
Rotosonic:ft barrel	lin diar	meter	975	8.2	9:	7 70
Core: 10 -ft barrel	4 -in diar	meter Manual Push Vibracore Sonic	0.70	0.2	1) 0 1 16
		-ft Box/Ponar/Van Veen/Other	16 Location Not	es		
Other:						
Sample Collection Method:						
Interval Recovery		Description of Materials		Sample ID	PID	USCS
(Depth) (ft & %)		sell Color; Moisture; Density; Consistency (Other Remarks)		Sample Interval	(ppm)	Code
4 1 1 m	fine to my	edium sandy silt will	in trace	0610		
0-11 1 100%	rocts av			0.4	ML	
	10	YR 4/1 Dark Gray		0-1'		
			1+	1000		0. 1
1-3' 2' 100%.	17.00	y day and clayeysi anules and shull.	Mita	1030	0,5	CL/
1-3 2 10010	trace dus	ances and spece.	1-3'		ML	
		LOYR 4/1 Dark Gr		MS/MS	D	
2 -: 21 61	Clayey &	silt with trace roo	strand 3050		01.00	Et.
3-5' 2' 100%	Shell.			3-5'	0.6	Ct
		124R 4/1 Dark G		3 -		ML
	alternat	ing lagers of claye	m silt	5070		ML
- 717 12007	and warm	Care Silter Sound mit	1 - traver.		0.6	1
D- 7 6 100 16	Dehilas	Fine Silty Sand with	n groce	5-7'	0.0	SM
	Clayen	silt to silty clared and organics. First 7.8-7.9' toye	ywith	7085		ML
7-0.6 1.6 100%	trace sh	ele and organits. Fi	resilty	7001	0.7	CL
5	and lane	rat 7.8-7.9' toye	3/1 Very	Archive		CL
	0	T	Park Gra	1		
		*				
						_
		<u> </u>	-			

		LITHOLOGIC LOG	Client Name and Project Name GLAES	Location/Bor	1723	1	Sheet of 1	
	st Name/Signature	& Technology, Inc., PBC	Harbortown - Upstream 5 Project Number		CORE COLLECTION II	NEO		
	cline / t	egei	6256136	8 Date/Time C	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P	Process		
2 Drilling 8	Subcontractor/Equipme	nt Operator	6 Latitud /Northing/Grid	9 Sed Surface			ft	
8	EPA R/V Mud	lpuppy		10 Coordinate S			NAVD88	
			42° 21, 325964'N	11 Depth of Wa			,,,,,,,,	
3 Operato	r Name (License # If Re	equired)	7 Longitude/Easting/Grid	10.	ì			
Joe	Bonem		82°56.779133'W	12 Weather (Te	mp, circle conditions, wir Sunny/Cloudy/Rai		10 uph	
4 Samplin	g Equipment and Metho	odology (Check One)			h (ft) 14 Recovery (ft)			
Rotoso	onic: -ft ba	rrel -in dia	meter		9.0	01	67	
% Core:			meter Manual Push Vibracore Sonic	10	1,0	70	//0	
			-ft Box/Ponar/Van Veen/Other	16 Location Not	es			
Other:		-ILX	it BoxFolial/vall veell/Other					
Sample	e Collection Metho	d·						
Interval	Recovery	u.	Description of Materials		Sample ID	PID	USCS	
(Depth)	(ft & %)	Mun	sell Color: Moisture: Density: Consistency (Other Remarks)		Sample Interval	(ppm)	Code	
		Clayerilt	ell and construction	nd and	0010		C1. Y-1	
0-1'	100%	trace sh	ell and construction	debns.		0.5	ML	
			1042 4/1 Dark G	ray	0-1,		1 1	
Cia		Charles		9	1070			
11-31	2' 100%	cragey	hne sand	-	1030	0.3	12 SC	
. ,		1	101R 4/1 Dary	Gray	1-3'	0.2		
		1		J	3060			
3-6.1	3.1' 100%	~	*		w	10	SC	
			· · · · · · · · · · · · · · · · · · ·	- 1	3-6.1	0.2	.30	
			ith trace medium			+		
61-		time to W	ery Coarse Silty Sand v	vith	6080		SMI	
No!	1.7' 100%	stiff clar	nodules through section 1 terry Black	an.	6.1'-7.8'	0.6	3111	
1.0		1018 21	1 tery BIACK		6.1, - 4, 8		CH	
		Silty for	e sand with trace	clay.	8090			
7.8-	1.4' 100%	3		1		65	SM	
9.21	1.	104R	3/1 Very Dark Gr	za4	7.8-9.2'	0,0		
)				
				*				
					-			

				14.		1			
LITHOLOGIC LOG Sediment Collection Log EA Engineering, Science, & Technology, Inc., PBC			Client Name and Project Name GLAES Harbortown - Upstream	Location/Bor		1	Sheet of 1		
	st Name/Signature		5 Project Number		CORE COLLECTION IN	NFO			
Emil	y Cline	1 agcei	6256136	8 Date/Time C	collected Date/Time				
2 Drilling S	Subcontractor/Equipme	nt Operator	6 Latitude Northing/Grid	9 Sed Surface Elevation 55.7.8					
EPA R/V Mudpuppy			42°21,533856'N	10 Coordinate System H NAD83 V NAVD88 11 Depth of Water, ft (start/end)					
	r Name (License # If Re Bonem	equired)	7 Longitude/Easting/Grid	17.5	mp, circle conditions, win	d directio	nn)		
Joe Bonem			82°57,306525W	52°F	and the same of th		10mp		
4 Sampling Equipment and Methodology (Check One)					h (ft) 14 Recovery (ft)	15 % 1	Recovery		
Rotoso	onic:ft ba	rrelin dia	meter	1	5.9	94	1 407		
Core:	10 -ft ba	rrel 4in dia	meter Manual Push Vibracore Sonic	6.25	5.1	1.5	1,710		
Grab S	Sample:	-ft x -ft x	-ft Box/Ponar/Van Veen/Other	16 Location Not	es				
Other:									
Sample	e Collection Metho	d:							
(Depth)	Recovery (ft & %)	Muns	Description of Materials sell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID	PID	USCS		
(Doptil)	1' (00%					(ppm)	Code		
0-1		very me	e Sandy Silt with trace 0010						
		medium	o coarse sand frith o	rganics.	0-1'	0.2	OL		
			oon oder 1042 3/16		ay	-			
1-3'	2' 10%	As above,	increasing organic	with	1030	8.0			
1-5		depth.	1040 311		1-3' FD		OL		
			1011 - 1 very	Dark Gray	FD FD				
3-5/68	1.6' 100%		c sitt with time to course 3045		3045		01		
111		Sand and	1 roots.	,	211	8,5	OL		
4.6			1042 2/1 Blac		3-4.6'	0,7			
4.6-	1.41 100%	SHIFF C	day with few fine sand ace publis and granules.		4560		CH		
		and tra	ce pebbles and grand	eles.		0.9			
6'			104. 4/1 Dark	Grea	4.6-6'	0.1	1		
r 1		Fine to 1	redium sandy organic	SIT	10.				
6-	0.35'100%	-	and a selection and	A sace	No sample;	30	OL		
6.35	000000	sand g	ranules, pebbles, and coar		not enough material.	-0			
		54,162,	TOTE 211 DIACK		Materiax.				
)							
	*								
2									

LITHOLOGIC LOG Sediment Collection Log	 Control of the control of the control							
		HT18- 04	1	1	of 1			
EA Engineering, Science, & Technology, Inc., PBC Geologist Name/Signature	Harbortown - Upstream Project Number		RE COLLECTION I	NEO				
		8 Date/Time Colle		e Process	ed			
Emily Cline/ Excer	6256136	29 Oct 18/119	55 29 Oct	18/1	520			
Drilling Subcontractor/Equipment Operator	6 Latitude/Northing/Grid							
EPA R/V Mudpuppy	42°21,291181°N	10 Coordinate System 11 Depth of Water,		083 V	NAVD88			
Operator Name (License # If Required)	7 Longitude/Easting/Grid	24	, ()					
Joe Bonem	82°57.042887'W	12 Weather (Temp,	(Temp, circle conditions, wind direction) Sunny/Cloudy/Rain W N W 5-16					
Sampling Equipment and Methodology (Check One)		13 Boring Depth (fi) 14 Recovery (ff	1) 15 % F	Recovery			
Rotosonic: -ft barrel -in di	ameter							
	ameter Manual Push Vibracore Sonic	6.0	4.2	1.7	0%			
Grab Sample:ft xft x	-ft Box/Ponar/Van Veen/Other	16 Location Notes						
Other:								
Sample Collection Method:								
nterval Recovery	Description of Materials		Sample ID	PID	USCS			
(Depth) (ft & %) Mu	insell Color; Moisture; Density; Consistency (Other Remarks)		Sample Interval	(ppm)	Code			
)-0.6' 0.6' 100% in the t	fine Sand with organ op 0.2'. Trace gra se sand. LOYR 5/1 Gran	nules +	0-0.6	0.2	SC			
6'- 2.7' 100% layer at and trace	dy clay with clayer 1.1-1.2' with trace ca clay. 10YR 4/1 Dark we sand grading to se Sand with trace	sond or corrections	0530 8-6-3.3°	0.3	CL			
-3'- 1' 100% Very coar	resand grading to se Sand with trace d 1042 2/1 # Black	fine to clay 3.	30 4 0 34.3'	0.2	sc/ sw			
	Carl							
	*							
	40							

3		LITHOLOGIC LOG	Client Name and Project Name	Location/Box	ring Name	T	Sheet		
Sediment Collection Log EA Engineering, Science, & Technology, Inc., PBC			GLAES Harbortown - Upstream	HT18- (05	1	of 1		
	t Name/Signature	x reciliology, inc., PBC	5 Project Number		CORE COLLECTION I	NFO			
Emily Cline / Exces 6256136				8 Date/Time Collected Date/Time Processed 29 Oct 18/1635 30 Oct 18/163					
Drilling S	ubcontractor/Equipme	nt Operator	Catitude/Northing/Grid	9 Sed Surface Elevation 559.			ft		
EPA R/V Mudpuppy			42°21.313827'A	10 Coordinate S	10 Coordinate System H NADRS V NAVD				
Operator	Name (License # If Re	equired) 7	Congitude/Easting/Grid	15.5					
	Bonem		82:57, 217096 'W	emp, circle conditions, wir Sunny Cloudy/Rai	dy/Rain WW 10M				
	Equipment and Metho			11 193 175 155 25	th (ft) 14 Recovery (ft				
Rotoso Core:	-	rrelin dian	neter Manual Push Vibracore/Sonic	6.5	6.5' 5.5		84.6%		
Other:		-ft xft x	-ft Box/Ponar/Van Veen/Other	- 16 Location No	tes				
	Collection Metho	d:					+		
nterval (Depth)	Recovery (ft & %)	Munse	Description of Materials all Color; Moisture; Density; Consistency (Other Remarks)		Sample ID Sample Interval	(ppm)	USCS		
-1	1 100%		Sandy SII+ with + 2.54R 5/1 Gray	race.	0010	0.2			
			V		6-1'	0.2	ML		
-2.7	1.7' 100%	Clayey Sil	t with organics law a trace v. fine sand, 5YR 4/1 Dark Gray	yer from woodand	1030 1-27' Dup	0.2	OL		
.7- 5.05	2.35' (00%	time to me	dium sandy organic +3 and coarse sand -542 291 Black	cilt with	3050 2.7-5.05'	3.1	OL		
.05~	0.85' 100%		redium sand with trace snell. thin, s		5060		SM		
5.9		clay large	at 5.1' 2.5 YR 3/1	Very dark	5.05-5.9'				
				• 0					
					v.				

		LITHOLOGIC LOG		Location/Boring	g Name		Sheet	
FAI		Sediment Collection Log & Technology, Inc., PBC		HT18- ()(1	of 1	
	st Name/Signature	a recimology, me., r be	5 Project Number	(ORE COLLECTION II	NFO		
T .1	Λο- /	(000)		8 Date/Time Co	lected Date/Time	Proces	sed	
Lmily	(line	ryo	6256136	290cH8/	1120 290ct	-18/	1410	
2 Drilling S	Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface E	levation 558.3			ft
	EPA R/V Muc	dpuppy	Maca: 25 - 11	10 Coordinate Sys			NAVD88	
			42°21.27 0563'N	11 Depth of Wate	r, ft (start/end)			
and the second	r Name (License # If R Bonem	Required)	7 Longitude/Easting/Grid	17,1		1 11 11	V I	
306	bolletti		82°57.289438'W	44 °F	p, circle conditions, wir Sunny/Cloudy/Rai	n F-10	on) M/N	W
4 Samplin	g Equipment and Meth	nodology (Check One)	02 37.20 .00 .		(ft) 14 Recovery (ft)	15 %	Recovery	-
Rotoso	onic: -ft ba	arrel -in dia	ameter	10	0.0	0	707	
X Core:			ameter Manual Push Vibracore Sonic	10	9.2	1 90	2%	
Grab S			ft Box/Ponar/Van Veen/Other	16 Location Notes		1		
Other:			_					
Sample	e Collection Metho	od:						
Interval	Recovery		Description of Materials		Sample ID	PID	USCS	3
(Depth)	(ft & %)		nsell Color; Moisture; Density; Consistency (Other Remarks)		Sample Interval	(ppm)	Code	
0-1	1' 100%	Clayey Si	It with trace orgain	105	0010			
			W III		0.11	0.1	a	
		1 11	JIK 7/1 Dark Gray		0-1			
1-3' 2	21 1007	Same as above increasing			1030			
	2' 100%		1	n with		0.1	CL	
			above (Mercos) dept	drie	1-31			
			reases city interpedded with on		3060			
3'-6'	3' 100%	Margey s	all the second trace	Dane durin		1.3	MH	
1		layers. Hy	drucarbon oder and wall	D ISVORI	5-6	2.4		
		Suna to a	als Silty sand will be	0001		7		
6-7.1	11' 100%	100% organics	and Shell and souled	sephles.	60 70	110	am	
6 7.1	101	1 1 1 1 1	yey silt with trace organics 0010 1048 4/1 Dark Gray 1030 Le as above, increasing clay with defthis 1-31 yey silt interbedded with organic 3060 15. Hydrocarbon odor and tracemedium 3-61 parse sand and angular publics ED 1048 3/1 Very Dark to medium silty sand with trace 1070 Inics and shell and angular pebbles. 4/1 Dark Grey tomedium Sandy Silt with some 1080 17.1-8	6-71	4.2	SM		
		1092 4/1	Dark Grey			-		-
7.1-8.1	11 100%	time to me	rum sandy Silt with so	ne	4000			
701-031	10-10	Organics	and cultural debristie.	comb)	71-01	4,2	OH	
		and wood.	104R 2/1 Black		7.1-0.1			
N - An	101	Sandy Clay) and organics with trace	pebbles	0108			1
8.1-9.7	1.6' 100%						OH	
		101K 2	s/1 very dark gray. Hyd	Ogor.	84-9.7'	10.3		
								-
	-							

EA		LITHOLOGIC LOG Sediment Collection Log & Technology, Inc., PBC	Client Name and Project Name GLAES Harbortown - Upstream	Location/Bo		1	Sheet of 1		
	t Name/Signature	Acco	5 Project Number 6256136	CORE COLLECTION INF 8 Date/Time Collected Date/Time P 29 Oct 18 / 1036 29 oct 1			1		
Drilling Subcontractor/Equipment Operator EPA R/V Mudpuppy			6 Latitude/Northing/Grid 42° 21, 272653 'N	Elevation 565.3 System H NAD83 V NAVI					
	Name (License # If Re Bonem	equired)	7 Congitude/Easting/Grid 82°57.468904'U	12 Weather (Te	Depth of Water, ft (start/end) O Weather (Temp, circle conditions, wind direction) U S Sunny (Cloudy/Rain W 5-101				
Rotoso Core: Grab S Other:		rrelin diar rrelin diar -ft xft x	neter neter Manual Push Vibracore Sonicft Box/Ponar/Van Veen/Othe	10	th (ft) 14 Recovery (ft	15 %			
Interval	Recovery		Description of Materials ell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID	PID	USCS		
(Depth)	(# & %) 1.8' (40%	fre to 10 10YR 4/1	0020 0-1.8	(ppm) 0,4	SM				
1.8'-	3' 100%	Very fine sandy SiH with some clayt by drocarbon odor ACYR Z/I Black			2050	15.2	МН		
4.8-	2.2' 100%	Very fine sandy Silt with layers of silty free sand and clay. Trace shell. 104R 3/1 Very Dark Grey			5070 4.8'-7'	4.1	ML		
7- 8.9	1.9' (00%)	Clayey Hydro car	Sitt with some fine . bon odor, clay at LUYR 2/1 Blac	battom.	7090 7-8.9'	9.4	ML		

EA		LITHOLOGIC LOG		Location/Bori	ng Name		Sheet
		Sediment Collection Log	GLAES Hora	ean HT18-0	8		of
	t Name/Signature	& Technology, Inc., PBC	Harbortown - Upstra 5 Project Number	CAM TITLO O	CORE COLLECT	TION INFO	
Coologic	a ramo, orginataro		T Tojout Hambol	8 Date/Time C		e/Time Proce	essed
Emily	Cline &	Jaco	6256136	220c+2018/		30ct-201	8/1710
2 Drilling S	Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface	Elevation 566	5.6	ft
Ceto	icean Mo	yine	42°21, 286307'N	10 Coordinate S		E8CAN	SOCIAN V
3 Operator	Name (License # If R	Required)	7 Longitude/Easting/Grid	8. 8	3		
Joe	Bonem		82°57,543814'W	12 Weather (Te	mp, circle conditio		ction) 3-5Mph
4 Sampling	g Equipment and Meth	odology (Check One)			h (ft) 14 Recov	very (ft) 15	% Recovery
Rotoso	onic: -ft ba	arrel -in dia	meter	100	0 ~		80%
Core:			meter Manual Push Vibracore/S	ionic	8,0	,	00%
Grab S	Sample:	-ft xft x	ft Box/Ponar/Van Veen/	Other 16 Location Not	es		
Other:							
Sample	e Collection Metho	od:					
Interval	Recovery		Description of Materials		Sample II	D PII	D USCS
(Depth)	(ft & %)		nsell Color; Moisture; Density; Consistency (Other Re		Sample Inter	rval (ppi	m) Code
0-1	690	very me	sandy Silt with	trace clay.	0010	0.2	ML
0-1	1 110%		ce roots.	J	0-1"	0.3	ALC
	70%	10 YR 4	1 Dark grey.		U-1		
			V		1020		
1-73	1.3' 100%				100	0.2	ML
, 400	100	Some	granules at botton	n of interval.	1-2.3	0.2	1.12
1	T	Fine so re	ry coarse sand wit	h trace silt,	2045		
1. 2-40	1 2 1KM	granyles and	few pebbles. Hydro	cerbon odor.		. 0.5	5 5W
100	2.5 100	10B 2.5/	Blukh Black Whole	clams hell	2.3-4.0	6	
1			coarse sandy silt ove		11 - 1 -		1.
41-10	1.9' 100%		. Bluesh Blacklaso	above) to	4565	u,	SM
1.00	100%		Dark Crey		4.6-6.	5' 4.	1 211
		1012 111	Dare Cirey				+
0		SIHU S	The sand		6580	0	Flan
6.5-80	1.5 100%				, - 0	0.	5 SM
		104× 4	1 Dark Grey		6.5-8.	0	
	No	100					
8-10		2019					
	Recovery	230ct 2018					
							+
97							

		LITHOLOGIC LOG	Client Name and Project Name	Location/Borin	g Name		Sheet
	S	ediment Collection Log	CLAFS	IITIO .	20	1	of
		Technology, Inc., PBC	Harbortown Upstrea 5 Project Number	M HT18-(1	•
Geologist	Name/Signature		5 Project Number		CORE COLLECTION	e Processe	d
-mili	y Cline 16	1 100	6256136		A STATE OF THE PARTY OF THE PAR		
	1 10				/1630 2300	-	1345
Drilling Su	ubcontractor/Equipmer	nt Operator	6 Latitude/Northing/Grid		levation 565		10 00
Cet	acean		42° 21. 289201'N	10 Coordinate Sy 11 Depth of Water		83 V N	HVD88
Operator	Name (License # If Re	equired)	7 Longitude/Easting/Grid	9.7			
Joe E	Bonem		82°57.670667	55°F	np, circle conditions, w Sunny/Cloudy/Ra	ain	
Sampling	Equipment and Metho	odology (Check One)		13 Boring Depth	(ft) 14 Recovery (f	t) 15 % R	ecovery
Rotoson	nic:ft ba	rrelin dia	rmeter	10	9.6	9	5%
Core:	10 -ft ba	rrel 4 -in dia	meter Manual Push Nibracore/Sonic	10	1.0		,,,
Other:	ample:	-ft xft x	-ft Box/Ponsy/Van Veen/Other	. 16 Location Note	s		
	Collection Metho	d:	Description of Metarials		Sample ID	PID	USCS
(Depth)	Recovery (ft & %)	Mur	Description of Materials nsell Color; Moisture; Density; Consistency (Other Remarks)		Sample Interval	(ppm)	Code
0-1	1' 100%	Wet Silt	with little fine sand		0000	1.7	ML
1-3	2' 100%	with tra	ce roots		1-3'	1,4	ML
35	2' 100%	My dro Co	urbon odor		3050 3-5'	1.2	ML
5-7	2' 100%	Clayey	Silt and trace orange 10 YR 3/1 Dark gree ack layer w/ hydrocar	anics +	5070 5-7' 53'	0.8	OL- ML
	X 200 + 18		104R 3/1 Darka	-1	Malin		OL-

EA	S Engineering, Science, &	LITHOLOGIC LOG ediment Collection Log Technology, Inc., PBC	Client Name and Project Name GLAES Harborfown - Upstream	Location/Bori	E 1/4 /	1	Sheet of
Geologis	t Name/Signature		5 Project Number 6256136	8 Date/Time Co	core collection in Date/Time 18 /1555 240 c	e Process	1
2 Drilling S	Subcontractor/Equipmen	nt Operator	6 Latitude/Northing/Grid	9 Sed Surface	Elevation 570.	1	1
Ceto	acean M	arine	42°21.289611'N	10 Coordinate S 11 Depth of Wat	ystem H NA		VAVD8
	Name (License # If Re Bonem	equired)	7 Longitude/Easting/Grid 82°57, 782160'W	5.0 12 Weather (Ter 55°F	np, circle conditions, win	nd directio	in) 5-kgm
1 Sampling	g Equipment and Metho	odology (Check One)		13 Boring Dept	n (ft) 14 Recovery (ft		
Rotoso		rrelin dia	meter Manual Push/Vibracore/Sonic	2.0	1.05	52	2.5%
Other:		-ft xft x	-ft Box/Ponar/Van Veen/Other	16 Location Note	es		
Interval (Depth)	Recovery (ft & %)	Mun	Description of Materials sell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID Sample Interval	PID (ppm)	USCS Code
0-1	1.05'100%	Very fine with to	to medium clean s race shell. 1042 41	and 1 Dark oney	0-1,05'	0.2	SP

					3		
			145				

lame/Signature Contractor/Equipme Lean Mo ame (License # If Research quipment and Methol c:ft ba	nt Operator A Y IVE equired) odology (Check One) rrelin dia	5 Project Number 6256136 6 Latitude/Northing/Grid 42621.3098661N 7 Longrade/Easting/Grid 82657.9256091W	10 Coordinate S 11 Depth of Wa 9 4 12 Weather (Te	CORE COLLECTION collected Date/Ti 2/1521 24 0 Elevation 566 System H N ter, ft (start/end)	ime Process 0c+2018/ 14D83 V !	0830
contractor/Equipme Lean Ma ame (License # If Remem Equipment and Method -ft ba _ft ba nple:	nt Operator A Y IVE equired) odology (Check One) rrelin dia	6 Latitude/Northing/Grid 42° 21.309866'N 7 Longrade/Easting/Grid 82° 57.925609'W	9 Sed Surface 10 Coordinate S 11 Depth of Wa 12 Weather (Te	Elevation 566 System H N ter, ft (start/end)	AD83 V	0830
contractor/Equipme Lean Ma ame (License # If Remem Equipment and Method -ft ba _ft ba nple:	nt Operator A Y IVE equired) odology (Check One) rrelin dia	6 Latitude/Northing/Grid 42° 21.309866'N 7 Longrade/Easting/Grid 82° 57.925609'W	9 Sed Surface 10 Coordinate S 11 Depth of Wa 12 Weather (Te	Elevation 566 System H N ter, ft (start/end) mp, circle conditions,	AD83 V !	fi
ame (License # If Reinem quipment and Methology -ft ba	equired) odology (Check One) rrelin dia	42°21.309866'N 7 Longridde/Easting/Grid 82°57.925609'W	10 Coordinate S 11 Depth of Wa 9 4 12 Weather (Te	System H N ter, ft (start/end)		JAVD88
ame (License # If Rependent) quipment and Methology c:ft ba	equired) odology (Check One) rrelin dia	7 Longitude/Easting/Grid 82° 57.925609 W	11 Depth of Wa 9 4 12 Weather (Te 55° F	mp, circle conditions,		JAVD88
equipment and Methodoc:ft ba	odology (Check One) rrelin dia	82° 57.925609 'W	12 Weather (Te 55° F	mp, circle conditions,	wind direction	
quipment and Metho c:ft ba ft ba nple:	rrelin dia		55°F		wind direction	,
c:ft ba 	rrelin dia	meter			Rain WSW	
		meter	13 Boring Dept	th (ft) 14 Recovery	(ft) 15 %	Recovery
mple:		meter Manual Push Vibracore/Sonic	1094	9.44	9	4%
	-ft x -ft x	ft Box/Ponar/Van Veen/Other	16 Location Not	es		
EBO 10/24/	B				1.0	
	u.	Description of Materials		Sample ID	PID	USCS
(ft & %)		sell Color; Moisture; Density; Consistency (Other Remarks)	1	Sample Interval	(ppm)	Code
1' 100%	Wet Silt	with trace plant d	ebris	0010	0.2	AAI
	1042 4/1	Dark Grey		0-1,		ML
100%				1-3'	0.2	ML
2' (06%	Clayey si and train sitty fine	It with some fine s ce organics grading sand. loye 3/1 Very da	iand to rkgrey	3050 3-5'	0.2	ML/ SM
2' 100%	Silty Bu	e sand with trace		5070	0,2	SM
12.4, 80% 15.				7010	0.2	SM
	1					
1	Recovery (# & %) 1 100% 1 100% 2 100%	(#8%) Munt Silty Fine (#8%) Munt Mark 100% Wet Silty 100% With trace Clayey Si and trace Silty Fine 100% Silty Fine Silty Fine	Recovery (#8%) Description of Materials Munsell Color; Moisture; Density; Consistency (Other Remarks) Wet Silt with trace plant d Soft 1042 4/1 Dark Grey 100% With trace fine sand Clayey silt with some fine s and trace organics grading Silty fine sand loye 3/1 Very da Silty fine sand with trace 100% Silty fine sand with trace Silty fine sand with trace Silty fine sand with trace	Recovery (# & %) Munsell Color, Moisture; Density; Consistency (Other Remarks) 1' 100% West Silt with trace plant debris 104/2 4/1 Dark Grey 100% With trace fine sand Clayey Silt with some fine Sand and trace organics grading to Silty fine sand with trace organics 100% Silty fine sand with trace organics Silty fine sand:	Recovery (18 &%) Munsell Color; Moisture; Density; Consistency (Other Remarks) 1' 100°70 Wet Silt with trace Plant debris Sample ID Doll Salva Id Sample Id Doll Sold Sample ID Sample ID Sold Sold	Recovery (#8%) Munsell Color, Moisture; Density; Consistency (Other Remarks) 1 100% Wet Silt with trace plant debris 0010 Soft 104R 4/11 Dark Grey 10-11 100% With trace fine sand 1-31 Clayey Silt with some fine Sand 3050 and trace organics grading to 3-51 Silty fine sand with trace organics 5070 Silty fine sand with trace organics 5070 Silty fine sand: 7010

		LITUOLOGICLOG	Olient Name and Bullion	La con to	- 20 MG - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2			Ob
		LITHOLOGIC LOG Sediment Collection Log	Client Name and Project Name GLAES	Location/Bori			1	Sheet
	Engineering, Science, st Name/Signature	& Technology, Inc., PBC	Harbortown - Upstream 5 Project Number	F1110-1	CORE COLL	ECTION IN		of
		00		8 Date/Time C		Date/Time F	COLUMN TO SERVICE STATE OF THE PERSON NAMED IN COLUMN TO SERVICE STATE OF THE PERSON NAMED STATE OF THE PERSON NAMED STATE OF THE PERSON NAMED STATE OF THE PERSON NAM	ed ,
Emil	ly Cline &	Jelen	6256136	220ct 2018	3/1420	2300	-201	8/1540
2 Drilling S	Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface	Elevation	568.	7	1
Ceta	cean Mo	wine	42° 21.331013' N	10 Coordinate S 11 Depth of Wat		H NAD8	3 1	JAVD88
-	r Name (License # If R	Required)	7 Congitude/Easting/Grid	6.7				
Joe	Bonem	4	82°58. 089107'W	12 Weather (Ter	-	ditions, wind Cloudy/Rain	directio	n)
4 Samplin	g Equipment and Meth	nodology (Check One)	07 0.00 1.0.	13 Boring Depti		ecovery (ft)	15 % F	Recovery
Rotoso	onic:ft ba	arrelin dia	meter	10	a	7	Q.	707
N Core:	10 -ft ba	arrel 4 -in dia	meter Manual Push/Nibracore/Sonic	10	17.	. 7	1	7%
Grab S	Sample:	-ft xft x	-ft Box/Ponar/Van Veen/Other	16 Location Note	es	-		
Other:								
	e Collection Metho	od:						
(Depth)	Recovery (ft & %)	Mun	Description of Materials sell Color; Moisture; Density; Consistency (Other Remarks)		Sample Sample	Control of the Contro	PID (ppm)	USCS
0-1	11		+ sit with some fine	sand	0010		01-7	
0-1	11 100%	trace orga	WIC. 7.5YR 4/1 Dar	- K Corpu			31.8	ML
			1.01.2		0-1			
		Hydrocarbon	w/ trace clas	,	1030			
1-3	2' 100%	Cook	1 10-la la la cala	1			7.2	ML
- 14			Black bedded Silty		1-3			
	1 07	548 25 Sil	ty very fine to fin	e sand	3050	0		
3-5	2 100%	OI T WI	the few granules as	nd	2 -	- 1	2.2	SM
		black in	terbedded clay.		3-5			
- 0	21 07	7.5YR Fine	Sandy Clay aradina	to	507	0		CLI
5-7	2'100%	4/1 Clar	en sand Trace wood	A correct of the		1	101	
		Dark Gry and	sandy clay grading ey sand. Trace wo of pebbles.	1) -	5-1	•		SC
~		10	0 1 - 0	mto	7010	,		01
.440	2.7 90%	7 548 4/1 10	Sandy Clay Medin				22.8	CL
		Darkgrey	3		7-9.7			
		, 5						
								601
								-

		LITHOLOGIC LOG Sediment Collection Log	GLAES	Location/Bor	-	1	Sheet of 1
	ngineering, Science, t Name/Signature	& Technology, Inc., PBC	Harbortown - Upstream 5 Project Number		CORE COLLECTION IN		-
	y Cline	Egler	→ 6256136	8 Date/Time 0		Process	
2 Drilling S	ubcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid		Elevation 561.8		
	EPA R/V Mu	dpuppy	42°213131879	10 Coordinate S 11 Depth of Wa		33 V	NAVD88
	Name (License # If F Bonem	Required)	7 (Longitude/Easting/Grid 82°58.3820	13 Weather (Te	mp, circle conditions, win		n) Smph
4 Sampling	g Equipment and Meth	nodology (Check One)			th (ft) 14 Recovery (ft)		
Rotoso	12:17	arrelin dia	ameter Manual Push Vibracore	Sonic 10'	9.6'	9	16%
Other:		-ft xft x		And the second second	des		
Interval	Recovery	14	Description of Materials	Demostra)	Sample ID	PID	USCS
(Depth)	(# & %)		nsell Color, Moisture; Density; Consistency (Other to the di with Sandy and you bulls		Sample Interval	(ppm)	ML
		0.00	104R 4/1 D		0-11	00-9	111
1-3	2' 100%	Hydroco	th trace clayer to bon odor.	2 11/1 \$ 11/5		1.5	ML
3-51	21 100%	Clayey sil	t with trace A	ne clayand	3050	0.5	ML
5-63	1.3' 100%	Srity co	lay with trace	^	5060	0.9	CL
6.3-,	2.5' 100%	Clayer Shell: C fine sa	TITE STATE TYPE	- WNG WILL	6010		ML
8.8'-	1.3' took	Silt sand	ind interbeds of and shell. I fine sand with and shelland p	trace coars	8-8'-10.1	0.5	3M

Geologist Name/Signature Emily Cline Emblody, Inc., PBC Harbortown - Upstream Emily Cline Emblody 5 Project Number Geologist Name/Signature Geologist Name/S	S	LITHOLOGIC LOG	Client Name and Project Name GLAES	Location/Bor	1 4 4		Sheet
Emily Cline Em		Technology, Inc., PBC	Harbortown - Upstream	H118-	14	1	of 1
Drilling Subcontractor/Equipment Operator EPA R/V Mudpuppy Grant Statistics of the Constitution of Materials Grab Sample: Gr	0.	/	5 Project Number	0 0 0			
Departor Name (License # If Required) Joe Bonem 7 Longitude/Easting/Grid Joe Bonem 8 2 5 5 6 4 8 3 7 7 W 10 Coordinate System H NAD83 V NAVD81 11 Depth of Water, ft (start/end) 19 4 9 12 Weather (Temp, circle conditions, wind direction) 12 Weather (Temp, circle conditions, wind direction) 13 Boring Depth (ft) 14 Recovery 15 Sampling Equipment and Methodology (Check One) Rotosonic:	Emily Cline,	/ Employ	6256136		/		
Operator Name (License # If Required) Joe Bonem 7 Longitude/Easting/Grid 82 58.648377 W 12 Weather (Temp, circle conditions, wind direction) Sunny/Cloudy/Rain N 5 mph Sampling Equipment and Methodology (Check One) Rotosonic: -ft barrel -in diameter Core: 10 -ft barrel -in diameter Manual Push Vibracore/Bonic Grab Sample: -ft x -ft x -ft Box/Ponar/Van Veen/Other Other: Sample Collection Method: Numsell Color, Moisture; Density, Consistency (Other Remarks) Numsell Color, Moisture; Density, Consist	Drilling Subcontractor/Equipmen	nt Operator	6 Latitude/Northing/Grid	9 Sed Surface	Elevation 555.	.96	
Sampling Equipment and Methodology (Check One) Rotosonic:	EPA R/V Mudp	ouppy	42°21.250149'N			083 V	NAVD88
Sampling Equipment and Methodology (Check One) Rotosonic:	Operator Name (License # If Re-	quired)	Longitude/Easting/Grid				
Rotosonic:	Joe Bonem		82°58.648377'	12 Weather (Te	emp, circle conditions, wi Sunny/Cloudy/Ra	. A 11 T	
Core: 10 -ft barrel 4 -in diameter Manual Push Vibracore/Sonic Grab Sample:ft xft	Sampling Equipment and Metho	dology (Check One)		13 Boring Dep	th (ft) 14 Recovery (ft	t) 15 % F	Recovery
Core: 10 -ft barrel 4 -in diameter Manual Push Vibracore Sonic Grab Sample: -ft x -ft x -ft Box/Ponar/Van Veen/Other Other: Sample Collection Method: Interval Recovery (Depth) (ft & %) Munsell Color; Moisture; Density; Consistency (Other Remarks) Sample ID PID USC (ppm) Code Trace granulls, Constant with OCIO trace granulls, and construction certain depths and shell 10 TR 2/1 Brack Silty Clay with some fine toward 1020 2.4 SM Constant Silty Clay with some fine toward 1020 2.5 Cl	Rotosonic:ft bar	relin diar	neter	7	19	1	ZZ
Grab Sample:ft xft Box/Ponar/Van Veen/Other Other: Sample Collection Method: Interval Recovery (Depth) (# & %)	Core: 10 -ft bar	rel 4 -in dian	neter Manual Push Vibracore Soni		101	6	Da
Interval Recovery (Depth) (#8%) Munsell Color, Moisture; Density; Consistency (Other Remarks) Sample ID Sample ID Sample Interval (ppm) Code 1-1.3 1.3 100/6 Sity fine to very Coarse Sand with O010 trace granucles, and construction debrisand shell 1012 2/1 Brack Silty Clay with some fine tovery 1020 2.4 SM Silty Clay with some fine tovery 1020 2.5 Cl	Grab Sample:				tes		
(Depth) (# & %) Munsell Color, Moisture; Density; Consistency (Other Remarks) Sample Interval (Opm) Code 1-1.3' 1.3' 100% Sifty fine to very Coarse Sand with 0010 trace granucles, and construction clebrisand shell 10% 21 Brack Sifty Clay with some fine tovery Coarse Sand and trace Shell. 0.5 C1		i:					
1-1.3' 1.3' 100% Sity fine to very coarse sand with 0010 trace granucles, and construction cerisand small 10th 2/1 Brack 3'- 0.6' 100% crarse sand and trace shell. 0-1.3'		Mune		ke)			USCS
trace granutles, and construction o-1.3' debrisand snell 10/2 2/1 Brack 0-1.3' Silty Clay with some fine towary 1020 Coarse Sand and trace shell. 0.5 C1							
1.3'- 0.6' 100% coarse sond and trace shell. 1020 25 CI	10016	trace a	amister and cons	michion		2,4	SM
1.3'- 0.6' 100% coarse sond and trace shell. 1020 25 CI		debrisa	a smill 1012 2/1 Br	ack	0-1.3'		
1.9' 0.6 100% crarse swind and trace shell. L3-1.9' L3-1.9'	1.3				1070		
104R 3/1 Very Dark (aray 1.3-1.9)	0.6 100%	Course s	sond and trace she	ll.		0.5	CI
	107	* *	LOYR 3/1 Very Da	WK Corry	1.3-1.9		
				,			
						-	
	*						
		,				-	
					*		
						-	
							*

- A		LITHOLOGIC LOG	Client Name and Desirat Name	I and the state of	N		01
EA EA E		Sediment Collection Log & Technology, Inc., PBC	Client Name and Project Name GLAES Harbortown - Upstream	Loçation/Bor	-	1	Sheet of 1
	st Name/Signature	The second secon	5 Project Number		CORE COLLECTION IN	IFO	
Emile	y Cline	Egen	6256136	8 Date/Time 0	Collected Date/Time		
2 Drilling S	Subcontractor/Equipme	ent Operator	atitude/Northing/Grid	9 Sed Surface			ft
	EPA R/V Muc	dpuppy	42°21.211720'N	10 Coordinate S		33 V	NAVD88
	r Name (License # If R	Pequired)	7 Longitude/Easting/Grid		4 ft		
Joe	Bonem		82°58.731659'W	12 Weather (Te	mp, circle conditions, win Sunny/Cloudy/Rair		5mph
4 Sampling	g Equipment and Meth	odology (Check One)		13 Boring Dept	th (ft) 14 Recovery (ft)	15 %	Recovery
Rotoso		arrelin diar	neter Manual Push/Vibracone Cortic	6.5	6.6'	t	05
1				16 Location Not		1 10	0170
Other:	e Collection Metho		ft Box/Ponar/Van Veen/Other	Location Not	es		
Interval	Recovery	ou.	Description of Materials		Samula ID	DID	11000
(Depth)	(ft & %)	Muns	ell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID Sample Interval	(ppm)	USCS Code
0-05	5' 100%	Fine to co	parse clayen san	id with	0005		
	30 1000	oyster sh	oarse clayen san	Dark Grey	05'	0.9	SC
0.5-3	2.5' 100%	Clay wi	th trace granules e sand. 2.54R 4/	and Dark Grey	0530	0.5	CH
3-5°	2' 100%	Same (above		3050 30-5.0°	0.4	CH
5-6.6	1.6' 100%	Same as	abore.		No Sample Colle	0.4 Cled.	СН
×	*						
-							
	- Sel						

1 Geologis Emily 2 Drilling S 3 Operato Joe	Engineering, Science, & st Name/Signature Y Cline Subcontractor/Equipment EPA R/V Mud or Name (License # If Ref. Bonem) g Equipment and Methologic:ft ba	nt Operator puppy equired) odology (Check One) rrelin diar	Client Name and Project Name GLAES Harbortown - Upstream 5 Project Number 6256136 6 Catitude/Northing/Grid 42 21 13 02 91 N 7 Congitude/Easting/Grid 82 58 8 18345 W meter meter Manual Push/Vibracore/Cortic	9 Sed Surface 10 Coordinate S 11 Depth of Wa 27, 12 Weather (Te	CORE COLLECTION I collected Date/Tim 1500 250 Elevation 548. System H NAD ter, ft (start/end) mp, circle conditions, win sunny Cloudy/Ra h (ft) 14 Recovery (ft	NFO e Process C+18 H D83 V and direction N 5 1 15 % I	NAVD88
Grab S Other:	Sample:	-ft xft x	-ft Box/Ponar/Van Veen/Other	16 Location Not	ės		
Interval (Depth)	Recovery (ft & %)	Muns	Description of Materials sell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID Sample Interval	PID	USCS Code
0-1	1' 10%		avel with fine to coars Clay with trace Coa uclas. 2542 5/1	e sandat rse sand Gray		(ppm) 0.7	GC/ CH
1-3'	2' 100%	2	h trace coarse so 2.54R 5/	ind and	1-3'	0.5	СН
3-43	1.7' 100%	Sam	le as above		3050	0.5	СН
				*			

EA		LITHOLOGIC LOG Sediment Collection Log	Client Name and Project Name GLAES	Location/Boring	^	1	Sheet of 1
	THE RESERVE OF THE PERSON NAMED IN COLUMN 1	& Technology, Inc., PBC	Harbortown - Upstream	1			
1 Geologis	t Name/Signature		5 Project Number		ORE COLLECTION IN		
Emil	ly Cline	eget	6256136	240c+18/			
2 Drilling S	Subcontractor/Equipme	ent Operator	6 Latitude Northing/Grid	9 Sed Surface Ele	· ·		ft
	EPA R/V Muc	dpuppy	42° 21.162420'N	10 Coordinate Syst		3 V	NAVD88
3 Operator	Name (License # If R	equired)	7 Longitude/Easting/Grid	11 Depth of Water,	it (start/end)		
Joe	Bonem		82° 58.895003'W	12 Weather (Temp 42°F	circle conditions, wind Sunny/Cloudy/Rain		n) 5mph
4 Sampling	g Equipment and Meth	odology (Check One)		13 Boring Depth (1	t) 14 Recovery (ft)	15 % F	Recovery
Rotoso	onic:ft ba	arrelin dia	meter	6.0	5.4	9	0%
Core:	10 -ft ba	arrel 4 -in dia	meter Manual Push/Vibracore/Sonic	0.0	<i>O</i> ₀ 7		010
Grab S Other:	Sample:	-ft xft x	-ft Box/Ponar/Van Veen/Other	16 Location Notes	140		-
Sample	e Collection Metho	od:					
Interval	Recovery		Description of Materials		Sample ID	PID	USCS
(Depth)	(ft & %)	Mun	sell Color; Moisture; Density; Consistency (Other Remarks)		Sample Interval	(ppm)	Code
0-1.9	1,9' 100%	shell at	edrum Sandy Silt with top and some orga 0.5' of interval.	nias in	0020 0-1.9'	8.2 lack	MY
1.9-	0.9' 100%	Soft. Clay with	ntrace Coarse sand and grav 2 5/1 Gray	Shew	1.9-2.8		CL
2.8- 3.6	0.8' 100%	pebbles o	y coarse sand with s g downward with granu atthe bottom trace shell.	ome days ules and 10484/1 Darko	3035 2.8-3.6'	0.6	SC
3.6~	1.8' 100%	Clay with	n trace medium sand, grular pebbles. 104R	5/1 Gray	3550 3,6-5.4'	0.6	CH

		LITHOLOGIC LOG	Client Name and Project Name	Location/Bor	ring Name		Sheet
		Sediment Collection Log	GLAES	HT18-	19	1	of 1
	<i>ngineering, Science, d</i> at Name/Signature	& Technology, Inc., PBC	Harbortown - Upstream 5 Project Number		CORE COLLECTION IN	JEO.	
_	/	1000	T Tojost Number	8 Date/Time C			sed/
Emily	Clinet	He	6256136	24 Oct 18	1/11/5 250	ct 18	/1435
2 Drilling S	Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface	Elevation 554.	.6	ft
	EPA R/V Mud	dpuppy	4221.145827N	10 Coordinate S	System H NAD	83 V	NAVD88
	r Name (License # If R Bonem	equired)	7 Longitude/Easting/Grid 82°58.952226 W	20.5 12 Weather (Te	emp, circle conditions, win Sunny/Cloudy/Rain		on) Sniph
4 Sampling	g Equipment and Meth	odology (Check One)		13 Boring Dep	th (ft) 14 Recovery (ft)	15 %	Recovery
Rotoso	onic: -ft ba	arrel -in dia	meter	70-	· C. 700	a	270
Core:			meter Manual Push/Vibracore Sonje	0,25	ff. 3.0A	/	2.0%
П				46. Leastier No.		1	
	Sample:	-ft xft x	ft Box/Ponar/Van Veen/Other	16 Location No	ies		-
Other:							
Sample	e Collection Metho	od:					
Interval	Recovery		Description of Materials		Sample ID	PID	USCS
(Depth)	(ft & %)		nsell Color; Moisture; Density; Consistency (Other Remarks)		Sample Interval	(ppm)	Code
0-1	1' 100%		sandy silt with some of		0010	9.4	01
			drocarbon odos. WYR		0-0.91	10'	OL
1-2.3	1.3' 100%	Soundy Corbon oc Shells, 1	Fine Solt with stron Lot and Sheen. Numerou OYR 3/1 Very Dark Gre	ig hydro-	1020	0.8	ML
		fine to c	coarse sand with some		2030		CM
2.3-2	0.5 100%	. /	race silt and peobles. 4/1 Dark Grey		2.3'-2.8'	0.7	SM
	-						

v NAV	RECOLLECTION INF	9 Sed Surface Elevation 10 Coordinate System 11 Depth of Water, ft (star 25, 9 12 Weather (Temp, circle 14 27 F Sun	Harbortown - Upstream 5 Project Number 6256136 6 Latitude/Northing/Grid H 2° 2 . 78' N 7 Longitude/Easting/Grid 8 2° 59 . 02033' W meter meter Manual Push/Vibracore/Sonic -ft Box/Ponar/Van Veen/Other	dpuppy required) odology (Check One)	ubcontractor/Equipme EPA R/V Mud Name (License # If Re	Emily Drilling Su
direction) N 5 15 % Recov	ation 549 attending to the state of the stat	8 Date/Time Collected 24 QL 18 1013 9 Sed Surface Elevation 10 Coordinate System 11 Depth of Water, ft (star 25 9 9) 12 Weather (Temp, circle 12 F Sun 13 Boring Depth (ft) 14 3 25 4	6 Latitude/Northing/Grid 6 Latitude/Northing/Grid 7 Longitude/Easting/Grid 82° 59. 102033 W meter meter Manual Push/Vibracore/Eonic	dpuppy required) odology (Check One)	ubcontractor/Equipme EPA R/V Mud	Emily Drilling Su
V NAV	m H NAD83 (start/end) circle conditions, wind Sunny/Cloudy/Rain 14 Recovery (ft)	9 Sed Surface Elevation 10 Coordinate System 11 Depth of Water, ft (star 25.9 12 Weather (Temp, circle 4.25 F Sun 13 Boring Depth (ft) 14 3.25 A	6 Latitude/Northing/Grid F12° 21. 78' N 7 (Longitude/Easting/Grid 82° 59. 102033' W meter meter Manual Push/Vibracore/Eonic	dpuppy required) odology (Check One)	ubcontractor/Equipme EPA R/V Mud Name (License # If Re	2 Drilling Su
direction) N 5 15 % Recov	m H NAD83 (start/end) circle conditions, wind Sunny/Cloudy/Rain	10 Coordinate System 11 Depth of Water, ft (star 25, 9 12 Weather (Temp, circle 42 F sun 13 Boring Depth (ft) 14 3, 25 A	H2°21. 78'N 7 (Longitude/Easting/Grid 82°59.102033'W meter meter Manual Push/Vibracore/Eonic	dpuppy required) odology (Check One)	EPA R/V Mud	
direction) N 5 15 % Recov	(start/end) circle conditions, wind Sunny/Cloudy/Rain 14 Recovery (ft)	11 Depth of Water, ft (star 25, 9) 12 Weather (Temp, circle 42 F sun 13 Boring Depth (ft) 14 3.25 A	7 (Longitude/Easting/Grid 82°59.102033 W meter meter Manual Push/Vibracore/Eonic	equired) odology (Check One)	Name (License # If Re	3 Operator
N 5, 15 % Recov	(start/end) circle conditions, wind Sunny/Cloudy/Rain 14 Recovery (ft)	11 Depth of Water, ft (star 25, 9) 12 Weather (Temp, circle 42 F sun 13 Boring Depth (ft) 14 3.25 A	7 (Longitude/Easting/Grid 82°59.102033 W meter meter Manual Push/Vibracore/Eonic	odology (Check One)		3 Operator
N 5, 15 % Recov	Sunny/Cloudy/Rain 14 Recovery (ft)	12 Weather (Temp, circle 42 F sun 13 Boring Depth (ft) 14 3.25 A	meter meter Manual Push/Vibracore/Conic	odology (Check One)		Operator
N 5, 15 % Recov	Sunny/Cloudy/Rain 14 Recovery (ft)	13 Boring Depth (ft) 14 3.25 A	meter meter Manual Push/Vibracore/Sonic		Bonem	
92.	14 Recovery (ft)	13 Boring Depth (ft) 14 3.25 A	meter meter Manual Push/Vibracore/Sonic			Joe E
92.		3.254	meter Manual Push/Vibracore/Sonic		Equipment and Metho	Sampling
	3.04		meter Manual Push/Vibracore/Sonic	111.01	nic: -ft ba	
PID U		16 Location Notes	\sim \sim			Core:
PID U		Annual Control of the				
PID U			it boxi olalivali veeli/olilei	-ILX		Other:
PID U				od:	Collection Metho	
	Sample ID	Sa	Description of Materials		Recovery	Interval
(ppm) C	Sample Interval		sell Color; Moisture; Density; Consistency (Other Remarks)		(ft & %)	(Depth)
	010	with oo	the to medium sound	Silty f	0.8' 100%	0-0.8
0.5 S	2.0 ml				0.00 (0-00)	
	0-0.8'		2/1 Black			
	020	102	Clay, high plasticity	Stiff		0.00
0.4 C			51 0	1-0	1 100%	0.8
	18-1-8	0.8	Clay, high plasticity 5/1 Greenish Cross	104	*	1.8
	1030		fine sand with to	011	1	
0,5 3		~ + bottom	TIME Sand WITH	31119	1 100%	1-8-
	.8-2.8'	108	Shell, wood, + Cabble 2.58 4/1 Dark Grey of Co	990 Clays		2.8
		-			-	
		-				
_						
						1

EA		LITHOLOGIC LOG Sediment Collection Log		Location/Boring	7.0		Sheet
EA		& Technology, Inc., PBC		HT18-	21	1	of 1
1 Geologi:	st Name/Signature		5 Project Number		ORE COLLECTION IN	FO	
1	1 00	1900000	6256136	8 Date/Time Co			1
	ily Cline				0930 2500		1545
2 Drilling	Subcontractor/Equipme		6 Latitude/Northing/Grid		levation 564.		ft
	EPA R/V Mu	dpuppy	42°21.090310'N	10 Coordinate System 11 Depth of Water		33 V	NAVD88
3 Operato	or Name (License # If R	Required)	7 Longitude/Easting/Grid	11 Deput of Water	-		
A. A. D. D. D. D. D.	Bonem		,	12 Weather (Tem	p, circle conditions, win	d direction	n)
			82° 59. 206108 W	101	Sunny/Cloudy/Rain	, N S	Suph
4 Samplin	g Equipment and Meth	nodology (Check One)			(ft) 14 Recovery (ft)		
Rotos		arrelin dia	1_	24	t 1.75ft	8	7.5%
Core:			ameter Manual Push/Vibracore Sonic	40 Lassies Notes		_	
		-ft xft x	ft Box/Ponar/Van Veen/Other	16 Location Notes			
Other:			*				
	e Collection Metho	od:					
(Depth)	Recovery (ft & %)	Mu	Description of Materials nsell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID Sample Interval	(ppm)	Code
(Dopan)				-dood		(ppm)	Code
0-	171 100	sing +	me to very coarse so	ans and	0015	MII	CAA
1.71	10+ 1W60	grave	Have shell topion	ous.	0-1-71	0.4	SM
17.1		building	me to very coarse so Trace shell topoble Hebris (i.e. Brick)		Unisi		
			3				
						-	
				-			
			West than the factor of the fa				_
	-		*				

Sheet		ing Name	Location/Boring N		LITHOLOGIC LOG		
of (1	-23	HT18-2	GLAES Harbortown-Upstream	Sediment Collection Log ing, Science, & Technology, Inc., PBC	A Engineerin	EA
-	FO	CORE COLLECTION INI		5 Project Number		gist Name/Si	
sed	Proces	Collected Date/Time	8 Date/Time Colle		1 0000	00:	End
1015	18/	1715 240ct1	23 Oct 18/1	6756136	e - Pello	,	U
		Elevation 568, 9	9 Sed Surface Elev	6 Latitude/Northing/Grid	actor/Equipment Operator	Subcontrac	2 Drilling
NAVD8	33 V	Idiaho	10 Coordinate Syste	42°21.066846'N	ian Marine	ta ce	Cet
			6.5	7 Longitude Easting/Grid	License # If Required)	tor Name (Li	3 Operato
		emp, circle conditions, wind Sunnycloudy/Rain		82°59. 390311'W		e Bonem	Joe
	-	th (ft) 14 Recovery (ft)			nent and Methodology (Check One)	ing Equipme	4 Samplin
20%	a	9.2	10.4	meter	-ft barrelin dia	sonic:	Rotoso
2 10	7	7. 2	10 33	meter Manual Push/Vibracore/Sonic	O -ft barrel 4 -in dia	10	χ Core:
	+	es	16 Location Notes	-ft Box/Ponar/Van Veen/Other			Grab S
							Other:
					ction Method:	ole Collect	Sampl
USCS	PID	Sample ID		Description of Materials	covery	Rec	Interval
Code	(ppm)	Sample Interval		sell Color; Moisture; Density; Consistency (Other Remarks)		(ft d	(Depth)
04	0,6	0010	Ton in Correy 0	o.3. 10 YR 4/1 Dark	100% fine sav	1,	0-1
M2	6.2	1-3'	gramelos Dav K. Grey	oblest 10 YR 4/1	100% Silty Family and per	2'	1-3'
SCI	2.9	3050	oee 3	fine Sand with tro d Silty clay interbed 1/1 Dark Grey	100% Clayey silt an	2'	3-5'
SC/ CL	0.3	5070 5-7' MS/MSD	4			2'	5-7'
SC/	0,3	7010 7-10 7-9.2 Archive	depth.	terbeds increase with d	73% Clay mit	2.2	7-10

EA		LITHOLOGIC LOG rediment Collection Log Technology, Inc., PBC	Client Name and Project Name GLAES Harbortown- Upstream	Location/Borin		1	Sheet of /
Geologist	Name/Signature Cline /-		5 Project Number 625613C	8 Date/Time Co	CORE COLLECTION IN Dilected Date/Time 3/16/10 240c	Process	
Drilling Su	ubcontractor/Equipmer	nt Operator	6 .Latitude/Northing/Grid		Elevation 560		
Ce	tacean M	larine	42°21.036536	10 Coordinate St		D83 V 1	NAVD8
	Name (License # If Re Bonem	equired)	7 (Longitude/Easting/Grid 82° 59 , 420921'W	52°F	np, circle conditions, win Sunny/Cloudy/Rain	NS	Mph
		rrelin dia	ameter ameter Manual Push/Vibracore/Sonic	13 Boring Depth	7.8 /		
Other:		-ft xft x	-ft Box/Ponar/Van Veen/Other	16 Location Note	es		
Interval (Depth)	Recovery (ft & %)	Mui	Description of Materials nsell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID Sample Interval	PID (ppm)	USCS Code
0-1'	1' 100%	Silty ver	ry fine to fine sand with 104R 4/1 Dark Grey	large	0010	0.3	SM
1-2.7'	1.7' 100%		edium Sand with son d with clayey STA. 10 YR 4/1 Dark Gr		1-2.7	0.3	SM
2.7-5'	2.3' 100%		ay with trace fine So low plasticitis loye 4/1 Dark (ind.	2550 2.7-5'	0.3	CL
5'-	1.6' 100%	Clayeyfi layera	Sand w/ fine to coarse & 6.4-6.6 trace she 4/1 Dark Groy and pebbi	Sand U, gramles es	5065	0.3	SC
6.6- 7.8'	1.2' 100%	Clay i	with trace medium 5 medium to high plan 2 4/1 Dark Grey.	and. sticity	6575 6.6-7.8' Archive	0.3	CL
			*				

EA		LITHOLOGIC LOG		Location/Bori	ng Name		T	Sheet
		Sediment Collection Log	GLAES	HT18-7	5		10	of (
The same of the sa	NAME AND ADDRESS OF TAXABLE PARTY.	& Technology, Inc., PBC	GLAES Harbortown - 1) pstream	11110 2				0. 1
1 Geologis	st Name/Signature		5 Project Number		COILE COLLE			
5mil	y Cline	egces-	6256136	8 Date/Time C 2300 201	1	240ct 2		
2 Drilling S	Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid		Elevation 5	-		ft
Cet	acean M	arène	42°21.023073'N	10 Coordinate S 11 Depth of Wat		NADS.	3 V	NAUD88
	r Name (License # If F	Required)	7 Congitude/Easting/Grid	8.5	5 84			
Joe	Bonem		82°59.468149'W	12 Weather (Tel	mp, circle cond Sunny/C	litions, wind o loudy/Rain	N 5	n) -lomph
4 Samplin	g Equipment and Meth	nodology (Check One)		13 Boring Dept	h (ft) 14 Re	covery (ft)	15 % F	Recovery
Rotoso	onic: -ft ba	arrel -in dia	ameter			-1	0	-07
Core:	The second secon		ameter Manual Push/Vibracore/Sonic	10'	9.	5'	7	56
		-ft xft x	ft Box/Ponar/Van Veen/Other	16 Location Not	es			
Other:								
Sampl	e Collection Metho	od:						
Interval	Recovery		Description of Materials		Sample	500 Sec. 1	PID	USCS
(Depth)	(ft & %)		nsell Color; Moisture; Density; Consistency (Other Remarks)		Sample Ir	nterval	(ppm)	Code
		Medium S	andy silt with layer of	silty.	0010			
0-1	1' 100%	coarse s	and and peobles at 0.	7-0.8'		2	3.6	ML
	16		4/1 Dark Grey		0-1"			
			Sit with trace shell.	Sheen	1030			
1-3	2' 100%		d + strong hydrocart			1	17	ML
					1-3'	1	9 -	111
		4	/ Black					
2 42	1.2' 100%	time to in	rediam 900 V		3040			
3-7.6	4.7 10	Same	e as above		3-4.	21	13	ML
		34110	(20 000		5-4.7	_		
		fine so n	redium sand with	silty	4070			
4.2-	2.8' 100%					i. L	1.6	SMI
4.2-	250 10	1045 4/13	brigary. trace organ	1100.	4.2-	7'	100	CLY
	660				7010			
7-	2.5' toot						3.7	SM
10	83%	Same	-as above		7-9.5	- 1	11	J
	0310				1			
				(-)				

	S	LITHOLOGIC LOG ediment Collection Log	Client Name and Project Name GLAES	Location/Bori			Sheet
	ngineering, Science, &	Technology, Inc., PBC	Harbortown - Upstream	HT18-			of 1
Geologis	t Name/Signature	The same of the	5 Project Number	8 Date/Time C	CORE COLLECTION II ollected Date/Time	-	ed
Emily	Cline /Es	mby Cle	6256136		18/1440 2400		
Drilling S	Subcontractor/Equipmen	nt Operator	6 Latitude/Northing/Grid	9 Sed Surface	F. 1		
	EPA R/V Mud	рирру	42°20.976594'A	10 Coordinate S 11 Depth of Wat		83 V	NAVD88
Operator	Name (License # If Re	aquired)	7 Longitude/Easting/Grid	G.9	er, it (starvend)		
	Bonem	quireuj	82° 59. 557515 h		mp, circle conditions, wir		n)
Sampling	g Equipment and Metho	dology (Check One)		13 Boring Dept	h (ft) 14 Recovery (ft)	15 % [Recovery
Rotoso	onic: -ft bar	rrel -in dia	meter				
Core:			meter Manual Push/Vibracore/Sor	5 10	9.5	93) 16
Grab S			ft Box/Ponar/Van Veen/Ot		es		
Other:			A STATE OF THE PERSON NAMED OF THE PERSON NAME				
Sample	e Collection Method	d:					
(Depth)	Recovery (ft & %)	Mun	Description of Materials sell Color; Moisture; Density; Consistency (Other Rema	arke)	Sample ID Sample Interval	PID (ppm)	USC
			ne tomedium sav		0010	(ppin)	Oode
7-1	1' 100%					2.4	SM
		1048 4/	Dark Grey		0-1,		
	077	Silty Fr	ne to medium sand	to clavey	1030		CM
1-3	2' 100%	Fine to 1	nedium sand Tra	ca shall	1	1.4	SFI
		and per	Ibles. IOYR 4/1I	Dark Grey	1-3'		SC
	1 24	Silty F	ine to medium sand	interbeddo	3050		SM
3-5	2' 100%				3-5'	0.9	
		LOYR 4/	sandy clay trace I Dark Citey.				CL
1	- 1 - 04	As abov	e with trace organ	nics	5070	1	SM
5-7'	2' 100%		U		5-7'	4.0	CL
	(0(0)			1	•		
F-10'	3	10	0		7010		SM
1 10	25' 83%	As abou	e, clay increasing	with	7 051	2-2	CL
	23 0010	depth.			7-9.5		

EA	Se Engineering, Science, &	LITHOLOGIC LOG ediment Collection Log Technology, Inc., PBC	Client Name and Project Name GLAES Harbortown - Upstream	Location/Borin		1	Sheet of 1
THE RESERVE OF THE PERSON NAMED IN	st Name/Signature		5 Project Number		CORE COLLECTION I	NFO.	
Emi	ly Cline		6256136	8 Date/Time Co 230ct. 20	018/945 2400	e Process	sed
2 Drilling S	Subcontractor/Equipment	t Operator	6 Latitude/Northing/Grid	9 Sed Surface I	Elevation 560	34	ft
	EPA R/V Mudp	ирру	42°20.879894'N	10 Coordinate Sy	ystem H NAC		NAVD88
	r Name <i>(License # If Red</i> Bonem	quired)	7 Langitude/Easting/Grid 82° 59. 707928 W	15. 04 12 Weather (Ten 48°F	np, circle conditions, wi		on)
4 Samplin	g Equipment and Method	dology (Check One)		13 Boring Depth	(ft) 14 Recovery (ft	15 % 1	Recovery
Rotoso	onic:ft barr		meter Manual Push Vibracore Sonis	3.0	2.0	6	7%
H				16 Location Note	s		
Other:	e Collection Method		ft Box/Ponar/Van Veen/Other				
(Depth)	Recovery (ft & %)	Mun	Description of Materials sell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID	PID	USCS
0-,8	0.8' 100%		avel to silty medium ben odor, trace Shell.	Sand. Black OYR Z/I	0010 0-0.8	3,8	GM/ SM
8-24	1.1' 68%	SHA a peoples (a	they with few grades inquiar possibly stag). I d graves draw down	grad Black on sides 2.51R 5/2	1020	1.2	CHE
	-		grayish brown				

g-ve-							
EA		LITHOLOGIC LOG		Location/Boring	Name		Sheet
EAS		Sediment Collection Log § Technology, Inc., PBC	GLAES	HT18-	29	- 11	of
	t Name/Signature		Harbortown Upstream 5 Project Number	Name and Address of the Owner, where the Owner, which is the Owne	ORE COLLECTION IN	JEO	- 1
	0			8 Date/Time Coll			sed
Emily	Cline / Eu	deffect	6256136		1035 2300		
2 Drilling S	Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface Ele	evation 552.	0	ft
Cet	-acean r	larine	42°20,770424'N	10 Coordinate Sys11 Depth of Water	tem HNAD		VAVD88
3 Operator	Name (License # If Re	equired)	7 Kongitude/Easting/Grid	23.4	it (startrend)		
Joe	Bonem		82°59.880960'W	12 Weather (Temp	, circle conditions, win		on)
4 Sampling	Equipment and Metho	odology (Check One)			ft) 14 Recovery (ft)	15 % 1	Recovery
Potoso	nio: ft ho	erol in dia	matar				
Core:		rrelin dia	imeter Manual Push/Mbracore/Sonic	1.5	1.2	80	0%
			ft Box/Ponar/Van Veen/Other	16 Location Notes			
Other:			it box onal val vectioner				
H	0 " " " "						
Sample	Collection Metho	od:					-
Interval	Recovery		Description of Materials		Sample ID	PID	USCS
(Depth)	1.2' 80%	Wun	sell Color; Moisture; Density; Consistency (Other Remarks)	6	Sample Interval	(ppm)	Code
		debris - b	ery Coarse sand with salar granules and grav vick + concrete. Trace sh	21. 7YP 4/1 D	" D-1.2'	0.0	SM
	,						
					M.		
				-			

EA		LITHOLOGIC LOG	Client Name and Project Name		Location/Box	ring Na	me	_	Sheet
		Sediment Collection Log	CHAFS		HT18	-			of
	<i>Engineering, Science, &</i> st Name/Signature	& Technology, Inc., PBC	tay bortown - Up	strum	11110	_	E COLLECTION IN	FO	
Er	nily Cline	edele	6256136		8 Date/Time C 220c+20		955 2300		
2 Drilling S	Subcontractor/Equipme	nt Operator	6 atitude/Northing/Grid		9 Sed Surface	Elevat	tion 563.	98	ff #
Cet	acean M	arine	42° 20. 531980	D'N	10 Coordinate S	System	HNAD		NAVDER
	r Name <i>(License # If R</i> Bonem	equired)	7 Langitude/Easting/Grid 82°59.984068	'W	11,44 12 Weather (Te 45°F	mp, cir	rcle conditions, wind Sunny/Cloudy/Rain		on)
4 Samplin	g Equipment and Meth	odology (Check One)			13 Boring Dep	th (ft)	14 Recovery (ft)	15 %	Recovery
Rotoso		rrelin dia	ameter ameter Manual Push/Vibraco	e/Sonic	10A	-	9.24	92	2%
Other:		-ft xft x	ft Box/Ponar/Van V		16 Location No.	tes			
Interval (Depth)	Recovery (ft & %)		Description of Materials				Sample ID	PID	USCS
	9.2' 92%	SOA CL	nsell Color, Moisture; Density; Consistency (O ayey Silt with I lity clay with readings: 0-1 readings: 0-1	att 6 A	ne Sand, bles, hor	1nt	ample Interval CVVals: 1,1-3,3-5 1-7, Archive		ML/ CL
		PIT	2 readings: 0-1 1-3 3-5	4.2	ppm ppm				
			7-10		1 gpm				
							ii.		

		LITTLE COLO LOC	All 111 15 15 111			-	
		LITHOLOGIC LOG Sediment Collection Log	Client Name and Project Name	Location/Bor			Sheet
FAF		Technology, Inc., PBC	GLAES Harbortown - Upstream	HT18-	51	1	of 1
	t Name/Signature	roomoogy, mc., rbc	5 Project Number	_	CORE COLLECTION IN	IFO.	
_00.0910	- January -		- , reject realises	8 Date/Time C			sed
Emili	y Cline		6256136	The second secon	/1125 2500		
2 Drilling S	Subcontractor/Equipme	nt Operator	6 Latitude/Northing/Grid		Elevation Not Cell		
	EPA R/V Mud	рирру	42°20.949171'N	10 Coordinate S	System H NAD		NAVD88
3 Operator	Name (License # If Re	equired)	7 Longitude/Easting/Grid	11 Depth of Wa			
Joe	Bonem		82°59.047716'W	12 Weather (Te	emp, circle conditions, win		io-15
Sampling	g Equipment and Metho	odology (Check One)		1.01 100 100 100 100	th (ft) 14 Recovery (ft)		
Rotoso		rrelin dia	meter Manual Push/Vibracore Sor	G.75	F+ 6.6 F+	97	1.8%
			ft Box/Ponar/Van Veen/Ot		tes	1	
Other:							
Sample	e Collection Metho	d:					
Interval	Recovery		Description of Materials		Sample ID	PID	USCS
(Depth)	(ft & %)		sell Color; Moisture; Density; Consistency (Other Rema		Sample Interval	(ppm)	Code
0-1.3	1.3 10%	granul	pause sandy silt will as, and angular pat 1-1.3'. 543	ebbles.		0.9	ML
1.3-2.6	1.3' 100%	Peat a	nd organic silt of medium sand. 54	uth	1025	0.9	OL
2-6-5.7	3.1' 100%	+ransitions	sandy clay layer for to sandy clayey n OBG 5/1 Greenish	nedzum	2555 2.6-5.7	8,0	CL/ SC
5.7- 6.6	0,9' 100%	clausey mer	d few pebbles langu	land with	55 65 5.7 - 6.6'	0,8	GC
							1
					-		7

EA		LITHOLOGIC LOG Sediment Collection Log	Client Name and Project Name GLAES	Location/Boring			Sheet
EAL		& Technology, Inc., PBC	Harbortown - Upstream	HT18- 3	2	1	of 1
1 Geologis	st Name/Signature		5 Project Number	The second secon	ORE COLLECTION I		
Emi	ly Cline	EDELL	6256136	8 Date/Time Coll 230ct 2019	8/1050 24 Oct	1	
2 Drilling S	Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface El	evation 565.6	55	f
	EPA R/V Mud	dpuppy	42° 20.712008'N	10 Coordinate Sys		83 V	NAVD88
2 Operate	s Nome // incres # # F	de environ ell	7	11 Depth of Water	, ft (start/end)		
	r Name (License # If R Bonem	equirea)	7 Congitude/Easting/Grid		o, circle conditions, wir	nd direction	on)
			82° 59. 571313'W	50° =	Sunny/Cloudy/Rai	n NW	5-10
	g Equipment and Meth		0.000	13 Boring Depth (ft) 14 Recovery (ft	15 %	Recovery
		arrelin dia	meter meter Manual Push/√ibracore Copic	7.0	7.0	lo	0%
			-ft Box/Ponar/Van Veen/Other	16 Location Notes			:
Other:			N Dest sharry an voorzeard				
Sample	e Collection Metho	od:					
Interval (Depth)	Recovery (ft & %)	Mun	Description of Materials sell Color; Moisture; Density; Consistency (Other Remarks)		Sample ID	PID	USCS
			coarse sand with tra	as also	Sample Interval	(ppm)	Code
0-1	1 100%	trace and	Milar as boles	ce cray	0010	1.9	SM
			Juliar pebbles. 2.5YR 4/1 Dark Grey		0-1'		5, 1
1-3	2' 10-07		silt with some Fire		1030		
1 5	2' 100%		ce roots		1.9	1.6	ML
			2.542 5/1 grey		1-3'		
3-5	2' 100%	Silty o	clay with trace to	oots and	3050		4
	,	fine sand	1 0		3-5'	1.4	CL
5-7	2' 100%	C.	ne as above		5070		
		34	me as above		5-7'	1.4	CL
					•		
	*						
	7			1			

EA Engineering, Science Geologist Name/Signature Ryan Darn	LITHOLOGIC LOG Sediment Collection Log e, & Technology, Inc., PBC	GLAES	8 Start Date/Time	ORE COLLECTION INFO	ne
2 Drilling Subcontractor/Equipm	^	6 Catitude/Northing/Grid 1410 21,360451/N	10 Coordinate Syst		ft V NAVD88
3 Operator Name (License # If I	Required)	7 Congitude/Easting/Grid 87°56,568433'W	11 Depth of Water, 7,1 12 Weather (Temp	, circle conditions, wind di	
4 Sampling Equipment and Met Rotosonic:ft b	parrelin dia	ameter ameter Manual Push/Vibracore		ft) 14 Recovery (ft) 1	
X Grab Sample: 0 Other: Sample Collection Meth		0.5 -ft Box Ponar Van Veen/Other	16 Location Notes South east	of keelson Ro	l canal
Interval (Depth)	Major Sedime	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other in	nclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)		trace organics ect FD -> 10 jar		HT18-01	

1510 collect core refusal at 8.75 ft gross recovery 8,3 ft net recovery 8,7 ft water surface elevation 575,79 ft

EA Engineering, Science, &	LITHOLOGIC LOG Sediment Collection Log Technology, Inc., PBC	Client Name and Project Name GLAES Harbortown - Upstream	Location/Bo	1	Sheet
Geologist Name/Signature Ryan Darnt	on	5 Project Number 6256136	8 Start Date/7	CORE COLLECTION INF	Time
Drilling Subcontractor/Equipment		6 Latitude/Northing/Grid	9 Sed Surface	1,0714	- 1
Cerai ean Mar	ine	4221.325961	11 Departor vie	System H NAD83 ater, ft (start/end)	3 V NAVD88
Joe Bon em	quired)	7 Congitude/Easting/Grid 82°56,779133	10 1 12 Weather (Te	emp, circle conditions, wind Sunny/Cloudy/Rain	
Sampling Equipment and Method Rotosonic: -ft bar Core: -ft bar	relin dia	meter meter Manual Push/Vibracore	13 Boring Dep	th (ft) 14 Recovery (ft)	15 % Recovery
Grab Sample: 0 Other: Sample Collection Method		0.5 -ft Box/Ponar/Van Veen/O	Southeast	test of Reelson K avoil structure	
Interval (Depth)	Major Sedimen	Description of Materials t type, color, presence of SAV/rock/wood, odor/sheen,		Sample ID	USCS Code
Grab Sample (~0-0.5 ft)		orkgrug silt with ganics and trace sa own film on top. The Sjars	h fibrous and, light	HT13-01	

1545 collect core: full 10 ft push, no refusal
gross metrecovery 9,3st
net recovery 9,0ft

LITHOLOGIC LOC Sediment Collection Log EA Engineering, Science, & Technology, Inc., PBC 1 Geologist Name/Signature	GLAES	Location/Boring Name HT18- Ø3 CORE COLLECTION I	Sheet 1 of 1	
Ryan Darntan	6256136	8 Start Date/Time Stop Date 390073018/1900 3900	e/Time	
2 Drilling Subcontractor/Equipment Operator	6 Latitude/Northing/Grid	9 Sed Surface Elevation 557.	8 ft	
Cetacean Marine	42°21,533856'N	10 Coordinate System H NAD83 V NAVD88 11 Depth of Water, ft (start/end)		
3 Operator Name (License # If Required) Toe Bonem	7 (Longitude/Easting/Grid 82° S 7, 306525 W	12 Weather (Temp, circle conditions, wir	nd direction)	
A Sampling Equipment and Methodology (Check One) Rotosonic: -ft barrel -in di Core: -ft barrel -in di	13 Boring Depth (ft) 14 Recovery (ft) 15 % Recovery 6, 25 5, 9 9 4, 4			
X Grab Sample: 0 -ft x -ft x Other: Sample Collection Method:	0.5 -ft BoxPonar/van Veen/Other	Location shifted into by EPA, See not below		
Interval (Depth) Major Sedim	Description of Materials ent type, color, presence of SAV/rock/wood, odor/sheen, other inc	Sample ID	USCS Code	
Grab Sample (~0-0.5 ft)	black silt sewage odor -75 javs	H+18-0	3	

Eniti Probing initially indicated rocks close to the outfall.

location shifted downstream within Connor Creek.

1720 +520 collect core. refusal at 6,25 ft

core material is dark black, appears to be CSB material

gross recovery 5,9 ft sewage odor

net recovery 5,9 ft

LITHOLOGIC Sediment Collection EA Engineering, Science, & Technology, Inc., I	Log GLAES	Location/Boring N	ame	Sheet .
1 Geologist Name/Signature	5 Project Number		RE COLLECTION INFO	
Risan Parnton	6256136	8 Start Date/Time	Stop Date/Tir	
2 Drilling Subcontractor/Equipment Operator	6 Latitude Northing/Grid	9 Sed Surface Eleva	ation 566.9	ft
Cetacean Marine	42°21,2911811N			V NAVD88
3 Operator Name (License # If Required)	7 Longitude/Easting/Grid	8,4		
Joe Bonen	82°57.042	12 Weather (Temp, c	ircle conditions, wind di Sunny/Cloudy/Rain	rection) INW 5-10 mp
4 Sampling Equipment and Methodology (Check One		13 Boring Depth (ft)	14 Recovery (ft)	5 % Recovery
Rotosonic:ft barrelin	diameter diameter Manual Push/Vibracore	6.0	4.2	70
	x 0.5 -ft Box/Ponar/Van Veen/Other	16 Location Notes SOUTHEAST of Shifted &	E Bayview J.	achk club. pertpa
Interval	Description of Materials diment type, color, presence of SAV/rock/wood, odor/sheen, other in	aluniana	Sample ID	USCS
g	arkaray silt with so sand. Trace Organics. Light Brown film	me, H	T18-04	Code
	E-			

WART ELEVATION - 575.33

1155 15t core attempt, refusal at 6,0 ft

gross recovery 4.5 ft

loss 0.3 ft (below core eatcher)

net recovery 4.7 ft

EA Engineering, Science, of	LITHOLOGIC LOG Sediment Collection Log & Technology, Inc., PBC	GLAES	Location/Bo		Sheet	
1 Geologist Name/Signature Ryan Darn F	ron	5 Project Number 6256136	8 Start Date/	CORE COLLECTION INFO Time Stop Date/Ti 118/ 16+0 190 (10	me	
2 Drilling Subcontractor/Equipment Operator Cetatean Marine 3 Operator Name (License # If Required) Toe Bonem 4 Sampling Equipment and Methodology (Check One) Rotosonic:ft barrelin d		7 Congitude/Easting/Grid 8 L 5 7, 21 7 0 96 W ameter ameter Manual Push/Vibracore	12 Weather (Temp, circle conditions, wind direction) 52 °F Sunny)Cloudy/Rain NW 10 mp. 13 Boring Depth (ft) 14 Recovery (ft) 15 % Recovery 6, 5 5, 5 84, 6			
Interval (Depth)	Major Sedime	Description of Materials ent type, color, presence of SAV/rock/wood, odor/sheen, other	inclusions	Sample ID	USCS Code	
Grab Sample (~0-0.5 ft)	3	lark brown silt with ; and and trace organiz ightfrom film on top sewage smell - Sjars		H+18-05		

water surface elevation 575.28 ft

1635 collect core, refusal at 6.5ft

Gross recovery 5,6ft

net recovery 5,5ft

EA Engineering, Science, 1 Geologist Name/Signature	LITHOLOGIC LOG Sediment Collection Log & Technology, Inc., PBC	Client Name and Project Name GLAES Harbortown - Upstream 5 Project Number	Location/Bo		Sheet 1 of 1
Ryan Darn	iton	6256136	8 Start Date/		me .
2 Drilling Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface	Elevation 558.3	ft
Cetacean)	Jarin e	42° 21.270563'N	10 Coordinate	System H NAD83 ater, ft (start/end)	V NAVD88
3 Operator Name (License # If Re	equired)	7 Longitude/Easting/Grid	17	.	
Joe Bonem		82°57, 289438'W	1 449		5-10 mph
4 Sampling Equipment and Meth	odology (Check One)		13 Boring Dep	oth (ft) 14 Recovery (ft)	15 % Recovery
Rotosonic:ft ba	arrelin dia	meter		9.2	9.2
Core:ft ba	arrelin dia	meter Manual Push/Vibracore	10	1.	1 -
Grab Sample: 0 Other:	-ft xft x	0.5 -ft Box Ponar Van Veen/Other	16 Location No	tes ion shifted o	MSF+SU FAST OF
Sample Collection Metho	od:		connor	Creek Power	plant.
Interval (Depth)	Major Sedimer	Description of Materials at type, color, presence of SAV/rock/wood, odor/sheen, other in		Sample ID	USCS Code
Grab Sample (~0-0.5 ft)		top. Joseph Silt with traz. Aronganics, light brown in top. A Sinvs organic To reading 0.24 from	odor	HT18-6	

Water level elevation - 575.37

1120 collect core, 10ft posn, No refusal

gross Recovery- 9.5

net Recovery- 9.2

- Pir pockets detected in Sed core

LITHOLOGIC LO Sediment Collection Lo EA Engineering, Science, & Technology, Inc., PB	g GLAES	Location/Boring		Sheet 1 of 1
1 Geologist Name/Signature Ryan Darnton	5 Project Number 6256136	8 Start Date/Time	Stop Date/	Time 1050
2 Drilling Subcontractor/Equipment Operator Cetacean Marine 3 Operator Name (License # If Required) The Bonem	6 (atitude)Northing/Grid HL L1, L7, L053'N 7 (Grigitude/Easting/Grid 8 L 57, H 6 8 9 0 H / W	9 Sed Surface Ele 10 Coordinate Syste 11 Depth of Water, 12 Weather (Temp,	em H NAD8: ft (start/end) circle conditions, wind	direction)
4 Sampling Equipment and Methodology (Check One) Rotosonic:ft barrelin d	liameter liameter Manual Push/Vibracore	13 Boring Depth (ft) 14 Recovery (ft) 15		15 % Recovery
Interval (Depth) Major Sedir	Description of Materials ment type, color, presence of SAV/rock/wood, odor/sheen, other inc	lusions	Sample ID	USCS Code
Dark Grave Grab Sample Grab Sample	Brown Solt w/ some ford Sand Trace orgo	ine unics	4+12-07	

nater surface elevation 575, 35 ft

1030-collect Core. Full 10ft push, no refusal

grass Recovery - 8.9 Ft

1095 - 0,3 Ft

Net Recovery - 8.6 ft

sheen observed from core

Sediment Collection Log EA Engineering, Science, & Technology, Inc., PBC	GLAES	Location/Boring N	ame	1	Shee	et 1
1 Geologist Name/Signature Ryan Darnton	5 Project Number 6256136	8 Start Date/Time Stop Date/Time			11:	55
2 Drilling Subcontractor/Equipment Operator	6 Latitude/Northing/Grid	9 Sed Surface Eleva	ation 566.6			ft
Cetaclan 3 Operator Name (License # If Required)	42° 21. 286307/N 7 Longitude/Easting/Grid	10 Coordinate System 11 Depth of Water, ft		3 V	NAVD	88
Toe Bonem	82° 57, 543814'W	12 Weather (Temp, of SS of F			13	Smph
4 Sampling Equipment and Methodology (Check One) Rotosonic: -ft barrel -in dia Core: -ft barrel -in dia X Grab Sample: 0 -ft x -ft x Other:	ameter Manual Push/Vibracore	13 Boring Depth (ft) 14 Recovery 10 8,0 16 Location Notes Bholith of chamel/sl, of sand bartane hou		8	0	
Sample Collection Method:		of Conner C	reek power	plan	7	0631
Interval (Depth) Major Sedime	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other incl		Sample ID		US	CS de
Grab Sample (~0-0.5 ft)	ray/brown silt with a pieces of organic debris —> 5 jars	couple	H18-09	8		

1730 - collect core, full 10ft pash, no refusal
gross recovery 8,3ft

1085 0,3ft

net recovery 8,0ft

EA Engineering, Science, &	LITHOLOGIC LOG ediment Collection Log Technology, Inc., PBC	Client Name and Project Name GLAES Harbortown - Upstream	Location/Boring	9	Sheet 1 of 1
1 Geologist Name/Signature Ryan Damton		5 Project Number 6256136	8 Start Date/Time	ORE COLLECTION INFO Stop Date/Tin	ne
Drilling Subcontractor/Equipment Cetarem Operator Name (License # If Req.		6 Latitude Northing/Grid 139701 112 H. 788706 N 7 Longitude Easting/Grid 670667.	10 Coordinate System 11 Depth of Water	ft (start/end)	ft V NAVD88
Joe Bonen		8+057, 667865'W	SSOF	Sunny/Cloudy/Rain (ft) 14 Recovery (ft)	
4 Sampling Equipment and Method Rotosonic: -ft bar Core: -ft bar	relin dia	ameter meter Manual Push/Vibracore	13 Boning Depth (96
Grab Sample: 0 Other:	-ft xft x	0.5 -ft Box/Ponar/Van Veen/Other	16 Location Notes Nouth of of Sand 6	the chamel j for Lane house Marina Boat P	ust west 23, east of
Sample Collection Method Interval (Depth)		Description of Materials ent type, color, presence of SAV/rock/wood, odor/sheen, other in		Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	1635 8	grow/brown silt ollect MS/MSD - 13 jars 9 40= 3 80= 1 130=		HT16-09	

1655 collect core, no fefusal, full 10ft push
9,7ftgross recovery
9,6ft net recovery
0,1 ft loss below catcher
water surface 575.4ft

EA Engineering, Science	Sediment Collection Log e, & Technology, Inc., PBC	GLAES	HT18-	Boring Name	Sheet 1 of 1		
1 Geologist Name/Signature Ryan Dari	nton	5 Project Number 6256136	8 Start Dat	. 11	DATE/TIME		
2 Drilling Subcontractor/Equipm	nent Operator	6 (Catitude/Northing/Grid	9 Sed Surfa	ace Elevation 570	, H #		
Cetacem		42° 21,289611 N	10 Coordina	te System H N Water, ft (start/end)	NAD83 V NAVD88		
3 Operator Name (License # If	Required)	7 (Longitude/Easting/Grid	5.0	vvater, it (start/end)			
Toe Bonen		82° 57,782 160'W	/	12 Weather (Temp, circle conditions, wind direction)			
	barrelin dia barrelin dia ft xft x	ameter ameter Manual Push/Vibracore 0.5 -ft Box/Ponar/Van Veen/Othe	7.0	Depth (ft) 14 Recovery 133 gro 1.05 ne 7 Notes 7 Rash of St.	y (ft) 15 % Recovery 67, 5		
Interval (Depth)	Major Sedime	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other	er inclusions	Sample	ID USCS Code		
Grab Sample (~0-0.5 ft)	1610 61	oury of sand with a few of SAV V Sjars o attemps consolidated one tray	v pieces	HT/8-10			

1555 collect core using 5ft core
refusal at 2.0 ft

gross recovery 1.35 A

loss 0.3 A

net recovery 1.05 A

1	LITHOLOGIC LOG Sediment Collection Log EA Engineering, Science, & Technology, Inc., PBC Geologist Name/Signature Ryan Darnton	GLAES	Location/Boring Name HT18- CORE C Start Date/Time LOCALIB/ 1500	Stop Date/Ti	
2	Drilling Subcontractor/Equipment Operator Letacean Marine	6 (atitude)Northing/Grid 42°21,309866'N	9 Sed Surface Elevation 10 Coordinate System 11 Depth of Water, ft (star	566 H NAD83	# V NAVD88
3	Operator Name (License # If Required) Joe Bonem	7 (Congitude/Easting/Grid 8 + 8 57, 9 + 5609 1 W	9,4 ft 12 Weather (Temp, circle 55 °F Sur		
4	Sampling Equipment and Methodology (Check One) Rotosonic:ft barrelin dia Core:ft barrelin dia		13 Boring Depth (ft) 14		15 % Recovery
X	Grab Sample: 0 -ft x -ft x Other: Sample Collection Method:	0.5 -ft Box Ponar Van Veen/Other	16 Location Notes Movel location to due to journed taken field up to	806lo Goa	t. Location
	Interval (Depth) Major Sedimer	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other inc		Sample ID	USCS Code
	Grab Sample (~0-0.5 ft)	eroun silt with just af ses of SAV S jars wheen, but silt left slig wasy markings on gloves		18-17	

water suiface elevation 575. 4

1521 cillect core. no refusal, but it slowed down at the end of penetrotion
gross recovery 9.6 ft
net recovery 9.4 ft
loss 0.2 ft from below the catcher

Sediment C EA Engineering, Science, & Technolo	OLOGIC LOG Client Name and Project Name Collection Log GLAES gy, Inc., PBC Harbortown - Upstream	Location/Boring Name HT18- 1 2		Sheet 1 of 1	
1 Geologist Name/Signature Ryan Darnton	5 Project Number 6256136	8 Start Date/Time HUCTHUS/IM	me ,		
2 Drilling Subcontractor/Equipment Operator	6 (Latitude/Northing/Grid	9 Sed Surface Eleva	ation \$68,7	ft	
Cetacean	42° 21,331013'N	10 Coordinate System 11 Depth of Water, ft	(start/end)	V NAVD88	
3 Operator Name (License # If Required) Tale Bonem	7 (Longitude/Easting/Grid 8L° 58, 089107'W	12 Weather /Temp. o	ircle conditions, wind di Sunny/Cloudy/Rain	irection)	
Grab Sample: 0 -ft x Other:		16 Location Notes A+ western	Depth (ft) 14 Recovery (ft) 15 % Recovery 9. 7 97 Notes estern edge of Riverside war: east of Keans		
Sample Collection Method: Interval (Depth)	Description of Materials Major Sediment type, color, presence of SAV/rock/wood, odor/sheen, other in	iclusions	Sample ID	USCS Code	
Grab Sample (~0-0.5 ft)	35 dark graf/6rown si Some SAV collected FD	It with H	T18-12		
/,	ive juvenile lamprey in grab-	took photos			

probe pentituded 5ft and then encountered harder material

[HDO collect core. no refusal.

gross recovery 9.7 ft

no loss

net recovery 9.7 ft

water surface 573.4

EA Engineering, Science, Geologist Name/Signature Ryan Day		GLAES	Location/Boi	CORE COLLECTION IN Stop Date/	Time	
2 Drilling Subcontractor/Equipme	ent Operator	6 Catitude/Northing/Grid	9 Sed Surface 10 Coordinate S	7-9 OCT 2018/0930 2-902T3018/100 9 Sed Surface Elevation 561.8 10 Coordinate System H NAD83 V NAV 11 Depth of Water, ft (start/end)		
3 Operator Name (License # If R		7 Congitude/Easting/Grid 82°58.382027'W		emp, circle conditions, wind Sunny/Cloudy/Rain		
4 Sampling Equipment and Meth Rotosonic: -ft b Core: -ft b	arrelin dia	ameter ameter Manual Push/Vibracore	13 Boring Dep	oth (ft) 14 Recovery (ft)	15 % Recovery	
X Grab Sample: 0 Other: Sample Collection Methor	0.5 -ft Box/Ponar/Van Veen/Other	South South E. Due South of Rooster Ta				
Interval (Depth)	Major Sedime	Description of Materials ent type, color, presence of SAV/rock/wood, odor/sheen, other in		Sample ID	USCS Code	
Grab Sample (~0-0.5 ft)	0940- bri	ay sat with light Bron on top.	aun	HT18-13		

water surface elevation 575.36ft

0940-1s+Attempt at ponal DMS
0950 collect core. full 18 ft push, no refusal
gross recovery 9, 6 ft
no loss
net recovery 9,6 ft

EA Engineering, Science,	LITHOLOGIC LOG Sediment Collection Log & Technology, Inc., PBC	GLAES	Location/Boring		Sheet 1 of 1
1 Geologist Name/Signature Ryan Darn	ton	5 Project Number 6256136	8 Start Date/Time	Stop Date/Ti	me
2 Drilling Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface Ele	vation 555,96	ft
Cetaceanl	Marine	42°21.250149'N	10 Coordinate Syste		V NAVD88
3 Operator Name (License # If R	Required)	7 (Longitude/Easting/Grid	11 Depth of Water,	ft (start/end)	
Toe Bonen	n	82°58.648377'W	12 Weather (Temp,	circle conditions, wind d Sunny/Cloudy/Rain	irection) Vorth Smph
4 Sampling Equipment and Meth	nodology (Check One)		13 Boring Depth (f	t) 14 Recovery (ft)	15 % Recovery
Rotosonic:ft ba		ameter ameter Manual Push/Vibracore	3	1.9	63,3
X Grab Sample: 0 Other:	ft xft x	0.5 -ft Box Ponar Van Veen/Other	16 Location Notes south and plant	west of west	ner treatment
Sample Collection Metho	od:		/****		
Interval (Depth)	Major Sedime	Description of Materials ent type, color, presence of SAV/rock/wood, odor/sheen, other in	nclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	She	own district with gravelands. James organic woods woods for attempts consolute one tray	depris	1+18- 15 -140	eup)

water surface elevation 575,35 ft at mo

probing indicates & Sft of penetration, but racky

0855 1st core attempt < 1st penetration, no recovery, probable rock 0900 and core attempt refusal at 3 ft, core tipped after refusal

gross recovery net recovery 1.9 ft

sheen and odor from core

LITHOLOG Sediment Collect EA Engineering, Science, & Technology, In	tion Log GLAES	HT18- 5		Sheet 1 of 1
Geologist Name/Signature Ryan Parnten	5 Project Number 6256136	Start Date/Time	Stop Date/Time 5 HOCT HO	1 400
Drilling Subcontractor/Equipment Operator Cetacean Marine Operator Name (License # If Required) Toe Ponem	6 Catitude/Northing/Grid 112 11 720 1 N 7 Congitude/Easting/Grid 82 58 73 165 9 7 V	9 Sed Surface Elevation 10 Coordinate System 11 Depth of Water, ft (sta	H NAD83 rt/end)	V NAVD88
		er 16 Location Notes Location shifte subnerged wa	6.8 1 L west to	5 % Recovery 105 105 100id 2. South P
Interval (Depth) Maj	Description of Materials or Sediment type, color, presence of SAV/rock/wood, odor/sheen, other colors are considered to the colors of the colo	ner inclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	5 gray/ brown silt with mussel shells, and a for sav y S jar.	h sand, Pew pieces	18-15	

Surface water elevation 575, Sft

1650 collect core, refusal at 6, Sft

gross recovery 6,9ft

net recovery 6,8

EA Engineering, Science, & T	LITHOLOGIC LOG diment Collection Log Technology, Inc., PBC	GLAES	Location/Bor		Sheet 1 of 1
1 Geologist Name/Signature Ryan Parnto	n	5 Project Number 6256136	8 Start Date/T	CORE COLLECTION INFO	ime
2 Drilling Subcontractor/Equipment C		6 (Latitude/Northing/Grid 500 100 25		Elevation 560, 8	
Cetacem Mc 3 Operator Name (License # If Requi	O VI 1 . V	7 (Longitude) Easting/Grid See NASS	5.10	ter, ft (start/end) 3rd at	tempt/pongr
Joe Bonem		82° 58, 813527 W	748 0 E	mp, circle conditions, wind d Sunny/Cloudy/Rain	N 5 myh
4 Sampling Equipment and Methodo Rotosonic:ft barre Core:ft barre	elin dia	ameter ameter Manual Push/Vibracore	13 Boring Dept	th (ft) 14 Recovery (ft)	15 % Recovery
X Grab Sample: 0 -ft Other: Sample Collection Method:	txftx	0.5 -ft Box/Ponar/Van Veen/Other	16 Location Not Sowth Ot	es stockton mem	iorial park
Interval (Depth)	Major Sedime	Description of Materials ent type, color, presence of SAV/rock/wood, odor/sheen, other i	inclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	filmsa	gray silt/sand mix u few mussel shells and \$ Sjars	SAV	HT18-16	

1540 collect core, penetration 20.5 ft 21.0 ft no recovery shift x 5 ft north

1543 Ind core attempt, water depth 6.6ft

penetration & 0.5 ft, no recovery

1545 3rd attempt shift × 10 ft west water depth 6.2 ft

penetration 21 ft, no recovery

no core collected, te

Ponar collected at 3rd core attempt location

ioordinates 42°21,190474'N

0000 SIC 700/1N

EA Engineering, Science	LITHOLOGIC LOG Sediment Collection Log e, & Technology, Inc., PBC		Location/Bor	THE COLUMN TWO		Sheet 1 of 1
1 Geologist Name/Signature Ryan Pari	nton	5 Project Number 6256136	8 Start Date/T	Time	Stop Date/Time	11111
2 Drilling Subcontractor/Equipm	nent Operator	6 (atitude/Northing/Grid	9 Sed Surface	Elevation	548.4	ft
Cetacem 3 Operator Name (License # If 1) Tol Bank	Required)	42° 1.130291'N 7 Conglitude/Easting/Grid 82° 58.818345'W	11 Depth of Water, it (start/end)			V NAVD88
4 Sampling Equipment and Me Rotosonic: -ft I	thodology (Check One) barrelin dia barrelft x		13 Boring Dep 4,5	oth (ft) 14 F	Recovery (ft) 15	% Recovery
Interval (Depth)	Major Sedime	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other in			ample ID	USCS A
Grab Sample (~0-0.5 ft)	1445 6	rown/som gray sand/ ix with mussel shells overtebrates — Y Sjart		HT18	1-17	

inater surface elevation 575, 48 ft

1300 collect core; fatt Sft push, no referent

EPA instructed Sft core is sufficient because
bottom material appears to be notive clay

refusal at 4,5 ft

gross recovery 4,7 ft

net recovery 4,6 ft

LITHOL Sediment Co EA Engineering, Science, & Technology		Location/Boring N	lame	Sheet	
1 Geologist Name/Signature Ryan Parnton	5 Project Number 6256136	8 Start Date/Time	Stop Date/T	ime	
2 Drilling Subcontractor/Equipment Operator Le facean Marine	6 Catitude/Northing/Grid	9 Sed Surface Elev 10 Coordinate Syste	ration 560,5 m H NAD83	ft V NAVD88	
3 Operator Name (License # If Required) Toe Bonem	lame (License # If Required) 7 Congitude/Basting/Grid				
4 Sampling Equipment and Methodology (Che Rotosonic:ft barrel Core:ft barrel	77.77		14 Recovery (ft) S ₄ H	15 % Recovery	
Grab Sample: 0 -ft x Other: Sample Collection Method:	ft x		of brick t		
Interval (Depth)	Description of Materials Major Sediment type, color, presence of SAV/rock/wood, odor/sheen, other in	clusions	Sample ID	USCS Code	
Grab Sample (~0-0.5 ft)	grows silt with light film and a few piezes — Sjars.	brown f	11/8-18		

1145 collect core
refusal at 6.0 ft
gross recovery 5.7 ft
net recovery 5.4 ft

sheen and odor observed during core retrievel

	Client Name and Project Name Collection Log GLAES GLAES Harbortown - Upstream 5 Project Number 6256136	B Start Date/T	CORE COLLECTION IN	Time
2 Drilling Subcontractor/Equipment Operator Letacean Marin 3 Operator Name (License # If Required)	7 Longitude/Easting/Grid	9 Sed Surface 10 Coordinate S 11 Depth of Wa	Elevation 554,6 System H NAD8	ft 3 V NAVD88
W. Committee of the com		3. 25	th (ft) 14 Recovery (ft) 3.0 The ses of white 60	15 % Recovery
Interval (Depth)	Description of Materials Major Sediment type, color, presence of SAV/rock/wood, odor/sheen, other	inclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	on trans on trans on trans or frown silt/sand a mussel shells and a few SAV. both mussel shells shells pres	nix with pieces of e mussel	Ht 18-19 ition to the	

water surface elevation 575,5 ft

1115 collect core

refusal at 3.25 st

3.3Agross recovery

3.0Anet recovery

Sheen observed during core recovery

1	Sediment Collection Log EA Engineering, Science, & Technology, Inc., PBC Geologist Name/Signature Ry un Parn Fon	Client Name and Project Name GLAES Harbortown - Upstream 5 Project Number 6256136	Location/Boo HT18- 3 8 Start Date/T	CORE COLLECTION INFO	-1	
2	Orilling Subcontractor/Equipment Operator (Hawan Marine	6 Catitude/Northing/Grid 42 21 1111 78 / N	9 Sed Surface Elevation 5119,6			
3	Operator Name (License # If Required) Tole Bonem	7 (Congitude/Basting/Grid 8 2 59, 10 2033 W	11 Depth of Water, ft (start/end) S, 9 12 Weather (Temp, circle conditions, wind direction) U J F Sunny/Cloudy/Rain N S wy h			
4	Sampling Equipment and Methodology (Check One) Rotosonic:ft barrelin dia Core:ft barrelin dia			th (ft) 14 Recovery (ft) 1:	923	
X	Grab Sample:ft xft x Other: Sample Collection Method:	0.5 -ft Box/Ponar/Van Veen/Other		vest of the mari field Instruction		
	Interval (Depth) Major Sedimer	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other incl	usions	Sample ID	USCS Code	
	(70-0.5 ft)	shells, and a live inventor	ussel Hebrate	H+18-20		

to water surface elevation 575,46 ft

1015 refusal collect core
refusal at 3,25 ft
gross recovery 3,0 ft
het recovery 3,0 ft
large rock in core catcher

EA Engineering, Science,	LITHOLOGIC LOG Sediment Collection Log & Technology, Inc., PBC.	Client Name and Project Name GLAES Harbortown - Upstream	Location/Boring Nat	me	Sheet 1 of 1
Geologist Name/Signature Ryan Darnt		5 Project Number 6256136	8 Start Date/Time	Stop Date/Time	/
Drilling Subcontractor/Equipme		6 Catitude Northing/Grid 42021.090310/	9 Sed Surface Elevat 10 Coordinate System 11 Depth of Water, ft (7 0 71 00	S 64. 5 ft
Operator Name (License # If Re		7 Engitude/Easting/Grid 82° 59, 206108 W	12 Weather (Temp, cir	cle conditions, wind directions/Cloudy/Rain	s mph
Sampling Equipment and Method Rotosonic:ft background Core:ft background Ft backgro	arrelin dia	meter meter Manual Push/Vibracore	^	14 Recovery (ft) 15	
X Grab Sample: 0 Other: Sample Collection Methor		0.5 -ft Box/Ponar/Van Veen/Other	5 suth of 80	ions Drive	
Interval (Depth)	Major Sedimer	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other	inclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	0915 H	gray silt, sand, grave h SAVandone juven: le	ted into HT ne tray of mix	18-21	

water surface elevation 575.46 ft (0900 at NOAH Windmill Point Glation)

095 0930

09 0975 1st core attempt penetration 21ft, little recovery
material durped

0930 and attempt core, sampling is on a slope, so shifting 121ft
in the horizontal changed
metrecovery 1.75

water depth to 11.0ft
refusal at 2 ft

for 2nd attempt

hydrocarbon odor from core

EA Engineering, Science,	LITHOLOGIC LOG Sediment Collection Log & Technology, Inc., PBC	GLAES		Location/Boring Na		She 1 of	et 1
1 Geologist Name/Signature		5 Project Number			RE COLLECTION II		
Ryan Damit	m	6256136	8	Start Date/Time	Stop Date	e/Time	
2 Drilling Subcontractor/Equipment Operator		g Subcontractor/Equipment Operator 6 Latitude/Northing/Grid		Sed Surface Eleva	tion		ft
			10	Coordinate System	H NAD	83 V NAVE	D88
			11	Depth of Water, ft (start/end)		
3 Operator Name (License # If R	required)	7 Longitude/Easting/Grid					
			12	Weather (Temp, ci	rcle conditions, win Sunny/Cloudy/Rai		
4 Sampling Equipment and Meth	odology (Check One)		13	Boring Depth (ft)	14 Recovery (ft)) 15 % Recov	ery
Rotosonic: -ft ba	arrel -in dia	ameter		-			
		meter Manual Push/Vibracore					
X Grab Sample: 0 Other:	-ft xft x	0.5 -ft Box Ponar/Van Veen/Othe	r 16	Location Notes			
Sample Collection Metho	oa:	Description of Materials					*
Interval (Depth)	Major Sedime	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other	r inclusion	ıs.	Sample ID		SCS ode
Grab Sample (~0-0.5 ft)	No Locati	on abandmed per PA Field instruction	ction	ed			

EA Engineering, Science	LITHOLOGIC LOG Sediment Collection Log , & Technology, Inc., PBC	GLAES	Location/Bori		Sheet
Geologist Name/Signature Ryan Parm		5 Project Number 6256136	8 Start Date/Ti	CORE COLLECTION INFO me Stop Date/Ti	ime
2 Drilling Subcontractor/Equipm	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface	Elevation 568.9	
Cetacean M	Narine	42°21.066846'N	10 Coordinate S 11 Depth of Wat	The state of the s	V NAVD88
Operator Name (License # If F	100	7 (Longitude)Easting/Grid 82° 59.390311	6,5 12 Weather (Ter W 57°F	mp, circle conditions, wind d	direction) NSmph
Sampling Equipment and Met Rotosonic:ft b Core:ft b	parrelin dia	ameter ameter Manual Push/Vibracore	13 Boring Dept 3rd a Helpy		15 % Recovery
Grab Sample: 0 Other: Sample Collection Meth		0.5 -ft Box Ponar Van Veen/Othe	East of	8330 on the	river
Interval (Depth)	Major Sedime	Description of Materials ant type, color, presence of SAV/rock/wood, odor/sheen, other	er inclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	1730 co	ilect ponar grows silt with SAV		HT18-2-3	
(~0-0.5 ft)		-V 3301)			

1st core attempt 3 mall streamers of sheen during 1st attempt core retrieval 1st gross recovery 2.0 ft A do not use net recovery 1.7 ft

1700 2 relations to using set core. full set push, no refusal & do not recovery x4 FL

1715 3rd attempt (using 10ft take)

full 10 ft push, no refusal & use this core
gross recovery 9,4 for processing
net recovery 9,2

LITHO Sediment Co EA Engineering, Science, & Technolog 1 Geologist Name/Signature Ry an Darn For	Ollection Log GLAES Harbortown - Upstream 5 Project Number 6256136 8 Start	CORE COLLECTION INFO t Date/Time \$\frac{1}{1} \text{35} \text{30LTH}\$	3. 4
2 Drilling Subcontractor/Equipment Operator Cefacean Marine 3 Operator Name (License # If Required) Toe Banem	7 Congitude/Easting/Grid 10 Coor 11 Dept 12 Wea	Surface Elevation 560. 7 Idinate System H NAD83 Ith of Water, ft (start/end) 1, 7 Ither (Temp, circle conditions, wind direct Sunny/Cloud)/Rain //	
	-in diameter Manual Push/Vibracore	ing Depth (ft) 14 Recovery (ft) 15	87
Interval (Depth)	Description of Materials Major Sediment type, color, presence of SAV/rock/wood, odor/sheen, other inclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	+S gray/brown silt with sand -D Sjavs	HT18-27	

1600 1st core attempt used 5ft tube
no refusal, core saved, but do not process

1610 2nd attempt - used 10ft
refusal at 9ft & use this for processing
gross and net recovery 7, 8ft

EA Engineering, Science,	LITHOLOGIC LOG Sediment Collection Log & Technology, Inc., PBC	The state of the s	Location/Bori HT18- ∂	5	Sheet 1 of 1
1 Geologist Name/Signature Ryan Darn	ton	5 Project Number 6256136	8 Start Date/Ti	CORE COLLECTION INF me Stop Date/T	ime /
2 Drilling Subcontractor/Equipme	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface	Elevation 566,9	ft
Cefacean		120 21.013073/N	10 Coordinate S		V NAVD88
3 Operator Name (License # If R	521, 151	7 (ongitude) Easting/Grid 81.9° S 9.468 149° W	8,5 12 Weather (Te SHOF	mp, circle conditions, wind Sunny/Cloudy/Rain	direction) NS-10 mph
X Grab Sample: 0 Other:	arrelin dia arrelin dia ft xft x	ameter ameter Manual Push/Vibracore 0.5 -ft Box/Ponar/Van Veen/Other	10	h (ft) 14 Recovery (ft) 9.5	95
Sample Collection Methodology Interval (Depth)		Description of Materials int type, color, presence of SAV/rock/wood, odor/sheen, other	inclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)	1510	collect poner grand/brown silt wi very fine sand and collect MS/MSD _	th some SAV	HT18-25	5

1500 Collect core, full lost push, no refusal
gross recovery 9.5 ft
net recovery 9.8 ft

1055 below catcher 0.3
hydrocarbon/organic solvant odor with core retrieval

1

LITHOLOG Sediment Collecti EA Engineering, Science, & Technology, Inc.	on Log GLAES	Location/Boring Name		Sheet
1 Geologist Name/Signature Ryan Darnton	5 Project Number 6256136	Start Date/Time	Stop Date/Tin	ne ,
2 Drilling Subcontractor/Equipment Operator	6 Latitude/Northing/Grid	9 Sed Surface Elevation	568.5	ft
Cetazean	42°20.976594'N	10 Coordinate System 11 Depth of Water, ft (start/e	H NAD83	V NAVD88
3 Operator Name (License # If Required) Tole Ronem	7 (ongitude/Easting/Grid 82°59,557515'W	6 9 12 Weather (Temp, circle conditions, wind direction) Sunnyl Cloudy/Rain		
4 Sampling Equipment and Methodology (Check Control of the Core: -ft barrel -	V.		Recovery (ft) 1	0
Grab Sample: 0 -ft x Other: Sample Collection Method:	-ft x 0.5 -ft Box Ponar Van Veen/Other	16 Location Notes South of WAW	r building	7
Interval (Depth) Majo	Description of Materials r Sediment type, color, presence of SAV/rock/wood, odor/sheen, other in	clusions	Sample ID	USCS Code
101	coilect ponar 2 attempt isolidated into one tray ray/brown silt with sand, shell fragments, and a few, SAV OS jours	mussel	-26	

Other:

water surface elevation 575.4 ft

1440 collectionse-full 10 ft push, no refusal

gross recovery 9,8 ft

net recovery 9,8 ft

hydrocarbon odor and sheen

LITHOLOGIC Sediment Collection EA Engineering, Science, & Technology, Inc., I	Log GLAES	HT18- 2		Sheet 1 of 1
Geologist Name/Signature Ryan Parnton	5 Project Number 6256136	8 Start Date/Time	Ctop Date III	ne
Drilling Subcontractor/Equipment Operator	6 Catitude Northing/Grid afte shift	9 Sed Surface Ele	vation 560,34	f
Cetacean Marine	42° 20,879894'N	10 Coordinate Syst	7.10	V NAVD88
Operator Name (License # If Required) Tol Bonem	7 Rongitude/Easting/Grid approximately SNIFF	11 Depth of Water,		after shif, rection)
		3,0	1 14 Recovery (ft) 1 L. O River Terrace	670
Interval (Depth) Major Se	Description of Materials diment type, color, presence of SAV/rock/wood, odor/sheen, other inc	lusions	Sample ID	USCS Code
Ten	attempt all mussel shells. material collected 8 3rd attempts also > 90% m shells no material collected. APT Abandon surface grab	ins sel	4+18-27	

probing indicates gravel

1st attempt will be with a Sft core
1st attempt will be with a Sft core
1st attempt coordinates 400 20,878620'N
1st attempt core; little penetration and no recovery

Shift location & 10 ft toward the shore
for And attempt

1945 2nd attempt core refusal at 3,0 ft

1 penetration 3.0 ft

1 penetration 3.0 ft

1 pross recovery 2,2 ft

1 the recovery. Mussels and sand.

no surface sample collected.

loss O. J-f+

LITHOLOGIC LOG Sediment Collection Log EA Engineering, Science, & Technology, Inc., PBC	Client Name and Project Name GLAES Harbortown - Upstream	Location/Boring Name	1	Sheet of 1
Geologist Name/Signature	5 Project Number 6256136		ECTION INFO	
Ryan Daraton	0250130	8 Start Date/Time 23007203/0845	Stop Date/Time	100
Drilling Subcontractor/Equipment Operator	6 Latitude/Northing/Grid	9. Sed Surface Elevation		ft
1-1-00	42020,819173/N	10 Coordinate System	H NAD83 V	NAVD88
Cetailan	40.819113/0	11 Depth of Water, ft (start/end	d)	
Operator Name (License # If Required) Tal Bonem	7 Longitude/Easting/Grid 82° 59, 799457' W	12 Weather (Temp, circle conc	ditions, wind direction)
Sampling Equipment and Methodology (Check One)		13 Boring Depth (ft) 14 Re	ecovery (ft) 15 % F	Recovery
Rotosonic: -ft barrel -in dia Core: -ft barrel -in dia Grab Sample: 0 -ft x -ft x Other: Sample Collection Method:	meter Manual Push/Vibracore	16 Location Notes Frash, to: let paper, activity along the	and signs rocks on the	of CGO ushore
Interval (Depth) Major Sedimer	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other in	clusions	mple ID	USCS Code
Grab Sample (~0-0.5 ft)	ponar collected			

Initial Location abandoned per EPA instruction 42° 20.819173'N, 82° 59, 799457'W

No core collected

EA Engineering, Science, &	LITHOLOGIC LOG ediment Collection Log Technology, Inc., PBC	GLAES	HT18- J.9	me	Sheet 1 of 1	
1 Geologist Name/Signature Rym Darn+1	٨	5 Project Number 6256136	Start Date/Time Stop Date/Time HUCTHIS [055] H-OCHIS 11H			
2 Drilling Subcontractor/Equipment	Operator	6 Latitude/Northing/Grid	9 Sed Surface Eleva	tion 557.0	ft	
CHackan 3 Operator Name (License # If Requ	uired)	H2° 40, 770414 N 7 Congitude/Easting/Grid	10 Coordinate System H NAD83 V NAVD88 11 Depth of Water, ft (start/end)			
Toe Bonems		82° 59,880960'W	12 Weather (Temp, ci	rcle conditions, wind di Sunny/Cloudy/Rain	rection)	
X Grab Sample: 0 -	relin dia	ameter ameter Manual Push/Vibracore 0.5 -ft Box/Ponar/Van Veen/Other	13 Boring Depth (ft) 1.5 16 Location Notes East end 0	80		
Other: Sample Collection Method:			park			
Interval (Depth)	Major Sedime	Description of Materials ant type, color, presence of SAV/rock/wood, odor/sheen, other inc	clusions	Sample ID	USCS Code	
Grab Sample (~0-0.5 ft)	get sw	e attempts consolidated volume and with lots of mussel some gravel \$5 jors (1802, 11602, 3 40	hells	P(-81t		

probing indicates gravel, limited penetration likely water surface elevation 575.38

1135 collect core. refusal at 1,5 ft
gross recovery 1,5 ft

0,3 loss below core catcher

1,2 net recovery

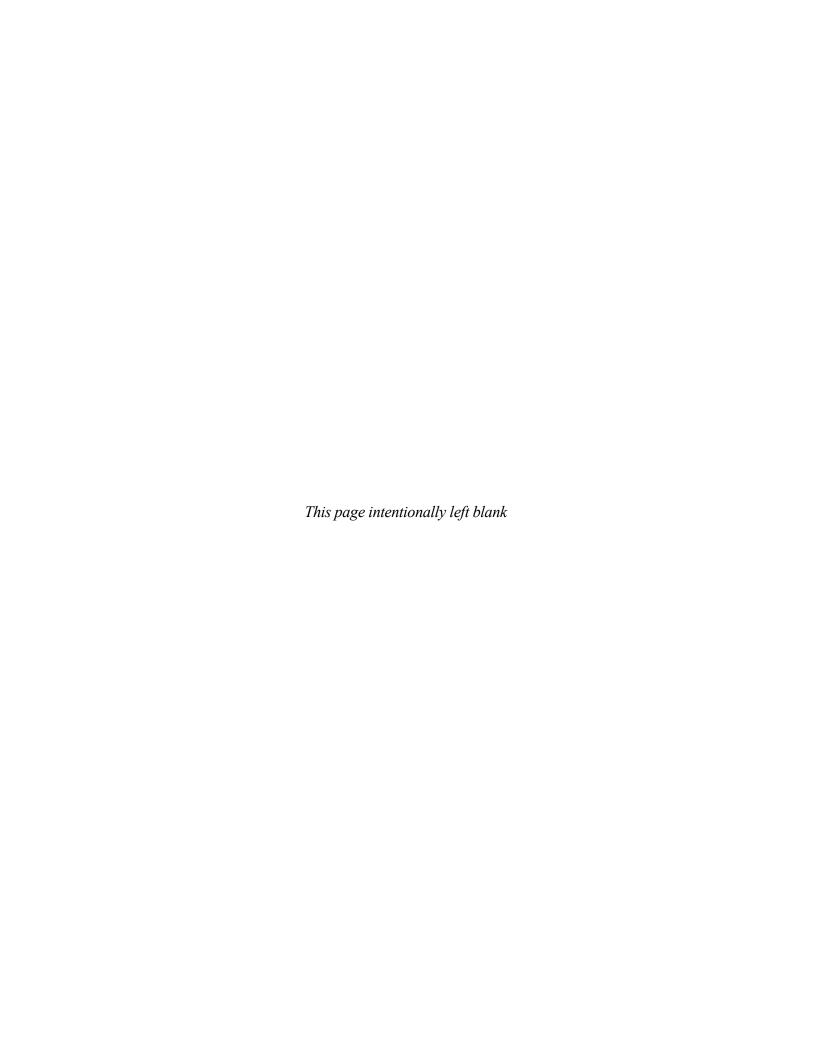
Used the weight (dinner roll) to keep

rore vertical as HED in the current

EA Engineering, Science, & Technology, Inc., PBC 1 Geologist Name/Signature Ryan Dan In	GLAES	Location/Boring Name HT18-30 1 of CORE COLLECTION INFO 8 Start Date/Time JULITAN \$10950 LOCATORS 109				
2 Drilling Subcontractor/Equipment Operator Cetacean Marine 3 Operator Name (License # If Required) Toe Bonem	6 Latitude/Northing/Grid 1 Longitude)Easting/Grid 8 Longitude)Easting/Grid 8 Longitude)Easting/Grid	9 Sed Surface Elevation 563,98 ft				
4 Sampling Equipment and Methodology (Check One) Rotosonic: -ft barrel -in dia Core: -ft barrel -in dia X Grab Sample: 0 -ft x -ft x Other: Other: -ft x -ft x -ft x	ameter Manual Push/Vibracore	13 Boring Depth (ft) 14 Recovery (ft) 15 % Recovery 9,2 ft 92%				
Sample Collection Method: Interval (Depth) Major Sedime	Description of Materials nt type, color, presence of SAV/rock/wood, odor/sheen, other in	clusions	Sample ID	USCS Code		
	ray 3:17 with brown s skin layer jars (3 402, 1802, 116 02		T18-30			

1st attempt gross recovery 9.5 ft Core loss 0,3 ft (from below entcher net recovery 9.2 ft

Water surface elevation 575.38 ft


LITHOLOGIC LOG Sediment Collection Log EA Engineering, Science, & Technology, Inc., PBC 1 Geologist Name/Signature	GLAES	Location/E	Foring Name		Sheet
1 Geologist Name/Signature	5 Project Number		CORE COL	LECTION INFO	
Ryan Parnton	6256136	8 Start Date	Time	Stop Date/Tir	
Drilling Subcontractor/Equipment Operator	6 Latitude/Northing/Grid		e Elevation	4 2 001 8	1010/1155
Cetacean	42° 20,949171/N	10 Coordinate 11 Depth of W		H NAD83	V NAVD88
3 Operator Name (License # If Required)	7 Longitude Easting/Grid	6,3	ater, π (start/en	nd)	
Toe Bonem 4 Sampling Equipment and Methodology (Check One)	82°59,047716'W	12 Weather (T 50°F	emp, circle con	ditions, wind dir Cloudy/Rain N	ection) W 10-15
Rotosonic:ft barrelin diar	neter	1	oth (ft) 14 R	Recovery (ft)	5 % Recovery
Core:ft barrelin dian	neter Manual Push/Vibracore		F+ 6,	68+	97,8
Grab Sample: 0 -ft x	0.5 -ft Box Ponar /an Veen/Other	Belle I	center of sle and		between and side
Interval (Depth) Major Sodiment	Description of Materials		voit Rive		USCS
Major Sediment	type, color, presence of SAV/rock/wood, odor/sheen, other	inclusions	Sa	mple ID	Code
mi	the group silt, light crossial layer on top, a Resident SAV.	Grown ew piezes	HT18	7-31	

1125 collect core
refusal at 6,75 ft
gross recovery 6,7 ft
net recovery 6,6 ft

The state of the s	LITHOLOGIC LOG Sediment Collection Log e, & Technology, Inc., PBC	GLAES Harbortown - Upstream	HT18- 3		Sheet 1 of 1
1 Geologist Name/Signature Parnton		5 Project Number 6256136	8 Start Date/Tir		ne
2 Drilling Subcontractor/Equipm	ent Operator	6 Latitude/Northing/Grid	9 Sed Surface B	Elevation 565,65	ft
Cetacean 1	Narias.	N7.70.717008,N	10 Coordinate Sy	stem H NAD83	V NAVD88
3 Operator Name (License # If I		7 Kanaituda/Fasting/Orid	11 Depth of Water	er, ft (start/end)	
Toe Bonem		82° 59, 70	12 Weather (Ten	np, circle conditions, wind die Sunny/Cloudy/Rain	
4 Sampling Equipment and Met	thodology (Check One)		13 Boring Depth	(ft) 14 Recovery (ft) 1	5 % Recovery
Rotosonic: -ft b		ameter Manual Push/Vibracore	7.0	7,1	101
X Grab Sample: 0 Other:	ft xft x	0.5 -ft Box/Ponar/ Van Veen/Other	In center and US	of champel between side of Oetro: + F	selle sile
Sample Collection Meth	nod:				
Interval (Depth)	Major Sedime	Description of Materials ent type, color, presence of SAV/rock/wood, odor/sheen, other	inclusions	Sample ID	USCS Code
Grab Sample (~0-0.5 ft)		dark grows silt with so a few pieces of destritus lect FD — + 10 3		HT18-32	

refusal at 7ft
gross recovery 7,3 ft
Netrecovery 7,1 ft
water surface \$75,35

Appendix B Lithologic Core Logs

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/29/2018 3:10:00 PM

DATE/TIME LOGGED 10/30/2018 9:40:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.360451

LONGITUDE 82° 56.568433

ELEVATION

568.2 ft (NAVD 88)

(Sediment Surface)

RECOVERY 93.7 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (t) (t) (description
0	12	Composite	HT18-01-0010		ML	SILT WITH SAND: Dark gray (10YR 4/1), silt, some f-m sand, trace roots and shell. PID = 0.4 ppm
2 -	24	Composite	HT18-01-1030		CL-ML	LEAN CLAY AND SILT: Dark gray (10YR 4/1), clay, some f. sand; silt, some clay, trace granules and shell. PID = 0.5 ppm
4 -	24	Composite	HT18-01-3050		ML	SILT: Dark gray (10YR 4/1), silt, some clay, trace roots and shell. PID = 0.6 ppm
6 -	24	Composite	HT18-01-5070		ML-SP	SILT AND SAND: Dark gray (10YR 4/1), alternating layers of: silt, some clay; and vf. sand, some silt, trace pebbles. PID = 0.6 ppm
8 -	19.2	Composite	HT18-01-7085		ML-CL	SILT AND LEAN CLAY: Dark gray (10YR 3/1), silt, some clay; and clay, some silt, trace shell and organics; thin bed of f. sand, some silt at 7.8-7.9 ft. PID = 0.7 ppm
						End of Boring at 8.8 ft.

NOTES:

LOGGED BY E Cline

SEDIMENT BORING HT18-02

PROJECT NAME Harbortown Upstream **DATE/TIME COLLECTED** 10/29/2018 3:45:00 PM **DATE/TIME LOGGED** 10/30/2018 11:00:00 AM **DRILLING CONTRACTOR** Cetacean Marine **DRILLING METHOD** Vibracore

LOCATION Detroit, MI **LATITUDE** 42° 21.325964 **LONGITUDE** 82° 56.779133 **ELEVATION** 565.2 ft (NAVD 88) (Sediment Surface)

PROJECT NUMBER 62561.36

RECOVERY 90 %

				1		_	
DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
0	12	Composite	HT18-02-0010		ML	SANDY SILT: Dark gray (10YR 4/1), f. sandy silt, some clay, trace shell and construction debris. PID = 0.5 ppm	1.0
2 -	24	Composite	HT18-02-1030		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f. sand, some clay. PID = 0.3 ppm	3.0
3 - 4 - 5 - 6 -	37.2	Composite	HT18-02-3060		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f. sand, some clay, trace m. sand. PID = 0.2 ppm	3.0
7 -	20.4	Composite	HT18-02-6080		SW-SM	WELL GRADED SAND WITH SILT: Black (10YR 2/1), f-vc sand, some silt and stiff clay nodules. PID = 0.6 ppm	7.8
9 -	16.8	Composite	HT18-02-8090		SM	SILTY SAND: Very dark gray (10YR 3/1), silty f. sand, trace clay. PID = 0.5 ppm	9.2
10 —							

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/29/2018 5:20:00 PM

DATE/TIME LOGGED 10/30/2018 1:55:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.533856

LONGITUDE 82° 57.306525

ELEVATION

557.8 ft (NAVD 88)

(Sediment Surface)

RECOVERY 94.4 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (t) the description (f) the description (f) the description (f)
1 -	12	Composite	HT18-03-0010		ML-OL	SILT WITH SAND: Very dark gray (10YR 3/1), silt, some vf. sand, trace m-c sand and organics. Hydrocarbon odor. PID = 0.2 ppm
2 -	24	Composite	HT18-03-1030		OL	ORGANIC SILT WITH SAND: Very dark gray (10YR 3/1), organic silt, some vf. sand, trace m-c sand. Hydrocarbon odor. PID = 8.0 ppm
4 -	19.2	Composite	HT18-03-3045		OL	ORGANIC SILT: Black (10YR 2/1), organic silt, trace f-c sand and roots. PID = 8.5 ppm
5 —	16.8	Composite	HT18-03-4560		СН	FAT CLAY: Dark gray (10Y 4/1), stiff clay, few f. sand, trace granules and pebbles. PID = 0.9 ppm
6 -					OL	ORGANIC SILT WITH SAND: Black (10YR 2/1), organic silt, some f-m sand, trace granules, pebbles, and c. sand. PID = 3.0 ppm End of Boring at 6.3 ft.

NOTES:

LOGGED BY E Cline

SEDIMENT BORING HT18-04

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/29/2018 11:55:00 AM

DATE/TIME LOGGED 10/29/2018 3:20:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LONGITUDE 82° 57.042887

ELEVATION 566.9 ft
(Sediment Surface)

566.9 ft (NAVD 88)

(Sediment Surface)

LOCATION Detroit, MI

LATITUDE 42° 21.291181

PROJECT NUMBER 62561.36

RECOVERY 70 %

	-					
DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION
0	7.2	Composite	HT18-04-0005		SP-SC	POORLY GRADED SAND WITH CLAY: Gray (10YR 5/1), f. sand, some clay, few c. sand, trace granules. Bed of organic silt at top 0.2 ft. PID =
2 -	32.4	Composite	HT18-04-0530		CL	LEAN CLAY WITH SAND: Dark gray (10YR 4/1), clay, some vf. sand, trace c. sand. Thin bed of f. sand, some clay at 1.1-1.2-ft. PID = 0.3 ppm
4 –	12	Composite	HT18-04-3040		SW-SC	WELL GRADED SAND WITH CLAY: Black (10YR 2/1), f-vc sand, trace clay and wood, fining upward to f. sand, some clay. PID = 0.2 ppm
5 —						End of Boring at 6 ft.

NOTES:

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/29/2018 4:35:00 PM

DATE/TIME LOGGED 10/30/2018 4:30:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.313827

LONGITUDE 82° 57.217096

ELEVATION

559.8 ft (NAVD 88)

(Sediment Surface)

RECOVERY 84.6 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (t) pdp pd
	12	Composite	HT18-05-0010		ML	SILT WITH SAND: Gray (2.5YR 5/1), silt, some vf. sand, trace organics. PID = 0.2 ppm
2 -	20.4	Composite	HT18-05-1030		ML-OL	SILT: Dark gray (2.5YR 4/1), silt, some clay, trace vf. sand, wood, and roots; bed of organics at 1-1.3 ft. PID = 0.2 ppm
3 -	28.2	Composite	HT18-05-3050		OL	ORGANIC SILT WITH SAND: Black (2.5YR 2.5/1), organic silt, some f-m sand, trace roots and c. sand. PID = 3.1 ppm
3	10.2	Composite	HT18-05-5060		SM	SILTY SAND: Very dark gray (2.5YR 3/1), silty f-m sand, trace shell; thin layer of stiff clay at 5.1 ft. PID = 0.8 ppm
6 -						End of Boring at 6.5 ft.
NOTI "End		indicates dep	th of maximum penetration used to calculate	% recovery for e	ach core.	PAGE 1 of 1

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/29/2018 11:20:00 AM

DATE/TIME LOGGED 10/29/2018 2:10:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.270563

LONGITUDE 82° 57.289438

ELEVATION

558.3 ft (NAVD 88)

(Sediment Surface)

RECOVERY 92 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
	12	Composite	HT18-06-0010		ML	SILT: Dark gray (10YR 4/1), silt, some clay, trace organics. PID = 0.1 ppm	1.0
2 -	24	Composite	HT18-06-1030		ML-CL	SILT: Dark gray (10YR 4/1), clayey silt, trace organics. PID = 0.1 ppm	3.0
4 -	36	Composite	HT18-06-3060		мн-он	ELASTIC SILT: Very dark gray (10YR 3/1), clayey silt, trace m-c sand interbedded with organic layers. Hydrocarbon odor. PID = 1.3 ppm	6.0
7 -	13.2	Composite	HT18-06-6070		SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), f-m sand, some silt, trace organics, shell, and angular pebbles. PID = 4.2 ppm	7 1
8 -	12	Composite	HT18-06-7080		ОН	ORGANIC SILT WITH SAND: Black (1YR 2/1), organic silt, some f-m sand, trace wood and cultural debris (i.e. comb). PID = 4.2 ppm	8.1
9 -	19.2	Composite	HT18-06-8010		ОН	ORGANIC SILT: Very dark gray (10YR 3/1), organic silt and clay, some sand, trace pebbles. Hydrocarbon odor. PID = 10.3 ppm	9.7

NOTES:

End of Boring at 10 ft.

LOGGED BY E Cline

SEDIMENT BORING HT18-07

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/29/2018 10:30:00 AM

DATE/TIME LOGGED 10/29/2018 2:30:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LONGITUDE 82° 57.468904 **ELEVATION** 565.3 ft

565.3 ft (NAVD 88)

(Sediment Surface)

LOCATION Detroit, MI

LATITUDE 42° 21.272053

PROJECT NUMBER 62561.36

RECOVERY 86 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)		GRAPHIC LOG		USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
1 -	21.6	Composite	HT18-07-0020				SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), f-m sand, some silt. PID = 0.4 ppm	1.8
3 -	36	Composite	HT18-07-2050				МН	ELASTIC SILT WITH SAND: Black (10YR 2/1), clayey silt, some vf. sand and organics. Hydrocarbon odor. PID = 15.2 ppm	48
6 -	26.4	Composite	HT18-07-5070				ML	SILT WITH SAND: Very dark gray (10YR 3/1), silt, some vf. sand; thin layers of f. sand and clay, some silt, trace shell. PID = 4.1 ppm	7.0
8 -	22.8	Composite	HT18-07-7090				ML	SANDY SILT: Black (10YR 2/1), f. sandy silt, some clay. Hydrocarbon odor with clay at base. PID = 9.4 ppm	8.9
9 -				T					0.9

NOTES:

10 -

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/22/2018 5:30:00 PM

DATE/TIME LOGGED 10/23/2018 5:10:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.286307

LONGITUDE 82° 57.54814

ELEVATION

566.6 ft (NAVD 88)

(Sediment Surface)

RECOVERY 80 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG		USCS CLASS	MATERIAL DESCRIPTION (‡) the description (†)
1 -	12	Composite	HT18-08-0010			ML	SILT: Dark gray (10YR 4/1), silt, some vf. sand, trace clay and roots. PID = 0.3 ppm
2 -	15.6	Composite	HT18-08-1020			ML	SILT: Dark gray (10YR 4/1), silt, some vf. sand, trace clay and roots; some granules at base. PID = 0.2 ppm
3 -	27.6	Composite	HT18-08-2045			sw	WELL GRADED SAND: Bluish black (10B 2.5/1), f-vc sand, few pebbles, trace silt and granules. Whole clamshell. Hydrocarbon odor. PID = 0.5 ppm
5 —	22.8	Composite	HT18-08-4565			SP-SM	POORLY GRADED SAND WITH SILT: Bluish black (10B 2.5/1) to dark gray (10YR 4/1), f. sand, some silt; bed of silt, some c. sand at top 0.3 ft. PID = 4.4 ppm
7 -	18	Composite	HT18-08-6580			SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), f. sand, some silt. PID = 0.5 ppm
9 -					. II.		8.0

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/22/2018 4:30:00 PM

DATE/TIME LOGGED 10/23/2018 1:45:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.289201

LONGITUDE 82° 57.670667

ELEVATION

565.7 ft (NAVD 88)

(Sediment Surface)

RECOVERY 96 %

12 Composite HT18-09-0010 1		ML ML	SILT: Dark greenish gray (10YR 4/1), wet, silt, little f. sand, trace clay. PID = 1.7 ppm	1.0
2 - 24 Composite HT18-09-1030 3 - 4 - 24 Composite HT18-09-3050		ML	SILT: Dark groupish grov (10VD 4/1) wat all	
4 - 24 Composite HT18-09-3050			SILT: Dark greenish gray (10YR 4/1), wet, silt, little f. sand, trace clay and roots. PID = 1.4 ppm	3.0
5 -		ML	SILT: Dark greenish gray (10YR 4/1), wet, silt, little f. sand, trace clay and roots. Hydrocarbon odor. PID = 1.2 ppm	5.0
6 - 24 Composite HT18-09-5070		ML	SILT: Dark greenish gray (10YR 3/1), silt, some clay, trace organics and roots. Dark black layer with hydrocarbon odor at 5.3 ft. PID = 0.8 ppm	7.0
8 - 32.4 Composite HT18-09-7010		ML	SILT: Dark greenish gray (10YR 3/1), silt, some clay, trace f. sand, organics, and roots. PID = 0.6 ppm	9.7

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/22/2018 3:55:00 PM

DATE/TIME LOGGED 10/24/2018 9:40:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

 LOCATION
 Detroit, MI

 LATITUDE
 42° 21.289611

 LONGITUDE
 82° 57.782160

 ELEVATION
 570.4 ft (NAVD 88)

 (Sediment Surface)

RECOVERY 52.5 %

PROJECT NUMBER 62561.36

LOGO	GED BY	E Cline			REC	OVE

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION Depth (t)
1 -	12.6	Composite	HT18-10-0010		SW	WELL GRADED SAND: Dark gray (10YR 4/1), vf-m clean sand, few angular pebbles, trace shell. PID = 0.2 ppm
2 -						End of Boring at 2 ft.

NOTES:

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/22/2018 3:21:00 PM

DATE/TIME LOGGED 10/24/2018 8:30:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.309866

LONGITUDE 82° 57.925609

ELEVATION

566 ft (NAVD 88)

(Sediment Surface)

RECOVERY 94 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)		GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (1) 41 de
1 -	12	Composite	HT18-11-0010			ML	SILT: Dark gray (10YR 4/1), soft, wet, silt, trace plant debris. PID = 0.2 ppm
2 -	24	Composite	HT18-11-1030			ML	SILT: Dark gray (10YR 4/1), soft, wet, silt, trace f. sand and plant debris. PID = 0.2 ppm
4 -	24	Composite	HT18-11-3050			SM	SANDY SILT: Very dark gray (10YR 3/1), f. sandy silt, some clay, trace organics, fining upward from f. sand with silt. PID = 0.2 ppm
6 -	24	Composite	HT18-11-5070			SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), f. sand, some silt, trace organics. PID = 0.2 ppm
8 -	28.8	Composite	HT18-11-7010			SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), f. sand, some silt. PID = 0.2 ppm
10 —					4		9.4

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/22/2018 2:20:00 PM

DATE/TIME LOGGED 10/23/2018 3:40:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.331013

LONGITUDE 82° 58.089107

ELEVATION

568.7 ft (NAVD 88)

(Sediment Surface)

RECOVERY 97 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (j.) tyde
1 -	12	Composite	HT18-12-0010		ML	SANDY SILT: Dark gray (7.5YR 4/1), soft, wet, vf. sandy silt, trace organics. PID = 31.8 ppm
2 -	24	Composite	HT18-12-1030		ML	SANDY SILT: Black (5YR 2.5/1), soft, wet, vf. sandy silt, trace clay and organics; interbedded with f. sand some silt. Hydrocarbon odor. PID = 17.2 ppm
4 -	24	Composite	HT18-12-3050		SP-SM	POORLY GRADED SAND WITH SILT: Black (5YR 2.5/1), vf-f sand, some silt, few granules and interbedded clay. PID = 2.2 ppm
6 -	24	Composite	HT18-12-5070		CL	LEAN CLAY WITH SAND: Dark gray (7.5YR 4/1), clay, some f. sand, trace granules, pebbles, and wood; fining upward from clayey sand. PID = 1.1 ppm
8 -	32.4	Composite	HT18-12-7010		CL	LEAN CLAY WITH SAND: Dark gray (7.5YR 4/1), low to medium plastic clay, some f. sand. PID = 22.8 ppm
10 —						

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/29/2018 9:50:00 AM

DATE/TIME LOGGED 10/29/2018 5:55:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.313187

LONGITUDE 82° 58.382027

ELEVATION

561.8 ft (NAVD 88)

(Sediment Surface)

RECOVERY 96 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)		GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
1 -	12	Composite	HT18-13-0010			ML	SILT WITH SAND: Dark gray (10YR 4/1), silt, some vf-m sand, trace shells and pebbles. PID = 0.5 ppm	1.0
2 -	24	Composite	HT18-13-1030			ML	SILT: Dark gray (10YR 4/1), silt, trace clay and f. sand. Hydrocarbon odor. PID = 1.5 ppm	3.0
4 -	24	Composite	HT18-13-3050			ML	SILT: Dark gray (10YR 4/1), silt, some clay, trace f. sand and shell. PID = 0.5 ppm	5.0
6 -	15.6	Composite	HT18-13-5060			CL	LEAN CLAY: Dark gray (10YR 4/1), clay, some silt, trace f. sand and shell. PID = 0.9 ppm	6.3
7 -	30	Composite	HT18-13-6090			ML	SILT: Very dark gray, (10YR 3/1), silt, some clay, trace f. sand and shell; thin layers of clay with trace f. sand and shell. PID = 0.5 ppm	8.8
9 -	15.6	Composite	HT18-13-9010			SP-SM	POORLY GRADED SAND WITH SILT: Very dark gray (10YR 3/1), f. sand, some silt, trace c. sand, shell, and pebbles. PID = 0.5 ppm	10.0

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/29/2018 9:00:00 AM

DATE/TIME LOGGED 10/30/2018 8:50:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

 LOCATION
 Detroit, MI

 LATITUDE
 42° 21.250149

 LONGITUDE
 82° 58.648377

 ELEVATION
 555.96 ft (NAVD 88)

 (Sediment Surface)

PROJECT NUMBER 62561.36

RECOVERY 63.3 %

LOGGED BY E Cline

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (t) pb bt pc continued to the conti	
1 -	15.6	Composite	HT18-14-0010		SW-SM	WELL GRADED SAND WITH SILT: Black (10YR 2/1), f-vc sand, some silt, trace granules, construction debris, and shell. PID = 2.4 ppm	
	7.2	Composite	HT18-14-1020		CL	SANDY LEAN CLAY: Very dark gray (10YR 3/1), f-vc sandy clay, some silt, trace shell. PID = 0.5 ppm	
3 -						End of Boring at 3 ft.	

NOTES:

LOGGED BY E Cline

SEDIMENT BORING HT18-15

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/24/2018 4:50:00 PM

DATE/TIME LOGGED 10/25/2018 10:10:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.211720

LONGITUDE 82° 58.731659

ELEVATION 556.1 ft (NAVD 88)
(Sediment Surface)

RECOVERY 101.5 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
	6	Composite	HT18-15-0005		SW-SC	WELL GRADED SAND WITH CLAY: Very dark gray (2.5YR 3/1), f-c sand, some clay and oyster shell. PID = 0.9 ppm	0.5
2 -	30	Composite	HT18-15-0530		СН	FAT CLAY: Dark gray (2.5YR 4/1), fat clay, trace granules and c. sand. PID = 0.5 ppm	3.0
4 -	24	Composite	HT18-15-3050		СН	FAT CLAY: Dark gray (2.5YR 4/1), fat clay, trace granules and c. sand. PID = 0.4 ppm	5.0
6 -					СН	FAT CLAY: Dark gray (2.5YR 4/1), fat clay, trace granules and c. sand. PID = 0.4 ppm	6.6
						End of Boring at 6.5 ft.	

NOTES:

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/24/2018 3:0

DATE/TIME COLLECTED 10/24/2018 3:00:00 PM

DATE/TIME LOGGED 10/25/2018 11:20:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.130291

LONGITUDE 82° 58.818345

ELEVATION

548.4 ft (NAVD 88)

(Sediment Surface)

RECOVERY 102.2 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (1) finds a
1 -	12	Composite	HT18-17-0010		СН	FAT CLAY WITH GRAVEL: Gray (2.5YR 5/1), fat clay, trace c. sand and granules. Bed of clayey gravel, some f-c sand at top 0.2 ft. PID = 0.7 ppm
2 -	24	Composite	HT18-17-1030		СН	FAT CLAY: Gray (2.5YR 5/1), fat clay, trace c. sand and granules. PID = 0.5 ppm
3 -	20.4	Composite	HT18-17-3050		СН	FAT CLAY: Gray (2.5YR 5/1), fat clay, trace c. sand and granules. PID = 0.5 ppm
						End of Boring at 4.5 ft.

NOTES:

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/24/2018 11:45:00 AM

DATE/TIME LOGGED 10/25/2018 12:05:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.162420

LONGITUDE 82° 58.895003

ELEVATION

560.5 ft (NAVD 88)

(Sediment Surface)

RECOVERY 90 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (1) ptd O
1 -	. 22.8	Composite	HT18-18-0020		ML-OL	SILT WITH SAND AND ORGANICS: Black (2.5Y 2.5/1), silt, some f-m sand, trace shell at top; bed of organics in bottom 0.5 ft. Sheen and hydrocarbon odor. PID = 8.2 ppm
2 -	10.8	Composite	HT18-18-2030		CL	LEAN CLAY: Gray (5YR 5/1), soft clay, trace c. sand and granules. PID = 0.6 ppm
3 -	9.6	Composite	HT18-18-3035		SC	CLAYEY SAND: Dark gray (10YR 4/1), clayey f-vc sand, trace shell, fining upward from granules and pebbles. PID = 0.6 ppm
5 —	21.6	Composite	HT18-18-3550		СН	FAT CLAY: Gray (10YR 5/1), fat clay, trace m. sand, granules, and angular pebbles. PID = 0.6 ppm
6 -						End of Boring at 6 ft.

NOTES:

LOGGED BY E Cline

SEDIMENT BORING HT18-19

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/24/2018 11:15:00 AM

DATE/TIME LOGGED 10/25/2018 2:35:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.145827

LONGITUDE 82° 58.952226

ELEVATION 554.6 ft (NAVD 88)
(Sediment Surface)

RECOVERY 92.3 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
	10.8	Composite	HT18-19-0010		OL	ORGANIC SILT WITH SAND: Black (10YR 2/1), organic silt, some m. sand, trace angular pebbles. Sheen and strong hydrocarbon odor. PID = 9.4 ppm	10
2	15.6	Composite	HT18-19-1020		ML	SILT: Very dark gray (10YR 3/1), silt, some f. sand, numerous large shells. Sheen and strong hydrocarbon odor. PID = 0.8 ppm	
3	6	Composite	HT18-19-2030		sw	WELL GRADED SAND: Dark gray (10YR 4/1), f-c sand, some shell, trace silt and pebbles. PID = 0.7 ppm	2.8
						End of Boring at 3.3 ft.	

NOTES:

PROJECT NAME Harbortown Upstream **DATE/TIME COLLECTED** 10/24/2018 10:15:00 AM **DATE/TIME LOGGED** 10/25/2018 3:05:00 PM **DRILLING CONTRACTOR** Cetacean Marine **DRILLING METHOD** Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.111178

LONGITUDE 82° 59.102033

549.6 ft (NAVD 88)

ELEVATION

(Sediment Surface)

RECOVERY 92.3 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (£) fide G
0	9.6	Composite	HT18-20-0010		SP-SM	POORLY GRADED SAND WITH SILT: Black (10YR 2/1), f-m sand, some silt, trace pebbles. PID = 0.5 ppm
1 -	12	Composite	HT18-20-1020		СН	FAT CLAY: Greenish gray (10G 5/1), stiff, highly plastic clay. PID = 0.4 ppm
2 -	12	Composite	HT18-20-2030		SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (2.5Y 4/1), f. sand, some silt, trace clay, shell, wood; cobbles at base. PID = 0.5 ppm
3 -						End of Boring at 3.3 ft.

NOTES:

LOGGED BY E Cline

SEDIMENT BORING HT18-21

PROJECT NAME Harbortown Upstream **DATE/TIME COLLECTED** 10/24/2018 9:30:00 AM **DATE/TIME LOGGED** 10/25/2018 3:45:00 PM **DRILLING CONTRACTOR** Cetacean Marine **DRILLING METHOD** Vibracore

LOCATION Detroit, MI **LATITUDE** 42° 21.090310 **LONGITUDE** 82° 59.206108 **ELEVATION** 564.5 ft (NAVD 88) (Sediment Surface)

PROJECT NUMBER 62561.36

RECOVERY 87.5 %

	-						
DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
1 -	20.4	Composite	HT18-21-0015		SW-SM	WELL GRADED SAND WITH SILT AND GRAVEL: Very dark grayish brown (2.5Y 3/2), f-vc sand and gravel, some silt, trace shell, pebbles, and construction debris (i.e. brick). PID = 0.4 ppm	1.7
2 -						End of Boring at 2 ft.	

NOTES:

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/23/2018 5:15:00 PM

DATE/TIME LOGGED 10/24/2018 10:15:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.066846

LONGITUDE 82° 59.390311

ELEVATION

568.9 ft (NAVD 88)

(Sediment Surface)

RECOVERY 92 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (1) 41 de
1 -	12	Composite	HT18-23-0010		ML	SILT WITH SAND: Dark gray (10YR 4/1), silt, some f. sand; bed of plant debris at top 0.3 ft. PID = 0.6 ppm
2 -	24	Composite	HT18-23-1030		SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), f. sand, some silt, trace granules, pebbles, and shell. PID = 0.2 ppm
4 -	24	Composite	HT18-23-3050		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f. sand, some clay, trace silt; interbeded with lean clay, some silt. PID = 2.9 ppm
6 -	24	Composite	HT18-23-5070		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f. sand, some clay, trace silt; interbeded with lean clay, some silt. PID = 0.3 ppm
8 -	26.4	Composite	HT18-23-7010		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f. sand, some clay, trace silt; increasingly interbeded with lean clay, some silt with depth. PID = 0.3 ppm
10 —						

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/23/2018 4:10:00 PM

DATE/TIME LOGGED 10/24/2018 11:40:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.036536

LONGITUDE 82° 59.420921

ELEVATION 560.7 ft (NAVD 88)

(Sediment Surface)

RECOVERY 86.7 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (a) State of the control of	
1 -	12	Composite	HT18-24-0010		SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), vf-f sand, some silt, large cobble. PID = 0.3 ppm	
2 -	20.4	Composite	HT18-24-1025		SM	SILTY SAND: Dark gray (10YR 4/1), silty, f-m sand; interbedded with silt, some clay. PID = 0.3 ppm	
3 -	27.6	Composite	HT18-24-2550		CL	LEAN CLAY: Dark gray (10YR 4/1), low plasticity clay, some silt, trace f. sand. PID = 0.3 ppm	
6 -	19.2	Composite	HT18-24-5065		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f. sand, some clay; trace shell, granules, and pebbles. PID = 0.3 ppm	
7 -	14.4	Composite	HT18-24-6575		СН	FAT CLAY: Dark gray (10YR 4/1), medium to highly plastic clay, trace m. sand. PID = 0.3 ppm	
8 -						7.8	
9 -						End of Boring at 9 ft.	

NOTES:

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/23/2018 3:00:00 PM

DATE/TIME LOGGED 10/24/2018 3:10:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 21.023073

LONGITUDE 82° 59.468149

ELEVATION

566.9 ft (NAVD 88)

(Sediment Surface)

RECOVERY 95 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (‡) pd de
1 -	12	Composite	HT18-25-0010		ML	SILT WITH SAND: Dark gray (10YR 4/1), silt, some m. sand; thin bed of c. sand and pebbles, some silt at 0.7-0.8 ft. PID = 3.6 ppm
2 -	24	Composite	HT18-25-1030		ML	SILT WITH SAND: Black (10YR 2/1), silt, some f. sand, trace shell. Sheen and strong hydrocarbon odor. PID = 7.2 ppm
3 -	14.4	Composite	HT18-25-3040		ML	SILT WITH SAND: Black (10YR 2/1), silt, some f. sand, trace shell. Sheen and strong hydrocarbon odor. PID = 2.3 ppm
5 —	33.6	Composite	HT18-25-4070		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f-m sand, trace organics; interbededded with lean clay, some silt. PID = 4.6 ppm
8 -	30	Composite	HT18-25-7010		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f-m sand, trace organics; interbededded with lean clay, some silt. PID = 3.7 ppm
10 —				12		9.0

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/23/2018 2:40:00 PM

DATE/TIME COLLECTED 10/23/2018 2:40:00 PM

DATE/TIME LOGGED 10/24/2018 4:10:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 20.976594

LONGITUDE 82° 59.557515

ELEVATION

568.5 ft (NAVD 88)

(Sediment Surface)

RECOVERY 95 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
	12	Composite	HT18-26-0010		SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), f-m sand, some silt. PID = 2.4 ppm	1.0
2 -	24	Composite	HT18-26-1030		SP-SM	POORLY GRADED SAND WITH SILT: Dark gray (10YR 4/1), f-m sand, some silt, trace shell and pebbles, coarsening upward from f-m sand, some clay. PID = 1.4 ppm	3.0
4 -	24	Composite	HT18-26-3050		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f-m sand, some silt; interbedded with lean clay, some sand, trace shell. PID = 0.9 ppm	5.0
6 -	24	Composite	HT18-26-5070		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f-m sand, some silt; interbedded with lean clay, some sand, trace shell and organics. PID = 4.0 ppm	7.0
8 -	30	Composite	HT18-26-7010		SP-SC	POORLY GRADED SAND WITH CLAY: Dark gray (10YR 4/1), f-m sand, some silt; interbedded with lean clay, some sand, trace shell and organics; increasing clay content with depth. PID = 2.2 ppm	9.5
10 —							3.0

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/23/2018 9:45:00 AM

DATE/TIME LOGGED 10/24/2018 5:10:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

LATITUDE 42° 20.879894 LONGITUDE 82° 59.707928 ELEVATION 560.34 ft (NAVD 88)

(Sediment Surface)

LOCATION Detroit, MI

PROJECT NUMBER 62561.36

RECOVERY 66.7 %

	ı						
DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
0	9.6	Composite	HT18-27-0010		SP-SM	POORLY GRADED SAND WITH GRAVEL AND SILT: Black (10YR 2/1), m. sand and gravel, some silt, trace shell. Hydrocarbon odor. PID = 3.8 ppm	, 0.8
2 -	13.2	Composite	HT18-27-1020		СН	FAT CLAY: Grayish brown (2.5YR 5/2), stiff, fat clay, few angular pebbles (possibly slag). PID = 1.2 ppm	24
3 -						End of Boring at 3 ft.	24

NOTES:

LOGGED BY E Cline

SEDIMENT BORING HT18-29

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/22/2018 11:35:00 AM

DATE/TIME LOGGED 10/23/2018 12:00:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 20.770424

LONGITUDE 82° 59.880960

ELEVATION 552 ft (NAVD 88)

(Sediment Surface)

RECOVERY 80 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
1 -	14.4	Composite	HT18-29-0010		SM	SILTY SAND: Dark gray (7.5YR 4/1), silty f-vc sand, little angular granules gravel, and construction debris (brick and concrete), trace clay and shell. PID = 0.8 ppm	1.2
						End of Boring at 1.5 ft.	

NOTES:

LOGGED BY E Cline

SEDIMENT BORING HT18-30

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/22/2018 9:55:00 AM

DATE/TIME LOGGED 10/23/2018 10:35:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 20.531980

LONGITUDE 82° 59.984068

ELEVATION 563.98 ft (NAVD 88)

(Sediment Surface)

RECOVERY 92 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
1 -	12	Composite	HT18-30-0010				
2 -	24	Composite	HT18-30-1030				
4 -	24	Composite	HT18-30-3050		CL-ML	LEAN CLAY AND SILT: Dark greenish gray (5GY 3/1), silt, some soft clay, little fine sand; clay, some silt, trace pebbles. Hydrocarbon odor. PID = 6.3 ppm	
6 -	24	Composite	HT18-30-5070				
8 -	26.4	Composite	Archive				9.2
10 —							9.2

NOTES:

End of Boring at 10 ft.

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/23/2018 11:25:00 AM

DATE/TIME LOGGED 10/25/2018 8:30:00 AM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

LOCATION Detroit, MI

LATITUDE 42° 20.949171

LONGITUDE 82° 59.047716

ELEVATION

ft (NAVD 88)

(Sediment Surface)

RECOVERY 97.8 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHICLOG	USCS CLASS	MATERIAL DESCRIPTION (£) \$td do
1 -	15.6	Composite	HT18-31-0010		ML	SILT WITH SAND: Very dark gray (5Y 3/1), silt, some f-c sand, trace roots, granules, and angular pebbles; cobble at 1-1.3 ft. PID = 0.9 ppm
2 -	15.6	Composite	HT18-31-1025		OL	ORGANIC SILT: Black (5Y 2.5/2), Organic silt and peat, trace m. sand. PID = 0.9 ppm
3 -	37.2	Composite	HT18-31-2555		SC-CL	SAND WITH CLAY: Greenish gray (10BG 5/1), m. sand, some clay, fining upward to clay, some m. sand at 3.2 ft. PID = 0.8 ppm
6 -	10.8	Composite	HT18-31-5565		GW-GC	WELL GRADED GRAVEL WITH CLAY AND SAND: Greenish gray (10BG 5/1), f-vc sandy gravel, some clay, few angular pebbles. PID = 0.8 ppm
						End of Boring at 6.8 ft.

NOTES:

PROJECT NAME Harbortown Upstream

DATE/TIME COLLECTED 10/23/2018 10:50:00 AM

DATE/TIME LOGGED 10/24/2018 6:00:00 PM

DRILLING CONTRACTOR Cetacean Marine

DRILLING METHOD Vibracore

LOGGED BY E Cline

PROJECT NUMBER 62561.36

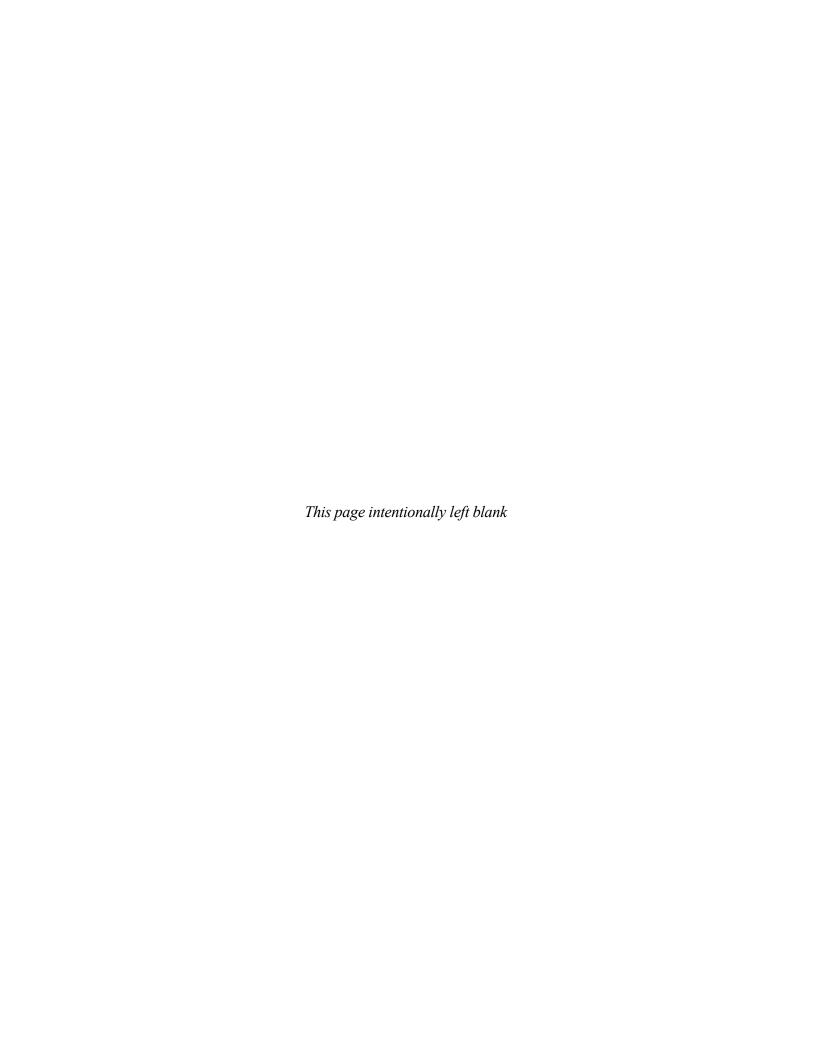
565.65 ft (NAVD 88)

LOCATION Detroit, MI

LATITUDE 42° 20.712008

LONGITUDE 82° 59.1313

ELEVATION


(Sediment Surface)

RECOVERY 100 %

DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR GRAIN SIZE & CHEMICAL ANALYSIS (Sample ID at sample depth)	GRAPHIC LOG	USCS CLASS	MATERIAL DESCRIPTION (#) #dd @	
1 -	12	Composite	HT18-32-0010		SW-SM	WELL GRADED SAND WITH SILT: Dark gray (2.5YR 4/1), f-c sand, some silt, trace clay and angular pebbles. PID = 1.9 ppm	
2 -	24	Composite	HT18-32-1030		ML	SANDY SILT: Gray (2.5YR 5/1), f. sandy silt, some clay, trace roots. PID = 1.6 ppm	
4 -	36	Composite	HT18-32-3050		CL	LEAN CLAY: Gray (2.5YR 5/1), lean clay, some silt, trace f. sand and roots. PID = 1.4 ppm	
6 -	24	Composite	HT18-32-5070		CL	LEAN CLAY: Gray (2.5YR 5/1), lean clay, some silt, trace f. sand and roots. PID = 1.4 ppm	
, -						End of Boring at 7 ft.	

NOTES:

APPENDIX C: PHOTOGRAPHIC RECORD

Photographic Record

HT18-01-SURF

HT18-01-0030

HT18-01-3060

HT18-01-6086

Photographic Record

HT18-02-SURF

HT18-02-0030

HT18-02-3060

HT18-02-6093

HT18-03-SURF

HT18-03-0030

HT18-03-3060

HT18-04-SURF

HT18-04-0030

HT18-04-3044

HT18-05-SURF

HT18-05-0030

HT18-05-3060

Photographic Record

HT18-06-SURF

HT18-06-0030

HT18-06-3060

HT18-06-6097

HT18-06-SURF

HT18-06-0030

HT18-06-3060

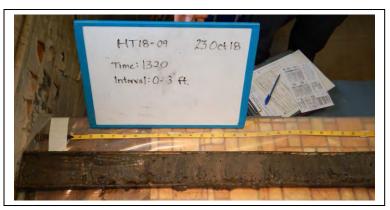
HT18-06-6090

Photographic Record

HT18-08-SURF

HT18-08-0030

HT18-08-3060



HT18-08-6085

Photographic Record

HT18-09-SURF

HT18-09-0030

HT18-09-3060

HT18-09-6090

HT18-09-9010

Sample location: HT18-10

HT18-10-SURF HT18-10-0011

Photographic Record

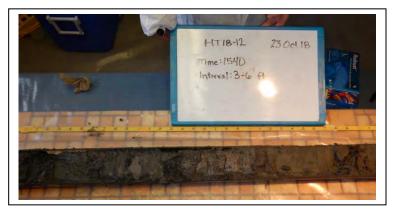
HT18-11-SURF

HT18-11-0030

HT18-11-3060

HT18-11-6090

HT18-11-9010


Photographic Record

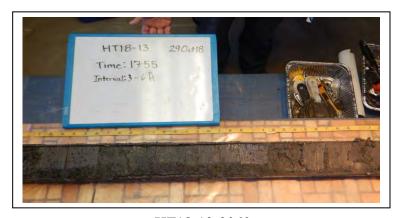
HT18-12-SURF

HT18-12-0030

HT18-12-3060

HT18-12-6090

HT18-12-9010


Photographic Record

HT18-13-SURF

HT18-13-0030

HT18-13-3060

HT18-13-6090

HT18-13-9010

Sample location: HT18-14

HT18-14-SURF HT18-14-0019

Photographic Record

HT18-15-SURF

HT18-15-0030

HT18-15-3060

HT18-15-6069

Photographic Record

Sample location: HT18-16

No Core Taken from This Location

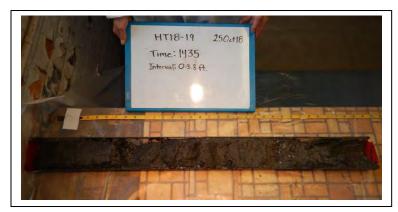
HT18-16-SURF HT18-16-0010

HT18-17-SURF

HT18-17-0030

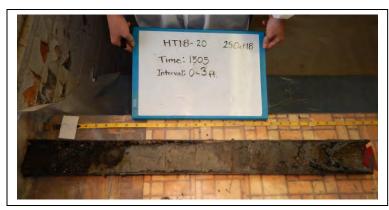
HT18-17-3050

HT18-18-SURF


HT18-18-0030

HT18-18-3057

Sample location: HT18-19



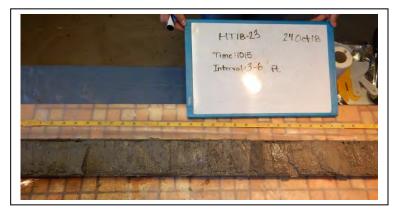
HT18-19-SURF HT18-19-0033

Sample location: HT18-20

HT18-20-SURF HT18-20-0030

Sample location: HT18-21

HT18-21-SURF HT18-21-0017

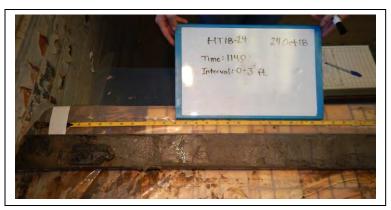

Photographic Record


HT18-23-SURF

HT18-23-0030

HT18-23-3060

HT18-23-6090



HT18-23-9010

Photographic Record

HT18-24-SURF

HT18-24-0030

HT18-24-3060

HT18-24-6080

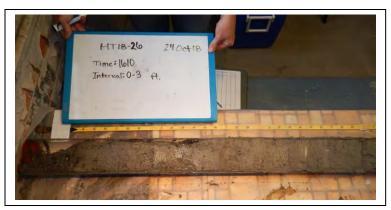
Photographic Record

HT18-25-SURF

HT18-25-0030

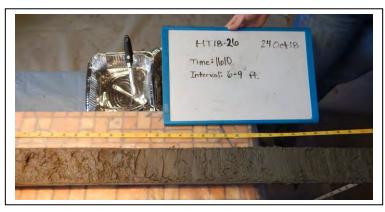
HT18-25-3060

HT18-25-6090



HT18-25-9010

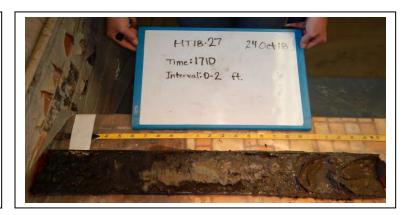
Photographic Record


HT18-26-SURF

HT18-26-0030

HT18-26-3060

HT18-26-6069



HT18-26-9010

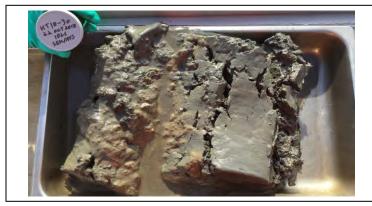
Photographic Record

Sample location: HT18-27

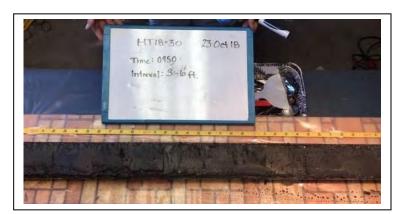
No Ponar Taken from This Location

HT18-27-SURF HT18-27-0020

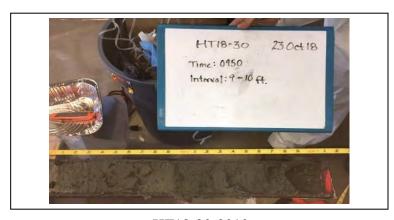
Photographic Record


Sample location: HT18-29

HT18-29-SURF HT18-29-0012


Photographic Record

HT18-30-SURF

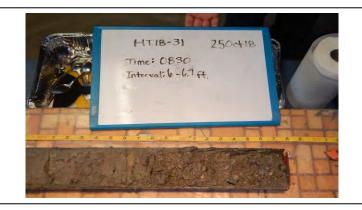

HT18-30-0030

HT18-30-3060

HT18-30-6090

HT18-30-9010

Photographic Record


HT18-31-SURF

HT18-31-0030

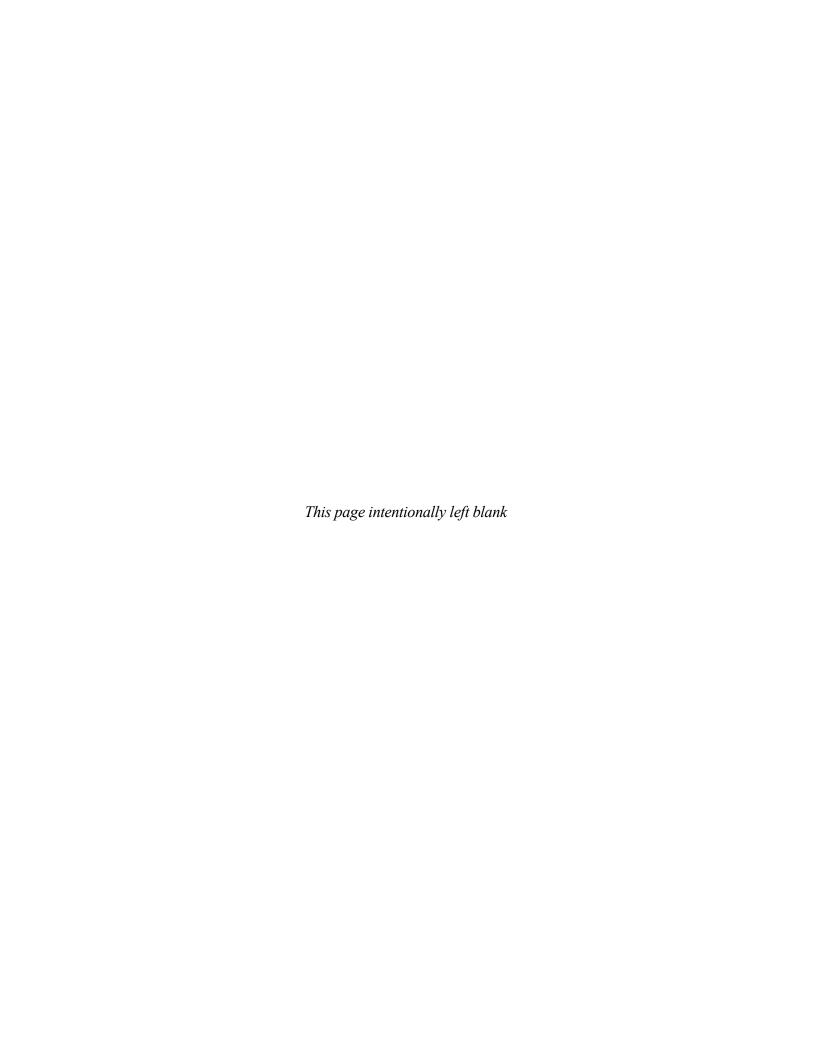
HT18-31-3060

HT18-31-6067

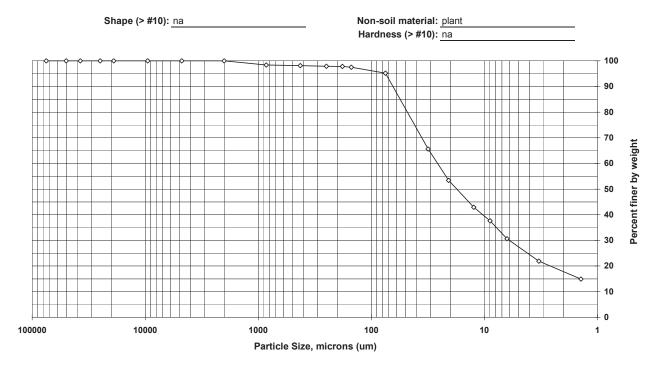
Photographic Record

HT18-32-SURF

HT18-32-0030



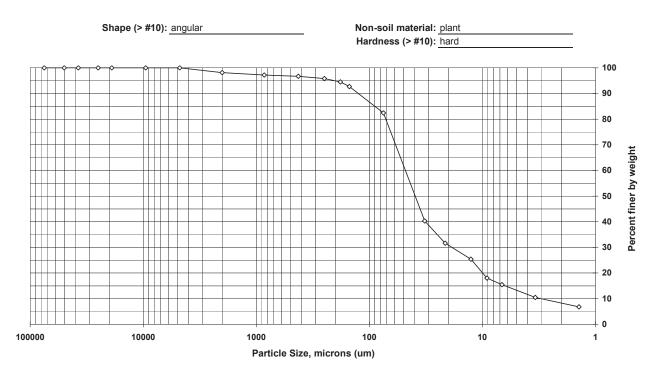
HT18-32-3050


HT18-32-6073

Appendix D Particle Size Graphs

 Sample ID:
 HT18-09-SURF
 Percent Solids:
 31.4%
 Start Date:
 10/29/2018

 Lab ID:
 200-45876-E-1
 Specific Gravity:
 2.650
 End Date:
 11/5/2018

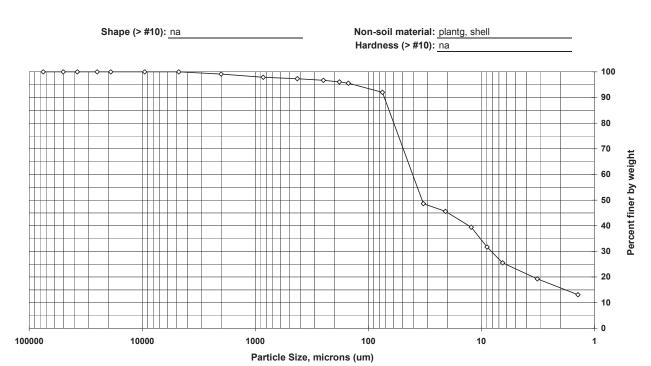


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	100.0	0.0
#20	850	98.4	1.6
#40	425	98.1	0.3
#60	250	97.9	0.2
#80	180	97.8	0.1
#100	150	97.5	0.3
#200	75	95.2	2.3
Hyd1	31.4	65.6	29.6
Hyd2	20.7	53.4	12.2
Hyd3	12.4	42.9	10.5
Hyd4	8.9	37.6	5.3
Hyd5	6.3	30.6	7.0
Hyd6	3.3	21.9	8.7
Hyd7	1.4	14.9	7.0
		•	

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	4.8
Coarse Sand	0.0
Medium Sand	1.9
Fine Sand	2.9
Silt	64.6
Clay	30.6

 Sample ID:
 HT18-12-SURF-FD
 Percent Solids:
 39.8%
 Start Date:
 10/29/2018

 Lab ID:
 200-45876-E-2
 Specific Gravity:
 2.650
 End Date:
 11/5/2018

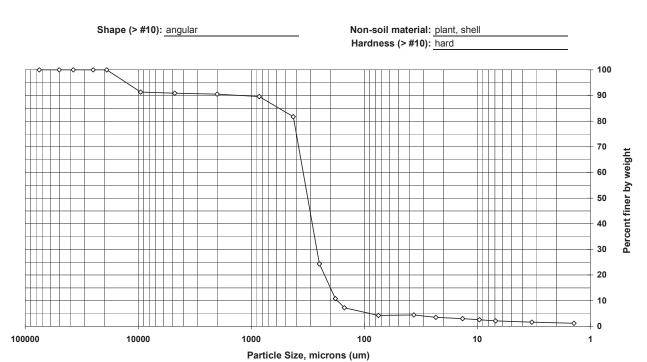


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	98.1	1.9
#20	850	97.2	0.9
#40	425	96.7	0.5
#60	250	95.8	0.9
#80	180	94.5	1.3
#100	150	92.7	1.8
#200	75	82.4	10.3
Hyd1	32.4	40.3	42.1
Hyd2	21.3	31.6	8.7
Hyd3	12.6	25.4	6.2
Hyd4	9.1	18.0	7.4
Hyd5	6.7	15.5	2.5
Hyd6	3.4	10.5	5.0
Hyd7	1.4	6.8	3.7

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	17.6
Coarse Sand	1.9
Medium Sand	1.4
Fine Sand	14.3
Silt	66.9
Clay	15.5

 Sample ID:
 HT18-08-SURF
 Percent Solids:
 30.3%
 Start Date:
 10/25/2018

 Lab ID:
 200-45876-E-3
 Specific Gravity:
 2.650
 End Date:
 11/2/2018

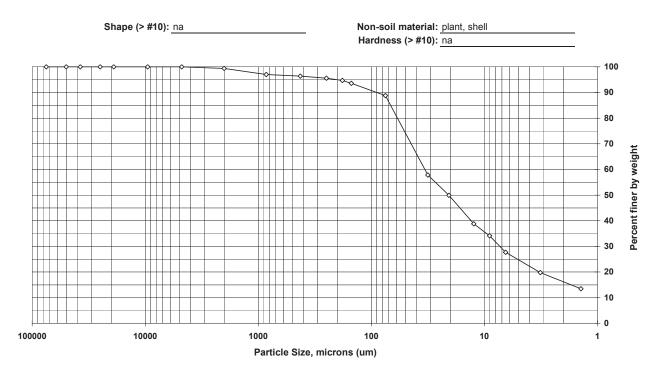


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.1	0.9
#20	850	97.9	1.2
#40	425	97.3	0.6
#60	250	96.7	0.6
#80	180	96.1	0.6
#100	150	95.6	0.5
#200	75	92.0	3.6
Hyd1	32.6	48.6	43.4
Hyd2	20.8	45.6	3.0
Hyd3	12.3	39.4	6.2
Hyd4	8.9	31.7	7.7
Hyd5	6.5	25.5	6.2
Hyd6	3.2	19.3	6.2
Hyd7	1.4	13.1	6.2

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	8.0
Coarse Sand	0.9
Medium Sand	1.8
Fine Sand	5.3
Silt	66.5
Clay	25.5

 Sample ID:
 HT18-10-SURF
 Percent Solids:
 73.8%
 Start Date:
 10/25/2018

 Lab ID:
 200-45876-E-4
 Specific Gravity:
 2.650
 End Date:
 11/2/2018

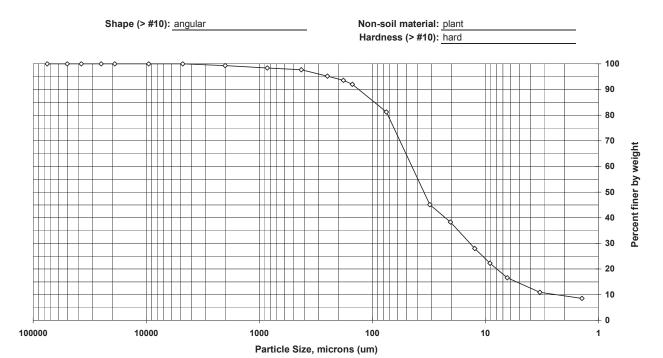


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	91.3	8.7
#4	4750	90.9	0.4
#10	2000	90.5	0.4
#20	850	89.6	0.9
#40	425	81.7	7.9
#60	250	24.3	57.4
#80	180	10.8	13.5
#100	150	7.3	3.6
#200	75	4.2	3.0
Hyd1	36.5	4.4	-0.2
Hyd2	23.3	3.5	0.9
Hyd3	13.5	3.0	0.5
Hyd4	9.6	2.6	0.5
Hyd5	6.9	2.1	0.5
Hyd6	3.3	1.6	0.5
Hyd7	1.4	1.2	0.5

Soil	Percent of
Classification	sample
Gravel	9.1
Sand	86.7
Coarse Sand	0.4
Medium Sand	8.8
Fine Sand	77.5
Silt	2.1
Clay	2.1

 Sample ID:
 HT18-11-SURF
 Percent Solids:
 29.8%
 Start Date:
 10/25/2018

 Lab ID:
 200-45876-E-5
 Specific Gravity:
 2.650
 End Date:
 11/2/2018

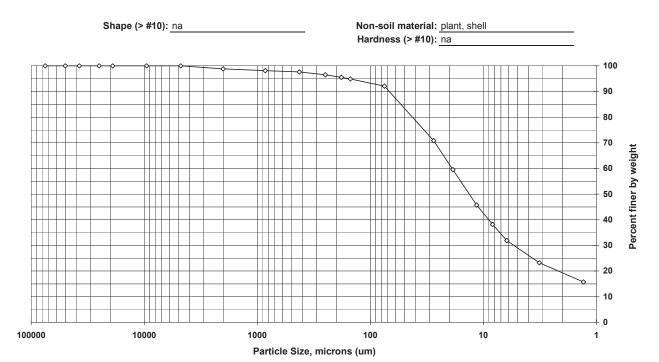


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.4	0.6
#20	850	97.0	2.4
#40	425	96.4	0.6
#60	250	95.6	0.8
#80	180	94.7	0.9
#100	150	93.6	1.1
#200	75	88.8	4.8
Hyd1	31.6	57.8	31.0
Hyd2	20.6	49.9	7.9
Hyd3	12.4	38.8	11.1
Hyd4	9	34.1	4.7
Hyd5	6.5	27.7	6.4
Hyd6	3.2	19.8	7.9
Hyd7	1.4	13.5	6.3

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	11.2
Coarse Sand	0.6
Medium Sand	3.0
Fine Sand	7.6
Silt	61.1
Clay	27.7

 Sample ID:
 HT18-12-SURF
 Percent Solids:
 37.1%
 Start Date:
 10/25/2018

 Lab ID:
 200-45876-E-6
 Specific Gravity:
 2.650
 End Date:
 11/2/2018

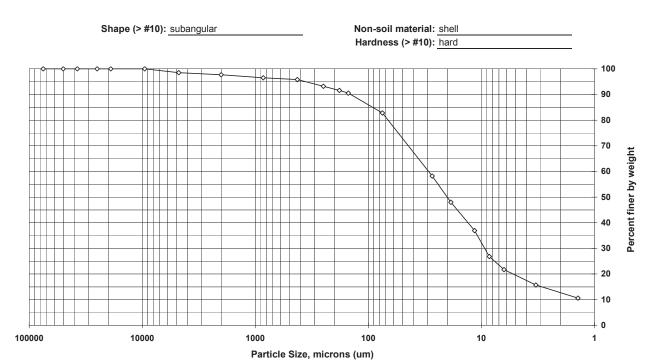


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.3	0.7
#20	850	98.4	0.9
#40	425	97.7	0.7
#60	250	95.2	2.5
#80	180	93.6	1.6
#100	150	92.0	1.6
#200	75	81.2	10.8
Hyd1	31	45.1	36.1
Hyd2	20.4	38.3	6.8
Hyd3	12.4	28.0	10.3
Hyd4	9.1	22.3	5.7
Hyd5	6.4	16.6	5.7
Hyd6	3.3	10.9	5.7
Hyd7	1.4	8.6	2.3

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	18.8
Coarse Sand	0.7
Medium Sand	1.6
Fine Sand	16.5
Silt	64.6
Clay	16.6

 Sample ID:
 HT18-31-SURF
 Percent Solids:
 37.1%
 Start Date:
 10/25/2018

 Lab ID:
 200-45876-E-7
 Specific Gravity:
 2.650
 End Date:
 11/2/2018

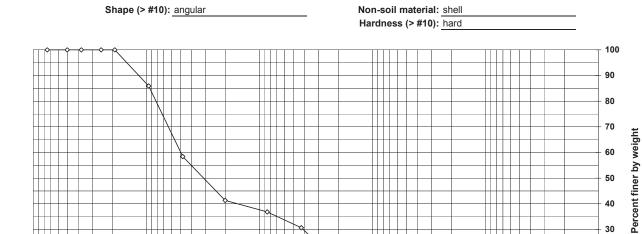


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	98.8	1.2
#20	850	98.1	0.7
#40	425	97.6	0.5
#60	250	96.5	1.1
#80	180	95.5	1.0
#100	150	94.9	0.6
#200	75	92.1	2.8
Hyd1	27.5	70.8	21.3
Hyd2	18.6	59.5	11.3
Hyd3	Hyd3 11.5		13.8
Hyd4	8.3	38.2	7.5
Hyd5	6.2	31.9	6.3
Hyd6	3.2	23.2	8.7
Hyd7	1.3	15.7	7.5
1	1		1

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	7.9
Coarse Sand	1.2
Medium Sand	1.2
Fine Sand	5.5
Silt	60.2
Clay	31.9

 Sample ID:
 HT18-32-SURF
 Percent Solids:
 49.0%
 Start Date:
 10/25/2018

 Lab ID:
 200-45876-E-8
 Specific Gravity:
 2.650
 End Date:
 11/2/2018



Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	98.5	1.5
#10	2000	97.7	0.8
#20	850	96.5	1.2
#40	425	95.8	0.7
#60	250	93.2	2.6
#80	180	91.6	1.6
#100	150	90.5	1.1
#200	75	82.8	7.7
Hyd1	27.2	58.2	24.6
Hyd2	18.6	48.0	10.2
Hyd3	11.5	36.9	11.1
Hyd4	Hyd4 8.5		10.1
Hyd5	Hyd5 6.3		5.1
Hyd6	3.3	15.7	6.0
Hyd7	1.4	10.6	5.1
		·	

Soil	Percent of
Classification	sample
Gravel	1.5
Sand	15.7
Coarse Sand	0.8
Medium Sand	1.9
Fine Sand	13.0
Silt	61.1
Clay	21.7

 Sample ID:
 HT18-29-SURF
 Percent Solids:
 81.2%
 Start Date:
 10/30/2018

 Lab ID:
 200-45876-E-9
 Specific Gravity:
 2.650
 End Date:
 11/2/2018

Particle Size, microns (um)

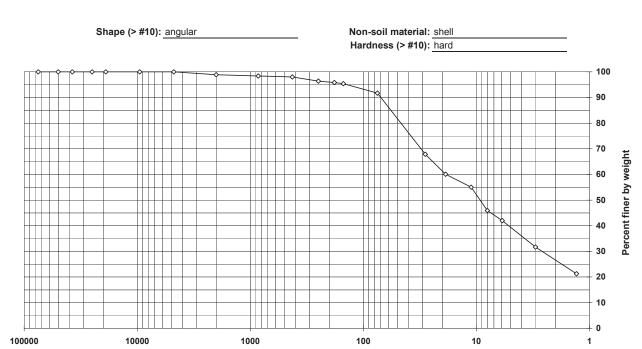
100

1000

Sieve	Particle	Percent	Incremental	
size	size, um	finer	percent	
3 inch	75000	100.0	0.0	
2 inch	50000	100.0	0.0	
1.5 inch	37500	100.0	0.0	
1 inch	25000	100.0	0.0	
3/4 inch	19000	100.0	0.0	
3/8 inch	9500	85.9	14.1	
#4	4750	58.4	27.5	
#10	2000	41.3	17.1	
#20	850	36.8	4.5	
#40	425	30.6	6.2	
#60	250	21.1	9.5	
#80	180	17.0	4.1	
#100	150	15.8	1.2	
#200	75	14.5	1.3	
Hyd1	37.3	1.9	12.6	
Hyd2	23.7	1.5	0.4	
Hyd3	13.7	1.5	0.0	
Hyd4	Hyd4 9.5 1.5		0.0	
Hyd5	6.9	1.1	0.4	
Hyd6	3.3	0.6	0.4	
Hyd7	1.4	0.2	0.4	

10000

100000

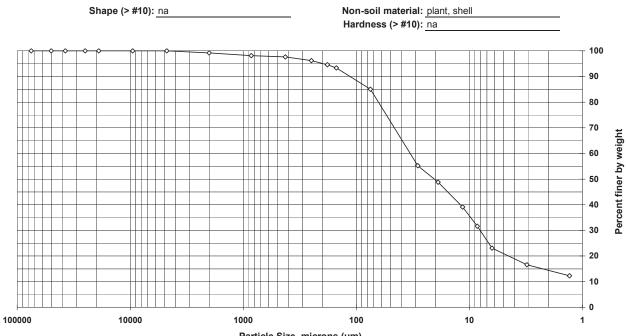

Soil	Percent of
Classification	sample
Gravel	41.6
Sand	43.9
Coarse Sand	17.1
Medium Sand	10.7
Fine Sand	16.1
Silt	13.4
Clay	1.1

10

1

 Sample ID:
 HT18-30-SURF
 Percent Solids:
 38.2%
 Start Date:
 10/25/2018

 Lab ID:
 200-45876-E-10
 Specific Gravity:
 2.650
 End Date:
 11/2/2018



Particle Size, microns (um)

Sieve	Particle	Particle Percent	
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	98.9	1.1
#20	850	98.4	0.5
#40	425	98.0	0.4
#60	250	96.4	1.6
#80	180	95.8	0.6
#100	150	95.4	0.4
#200	75	91.7	3.7
Hyd1	28.3	67.9	23.8
Hyd2	18.7	60.1	7.8
Hyd3	11.1	55.0	5.1
Hyd4	8	45.9	9.1
Hyd5	5.9	42.0	3.9
Hyd6	3	31.7	10.3
Hyd7	1.3	21.3	10.4

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	8.3
Coarse Sand	1.1
Medium Sand	0.9
Fine Sand	6.3
Silt	49.7
Clay	42.0

Date Received: 10/25/2018 Start Date: Sample ID: HT18-32-SURF-FD Percent Solids: 47.9% 10/30/2018 200-45876-E-11 Specific Gravity: Lab ID: 2.650 End Date: 11/5/2018

Particle	Size.	microns	(um)
i di ticic	OIZC,	1111010113	(uiii

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.2	0.8
#20	850	98.1	1.1
#40	425	97.6	0.5
#60	250	96.2	1.4
#80	180	94.6	1.6
#100	150	93.3	1.3
#200	75	85.0	8.3
Hyd1	28.6	55.2	29.8
Hyd2	18.9	48.8	6.4
Hyd3	11.5	39.1	9.7
Hyd4	8.5	31.6	7.5
Hyd5	6.3	23.1	8.5
Hyd6	3.1	16.6	6.5
Hyd7	1.3	1.3 12.3	

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	15.0
Coarse Sand	0.8
Medium Sand	1.6
Fine Sand	12.6
Silt	61.9
Clay	23.1

Sediment Grain Size - D422 Client **Date Received** 10/25/2018 Client Sample ID HT18-09-SURF 10/29/2018 19:40 Start Date End Date Lab Sample ID 200-45876-E-1 11/05/2018 14:28 **Dry Weight Determination** Non-soil material: Tin Weight 1.07 g Shape (> #10): na Wet Sample + Tin 18.13 g Hardness (> #10): Dry Sample + Tin 6.42 g % Moisture 68.64 % Date/Time in oven 10/29/2018 19:44 10/30/2018 16:57 Date/Time out of oven Sample Weights **Hydrometer Data** Tare (g) Pan+Samp (g) Samp (g) Sample Weight (Wet) 44.09 190.52 146.43 Serial Number 542321 Calib. Date (mm/dd/yyyy) Sample Weight (Oven Dried) 45.9 01/03/2018 Low Temp (C) 17.0 Sample Split (oven dried) Reading at Low Temp 1.0035 Tare (g) Pan+Samp (g) Samp (g) 0.02 High Temp (C) Sample >=#10 23.0 Sample <#10 Reading at High Temp 45.9 1.0020 % Passing #10 31.3 Hydrometer Cal Slope -0.00025 Hydrometer Cal Intercept 1.00775 Default Soil Gravity 2.6500

Gravel/Sand Fraction (Sieves)

Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
75000			0.00 g	100	.0 Gravel	
50000			0.00 g	100	.0 Gravel	
37500			0.00 g	100	.0 Gravel	
25000			0.00 g	100	.0 Gravel	
19000			0.00 g	100	.0 Gravel	
9500			0.00 g	100	.0 Gravel	
4750			0.00 g	100	.0 Gravel	
2000	462.69	462.71	0.02 g	100	.0 Sand	Coarse
850	378.86	379.61	0.75 g	98	.4 Sand	Medium
425	353.20	353.36	0.16 g	98	.1 Sand	Medium
250	348.61	348.69	0.08 g	97	.9 Sand	Fine
180	338.06	338.12	0.06 g	97	.8 Sand	Fine
150	328.67	328.80	0.13 g	97	.5 Sand	Fine
75	325.49	326.53	1.04 g	95	.2 Sand	Fine
			0.00 g	95	.2	
	75000 50000 37500 25000 19000 9500 4750 2000 850 425 250 180	75000 50000 37500 25000 19000 9500 4750 2000 462.69 850 378.86 425 353.20 250 348.61 180 338.06 150 328.67	75000 50000 37500 25000 19000 9500 4750 2000 462.69 462.71 850 378.86 379.61 425 353.20 353.36 250 348.61 348.69 180 338.06 338.12 150 328.67 328.80	75000 75000 75000 75000 75000 75000 75000 75000 75000 75000 7500 750000 750000 7500000000	75000 0.00 g 100 50000 0.00 g 100 37500 0.00 g 100 25000 0.00 g 100 19000 0.00 g 100 9500 0.00 g 100 4750 0.00 g 100 2000 462.69 462.71 0.02 g 100 850 378.86 379.61 0.75 g 98 425 353.20 353.36 0.16 g 98 250 348.61 348.69 0.08 g 97 180 338.06 338.12 0.06 g 97 150 328.67 328.80 0.13 g 97 75 325.49 326.53 1.04 g 95	75000 0.00 g 100.0 Gravel 50000 0.00 g 100.0 Gravel 37500 0.00 g 100.0 Gravel 25000 0.00 g 100.0 Gravel 19000 0.00 g 100.0 Gravel 9500 0.00 g 100.0 Gravel 4750 0.00 g 100.0 Gravel 2000 462.69 462.71 0.02 g 100.0 Sand 850 378.86 379.61 0.75 g 98.4 Sand 425 353.20 353.36 0.16 g 98.1 Sand 250 348.61 348.69 0.08 g 97.9 Sand 180 338.06 338.12 0.06 g 97.8 Sand 150 328.67 328.80 0.13 g 97.5 Sand 75 325.49 326.53 1.04 g 95.2 Sand

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 45.9

one oray i raotion (riyaromo							
				Particle Size			
Hydrometer Test Time (min)	Actual	Spec. Gravi	ty Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2 1.02	215 20	.0 31.4	4 65.6	Silt	
	5	5 1.0	180 20	.0 20.	7 53.4	Silt	
	15	15 1.0°	150 20	.0 12.4	42.9	Silt	
	30	30 1.0	135 20	.0 8.9	9 37.6	Silt	
	60	63 1.0°	115 20	.0 6.3	30.6	Silt	
	<mark>250</mark> 2	241 1.00	090 20	.0 3.3	3 21.9	Clay	
1	<mark>440</mark> 13	388 1.00	070 20	.0 1.4	4 14.9	Clay	

Sediment Grain Size - D422						
Client					Date Received	10/25/2018
Client Sample ID		SURF-FD			Start Date	10/29/2018 19:46
Lab Sample ID	200-4587	6-E-2			End Date	11/05/2018 14:31
Dry Weight Determination					Non-soil material:	plant
Tin Weight	1.0	9 n			Shape (> #10):	angular
Wet Sample + Tin	20.7	•			Hardness (> #10):	hard
Dry Sample + Tin	8.8	U			Tiardife33 (> #10).	Ilaiu
% Moisture	60.2	•			Date/Time in oven	10/29/2018 19:48
70 Wolstare	00.2	2 /0			Date/Time out of oven	10/30/2018 16:58
					Date/Time out of over	10/00/2010 10:00
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data	
Sample Weight (Wet)	44.0	8 206.76	162.68	3	Serial Number	542321
Sample Weight (Oven Dried)			64.7	'	Calib. Date (mm/dd/yyyy)	01/03/2018
					Low Temp (C)	17.0
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.0035
Sample >=#10			1.21		High Temp (C)	23.0
Sample <#10			63.5	5	Reading at High Temp	1.0020
% Passing #10			39)	Hydrometer Cal Slope	-0.00025
					Hydrometer Cal Intercept	1.00775
					Default Soil Gravity	2.6500
Gravel/Sand Fraction (Sieves)					
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification
3 inch	7500	0		0.00) g 100.0) Gravel

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750			0.00 g	100.0	Gravel	
#10	2000	462.69	9 463.90	1.21 g	98.1	Sand	Coarse
#20	850	374.50	375.15	0.59 g	97.2	Sand	Medium
#40	425	363.3	1 363.61	0.30 g	96.7	' Sand	Medium
#60	250	353.69	354.25	0.56 g	95.8	Sand	Fine
#80	180	319.37	7 320.21	0.84 g	94.5	Sand	Fine
#100	150	328.79	329.93	1.14 g	92.7	' Sand	Fine
#200	75	314.60	321.25	6.65 g	82.4	Sand	Fine
				0.00 g	82.4	1	

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

64.7

Chie Chay I raidudin (injunction								
Hydrometer Test Time (min)	Actual	Sı	pec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
,	2	2	1.0190	- 1	32.4		Silt	
	5	5	1.0155	20.0	21.3	31.6	Silt	
	15	15	1.0130	20.0	12.6	25.4	Silt	
	30	31	1.0100	20.0	9.1	18	Silt	
	60	57	1.0090	20.0	6.7	15.5	Silt	
	250	235	1.0070	20.0	3.4	10.5	Clay	
•	1440	1382	1.0055	20.0	1.4	6.83	Clay	

Sediment Grain Size - D422							
Client					Date Received	10/25/2018	
Client Sample ID	HT18-08				Start Date	10/30/2018 18:18	
Lab Sample ID	200-4587	76-E-3			End Date	11/02/2018 11:13	
Dry Weight Determination					Non-soil material:	plantg, shell	
Tin Weight	1.0	4 g			Shape (> #10):	na	
Wet Sample + Tin	17.2	•			Hardness (> #10):	na	
Dry Sample + Tin	5.9	0				1.0	
% Moisture	69.7				Date/Time in oven	10/30/2018 18:20	
					Date/Time out of oven	10/31/2018 19:27	
Sample Weights	Tare (q)	Pan+Samp (g)	Comp (a)		Hydrometer Data		
Sample Weight (Wet)	44.7				Serial Number	542321	
Sample Weight (Oven Dried)	44.7	7 210.55	52		Calib. Date (mm/dd/yyyy)	01/03/2018	
Sample Weight (Oven Bried)			32		Low Temp (C)	17.0	
Sample Split (oven dried)	Tare (g)	Pan+Samp (q)	Samp (g)		Reading at Low Temp	1.0035	
Sample >=#10	1 4.1 5 (3)	(9)	0.49		High Temp (C)	23.0	
Sample <#10			51.5		Reading at High Temp	1.0020	
% Passing #10			30		Hydrometer Cal Slope	-0.00025	
, o . a.cog					Hydrometer Cal Intercept	1.00775	
					Default Soil Gravity	2.6500	
Gravel/Sand Fraction (Sieves))				Dorault con cravity	2.0000	
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub
3 inch	7500	0		0.00	g 100.0) Gravel	
2 inch	5000	0		0.00	g 100.0) Gravel	
1.5 inch	3750	0		0.00	g 100.0) Gravel	
1 inch	2500	0		0.00	g 100.0) Gravel	
3/4 inch	1900	0		0.00	g 100.0) Gravel	
3/8 inch	950	0		0.00	g 100.0) Gravel	
#4	475	0		0.00	g 100.0) Gravel	
#10	200	0 462.68	463.17	0.49	g 99.	1 Sand	Со
#20	85	0 378.85	379.47	0.62	g 97.9	9 Sand	Me
#40	12	5 353 22	353 54	0.33	g 97.3	2 Sand	Ma

353.54

348.75

338.26

328.94

327.36

0.32 g

0.29 g

0.32 g

0.28 g 1.87 g

0.00 g

Medium

Fine

Fine

Fine

Fine

97.3 Sand

96.7 Sand

96.1 Sand

95.6 Sand

92.0 Sand

92.0

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

#40

#60

#80

#100

#200

425

250

180

150

75

52

353.22

348.46

337.94

328.66

325.49

one oray i radiidii (iriyardi	,							
					Particle Size			
Hydrometer Test Time (min)	Actual	S	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0185	20.0	32.6	48.6	Silt	
	5	5	1.0175	20.0	20.8	45.6	Silt	
	15	15	1.0155	20.0	12.3	39.4	Silt	
	30	30	1.0130	20.0	8.9	31.7	7 Silt	
	60	59	1.0110	20.0	6.5	25.5	Silt	
	250	256	1.0090	20.0	3.2	19.3	3 Clay	
	1440	1440	1.0070	20.0	1.4	13.1	l Clay	

Sediment Grain Size - D422					
Client				Date Received	1
Client Sample ID	HT18-10-9			Start Date	10/30/2
Lab Sample ID	200-45876	6-E-4		End Date	11/02/2
Dry Weight Determination				Non-soil material:	alant aball
Dry Weight Determination	1.05	-			plant, shell
Tin Weight	1.05	· ·		Shape (> #10):	angular
Wet Sample + Tin	40.33	~		Hardness (> #10):	hard
Dry Sample + Tin	30.02	U			
% Moisture	26.25	%		Date/Time in oven	10/30/2
				Date/Time out of oven	10/31/2
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	Hydrometer Data	
Sample Weight (Wet)	44.09	278.98	234.89	Serial Number	
Sample Weight (Oven Dried)			173	Calib. Date (mm/dd/yyyy)	0
				Low Temp (C)	
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	Reading at Low Temp	
Sample >=#10			16.5	High Temp (C)	
Sample <#10			157	Reading at High Temp	
% Passing #10			66.8	Hydrometer Cal Slope	
-				Hydrometer Cal Intercept	
				Default Soil Gravity	
Gravel/Sand Fraction (Sieves)				,	

Gravensanu Fraction (Sieves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500	447.24	462.35	15.11 g	91.3	Gravel	
#4	4750	488.03	488.73	0.70 g	90.9	Gravel	
#10	2000	462.68	463.40	0.72 g	90.5	Sand	Coarse
#20	850	374.58	376.10	1.52 g	89.6	Sand	Medium
#40	425	363.37	377.07	13.70 g	81.7	Sand	Medium
#60	250	353.50	452.79	99.29 g	24.3	Sand	Fine
#80	180	319.40	342.83	23.43 g	10.8	Sand	Fine
#100	150	328.63	334.78	6.15 g	7.3	Sand	Fine
#200	75	314.60	319.81	5.21 g	4.2	Sand	Fine
				0.00 g	4.2		

Adjusted Hydrometer Sample Mass

173 Hydrometer Sample Mass (g)

					Particle Size			
Hydrometer Test Time (min)	Actual		Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0075	20.0	36.5	4.4	1 Silt	
	5	5	1.0065	20.0	23.3	3.4	8 Silt	
	15	15	1.0060	20.0	13.5	3.0	2 Silt	
	30	30	1.0055	20.0	9.6	2.5	5 Silt	
	60	58	1.0050	20.0	6.9	2.0	9 Silt	
	250	256	1.0045	20.0	3.3	1.6	2 Clay	
	1440	1440	1.0040	20.0	1.4	1.1	6 Clay	

Sediment Grain Size - D422 Client **Date Received** 10/25/2018 Client Sample ID HT18-11-SURF 10/30/2018 18:27 Start Date End Date Lab Sample ID 200-45876-E-5 11/02/2018 11:26 **Dry Weight Determination** Non-soil material: plant, shell Tin Weight 1.04 g Shape (> #10): na Wet Sample + Tin 19.89 g Hardness (> #10): Dry Sample + Tin 6.66 g % Moisture 70.19 % Date/Time in oven 10/30/2018 18:28 10/31/2018 19:28 Date/Time out of oven Sample Weights **Hydrometer Data** Tare (g) Pan+Samp (g) Samp (g) Sample Weight (Wet) 44.09 214.03 169.94 Serial Number 542321 Calib. Date (mm/dd/yyyy) Sample Weight (Oven Dried) 50.7 01/03/2018 Low Temp (C) 17.0 Sample Split (oven dried) Reading at Low Temp 1.0035 Tare (g) Pan+Samp (g) Samp (g) 0.29 High Temp (C) Sample >=#10 23.0 Sample <#10 Reading at High Temp 50.4 1.0020 % Passing #10 29.7 Hydrometer Cal Slope -0.00025 Hydrometer Cal Intercept 1.00775 Default Soil Gravity 2.6500

Gravel/Sand Fraction (Sieves)

Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
75000			0.00 g	100.0) Gravel	
50000			0.00 g	100.0) Gravel	
37500			0.00 g	100.0) Gravel	
25000			0.00 g	100.0) Gravel	
19000			0.00 g	100.0) Gravel	
9500			0.00 g	100.0) Gravel	
4750			0.00 g	100.0) Gravel	
2000	462.68	462.97	0.29 g	99.4	1 Sand	Coarse
850	378.85	380.07	1.22 g	97.0) Sand	Medium
425	353.22	353.52	0.30 g	96.4	1 Sand	Medium
250	348.46	348.86	0.40 g	95.6	Sand	Fine
180	337.94	338.39	0.45 g	94.7	7 Sand	Fine
150	328.66	329.20	0.54 g	93.6	Sand	Fine
75	325.49	327.93	2.44 g	88.8	3 Sand	Fine
			0.00 g	88.8	3	
	75000 50000 37500 25000 19000 9500 4750 2000 850 425 250 180	75000 50000 37500 25000 19000 9500 4750 2000 462.68 850 378.85 425 353.22 250 348.46 180 337.94 150 328.66	75000 50000 37500 25000 19000 9500 4750 2000 462.68 462.97 850 378.85 380.07 425 353.22 353.52 250 348.46 348.86 180 337.94 338.39 150 328.66 329.20	75000 0.00 g 50000 0.00 g 37500 0.00 g 25000 0.00 g 19000 0.00 g 9500 0.00 g 4750 0.00 g 2000 462.68 462.97 0.29 g 850 378.85 380.07 1.22 g 425 353.22 353.52 0.30 g 4250 348.46 348.86 0.40 g 180 337.94 338.39 0.45 g 150 328.66 329.20 0.54 g 75 325.49 327.93 2.44 g	75000 0.00 g 100.0 50000 0.00 g 100.0 37500 0.00 g 100.0 25000 0.00 g 100.0 19000 0.00 g 100.0 9500 0.00 g 100.0 4750 0.00 g 100.0 2000 462.68 462.97 0.29 g 99.4 850 378.85 380.07 1.22 g 97.0 425 353.22 353.52 0.30 g 96.4 250 348.46 348.86 0.40 g 95.6 180 337.94 338.39 0.45 g 94.1 150 328.66 329.20 0.54 g 93.6 75 325.49 327.93 2.44 g 88.8	75000 0.00 g 100.0 Gravel 50000 0.00 g 100.0 Gravel 37500 0.00 g 100.0 Gravel 25000 0.00 g 100.0 Gravel 19000 0.00 g 100.0 Gravel 9500 0.00 g 100.0 Gravel 4750 0.00 g 100.0 Gravel 2000 462.68 462.97 0.29 g 99.4 Sand 850 378.85 380.07 1.22 g 97.0 Sand 425 353.22 353.52 0.30 g 96.4 Sand 250 348.46 348.86 0.40 g 95.6 Sand 180 337.94 338.39 0.45 g 94.7 Sand 150 328.66 329.20 0.54 g 93.6 Sand 75 325.49 327.93 2.44 g 88.8 Sand

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 50.7

	,					
Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	Particle Size (Micron)	% Finer Classification	Sub Class
	2	2 1.021	0 20.0	31.6	57.8 Silt	
	5	5 1.018	5 20.0	20.6	49.9 Silt	
	15 1	1.015	0 20.0	12.4	38.8 Silt	
	30 2	29 1.013	5 20.0	9	34.1 Silt	
	60 5	58 1.011	5 20.0	6.5	27.7 Silt	
	250 25	1.009	0 20.0	3.2	19.8 Clay	
1	440 143	34 1.007	0 20.0	1.4	13.5 Clav	

Sediment Grain Size - D422						
Sediment Grain Size - D422						
Client Client Sample ID Lab Sample ID	HT18-12-3				Date Received Start Date End Date	10/25/2018 10/30/2018 18:31 11/02/2018 12:11
Dry Weight Determination					Non-soil material:	plant
Tin Weight Wet Sample + Tin Dry Sample + Tin	1.05 16.33 6.72	3 g			Shape (> #10): Hardness (> #10):	angular hard
% Moisture	62.89	•			Date/Time in oven Date/Time out of oven	10/30/2018 18:33 10/31/2018 19:28
					Date/ Time out of over	10/31/2010 19.20
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data	
Sample Weight (Wet)	44.18	3 233.57	189.39	1	Serial Number	542321
Sample Weight (Oven Dried)			70.3	1	Calib. Date (mm/dd/yyyy	01/03/2018
					Low Temp (C)	17.0
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.0035
Sample >=#10			0.51		High Temp (C)	23.0
Sample <#10			69.8		Reading at High Temp	1.0020
% Passing #10			36.9		Hydrometer Cal Slope	-0.00025
					Hydrometer Cal Intercep	
Gravel/Sand Fraction (Sieves)					Default Soil Gravity	2.6500
Sample Fraction	Size (um)	Pan Tare (q)	Pan+Sample (q)	Sample	% Finer	Classification
	, ,	(0)	r arr campic (g)			
3 inch	75000)		0.00	0 100	0.0 Gravel

O IIIOII	7 3000			0.00 g	100.0 014701	
2 inch	50000			0.00 g	100.0 Gravel	
1.5 inch	37500			0.00 g	100.0 Gravel	
1 inch	25000			0.00 g	100.0 Gravel	
3/4 inch	19000			0.00 g	100.0 Gravel	
3/8 inch	9500			0.00 g	100.0 Gravel	
#4	4750			0.00 g	100.0 Gravel	
#10	2000	462.68	463.19	0.51 g	99.3 Sand	Coarse
#20	850	374.58	375.20	0.62 g	98.4 Sand	Medium
#40	425	363.37	363.88	0.51 g	97.7 Sand	Medium
#60	250	353.50	355.28	1.78 g	95.2 Sand	Fine

1.78 g 1.15 g #80 180 320.55 93.6 Sand Fine 319.40 1.12 g 7.60 g 0.00 g #100 150 328.63 329.75 92.0 Sand Fine #200 81.2 Sand 75 314.60 322.20 Fine 81.2

Silt/Clav Fraction (Hydrometer Test)

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g)

70.3

Siluciay i raction (riyurometer	1631)											
Particle Size												
Hydrometer Test Time (min)	Actual Sp	ec. Gravity Temp C	C (Mic	ron) % Finer	Classification	Sub Class						
2	2	1.0225	20.0	31	45.1 Silt							
5	5	1.0195	20.0	20.4	38.3 Silt							
15	15	1.0150	20.0	12.4	28 Silt							
30	29	1.0125	20.0	9.1	22.3 Silt							
60	63	1.0100	20.0	6.4	16.6 Silt							
250	250	1.0075	20.0	3.3	10.9 Clay							
1440	1434	1.0065	20.0	1.4	8.57 Clay							

Sediment Grain Size - D422						
Client					Date Received	10/25/2018
Client Sample ID	HT18-31-				Start Date	10/30/2018 18:36
Lab Sample ID	200-4587	6-E-7			End Date	11/02/2018 12:17
Dry Weight Determination					Non-soil material:	plant, shell
Tin Weight	1.05	ā			Shape (> #10):	na
Wet Sample + Tin	22.36	•			Hardness (> #10):	na
Dry Sample + Tin	8.96	•				
% Moisture	62.88	•			Date/Time in oven	10/30/2018 18:38
					Date/Time out of oven	10/31/2018 19:28
Sample Weights	Tare (g)	Pan+Samp (g)	1 (0)		Hydrometer Data	
Sample Weight (Wet)	44.12	2 216.85			Serial Number	542321
Sample Weight (Oven Dried)			64.1		Calib. Date (mm/dd/yyyy)	01/03/2018
					Low Temp (C)	17.0
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.0035
Sample >=#10			0.74		High Temp (C)	23.0
Sample <#10			63.4		Reading at High Temp	1.0020
% Passing #10			36.7		Hydrometer Cal Slope	-0.00025
					Hydrometer Cal Intercept	1.00775
					Default Soil Gravity	2.6500
Gravel/Sand Fraction (Sieves)						
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification
2 inch	75000	1		0.00	100.0	Cravel

0: ()						
Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
75000			0.00 g	100.	0 Gravel	
50000			0.00 g	100.	0 Gravel	
37500			0.00 g	100.	0 Gravel	
25000			0.00 g	100.	0 Gravel	
19000			0.00 g	100.	0 Gravel	
9500			0.00 g	100.	0 Gravel	
4750			0.00 g	100.	0 Gravel	
2000	462.68	463.42	0.74 g	98.	8 Sand	Coarse
850	378.85	379.31	0.46 g	98.	1 Sand	Medium
425	353.22	353.56	0.34 g	97.	6 Sand	Medium
250	348.46	349.17	0.71 g	96.	5 Sand	Fine
180	337.94	338.60	0.66 g	95.	5 Sand	Fine
150	328.66	329.07	0.41 g	94.	9 Sand	Fine
75	325.49	327.30	1.81 g	92.	1 Sand	Fine
			0.00 g	92.	1	
	50000 37500 25000 19000 9500 4750 2000 850 425 250 180	850 378.85 425 353.22 250 348.46 180 337.94 150 328.66	50000 37500 25000 19000 9500 4750 2000 462.68 463.42 850 378.85 379.31 425 353.22 353.56 250 348.46 349.17 180 337.94 338.60 150 328.66 329.07	50000 0.00 g 37500 0.00 g 25000 0.00 g 19000 0.00 g 9500 0.00 g 4750 0.00 g 2000 462.68 463.42 0.74 g 850 378.85 379.31 0.46 g 425 353.22 353.56 0.34 g 250 348.46 349.17 0.71 g 180 337.94 338.60 0.66 g 150 328.66 329.07 0.41 g 75 325.49 327.30 1.81 g	50000 0.00 g 100 37500 0.00 g 100 25000 0.00 g 100 19000 0.00 g 100 9500 0.00 g 100 4750 0.00 g 100 2000 462.68 463.42 0.74 g 98 850 378.85 379.31 0.46 g 98 425 353.22 353.56 0.34 g 97 250 348.46 349.17 0.71 g 96 180 337.94 338.60 0.66 g 95 150 328.66 329.07 0.41 g 94 75 325.49 327.30 1.81 g 92	50000 0.00 g 100.0 Gravel 37500 0.00 g 100.0 Gravel 25000 0.00 g 100.0 Gravel 19000 0.00 g 100.0 Gravel 9500 0.00 g 100.0 Gravel 4750 0.00 g 100.0 Gravel 2000 462.68 463.42 0.74 g 98.8 Sand 850 378.85 379.31 0.46 g 98.1 Sand 425 353.22 353.56 0.34 g 97.6 Sand 250 348.46 349.17 0.71 g 96.5 Sand 180 337.94 338.60 0.66 g 95.5 Sand 150 328.66 329.07 0.41 g 94.9 Sand 75 325.49 327.30 1.81 g 92.1 Sand

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g) 64.1

	,							
Hydrometer Test Time (min)	Actual	Spec	. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
	2	2	1.0310	20.0	27.5	70.	8 Silt	
	5	5	1.0265	20.0	18.6	59.	5 Silt	
	15	15	1.0210	20.0	11.5	45.	7 Silt	
	30	31	1.0180	20.0	8.3	38.	2 Silt	
	60	60	1.0155	20.0	6.2	31.9	9 Silt	
	250	240	1.0120	20.0	3.2	23.	2 Clay	
1	440 1	424	1.0090	20.0	1.3	15.	7 Clay	

Sediment Grain Size - D422						
Client Sample ID Lab Sample ID	HT18-32-				Date Received Start Date End Date	10/25/2018 10/30/2018 18:42 11/02/2018 12:22
Dry Weight Determination					Non-soil material:	shell
Tin Weight	1.05	a			Shape (> #10):	subangular
Wet Sample + Tin	18.67	·			Hardness (> #10):	hard
Dry Sample + Tin	9.68	•				
% Moisture	51.02	2 %			Date/Time in oven	10/30/2018 18:43
					Date/Time out of oven	10/31/2018 19:29
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (a)		Hydrometer Data	
Sample Weight (Wet)	44.75	, ,,,,			Serial Number	542321
Sample Weight (Oven Dried)			79.4		Calib. Date (mm/dd/yyyy)	01/03/2018
3 (_				Low Temp (C)	17.0
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.0035
Sample >=#10			1.79		High Temp (C)	23.0
Sample <#10			77.6		Reading at High Temp	1.0020
% Passing #10			47.9		Hydrometer Cal Slope	-0.00025
					Hydrometer Cal Intercept	1.00775
					Default Soil Gravity	2.6500
Gravel/Sand Fraction (Sieves)					2/ =	01 15 11
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification

Gravenound Fraction (Greves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0) Gravel	
2 inch	50000			0.00 g	100.0) Gravel	
1.5 inch	37500			0.00 g	100.0) Gravel	
1 inch	25000			0.00 g	100.0) Gravel	
3/4 inch	19000			0.00 g	100.0) Gravel	
3/8 inch	9500			0.00 g	100.0) Gravel	
#4	4750	488.03	489.19	1.16 g	98.5	Gravel	
#10	2000	462.68	463.31	0.63 g	97.7	' Sand	Coarse
#20	850	374.58	375.55	0.97 g	96.5	Sand	Medium
#40	425	363.37	363.95	0.58 g	95.8	Sand	Medium
#60	250	353.50	355.58	2.08 g	93.2	2 Sand	Fine
#80	180	319.40	320.66	1.26 g	91.6	Sand	Fine
#100	150	328.63	329.50	0.87 g	90.5	Sand	Fine
#200	75	314.60	320.72	6.12 g	82.8	Sand	Fine
				0.00 g	82.8	3	

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

	,							
					Particle Size			
Hydrometer Test Time (min)	Actual		Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0315	20.0	27.2	58.2	2 Silt	
	5	5	1.0265	20.0	18.6	48	3 Silt	
	15	15	1.0210	20.0	11.5	36.9	Silt	
	30	31	1.0160	20.0	8.5	26.8	3 Silt	
	60	59	1.0135	20.0	6.3	21.7	7 Silt	
	250	234	1.0105	20.0	3.3	15.7	7 Clay	
	1440	1418	1.0080	20.0	1.4	10.6	6 Clay	

Sediment Grain Size - D422						
Client Client Sample ID Lab Sample ID	HT18-29- 200-4587			St	ate Received tart Date nd Date	10/ 11/
Dry Weight Determination Fin Weight Wet Sample + Tin	1.09 31.6	•		Sh	on-soil material: hape (> #10): ardness (> #10):	shell angular hard
Dry Sample + Tin % Moisture	25.86 18.82	0			ate/Time in oven ate/Time out of oven	10/3 10/3
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	Hy	ydrometer Data	
Sample Weight (Wet)	44.7	7 277.82	233.05	Se	erial Number	
Sample Weight (Oven Dried)			189		alib. Date (mm/dd/yyyy)	
					ow Temp (C)	
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		eading at Low Temp	
Sample >=#10			111		igh Temp (C)	
Sample <#10			78		eading at High Temp	
6 Passing #10			33.5		ydrometer Cal Slope	
					ydrometer Cal Intercept	
				De	efault Soil Gravity	
Gravel/Sand Fraction (Sieves)						Ol:£+:
ample Fraction			Dan I Cample (a)		0/ Finer	

Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
75000			0.00 g	100.0	Gravel	
50000			0.00 g	100.0	Gravel	
37500			0.00 g	100.0	Gravel	
25000			0.00 g	100.0	Gravel	
19000			0.00 g	100.0	Gravel	
9500	447.24	473.91	26.67 g	85.9	Gravel	
4750	488.03	540.02	51.99 g	58.4	Gravel	
2000	462.68	494.91	32.23 g	41.3	Sand	Coarse
850	378.85	387.39	8.54 g	36.8	Sand	Medium
425	353.22	364.93	11.71 g	30.6	Sand	Medium
250	348.46	366.34	17.88 g	21.1	Sand	Fine
180	337.94	345.66	7.72 g	17.0	Sand	Fine
150	328.66	331.00	2.34 g	15.8	Sand	Fine
75	325.49	327.93	2.44 g	14.5	Sand	Fine
			0.00 g	14.5		
	75000 50000 37500 25000 19000 9500 4750 2000 850 425 250 180	75000 50000 37500 25000 19000 9500 447.24 4750 488.03 2000 462.68 850 378.85 425 353.22 250 348.46 180 337.94 150 328.66	75000 50000 37500 25000 19000 9500 447.24 473.91 4750 488.03 540.02 2000 462.68 494.91 850 378.85 387.39 425 353.22 364.93 425 353.22 364.93 180 337.94 345.66 150 328.66 331.00	75000 0 0.00 g 50000 0.00 g 37500 0.00 g 25000 0.00 g 19000 0.00 g 9500 447.24 473.91 26.67 g 4750 488.03 540.02 51.99 g 2000 462.68 494.91 32.23 g 850 378.85 387.39 8.54 g 425 353.22 364.93 11.71 g 250 348.46 366.34 17.88 g 180 337.94 345.66 7.72 g 150 328.66 331.00 2.34 g 75 325.49 327.93 2.44 g	75000 0.00 g 100.00 50000 0.00 g 100.00 37500 0.00 g 100.00 25000 0.00 g 100.00 19000 0.00 g 100.00 9500 447.24 473.91 26.67 g 85.9 4750 488.03 540.02 51.99 g 58.4 2000 462.68 494.91 32.23 g 41.3 850 378.85 387.39 8.54 g 36.8 425 353.22 364.93 11.71 g 30.6 250 348.46 366.34 17.88 g 21.1 180 337.94 345.66 7.72 g 17.0 150 328.66 331.00 2.34 g 15.8 75 325.49 327.93 2.44 g 14.5	75000 0.00 g 100.0 Gravel 50000 0.00 g 100.0 Gravel 37500 0.00 g 100.0 Gravel 25000 0.00 g 100.0 Gravel 19000 0.00 g 100.0 Gravel 9500 447.24 473.91 26.67 g 85.9 Gravel 4750 488.03 540.02 51.99 g 58.4 Gravel 2000 462.68 494.91 32.23 g 41.3 Sand 850 378.85 387.39 8.54 g 36.8 Sand 425 353.22 364.93 11.71 g 30.6 Sand 250 348.46 366.34 17.88 g 21.1 Sand 180 337.94 345.66 7.72 g 17.0 Sand 150 328.66 331.00 2.34 g 15.8 Sand 75 325.49 327.93 2.44 g 14.5 Sand

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 189

one oray i raction (riyaron								
					Particle Size			
Hydrometer Test Time (min)	Actual		Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0050	20.0	37.3	1.91	Silt	
	5	5	1.0045	20.0	23.7	1.49	Silt	
	15	15	1.0045	20.0	13.7	1.49	Silt	
	30	31	1.0045	20.0	9.5	1.49	Silt	
	60	59	1.0040	20.0	6.9	1.06	Silt	
	250	265	1.0035	20.0	3.3	0.637	Clay	
	1440	1412	1.0030	20.0	1.4	0.212	Clay	

Sediment Grain Size - D422 Client **Date Received** 10/25/2018 Client Sample ID HT18-30-SURF Start Date 10/30/2018 18:50 End Date Lab Sample ID 200-45876-E-10 11/02/2018 12:33 **Dry Weight Determination** Non-soil material: shell Tin Weight 1.03 g Shape (> #10): angular Wet Sample + Tin 21.82 g Hardness (> #10): Dry Sample + Tin 8.97 g % Moisture 61.81 % Date/Time in oven 10/30/2018 18:52 10/31/2018 19:29 Date/Time out of oven Sample Weights **Hydrometer Data** Tare (g) Pan+Samp (g) Samp (g) Sample Weight (Wet) 44.76 207.49 162.73 Serial Number 542321 Calib. Date (mm/dd/yyyy) Sample Weight (Oven Dried) 62.1 01/03/2018 Low Temp (C) 17.0 Sample Split (oven dried) Reading at Low Temp 1.0035 Tare (g) Pan+Samp (g) Samp (g) 0.67 High Temp (C) Sample >=#10 23.0 Sample <#10 Reading at High Temp 61.4 1.0020 % Passing #10 37.7 Hydrometer Cal Slope -0.00025 Hydrometer Cal Intercept 1.00775 Default Soil Gravity 2.6500

Gravel/Sand Fraction (Sieves)

Oravenoana Fraction (Oleves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000	1		0.00 g	100.0	Gravel	
2 inch	50000	1		0.00 g	100.0	Gravel	
1.5 inch	37500	1		0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750	1		0.00 g	100.0	Gravel	
#10	2000	462.68	463.35	0.67 g	98.9	Sand	Coarse
#20	850	374.58	374.87	0.29 g	98.4	Sand	Medium
#40	425	363.37	363.62	0.25 g	98.0	Sand	Medium
#60	250	353.50	354.47	0.97 g	96.4	Sand	Fine
#80	180	319.40	319.75	0.35 g	95.8	Sand	Fine
#100	150	328.63	328.89	0.26 g	95.4	Sand	Fine
#200	75	314.60	316.87	2.27 g	91.7	Sand	Fine
				0.00 g	91.7		

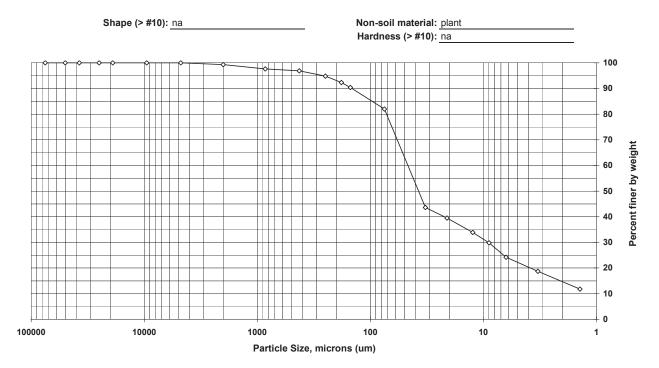
Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 62.1

()								
					Particle Size			
Hydrometer Test Time (min)	Actual		Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0290	20.0	28.3	67	9 Silt	
	5	5	1.0260	20.0	18.7	60	.1 Silt	
	15	15	1.0240	20.0	11.1	5	5 Silt	
	30	32	1.0205	20.0	8	45	9 Silt	
	60	60	1.0190	20.0	5.9	4	2 Silt	
	250	259	1.0150	20.0	3	31	7 Clay	
	1440	1406	1.0110	20.0	1.3	21	3 Clay	

Sediment Grain Size - D422 Client **Date Received** 10/25/2018 Client Sample ID HT18-32-SURF-FD 10/30/2018 19:45 Start Date End Date Lab Sample ID 200-45876-E-11 11/05/2018 11:52 **Dry Weight Determination** Non-soil material: plant, shell Tin Weight 1.03 g Shape (> #10): na Wet Sample + Tin 19.40 g Hardness (> #10): Dry Sample + Tin 9.82 g % Moisture 52.15 % Date/Time in oven 10/30/2018 19:47 10/31/2018 19:39 Date/Time out of oven Sample Weights **Hydrometer Data** Tare (g) Pan+Samp (g) Samp (g) Sample Weight (Wet) 44.06 200.67 156.61 Serial Number 542318 Calib. Date (mm/dd/yyyy) Sample Weight (Oven Dried) 74.9 01/03/2018 Low Temp (C) 17.0 1.0035 Sample Split (oven dried) Reading at Low Temp Tare (g) Pan+Samp (g) Samp (g) 0.62 High Temp (C) Sample >=#10 23.0 Sample <#10 Reading at High Temp 74.3 1.0020 % Passing #10 47.4 Hydrometer Cal Slope -0.00025 Hydrometer Cal Intercept 1.00775 Default Soil Gravity 2.6500 Gravel/Sand Fraction (Sieves)

Graven Sand Fraction (Sieves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750			0.00 g	100.0	Gravel	
#10	2000	462.69	463.31	0.62 g	99.2	Sand	Coarse
#20	850	378.86	379.67	0.81 g	98.1	Sand	Medium
#40	425	353.20	353.61	0.41 g	97.6	Sand	Medium
#60	250	348.61	349.66	1.05 g	96.2	Sand	Fine
#80	180	338.06	339.28	1.22 g	94.6	Sand	Fine
#100	150	328.67	329.63	0.96 g	93.3	Sand	Fine
#200	75	325.49	331.72	6.23 g	85.0	Sand	Fine
				0.00 g	85.0		

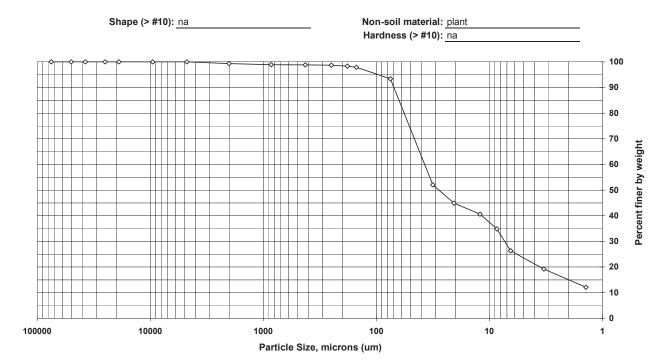

Adjusted Hydrometer Sample Mass

74.9 Hydrometer Sample Mass (g)

					Particle Size			
Hydrometer Test Time (min)	Actual	S	pec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0285	20.0	28.6	55.	2 Silt	
	5	5	1.0255	20.0	18.9	48.	8 Silt	
	15	15	1.0210	20.0	11.5	39.	1 Silt	
	30	30	1.0175	20.0	8.5	31.	6 Silt	
	60	59	1.0135	20.0	6.3	23.	1 Silt	
	250	256	1.0105	20.0	3.1	16.	6 Clay	
	1440	440	1.0085	20.0	1.3	12.	3 Clay	

 Sample ID:
 HT18-25-SURF
 Percent Solids:
 34.4%
 Start Date:
 11/2/2018

 Lab ID:
 200-45893-E-1
 Specific Gravity:
 2.650
 End Date:
 11/8/2018

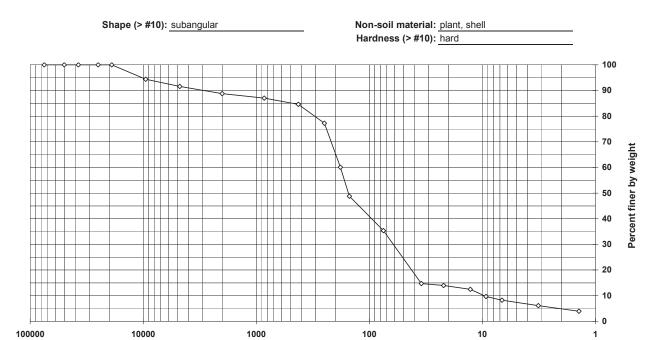


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.3	0.7
#20	850	97.6	1.7
#40	425	96.9	0.7
#60	250	94.8	2.1
#80	180	92.3	2.5
#100	150	90.4	1.9
#200	75	82.0	8.4
Hyd1	32.6	43.6	38.4
Hyd2	21	39.5	4.1
Hyd3	12.4	33.9	5.6
Hyd4	8.9	29.8	4.1
Hyd5	6.3	24.2	5.6
Hyd6	3.3	18.7	5.5
Hyd7	1.4	11.8	6.9

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	18.0
Coarse Sand	0.7
Medium Sand	2.4
Fine Sand	14.9
Silt	57.8
Clay	24.2

 Sample ID:
 HT18-23-SURF
 Percent Solids:
 34.2%
 Start Date:
 11/2/2018

 Lab ID:
 200-45893-E-2
 Specific Gravity:
 2.650
 End Date:
 11/8/2018

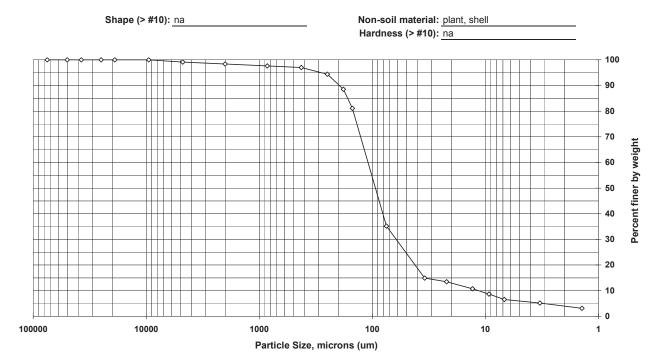


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.3	0.7
#20	850	98.9	0.4
#40	425	98.8	0.1
#60	250	98.7	0.1
#80	180	98.3	0.4
#100	150	97.9	0.4
#200	75	93.4	4.5
Hyd1	31.6	52.0	41.4
Hyd2	20.6	44.9	7.1
Hyd3	12.1	40.6	4.3
Hyd4	8.6	34.9	5.7
Hyd5	6.5	26.3	8.6
Hyd6	3.3	19.2	7.1
Hyd7	1.4	12.1	7.1

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	6.6
Coarse Sand	0.7
Medium Sand	0.5
Fine Sand	5.4
Silt	67.1
Clay	26.3

 Sample ID:
 HT18-24-SURF
 Percent Solids:
 49.5%
 Start Date:
 11/4/2018

 Lab ID:
 200-45893-E-3
 Specific Gravity:
 2.650
 End Date:
 11/9/2018

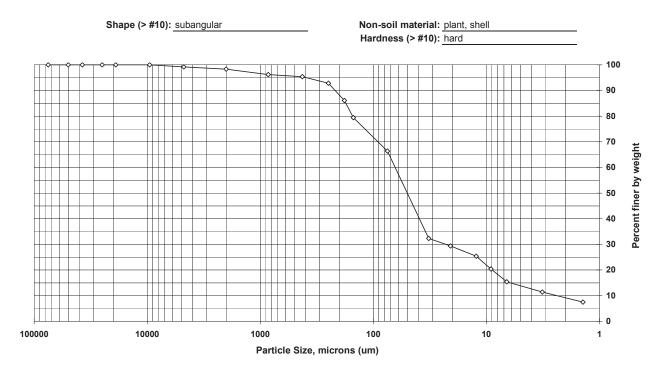

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	94.4	5.6
#4	4750	91.6	2.8
#10	2000	88.8	2.8
#20	850	87.0	1.8
#40	425	84.6	2.4
#60	250	77.2	7.4
#80	180	60.1	17.1
#100	150	48.8	11.3
#200	75	35.4	13.4
Hyd1	34.6	14.7	20.7
Hyd2	22	14.0	0.7
Hyd3	12.8	12.5	1.5
Hyd4	9.3	9.7	2.8
Hyd5	6.7	8.3	1.4
Hyd6	3.2	6.1	2.2
Hyd7	1.4	3.9	2.2
		<u> </u>	

Soil	Percent of
Classification	sample
Gravel	8.4
Sand	56.2
Coarse Sand	2.8
Medium Sand	4.2
Fine Sand	49.2
Silt	27.2
Clay	8.3

 Sample ID:
 HT18-26-SURF
 Percent Solids:
 54.6%
 Start Date:
 11/4/2018

 Lab ID:
 200-45893-E-4
 Specific Gravity:
 2.650
 End Date:
 11/9/2018

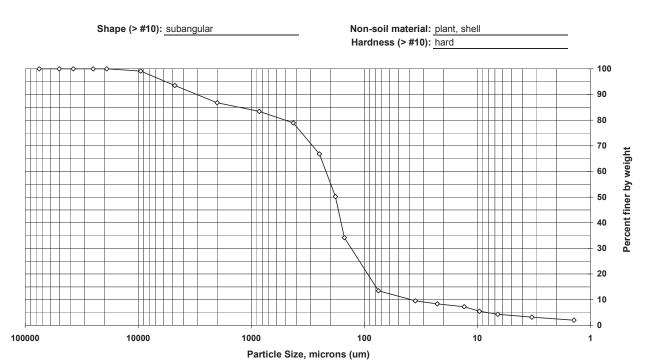


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.1	0.9
#10	2000	98.4	0.7
#20	850	97.6	0.8
#40	425	97.0	0.6
#60	250	94.4	2.6
#80	180	88.5	5.9
#100	150	81.1	7.4
#200	75	35.2	45.9
Hyd1	34.4	14.9	20.3
Hyd2	22	13.5	1.4
Hyd3	13	10.7	2.8
Hyd4	9.3	8.7	2.1
Hyd5	6.8	6.6	2.1
Hyd6	3.3	5.2	1.4
Hyd7	1.4	3.1	2.1

Soil	Percent of
Classification	sample
Gravel	0.9
Sand	63.9
Coarse Sand	0.7
Medium Sand	1.4
Fine Sand	61.8
Silt	28.6
Clay	6.6

 Sample ID:
 HT18-18-SURF
 Percent Solids:
 40.8%
 Start Date:
 11/4/2018

 Lab ID:
 200-45893-E-5
 Specific Gravity:
 2.650
 End Date:
 11/9/2018

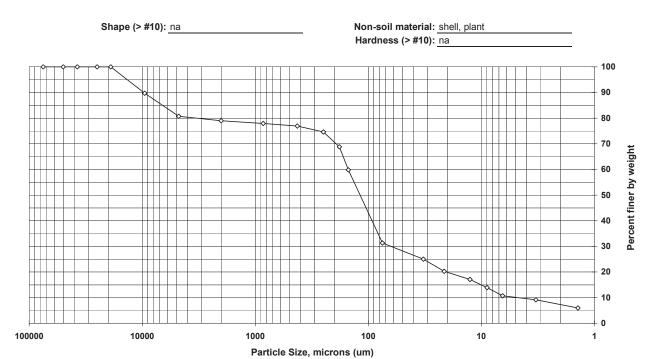


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.2	0.8
#10	2000	98.3	0.9
#20	850	96.2	2.1
#40	425	95.4	0.8
#60	250	92.8	2.6
#80	180	86.1	6.7
#100	150	79.4	6.7
#200	75	66.4	13.0
Hyd1	32.4	32.3	34.1
Hyd2	20.8	29.4	2.9
Hyd3	12.3	25.4	4.0
Hyd4	9.1	20.4	5.0
Hyd5	6.6	15.4	5.0
Hyd6	3.2	11.4	4.0
Hyd7	1.4	7.5	3.9

Soil	Percent of
Classification	sample
Gravel	0.8
Sand	32.8
Coarse Sand	0.9
Medium Sand	2.9
Fine Sand	29.0
Silt	51.0
Clay	15.4

 Sample ID:
 HT18-19-SURF
 Percent Solids:
 69.3%
 Start Date:
 11/4/2018

 Lab ID:
 200-45893-E-6
 Specific Gravity:
 2.650
 End Date:
 11/9/2018

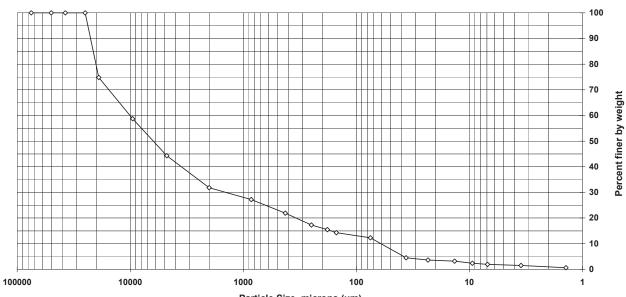


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	99.1	0.9
#4	4750	93.5	5.6
#10	2000	86.8	6.7
#20	850	83.4	3.4
#40	425	78.9	4.5
#60	250	66.8	12.1
#80	180	50.2	16.6
#100	150	34.2	16.0
#200	75	13.5	20.7
Hyd1	35.3	9.5	4.0
Hyd2	22.6	8.4	1.2
Hyd3	13.1	7.2	1.2
Hyd4	9.6	5.5	1.7
Hyd5	6.6	4.3	1.2
Hyd6	3.3	3.2	1.1
Hyd7	1.4	2.0	1.2

Soil	Percent of
Classification	sample
Gravel	6.5
Sand	80.0
Coarse Sand	6.7
Medium Sand	7.9
Fine Sand	65.4
Silt	9.2
Clay	4.3

 Sample ID:
 HT18-20-SURF
 Percent Solids:
 49.2%
 Start Date:
 11/4/2018

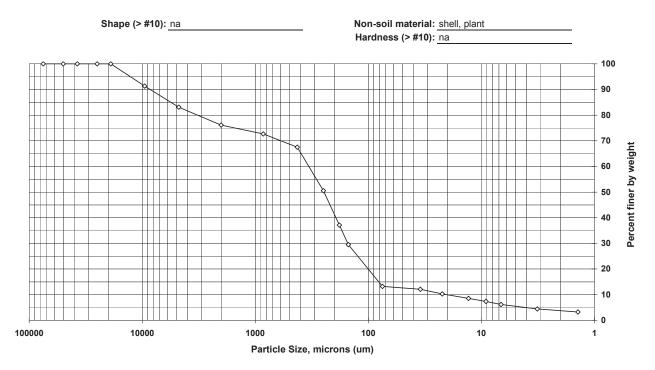
 Lab ID:
 200-45893-E-7
 Specific Gravity:
 2.650
 End Date:
 11/9/2018


	1		1
Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	89.7	10.3
#4	4750	80.7	9.0
#10	2000	79.0	1.7
#20	850	77.9	1.1
#40	425	76.9	1.0
#60	250	74.6	2.3
#80	180	68.8	5.8
#100	150	59.8	9.0
#200	75	31.3	28.5
Hyd1	32.6	25.0	6.3
Hyd2	21.3	20.3	4.7
Hyd3	12.6	17.1	3.2
Hyd4	8.9	13.9	3.2
Hyd5	6.5	10.7	3.2
Hyd6	3.3	9.1	1.6
Hyd7	1.4	6.0	3.2

Soil	Percent of
Classification	sample
Gravel	19.3
Sand	49.4
Coarse Sand	1.7
Medium Sand	2.1
Fine Sand	45.6
Silt	20.6
Clay	10.7

 Sample ID:
 HT18-21-SURF
 Percent Solids:
 76.4%
 Start Date:
 11/4/2018

 Lab ID:
 200-45893-E-8
 Specific Gravity:
 2.650
 End Date:
 11/9/2018

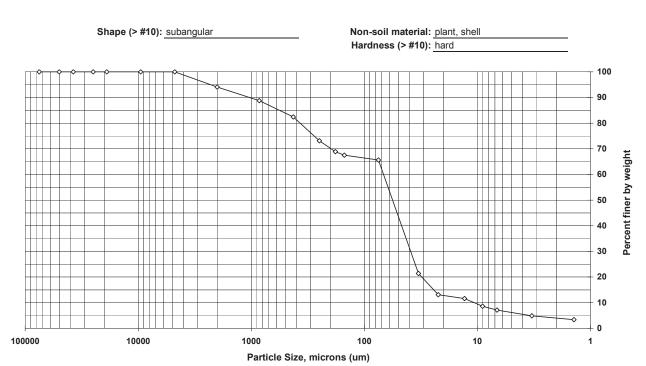

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	74.8	25.2
3/8 inch	9500	58.7	16.1
#4	4750	44.3	14.4
#10	2000	31.8	12.5
#20	850	27.2	4.6
#40	425	21.9	5.3
#60	250	17.3	4.6
#80	180	15.5	1.8
#100	150	14.3	1.2
#200	75	12.3	2.0
Hyd1	36.3	4.5	7.8
Hyd2	23.2	3.6	0.9
Hyd3	13.5	3.2	0.4
Hyd4	9.4	2.4	0.9
Hyd5	6.9	1.9	0.4
Hyd6	3.5	1.5	0.4
Hyd7	1.4	0.6	0.9
		•	

Soil	Percent of
Classification	sample
Gravel	55.7
	1
Sand	32.0
Coarse Sand	12.5
Medium Sand	9.9
Fine Sand	9.6
Silt	10.4
Clay	1.9

 Sample ID:
 HT18-15-SURF
 Percent Solids:
 53.4%
 Start Date:
 11/4/2018

 Lab ID:
 200-45893-E-9
 Specific Gravity:
 2.650
 End Date:
 11/9/2018

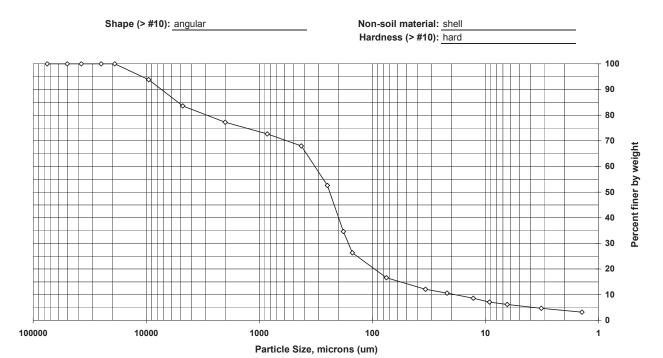


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	91.3	8.7
#4	4750	83.1	8.2
#10	2000	76.1	7.0
#20	850	72.7	3.4
#40	425	67.5	5.2
#60	250	50.5	17.0
#80	180	37.1	13.4
#100	150	29.5	7.6
#200	75	13.2	16.3
Hyd1	34.6	12.1	1.1
Hyd2	22.2	10.3	1.8
Hyd3	13	8.6	1.7
Hyd4	9.1	7.4	1.2
Hyd5	6.7	6.2	1.2
Hyd6	3.2	4.4	1.8
Hyd7	1.4	3.3	1.2

Soil	Percent of
Classification	sample
Gravel	16.9
Sand	69.9
Coarse Sand	7.0
Medium Sand	8.6
Fine Sand	54.3
Silt	7.0
Clay	6.2

 Sample ID:
 HT18-16-SURF
 Percent Solids:
 42.0%
 Start Date:
 11/4/2018

 Lab ID:
 200-45893-E-10
 Specific Gravity:
 2.650
 End Date:
 11/9/2018



			T
Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	94.1	5.9
#20	850	88.8	5.3
#40	425	82.4	6.4
#60	250	73.1	9.3
#80	180	68.9	4.2
#100	150	67.5	1.4
#200	75	65.6	1.9
Hyd1	33.2	21.4	44.2
Hyd2	22.2	13.1	8.3
Hyd3	13	11.6	1.5
Hyd4	9	8.6	3.0
Hyd5	6.7	7.1	1.5
Hyd6	3.3	4.9	2.3
Hyd7	1.4	3.4	1.5

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	34.4
Coarse Sand	5.9
Medium Sand	11.7
Fine Sand	16.8
Silt	58.5
Clay	7.1

 Sample ID:
 HT18-17-SURF
 Percent Solids:
 68.3%
 Start Date:
 11/4/2018

 Lab ID:
 200-45893-E-11
 Specific Gravity:
 2.650
 End Date:
 11/9/2018

Sieve	Particle	Percent	Incremental	
size	size, um	finer	percent	
3 inch	75000	100.0	0.0	
2 inch	50000	100.0	0.0	
1.5 inch	37500	100.0	0.0	
1 inch	25000	100.0	0.0	
3/4 inch	19000	100.0	0.0	
3/8 inch	9500	93.8	6.2	
#4	4750	83.6	10.2	
#10	2000	77.2	6.4	
#20	850	72.7	4.5	
#40	425	68.0	4.7	
#60	250	52.6	15.4	
#80	180	34.6	18.0	
#100	150	26.3	8.3	
#200	75	16.6	9.7	
Hyd1	33.9	12.1	4.5	
Hyd2	21.8	10.6	1.5	
Hyd3	12.8	8.6	2.0	
Hyd4	9.2	7.1	1.5	
Hyd5	6.4	6.2	1.0	
Hyd6	3.2	4.7	1.5	
Hyd7	1.4	3.2	1.5	

Soil	Percent of
Classification	sample
Gravel	16.4
Sand	67.0
Coarse Sand	6.4
Medium Sand	9.2
Fine Sand	51.4
Silt	10.4
Clay	6.2

Sediment Grain Size - D422							
Client Client Sample ID Lab Sample ID	HT18-25-5				Date Received Start Date End Date	10/26/201 11/02/2018 22:2 11/08/2018 16:2	.0
Dry Weight Determination					Non-soil material:	plant	
Tin Weight Wet Sample + Tin	1.05 19.94	g			Shape (> #10): Hardness (> #10):	na na	
Dry Sample + Tin % Moisture	7.54 65.64	U			Date/Time in oven Date/Time out of oven	11/02/2018 22:2 11/05/2018 14:2	_
Sample Weights	Tare (g)	Pan+Samp (g)	1 (0)		Hydrometer Data		
Sample Weight (Wet) Sample Weight (Oven Dried)	44.11	212.94	168.83 58		Serial Number Calib. Date (mm/dd/yyyy)	54231 01/03/201	8
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Low Temp (C) Reading at Low Temp	17. 1.003	5
Sample >=#10 Sample <#10 % Passing #10			0.42 57.6 34.1		High Temp (C) Reading at High Temp Hydrometer Cal Slope	23. 1.002 -0.0002	.0
J					Hydrometer Cal Intercept Default Soil Gravity	1.0077 2.650	
Gravel/Sand Fraction (Sieves)	0: / \	D T ()	D (0 1 ()	0 1	0/ 5	01 '5 "	0 1 0
Sample Fraction 3 inch 2 inch 1.5 inch 1 inch	75000 50000 37500 25000		Pan+Sample (g)	0.00 0.00 0.00 0.00	g 100.0	Classification) Gravel) Gravel) Gravel) Gravel) Gravel	Sub Cla
3/4 inch	19000			0.00	•) Gravel	

463.09

379.80

353.55

349.65

339.43

329.77

330.37

0.00 g 0.00 g

0.42 g 0.97 g 0.39 g

1.21 g

1.43 g

1.08 g

4.88 g

0.00 g

100.0 Gravel

100.0 Gravel

99.3 Sand

97.6 Sand

96.9 Sand

94.8 Sand

92.3 Sand

90.4 Sand

82.0 Sand

82.0

Coarse

Medium

Medium

Fine

Fine

Fine

Fine

Adjusted Hydrometer Sample Mass

3/8 inch

#4

#10

#20

#40

#60

#80

#100

#200

Hydrometer Sample Mass (g) 58

9500

4750

2000

850

425

250

180

150

75

462.67

378.83

353.16

348.44

338.00

328.69

325.49

					Particle Size			
Hydrometer Test Time (min)	Actual	5	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0185	20.0	32.6	43.6	Silt	
	5	5	1.0170	20.0	21	39.5	Silt	
	15	15	1.0150	20.0	12.4	33.9	Silt	
	30	30	1.0135	20.0	8.9	29.8	3 Silt	
	60	63	1.0115	20.0	6.3	24.2	2 Silt	
	250	241	1.0095	20.0	3.3	18.7	7 Clay	
	1440	1388	1.0070	20.0	1.4	11.8	3 Clay	

Sediment Grain Size - D422							
Client Sample ID	HT18-23-	SURF			Date Received Start Date		10/26/2018 2/2018 22:25
Lab Sample ID	200-4589	3-E-2			End Date	11/08	3/2018 16:29
Dry Weight Determination					Non-soil material:	plant	
Tin Weight	1.06	6 g			Shape (> #10):	na	
Wet Sample + Tin	18.48	8 g			Hardness (> #10):	na	
Dry Sample + Tin	7.02	•			D	4.4.10.0	10010 00 01
% Moisture	65.79	9 %			Date/Time in oven Date/Time out of oven		2/2018 22:26 5/2018 14:29
				1	Date/ fille out of over	11/00	/2010 14.23
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data		
Sample Weight (Wet)	44.13	3 209.07	164.94		Serial Number		542318
Sample Weight (Oven Dried)			56.4		Calib. Date (mm/dd/yyyy)		01/03/2018
Commis Culit (aven duied)	T (-)	D (C (-)	0(-)		Low Temp (C)		17.0 1.003
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp		
Sample >=#10 Sample <#10			0.41 56		High Temp (C)		23.0 1.0020
% Passing #10			34		Reading at High Temp Hydrometer Cal Slope		-0.0002
70 1 d33ing #10			04		Hydrometer Cal Intercept		1.0077
					Default Soil Gravity		2.6500
Gravel/Sand Fraction (Sieves)	,						
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.	0 Gravel	
2 inch	50000			0.00 g	100.	0 Gravel	
1.5 inch	37500			0.00 g	100.	0 Gravel	
1 inch	25000			0.00 g	100.	0 Gravel	
3/4 inch	19000			0.00 g	100.	0 Gravel	
3/8 inch	9500			0.00 g	100.	0 Gravel	
#4	4750			0.00 g	100.	0 Gravel	
#10	2000	462.67	7 463.08	0.41 g	99.	3 Sand	Coarse
#20	850	374.53	374.78	0.25 g	98.	9 Sand	Medium
#40	425	363.27	7 363.31	0.04 g	98.	8 Sand	Medium
#60	250	353.59	353.67	0.08 g	98.	7 Sand	Fine
#80	180	319.35	319.55	0.20 g	98.	3 Sand	Fine
#100	150	328.68	328.90	0.22 g	97.	9 Sand	Fine
#200	75	314.63	317.14	2.51 g	93.	4 Sand	Fine
				0.00 g	93.	4	

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

56.4

Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
2	2	1.0210	20.0	31.6	52	Silt	
5	5	1.0185	20.0	20.6	44.9	Silt	
15	15	1.0170	20.0	12.1	40.6	Silt	
30	31	1.0150	20.0	8.6	34.9	Silt	
60	57	1.0120	20.0	6.5	26.3	Silt	
250	235	1.0095	20.0	3.3	19.2	Clay	
1440	1382	1.0070	20.0	1.4	12.1	Clay	

Sediment Grain Size - D422				
Client				Date Received
Client Sample ID	HT18-24-9	SURF		Start Date
_ab Sample ID	200-45893	3-E-3		End Date
Dry Weight Determination				Non-soil material:
Γin Weight	1.02	· ·		Shape (> #10):
Wet Sample + Tin	23.17	•		Hardness (> #10):
Dry Sample + Tin	11.98	· ·		
% Moisture	50.52	%		Date/Time in oven
				Date/Time out of oven
Sample Weights	Tare (q)	Pan+Samp (q)	Samp (g)	Hydrometer Data
Sample Weight (Wet)	44.08	270.58	226.	
Sample Weight (Oven Dried)			112	Calib. Date (mm/dd/yyyy)
				Low Temp (C)
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	Reading at Low Temp
Sample >=#10			12.6	3 - 1 (-)
Sample <#10			99.4	Reading at High Temp
% Passing #10			43.9	Hydrometer Cal Slope
				Hydrometer Cal Intercept
				Default Soil Gravity
Gravel/Sand Fraction (Sieves))			

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.	O Gravel	
2 inch	50000			0.00 g	100.	0 Gravel	
1.5 inch	37500			0.00 g	100.	0 Gravel	
1 inch	25000			0.00 g	100.	0 Gravel	
3/4 inch	19000			0.00 g	100.	0 Gravel	
3/8 inch	9500	447.25	5 453.51	6.26 g	94.	4 Gravel	
#4	4750	488.00	491.17	3.17 g	91.	6 Gravel	
#10	2000	462.60	465.79	3.19 g	88.	8 Sand	Coarse
#20	850	378.83	380.83	2.00 g	87.	0 Sand	Medium
#40	425	353.16	355.86	2.70 g	84.	6 Sand	Medium
#60	250	348.44	356.70	8.26 g	77.:	2 Sand	Fine
#80	180	338.00	357.16	19.16 g	60.	1 Sand	Fine
#100	150	328.69	341.30	12.61 g	48.	8 Sand	Fine
#200	75	325.49	340.54	15.05 g	35.4	4 Sand	Fine
				0.00 g	35.4	4	

Adjusted Hydrometer Sample Mass

112 Hydrometer Sample Mass (g)

Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
2	2 2	1.0130	20.0	34.6	14.7	Silt	
Ę	5 5	1.0125	20.0	22	14	Silt	
15	15	1.0115	20.0	12.8	12.5	Silt	
30	30	1.0095	20.0	9.3	9.68	Silt	
60	59	1.0085	20.0	6.7	8.25	Silt	
250	256	1.0070	20.0	3.2	6.09	Clay	
1440	1440	1.0055	20.0	1.4	3.94	Clay	

Sediment Grain Size - D422						
Client Client Sample ID	HT18-26-	-SLIDE			Date Received Start Date	10/26/20 ² 11/04/2018 14:3
Lab Sample ID	200-4589				End Date	11/09/2018 10:2
Dry Weight Determination					Non-soil material:	plant, shell
Tin Weight Wet Sample + Tin	1.03 g 31.03 g				Shape (> #10): Hardness (> #10):	na na
Dry Sample + Tin % Moisture	17.4 45.4	•			Date/Time in oven	11/04/2018 14:3
, o moiotai o					Date/Time out of oven	11/05/2018 14:3
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data	
Sample Weight (Wet)	44.0	6 257.34			Serial Number	54232
Sample Weight (Oven Dried)			116	1	Calib. Date (mm/dd/yyyy) Low Temp (C)	01/03/20 ⁻ 17
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.003
Sample >=#10			1.77		High Temp (C)	23
Sample <#10			114		Reading at High Temp	1.002
% Passing #10			53.5	i	Hydrometer Cal Slope	-0.0002
					Hydrometer Cal Intercept	1.007
Crovel/Cand Exaction (Ciavas)					Default Soil Gravity	2.650
Gravel/Sand Fraction (Sieves)	Cime (um)	Don Toro (a)	Dan I Cample (a)	Cample	% Finer	Classification
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification

Graven Sand Fraction (Sieves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750	488.00	488.99	0.99 g	99.1	Gravel	
#10	2000	462.60	463.38	0.78 g	98.4	Sand	Coarse
#20	850	374.53	375.43	0.90 g	97.6	Sand	Medium
#40	425	363.27	363.96	0.69 g	97.0	Sand	Medium
#60	250	353.59	356.61	3.02 g	94.4	Sand	Fine
#80	180	319.35	326.14	6.79 g	88.5	Sand	Fine
#100	150	328.68	337.25	8.57 g	81.1	Sand	Fine
#200	75	314.63	367.88	53.25 g	35.2	Sand	Fine
				0.00 g	35.2		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

Hydrometer Test Time (min)	Actual	Spec. Gravity		Particle Size (Micron)	% Finer	Classification	Sub Class
2	2	1.0135	20.0	34.4	14.9	Silt	
5	5	1.0125	20.0	22	13.5	Silt	
15	15	1.0105	20.0	13	10.7	Silt	
30	30	1.0090	20.0	9.3	8.65	Silt	
60	58	1.0075	20.0	6.8	6.58	Silt	
250	256	1.0065	20.0	3.3	5.19	Clay	
1440	1440	1.0050	20.0	1.4	3.12	Clay	

Sediment Grain Size - D422						
Client Client Sample ID .ab Sample ID	HT18-18-SURF 200-45893-E-5				Date Received Start Date End Date	11/0 11/0
Ory Weight Determination Tin Weight Wet Sample + Tin	1.04 27.14	U			Non-soil material: Shape (> #10): Hardness (> #10):	plant, shell subangular hard
Ory Sample + Tin 6 Moisture	11.69 59.20	•			Date/Time in oven Date/Time out of oven	11/0 11/0
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data	
Sample Weight (Wet) Sample Weight (Oven Dried)	44.78	3 242.52	197.74 80.7		Serial Number Calib. Date (mm/dd/yyyy)	
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Low Temp (C) Reading at Low Temp	
Sample >=#10 Sample <#10			1.4 79.3		High Temp (C) Reading at High Temp	
% Passing #10			40.1		Hydrometer Cal Slope Hydrometer Cal Intercept	
Gravel/Sand Fraction (Sieves)					Default Soil Gravity	
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification

Oraveroand Fraction (Oleves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750	488.00	488.66	0.66 g	99.2	Gravel	
#10	2000	462.60	463.34	0.74 g	98.3	Sand	Coarse
#20	850	378.83	380.52	1.69 g	96.2	Sand	Medium
#40	425	353.16	353.81	0.65 g	95.4	Sand	Medium
#60	250	348.44	350.54	2.10 g	92.8	Sand	Fine
#80	180	338.00	343.44	5.44 g	86.1	Sand	Fine
#100	150	328.69	334.11	5.42 g	79.4	Sand	Fine
#200	75	325.49	336.01	10.52 g	66.4	Sand	Fine
				0.00 g	66.4		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g) 80.7

one oray i raction (riyaromotor	,						
				Particle Size			
Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2 2	1.0190	20.0	32.4	32.3	Silt	
	5 5	1.0175	20.0	20.8	29.4	Silt	
15	15	1.0155	20.0	12.3	25.4	Silt	
30	29	1.0130	20.0	9.1	20.4	Silt	
60	58	1.0105	20.0	6.6	15.4	Silt	
250	250	1.0085	20.0	3.2	11.4	Clay	
1440	1434	1.0065	20.0	1.4	7.46	Clay	

Sediment Grain Size - D422 10/26/2018 Client **Date Received** Client Sample ID HT18-19-SURF Start Date 11/04/2018 14:37 End Date 11/09/2018 10:44 Lab Sample ID 200-45893-E-6 **Dry Weight Determination** Non-soil material: plant, shell Tin Weight 1.05 g Shape (> #10): subangular Wet Sample + Tin 51.06 g Hardness (> #10): Dry Sample + Tin 35.71 g % Moisture 30.69 % Date/Time in oven 11/04/2018 14:38 11/05/2018 14:39 Date/Time out of oven Sample Weights **Hydrometer Data** Tare (g) Pan+Samp (g) Samp (g) Sample Weight (Wet) 44.07 244.92 200.85 Serial Number 542321 Calib. Date (mm/dd/yyyy) Sample Weight (Oven Dried) 139 01/03/2018 Low Temp (C) 17.0 Sample Split (oven dried) Reading at Low Temp 1.0035 Tare (g) Pan+Samp (g) Samp (g) 18.2 High Temp (C) Sample >=#10 23.0 Sample <#10 Reading at High Temp 121 1.0020 % Passing #10 60.2 Hydrometer Cal Slope -0.00025 Hydrometer Cal Intercept 1.00775 Default Soil Gravity 2.6500

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.	O Gravel	
2 inch	50000			0.00 g	100.	0 Gravel	
1.5 inch	37500			0.00 g	100.	0 Gravel	
1 inch	25000			0.00 g	100.	0 Gravel	
3/4 inch	19000			0.00 g	100.	0 Gravel	
3/8 inch	9500	447.25	448.44	1.19 g	99.	1 Gravel	
#4	4750	488.00	495.78	7.78 g	93.	5 Gravel	
#10	2000	462.60	471.85	9.25 g	86.	8 Sand	Coarse
#20	850	374.53	379.29	4.76 g	83.	4 Sand	Medium
#40	425	363.27	7 369.53	6.26 g	78.	9 Sand	Medium
#60	250	353.59	370.35	16.76 g	66.	8 Sand	Fine
#80	180	319.35	342.40	23.05 g	50.	2 Sand	Fine
#100	150	328.68	350.94	22.26 g	34.	2 Sand	Fine
#200	75	314.63	343.37	28.74 g	13.	5 Sand	Fine
				0.00 g	13.	5	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 139

ond ordy i radiidii (iiyardii								
					Particle Size			
Hydrometer Test Time (min)	Actual	5	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0110	20.0	35.3	9.53	3 Silt	
	5	5	1.0100	20.0	22.6	8.38	3 Silt	
	15	15	1.0090	20.0	13.1	7.22	2 Silt	
	30	29	1.0075	20.0	9.6	5.49	Silt	
	60	63	1.0065	20.0	6.6	4.33	3 Silt	
	250	250	1.0055	20.0	3.3	3.18	3 Clay	
	1440	1434	1.0045	20.0	1.4	2.02	2 Clay	

Start Date	Start Date
Start D Star	Date
Start Star	Date Start
Start End D End	Date
Start Sample ID	Date Start
Start End D End D Start End D End	lient lient Sample ID HT18-20-SURF Start II ab Sample ID 200-45893-E-7 ry Weight Determination n Weight 1.03 g Shape let Sample + Tin 39.60 g Hardn 20.00 g Moisture 50.82 % Date/7 ample Weights Tare (g) Pan+Samp (g) Samp (g) Hydro Serial ample Weight (Oven Dried) ample Weight (Oven Dried) Tare (g) Pan+Samp (g) Samp (g) Reading Low Tare (g) Pan+Samp (g) Samp (g) Reading Low Tare (g) Pan+Samp (g) Samp (g) Reading Re
Start End D End	Date
Start Date	Date Reside Date Date Reside Start Date
Start Date	Date Rec
Ident Sample ID HT18-20-SURF Start Date In Weight Determination Non-soil m In Weight 1.03 g Shape (> # In Weight 39.60 g Hardness (In Y Sample + Tin 20.00 g Date/Time In Weight Tare (g) Pan+Samp (g) Samp (g) In Weight Hydromete	Date Receister Start Date Lient Sample ID HT18-20-SURF Lieb Sample ID 200-45893-E-7 Non-soil m Non-soil m Shape (> # Let Sample + Tin 39.60 g Let Sample + Tin 20.00 g Noisture 50.82 % Tare (g) Pan+Samp (g) Samp (g) Date Receister Start Date Start Dat
ient Sample ID HT18-20-SURF ib Sample ID 200-45893-E-7 Weight Determination in Weight 1.03 g Shape (> #1 et Sample + Tin 39.60 g y Sample + Tin 20.00 g Moisture 50.82 % Date/Time in Date/Time of	Date Receive Start Date ab Sample ID HT18-20-SURF ab Sample ID 200-45893-E-7 Non-soil ma Non-soil ma Shape (> #1 Yet Sample + Tin 39.60 g ry Sample + Tin 20.00 g Moisture 50.82 % Date/Time in Date/Time of
with the sample ID HT18-20-SURF Start Date bb Sample ID 200-45893-E-7 End Date www.geth Determination Non-soil mate www.geth 1.03 g Shape (> #10 et Sample + Tin 39.60 g Hardness (> # y Sample + Tin 20.00 g	Date Receiver
Start Date	Date Received
Start Date	lient Date Received Start Date Received Start Date Bed Sample ID 200-45893-E-7 End Date ry Weight Determination n Weight 1.03 g Shape (> #10): let Sample + Tin 39.60 g Hardness (> #1 ry Sample + Tin 20.00 g
ient Sample ID HT18-20-SURF b Sample ID 200-45893-E-7 End Date Ty Weight Determination n Weight 1.03 g Shape (> #10):	lient Date Received Start Date Received Start Date Box Sample ID 200-45893-E-7 End Date ry Weight Determination Non-soil materia Shape (> #10):
ient Sample ID HT18-20-SURF Start Date b Sample ID 200-45893-E-7 End Date ry Weight Determination Non-soil material	lient Date Received lient Sample ID HT18-20-SURF Start Date ab Sample ID 200-45893-E-7 End Date ry Weight Determination Non-soil material
ient Sample ID HT18-20-SURF Start Date b Sample ID 200-45893-E-7 End Date	lient Date Received lient Sample ID HT18-20-SURF Start Date ab Sample ID 200-45893-E-7 End Date
ient Sample ID HT18-20-SURF Start Date	lient Date Received Start Date HT18-20-SURF Start Date
ient Sample ID HT18-20-SURF Start Date	lient Date Received Start Date HT18-20-SURF Start Date
ient Date Received	
	Sufficie Grain Gize - B-IZE

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0) Gravel	
2 inch	50000			0.00 g	100.0) Gravel	
1.5 inch	37500			0.00 g	100.0) Gravel	
1 inch	25000			0.00 g	100.0) Gravel	
3/4 inch	19000			0.00 g	100.0) Gravel	
3/8 inch	9500	447.25	457.66	10.41 g	89.1	7 Gravel	
#4	4750	488.00	497.11	9.11 g	80.1	7 Gravel	
#10	2000	462.60	464.36	1.76 g	79.0) Sand	Coarse
#20	850	378.83	379.96	1.13 g	77.9	9 Sand	Medium
#40	425	353.16	354.16	1.00 g	76.9	9 Sand	Medium
#60	250	348.44	350.76	2.32 g	74.0	3 Sand	Fine
#80	180	338.00	343.82	5.82 g	68.8	3 Sand	Fine
#100	150	328.69	337.75	9.06 g	59.8	3 Sand	Fine
#200	75	325.49	354.26	28.77 g	31.3	3 Sand	Fine
				0.00 g	31.3	3	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 101

()	,											
		Particle Size										
Hydrometer Test Time (min)	Actual	Spec. Gra	avity Temp C		(Micron)	% Finer	Classification	Sub Class				
	2	2 1.	.0185	20.0	32.6	25	Silt					
	5	5 1.	.0155	20.0	21.3	20.3	3 Silt					
	15	15 1.	.0135	20.0	12.6	17.1	Silt					
	30	31 1.	.0115	20.0	8.9	13.9	Silt					
	60	60 1.	.0095	20.0	6.5	10.7	7 Silt					
	250	240 1.	.0085	20.0	3.3	9.14	l Clay					
	1440 1	424 1.	.0065	20.0	1.4	5.96	6 Clay					

Sediment Grain Size - D422 10/26/2018 Client **Date Received** Client Sample ID HT18-21-SURF 11/04/2018 14:42 Start Date End Date 11/09/2018 10:55 Lab Sample ID 200-45893-E-8 **Dry Weight Determination** Non-soil material: shell, plant, glass Tin Weight 1.05 g Shape (> #10): subangular Wet Sample + Tin 46.59 g Hardness (> #10): Dry Sample + Tin 35.83 g % Moisture 23.63 % Date/Time in oven 11/04/2018 14:44 11/05/2018 14:46 Date/Time out of oven Sample Weights **Hydrometer Data** Tare (g) Pan+Samp (g) Samp (g) Sample Weight (Wet) 44.06 290.65 246.59 Serial Number 542321 Calib. Date (mm/dd/yyyy) Sample Weight (Oven Dried) 188 01/03/2018 Low Temp (C) 17.0 1.0035 Sample Split (oven dried) Reading at Low Temp Tare (g) Pan+Samp (g) Samp (g) High Temp (C) Sample >=#10 128 23.0 Sample <#10 Reading at High Temp 60 1.0020 % Passing #10 24.3 Hydrometer Cal Slope -0.00025 Hydrometer Cal Intercept 1.00775 Default Soil Gravity 2.6500

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000	457.69	505.14	47.45 g	74.8	Gravel	
3/8 inch	9500	447.25	477.49	30.24 g	58.7	Gravel	
#4	4750	488.00	515.11	27.11 g	44.3	Gravel	
#10	2000	462.60	486.04	23.44 g	31.8	Sand	Coarse
#20	850	374.53	383.09	8.56 g	27.2	Sand	Medium
#40	425	363.27	7 373.15	9.88 g	21.9	Sand	Medium
#60	250	353.59	362.25	8.66 g	17.3	Sand	Fine
#80	180	319.35	322.71	3.36 g	15.5	Sand	Fine
#100	150	328.68	330.91	2.23 g	14.3	Sand	Fine
#200	75	314.63	318.47	3.84 g	12.3	Sand	Fine
				0.00 g	12.3	1	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 188

()	,							
					Particle Size			
Hydrometer Test Time (min)	Actual	5	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0080	20.0	36.3	4.49	9 Silt	
	5	5	1.0070	20.0	23.2	3.60	3 Silt	
	15	15	1.0065	20.0	13.5	3.2	2 Silt	
	30	31	1.0055	20.0	9.4	2.3	5 Silt	
	60	59	1.0050	20.0	6.9	1.92	2 Silt	
	250	234	1.0045	20.0	3.5	1.9	5 Clay	
	1440	1418	1.0035	20.0	1.4	0.64	l Clay	

Sediment Grain Size - D422					
Client Client Sample ID Lab Sample ID	HT18-15-8			Date Received Start Date End Date	11/04 11/09
Dry Weight Determination				Non-soil material:	shell, plant
Tin Weight Wet Sample + Tin	1.05 28.20	·		Shape (> #10): Hardness (> #10):	na na
Dry Sample + Tin % Moisture	15.55 46.59	· ·		Date/Time in oven	11/04
				Date/Time out of oven	11/05
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	Hydrometer Data	
Sample Weight (Wet)	44.05	299.19	255.14	Serial Number	
Sample Weight (Oven Dried)			136	Calib. Date (mm/dd/yyyy) Low Temp (C)	
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	Reading at Low Temp	
Sample >=#10			32.4	High Temp (C)	
Sample <#10			104	Reading at High Temp	
% Passing #10			40.8	Hydrometer Cal Slope	
				Hydrometer Cal Intercept	
Gravel/Sand Fraction (Sieves)				Default Soil Gravity	

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0) Gravel	
2 inch	50000			0.00 g	100.0) Gravel	
1.5 inch	37500			0.00 g	100.0) Gravel	
1 inch	25000			0.00 g	100.0) Gravel	
3/4 inch	19000			0.00 g	100.0) Gravel	
3/8 inch	9500	447.25	459.02	11.77 g	91.3	3 Gravel	
#4	4750	488.00	499.12	11.12 g	83.1	l Gravel	
#10	2000	462.60	472.15	9.55 g	76.1	Sand	Coarse
#20	850	378.83	383.49	4.66 g	72.7	7 Sand	Medium
#40	425	353.16	360.29	7.13 g	67.5	Sand	Medium
#60	250	348.44	371.51	23.07 g	50.5	Sand	Fine
#80	180	338.00	356.26	18.26 g	37.1	Sand	Fine
#100	150	328.69	339.09	10.40 g	29.5	Sand	Fine
#200	75	325.49	347.67	22.18 g	13.2	2 Sand	Fine
				0.00 g	13.2	2	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 136

Hydrometer Test Time (min)	Actual	Spec. Gravity		Particle Size (Micron)	% Finer	Classification	Sub Class
2	2	1.0130	20.0	34.6	12.1	Silt	
5	5 5	1.0115	20.0	22.2	10.3	Silt	
15	15	1.0100	20.0	13	8.56	Silt	
30	31	1.0090	20.0	9.1	7.38	Silt	
60	59	1.0080	20.0	6.7	6.2	Silt	
250	265	1.0065	20.0	3.2	4.43	Clay	
1440	1412	1.0055	20.0	1.4	3.25	Clay	

Sediment Grain Size - D422						
Client Client Sample ID Lab Sample ID	HT18-16- 200-4589				Date Received Start Date End Date	10/26/201 11/04/2018 14:5 11/09/2018 11:0
Dry Weight Determination					Non-soil material:	plant, shell
Tin Weight Wet Sample + Tin	1.0 ² 37.15	J			Shape (> #10): Hardness (> #10):	subangular hard
Dry Sample + Tin % Moisture	16.2 ² 57.99	•			Date/Time in oven	11/04/2018 14:5
				ı	Date/Time out of oven	11/05/2018 14:4
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data	
Sample Weight (Wet)	44.09	9 298.00	253.91		Serial Number	54232
Sample Weight (Oven Dried)			107		Calib. Date (mm/dd/yyyy)	01/03/201
· · · · · · · · · · · · · · · · · · ·					Low Temp (C)	17.
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.003
Sample >=#10			6.27		High Temp (C)	23.
Sample <#10			101		Reading at High Temp	1.002
% Passing #10			39.8		Hydrometer Cal Slope	-0.0002
					Hydrometer Cal Intercept	1.0077
					Default Soil Gravity	2.650
Gravel/Sand Fraction (Sieves)						
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification

Gravon Garra i radiidii (Gravod)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000)		0.00 g	100.0) Gravel	
2 inch	50000	1		0.00 g	100.0) Gravel	
1.5 inch	37500	1		0.00 g	100.0) Gravel	
1 inch	25000	1		0.00 g	100.0) Gravel	
3/4 inch	19000	1		0.00 g	100.0) Gravel	
3/8 inch	9500)		0.00 g	100.0) Gravel	
#4	4750	1		0.00 g	100.0) Gravel	
#10	2000	462.60	468.87	6.27 g	94.	1 Sand	Coarse
#20	850	374.53	380.18	5.65 g	88.8	3 Sand	Medium
#40	425	363.27	7 370.14	6.87 g	82.4	1 Sand	Medium
#60	250	353.59	363.55	9.96 g	73.	1 Sand	Fine
#80	180	319.35	323.82	4.47 g	68.9	9 Sand	Fine
#100	150	328.68	330.18	1.50 g	67.5	5 Sand	Fine
#200	75	314.63	316.71	2.08 g	65.6	Sand	Fine
				0.00 g	65.6	6	

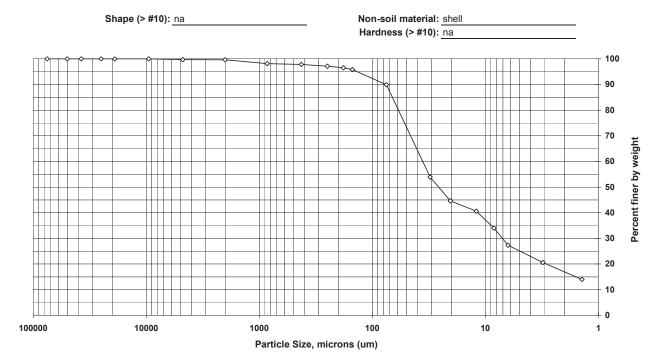
Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g) 107

Hydrometer Test Time (min)	Actual	Spec. Gravity		Particle Size (Micron)	% Finer	Classification	Sub Class
2	2	1.0170	20.0	33.2	21.4	Silt	
5	5 5	1.0115	20.0	22.2	13.1	Silt	
15	15	1.0105	20.0	13	11.6	Silt	
30	32	1.0085	20.0	9	8.63	Silt	
60	60	1.0075	20.0	6.7	7.13	Silt	
250	259	1.0060	20.0	3.3	4.88	Clay	
1440	1406	1.0050	20.0	1.4	3.38	Clay	

Sediment Grain Size - D422				
Client Client Sample ID Lab Sample ID	HT18-17-S 200-45893			
Dry Weight Determination Tin Weight Wet Sample + Tin	1.03 49.60	g		
Dry Sample + Tin % Moisture	34.21 31.69	· ·		
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	
Sample Weight (Wet) Sample Weight (Oven Dried)	44.06	282.46	2	38.4 163
Sample Split (oven dried) Sample >=#10 Sample <#10 % Passing #10	Tare (g)	Pan+Samp (g)		37.1 126 52.9
Gravel/Sand Fraction (Sieves)				

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0) Gravel	
2 inch	50000			0.00 g	100.0) Gravel	
1.5 inch	37500			0.00 g	100.0) Gravel	
1 inch	25000			0.00 g	100.0) Gravel	
3/4 inch	19000			0.00 g	100.0) Gravel	
3/8 inch	9500	447.25	5 457.30	10.05 g	93.8	3 Gravel	
#4	4750	488.00	504.55	16.55 g	83.0	6 Gravel	
#10	2000	462.60	473.10	10.50 g	77.5	2 Sand	Coarse
#20	850	378.83	386.23	7.40 g	72.	7 Sand	Medium
#40	425	353.16	360.77	7.61 g	68.0) Sand	Medium
#60	250	348.44	373.48	25.04 g	52.0	3 Sand	Fine
#80	180	338.00	367.32	29.32 g	34.0	3 Sand	Fine
#100	150	328.69	342.27	13.58 g	26.3	3 Sand	Fine
#200	75	325.49	341.30	15.81 g	16.0	3 Sand	Fine
				0.00 g	16.0	3	


Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 163

one oray i raction (riyaronic								
					Particle Size			
Hydrometer Test Time (min)	Actual	S	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0150	20.0	33.9	12.1	Silt	
	5	5	1.0135	20.0	21.8	10.6	Silt	
	15	15	1.0115	20.0	12.8	8.62	2 Silt	
	30	30	1.0100	20.0	9.2	7.14	Silt	
	60	63	1.0090	20.0	6.4	6.16	Silt	
	250	253	1.0075	20.0	3.2	4.68	3 Clay	
1	440 1	400	1.0060	20.0	1.4	3.2	2 Clay	

 Sample ID:
 HT-18-01-SURF-FD
 Percent Solids:
 37.1%
 Start Date:
 11/9/2018

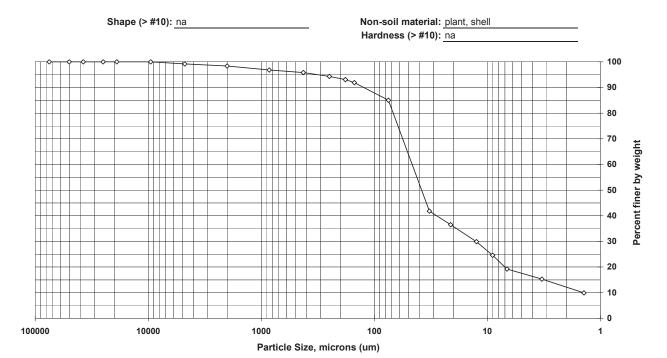
 Lab ID:
 200-45980-E-3
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.7	0.3
#10	2000	99.6	0.1
#20	850	98.1	1.5
#40	425	97.8	0.3
#60	250	97.1	0.7
#80	180	96.5	0.6
#100	150	95.8	0.7
#200	75	89.9	5.9
Hyd1	30.8	53.9	36.0
Hyd2	20.4	44.6	9.3
Hyd3	12	40.6	4.0
Hyd4	8.4	34.0	6.6
Hyd5	6.3	27.3	6.7
Hyd6	3.1	20.6	6.7
Hyd7	1.4	14.0	6.6

Soil	Percent of
Classification	sample
Gravel	0.3
Sand	9.8
Coarse Sand	0.1
Medium Sand	1.8
Fine Sand	7.9
Silt	62.6
Clay	27.3

 Sample ID:
 HT-18-01-SURF
 Percent Solids:
 37.3%
 Start Date:
 11/9/2018

 Lab ID:
 200-45980-E-4
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

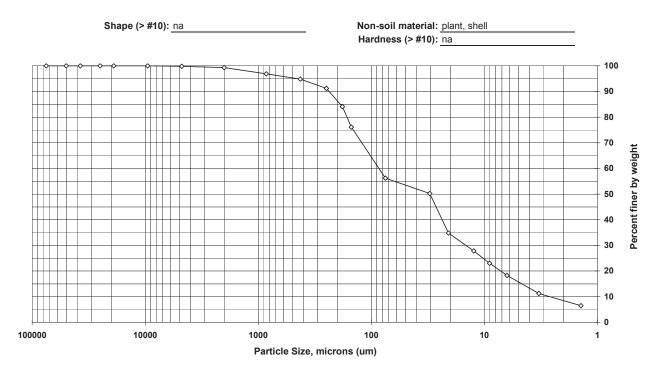


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	100.0	0.0
#20	850	97.8	2.2
#40	425	97.3	0.5
#60	250	96.5	0.8
#80	180	95.6	0.9
#100	150	95.1	0.5
#200	75	89.7	5.4
Hyd1	30.2	57.0	32.7
Hyd2	20	47.8	9.2
Hyd3	12	40.0	7.8
Hyd4	8.7	33.4	6.6
Hyd5	6.2	26.9	6.5
Hyd6	3.2	19.0	7.9
Hyd7	1.4	12.4	6.6
		•	

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	10.3
Coarse Sand	0.0
Medium Sand	2.7
Fine Sand	7.6
Silt	62.8
Clay	26.9

 Sample ID:
 HT-18-02-SURF
 Percent Solids:
 39.4%
 Start Date:
 11/9/2018

 Lab ID:
 200-45980-E-5
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

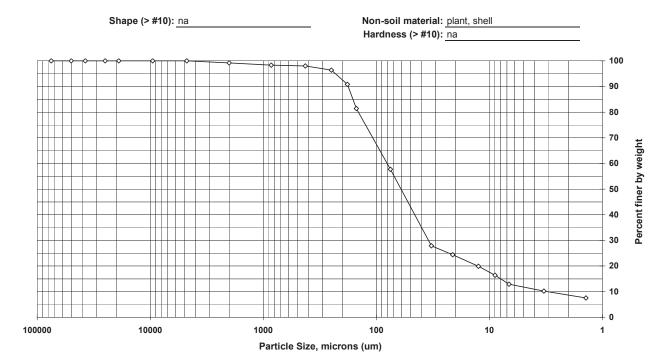


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.2	0.8
#10	2000	98.4	0.8
#20	850	96.8	1.6
#40	425	95.8	1.0
#60	250	94.3	1.5
#80	180	93.1	1.2
#100	150	91.9	1.2
#200	75	85.0	6.9
Hyd1	32.6	41.8	43.2
Hyd2	21.1	36.5	5.3
Hyd3	12.5	29.9	6.6
Hyd4	9	24.6	5.3
Hyd5	6.7	19.2	5.4
Hyd6	3.3	15.3	3.9
Hyd7	1.4	10.0	5.3
		•	

Soil	Percent of
Classification	sample
Gravel	0.8
Sand	14.2
Coarse Sand	0.8
Medium Sand	2.6
Fine Sand	10.8
Silt	65.8
Clay	19.2

 Sample ID:
 HT-18-03-SURF
 Percent Solids:
 34.4%
 Start Date:
 11/9/2018

 Lab ID:
 200-45980-E-6
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

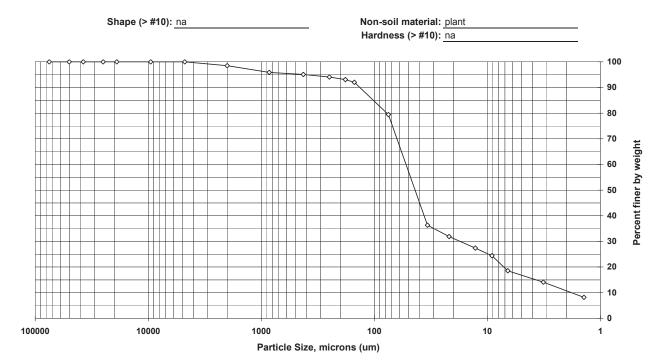


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.8	0.2
#10	2000	99.3	0.5
#20	850	96.9	2.4
#40	425	94.8	2.1
#60	250	91.2	3.6
#80	180	84.1	7.1
#100	150	76.1	8.0
#200	75	56.2	19.9
Hyd1	30.4	50.2	6.0
Hyd2	20.8	34.8	15.4
Hyd3	12.4	27.8	7.0
Hyd4	9	23.0	4.8
Hyd5	6.3	18.3	4.7
Hyd6	3.3	11.2	7.1
Hyd7	1.4	6.5	4.7

Soil	Percent of
Classification	sample
Gravel	0.2
Sand	43.6
Coarse Sand	0.5
Medium Sand	4.5
Fine Sand	38.6
Silt	37.9
Clay	18.3

 Sample ID:
 HT-18-04-SURF
 Percent Solids:
 51.8%
 Start Date:
 11/9/2018

 Lab ID:
 200-45980-E-7
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

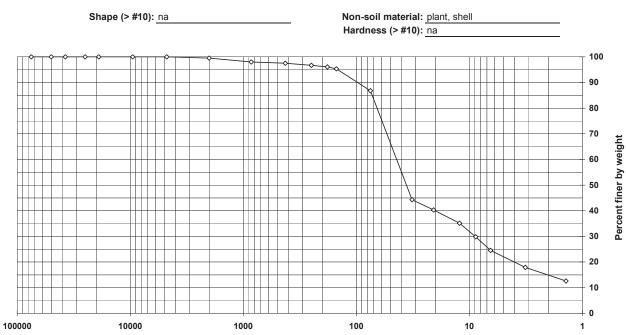


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.2	0.8
#20	850	98.3	0.9
#40	425	98.0	0.3
#60	250	96.4	1.6
#80	180	90.8	5.6
#100	150	81.4	9.4
#200	75	57.7	23.7
Hyd1	32.6	27.9	29.8
Hyd2	21.1	24.4	3.5
Hyd3	12.5	19.9	4.5
Hyd4	8.9	16.4	3.5
Hyd5	6.7	12.9	3.5
Hyd6	3.3	10.2	2.7
Hyd7	1.4	7.5	2.7

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	42.3
Coarse Sand	0.8
Medium Sand	1.2
Fine Sand	40.3
Silt	44.8
Clay	12.9

 Sample ID:
 HT-18-05-SURF
 Percent Solids:
 32.8%
 Start Date:
 11/9/2018

 Lab ID:
 200-45980-E-8
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

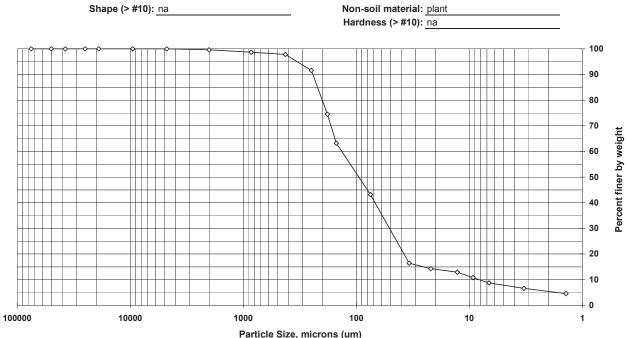


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	98.5	1.5
#20	850	95.9	2.6
#40	425	95.1	8.0
#60	250	94.1	1.0
#80	180	93.1	1.0
#100	150	92.0	1.1
#200	75	79.4	12.6
Hyd1	33.9	36.3	43.1
Hyd2	21.8	31.9	4.4
Hyd3	12.8	27.4	4.5
Hyd4	9.1	24.4	3.0
Hyd5	6.6	18.5	5.9
Hyd6	3.2	14.1	4.4
Hyd7	1.4	8.2	5.9

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	20.6
Coarse Sand	1.5
Medium Sand	3.4
Fine Sand	15.7
Silt	60.9
Clay	18.5

 Sample ID:
 HT-18-06-SURF
 Percent Solids:
 35.4%
 Start Date:
 11/9/2018

 Lab ID:
 200-45980-E-9
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

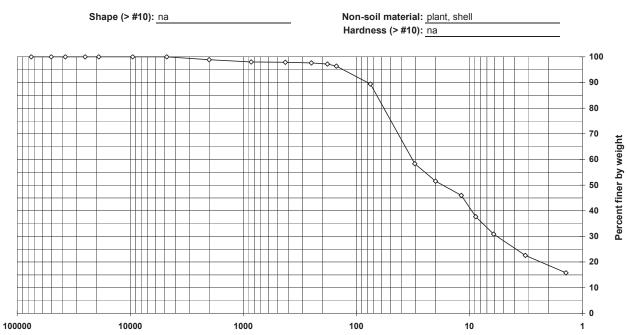

Particle:	Size	microns	(um	١
raillicie	SIZE,	IIIICI OIIS (uiii	ı

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.5	0.5
#20	850	98.0	1.5
#40	425	97.5	0.5
#60	250	96.7	0.8
#80	180	96.1	0.6
#100	150	95.3	0.8
#200	75	86.8	8.5
Hyd1	32.2	44.3	42.5
Hyd2	20.7	40.3	4.0
Hyd3	12.2	35.1	5.2
Hyd4	8.8	29.8	5.3
Hyd5	6.5	24.5	5.3
Hyd6	3.2	17.9	6.6
Hyd7	1.4	12.6	5.3
		<u>-</u>	

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	13.2
Coarse Sand	0.5
Medium Sand	2.0
Fine Sand	10.7
Silt	62.3
Clay	24.5

 Sample ID:
 HT-18-07-SURF
 Percent Solids:
 55.8%
 Start Date:
 11/9/2018

 Lab ID:
 200-45980-E-10
 Specific Gravity:
 2.650
 End Date:
 11/15/2018


Particle	Size,	microns	(um)

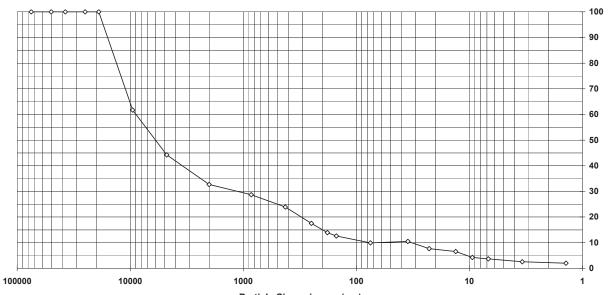
Sieve	Particle	Percent	Incremental
size	size, um finer		percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.6	0.4
#20	850	98.7	0.9
#40	425	97.8	0.9
#60	250	91.6	6.2
#80	180	74.5	17.1
#100	150	63.2	11.3
#200	75	43.2	20.0
Hyd1	34.1	16.4	26.8
Hyd2	21.9	14.3	2.1
Hyd3	12.8	12.9	1.4
Hyd4	9.3	10.8	2.1
Hyd5	6.7	8.7	2.1
Hyd6	3.3	6.6	2.1
Hyd7	1.4	4.5	2.1

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	56.8
Coarse Sand	0.4
Medium Sand	1.8
Fine Sand	54.6
Silt	34.5
Clay	8.7

 Sample ID:
 HT-18-13-SURF
 Percent Solids:
 34.6%
 Start Date:
 11/9/2018

 Lab ID:
 200-45980-E-11
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

Particle:	Size	microns	(um	١
raillicie	SIZE,	IIIICI OIIS (uiii	ı


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	98.9	1.1
#20	850	98.0	0.9
#40	425	97.9	0.1
#60	250	97.6	0.3
#80	180	97.2	0.4
#100	150	96.4	0.8
#200	75	89.4	7.0
Hyd1	30.4	58.3	31.1
Hyd2	19.9	51.5	6.8
Hyd3	11.8	46.0	5.5
Hyd4	8.8	37.7	8.3
Hyd5	6.1	30.9	6.8
Hyd6	3.2	22.6	8.3
Hyd7	1.4	15.8	6.8
		<u> </u>	

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	10.6
Coarse Sand	1.1
Medium Sand	1.0
Fine Sand	8.5
Silt	58.5
Clay	30.9

 Sample ID:
 HT18-14-SURF
 Percent Solids:
 59.9%
 Start Date:
 11/9/2018

 Lab ID:
 200-45998-E-2
 Specific Gravity:
 2.650
 End Date:
 11/15/2018

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um finer		percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	61.7	38.3
#4	4750	44.2	17.5
#10	2000	32.7	11.5
#20	850	28.7	4.0
#40	425	23.9	4.8
#60	250	17.5	6.4
#80	180	13.9	3.6
#100	150	12.6	1.3
#200	75	9.9	2.7
Hyd1	35	10.5	-0.6
Hyd2	22.7	7.7	2.8
Hyd3	13.2	6.6	1.1
Hyd4	9.4	4.3	2.3
Hyd5	6.8	3.7	0.6
Hyd6	3.4	2.6	1.1
Hyd7	1.4	2.0	0.6

Soil	Percent of
Classification	sample
Gravel	55.8
Sand	34.3
Coarse Sand	11.5
Medium Sand	8.8
Fine Sand	14.0
Silt	6.2
Clay	3.7

Percent finer by weight

Sediment Grain Size - D422							
Client					Date Received	10/31/20)18
Client Sample ID	HT-18-01	I-SURF-FD			Start Date	11/09/2018 15	:46
Lab Sample ID	200-4598	80-E-3			End Date	11/15/2018 14	:23
Dry Weight Determination					Non-soil material:	shell	
Tin Weight	1.0	5 g			Shape (> #10):	na	
Wet Sample + Tin	27.2	•			Hardness (> #10):	na	
Dry Sample + Tin	10.7	U			Hardriess (> #10).	IIa	
% Moisture	62.9				Date/Time in oven	11/09/2018 15	.10
70 WOISture	02.9	2 /0			Date/Time out of oven	11/12/2018 14	
					Date/Time out of over	11/12/2010 14	. 10
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data		
Sample Weight (Wet)	44.1	2 206.66	162.54		Serial Number	5423	321
Sample Weight (Oven Dried)			60.3		Calib. Date (mm/dd/yyyy)	01/03/20)18
,	_				Low Temp (C)	1	7.0
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.00	35
Sample >=#10			0.21		High Temp (C)	2	3.0
Sample <#10			60.1		Reading at High Temp	1.00	20
% Passing #10			37		Hydrometer Cal Slope	-0.000	25
-	_				Hydrometer Cal Intercept	1.007	775
					Default Soil Gravity	2.65	500
Gravel/Sand Fraction (Sieves)				-		
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	;
3 inch	7500	0		0.00	g 100.0) Gravel	

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.) Gravel	
2 inch	50000			0.00 g	100.) Gravel	
1.5 inch	37500			0.00 g	100.) Gravel	
1 inch	25000			0.00 g	100.) Gravel	
3/4 inch	19000			0.00 g	100.) Gravel	
3/8 inch	9500			0.00 g	100.) Gravel	
#4	4750	488.00	488.17	0.17 g	99.	7 Gravel	
#10	2000	462.69	9 462.73	0.04 g	99.	3 Sand	Coarse
#20	850	374.6	1 375.50	0.89 g	98.	1 Sand	Medium
#40	425	362.90	363.06	0.16 g	97.	3 Sand	Medium
#60	250	353.27	7 353.67	0.40 g	97.	1 Sand	Fine
#80	180	319.30	319.66	0.36 g	96.	5 Sand	Fine
#100	150	328.44	4 328.85	0.41 g	95.	3 Sand	Fine
#200	75	314.62	2 318.17	3.55 g	89.	9 Sand	Fine
				0.00 g	89.	9	

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

60.3

()	,							
					Particle Size			
Hydrometer Test Time (min)	Actual	S	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0230	20.0	30.8	53	.9 Silt	
	5	5	1.0195	20.0	20.4	. 44	.6 Silt	
	15	15	1.0180	20.0	12	40	.6 Silt	
	30	32	1.0155	20.0	8.4		34 Silt	
	60	60	1.0130	20.0	6.3	27	.3 Silt	
	250	259	1.0105	20.0	3.1	20	.6 Clay	
	1440	1406	1.0080	20.0	1.4		14 Clay	

ediment Grain Size - D422					
lient lient Sample ID ab Sample ID	HT-18-01- 200-45980				
ry Weight Determination in Weight /et Sample + Tin	1.08 25.07	· ·			
ry Sample + Tin Moisture	10.03 62.69	0			
ample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		
ample Weight (Wet)	44.15		164.3		
ample Weight (Oven Dried)			61	.3	
ample Split (oven dried) ample >=#10	Tare (g)	Pan+Samp (g)	Samp (g)	0	
ample <#10			61	•	
Passing #10			37	.3	
ravel/Sand Fraction (Sieves)					

Gravel/Sand Fraction (Sieves)

oravonoana rraomon (orovoo)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.	0 Gravel	
2 inch	50000			0.00 g	100.	0 Gravel	
1.5 inch	37500			0.00 g	100.	0 Gravel	
1 inch	25000			0.00 g	100.	0 Gravel	
3/4 inch	19000			0.00 g	100.	0 Gravel	
3/8 inch	9500			0.00 g	100.	0 Gravel	
#4	4750			0.00 g	100.	0 Gravel	
#10	2000	1		0.00 g	100.	0 Sand	Coarse
#20	850	378.71	1 380.03	1.32 g	97.	8 Sand	Medium
#40	425	352.82	2 353.13	0.31 g	97.	3 Sand	Medium
#60	250	348.29	348.81	0.52 g	96.	5 Sand	Fine
#80	180	337.93	338.48	0.55 g	95.	6 Sand	Fine
#100	150	328.55	328.85	0.30 g	95.	1 Sand	Fine
#200	75	325.44	328.78	3.34 g	89.	7 Sand	Fine
				0.00 g	89.	7	

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g) 61.3

one only i receive (ii) an online	,							
Hydrometer Test Time (min)	Actual	Spec. Gra	avity Temp C		article Size	% Finer	Classification	Sub Class
	2	2 1.	.0245	20.0	30.2	57	Silt	
	5	5 1.	.0210	20.0	20	47.8	Silt	
	15	15 1.	.0180	20.0	12	40	Silt	
	30	30 1.	.0155	20.0	8.7	33.4	Silt	
	60	33 1.	.0130	20.0	6.2	26.9	Silt	
2	50 2	53 1.	.0100	20.0	3.2	19	Clay	
14	40 140	00 1.	.0075	20.0	1.4	12.4	Clay	

Sediment Grain Size - D422						
Client					Date Received	10/31/2018
Client Sample ID	HT-18-02-				Start Date	11/09/2018 15:53
Lab Sample ID	200-45980	0-E-5			End Date	11/15/2018 14:35
Dry Weight Determination					Non-soil material:	plant, shell
Tin Weight	1.07	7 a			Shape (> #10):	na
Wet Sample + Tin	33.94	·			Hardness (> #10):	
Dry Sample + Tin	14.02	•			rialuness (> #10).	na
% Moisture	60.60	•			Date/Time in oven	11/09/2018 15:55
70 Molecules	00.00	, , , ,			Date/Time out of oven	11/12/2018 14:19
						11112201011110
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data	
Sample Weight (Wet)	44.10	197.59	153.49		Serial Number	542321
Sample Weight (Oven Dried)			60.5	i	Calib. Date (mm/dd/yyyy)	01/03/2018
					Low Temp (C)	17.0
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.0035
Sample >=#10			0.96		High Temp (C)	23.0
Sample <#10			59.5	i	Reading at High Temp	1.0020
% Passing #10			38.8		Hydrometer Cal Slope	-0.00025
					Hydrometer Cal Intercept	1.00775
					Default Soil Gravity	2.6500
Gravel/Sand Fraction (Sieves)						
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification
3 inch	75000)		0.00) g 100.0	0 Gravel
2 inch	50000)		0.00) g 100.0	0 Gravel
4 E in ab	27500	\		0.00	100 (Oray al

2 111011	30000			0.00 g	100.0 014701	
1.5 inch	37500			0.00 g	100.0 Gravel	
1 inch	25000			0.00 g	100.0 Gravel	
3/4 inch	19000			0.00 g	100.0 Gravel	
3/8 inch	9500			0.00 g	100.0 Gravel	
#4	4750	488.00	488.46	0.46 g	99.2 Gravel	
#10	2000	462.69	463.19	0.50 g	98.4 Sand	Coarse
#20	850	374.61	375.55	0.94 g	96.8 Sand	Medium
#40	425	362.90	363.49	0.59 g	95.8 Sand	Medium
#60	250	353.27	354.20	0.93 g	94.3 Sand	Fine
#80	180	319.30	320.02	0.72 g	93.1 Sand	Fine
#100	150	328.44	329.15	0.71 g	91.9 Sand	Fine
#200	75	314.62	318.81	4.19 g	85.0 Sand	Fine
				0.00 g	85.0	

Class

Adjusted Hydrometer Sample Mass

60.5 Hydrometer Sample Mass (g)

					Particle Size			
Hydrometer Test Time (min)	Actual	S	pec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0185	20.0	32.6	41.8	3 Silt	
	5	5	1.0165	20.0	21.1	36.5	Silt	
	15	15	1.0140	20.0	12.5	29.9	Silt	
	30	30	1.0120	20.0	9	24.6	Silt	
	60	57	1.0100	20.0	6.7	19.2	2 Silt	
	250	247	1.0085	20.0	3.3	15.3	3 Clay	
	1440	1394	1.0065	20.0	1.4	9.95	Clay	

Sediment Grain Size - D422							
Client Client Sample ID Lab Sample ID	HT-18-03- 200-45980				Date Received Start Date End Date	10/31/201 11/09/2018 15:5 11/15/2018 14:4	58
Dry Weight Determination Tin Weight Wet Sample + Tin Dry Sample + Tin	1.05 21.80 8.19	g			Non-soil material: Shape (> #10): Hardness (> #10):	plant, shell na na	
% Moisture	65.59	%			Date/Time in oven Date/Time out of oven	11/09/2018 15:5 11/12/2018 14:1	
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data		
Sample Weight (Wet) Sample Weight (Oven Dried)	44.10	241.58	197.4 6		Serial Number Calib. Date (mm/dd/yyyy) Low Temp (C)	54232 01/03/201 17:	8
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.003	
Sample >=#10 Sample <#10 % Passing #10			0.4 67. 34.	6	High Temp (C) Reading at High Temp Hydrometer Cal Slope Hydrometer Cal Intercept Default Soil Gravity	23. 1.002 -0.0002 1.0077 2.650	2 <mark>0</mark> 25 75
Gravel/Sand Fraction (Sieves)							
Sample Fraction 3 inch 2 inch 1.5 inch 1 inch 3/4 inch	Size (um) 75000 50000 37500 25000 19000		Pan+Sample (g)	0.00 0.00 0.00 0.00 0.00	0 g 100.0 0 g 100.0 0 g 100.0	Classification O Gravel O Gravel O Gravel O Gravel O Gravel	Sub Cla
2/0 in ab	0500			0.00		0.0	

488.13

463.01

380.37

354.28

350.74

342.76

334.01

338.97

0.00 g

0.13 g

0.32 g

1.66 g

1.46 g

2.45 g

4.83 g

5.46 g

13.53 g

0.00 g

100.0 Gravel

99.8 Gravel

99.3 Sand

96.9 Sand

94.8 Sand

91.2 Sand

84.1 Sand

76.1 Sand

56.2 Sand

56.2

Coarse

Medium

Medium

Fine

Fine

Fine

Fine

7	#200	75	325.44

9500

4750

2000

850

425

250

180

150

68

488.00

462.69

378.71

352.82

348.29

337.93

328.55

Silt/Clay Fraction (Hydrometer Test)

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

3/8 inch

#4

#10

#20

#40

#60

#80

#100

()	,							
		0	0 "	T 0	Particle Size	0/ =:	01 '5" 1'	0.1.01
Hydrometer Test Time (min)	Actual	Sp	ec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0240	20.0	30.4	. 5	50.2 Silt	
	5	5	1.0175	20.0	20.8	3	34.8 Silt	
	15	15	1.0145	20.0	12.4	. 2	27.8 Silt	
	30	30	1.0125	20.0	9		23 Silt	
	60	63	1.0105	20.0	6.3	1	18.3 Silt	
	250	241	1.0075	20.0	3.3	1	11.2 Clay	
	1440	1388	1.0055	20.0	1.4		6.5 Clay	

Sediment Grain Size - D422								
Client					Date Received		10/31/201	
Client Sample ID	HT-18-04	-SURF			Start Date		11/09/2018 16:0	12
Lab Sample ID	200-4598	80-E-7			End Date		11/15/2018 14:4	6
Dry Weight Determination					Non-soil material:			
Dry Weight Determination	1 1	0 ~					plant, shell	
Tin Weight	1.10	•			Shape (> #10):		na	
Wet Sample + Tin	26.8	•			Hardness (> #10):		na	
Dry Sample + Tin	14.43	•			D (/T' '		44/00/0040 40.0	
% Moisture	48.23	3 %			Date/Time in oven		11/09/2018 16:0	
					Date/Time out of or	ven	11/12/2018 14:2	20
Sample Weights	Toro (a)	Pan+Samp (g)	Comp (a)		Hydrometer Data			
Sample Weights Sample Weight (Wet)	Tare (g) 44.09				Serial Number		54232	1
	44.08	9 219.13				4/2000		
Sample Weight (Oven Dried)			90.6		Calib. Date (mm/do	ı/yyyy)	01/03/201	
0	T ()	D :0 ()	2 ()		Low Temp (C)		17.	
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Te	mp	1.003	
Sample >=#10			0.72		High Temp (C)		23	
Sample <#10			89.9		Reading at High Te		1.002	
% Passing #10			51.4		Hydrometer Cal Slo	•	-0.0002	
					Hydrometer Cal Int		1.0077	
					Default Soil Gravity	/	2.650	00
Gravel/Sand Fraction (Sieves)								
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)		% Fir		Classification	Sub (
3 inch	75000	0		0	.00 g	100.0	Gravel	
2 inch	50000	0		0	.00 g	100.0	Gravel	
1.5 inch	37500	n		0	.00 a	100.0	Gravel	

0.00 g 0.00 g 1.5 inch 37500 100.0 Gravel 1 inch 25000 100.0 Gravel 3/4 inch 19000 0.00 g 100.0 Gravel 0.00 g 3/8 inch 9500 100.0 Gravel #4 4750 0.00 g 100.0 Gravel #10 2000 462.69 463.41 0.72 g 99.2 Sand Coarse #20 850 374.61 375.46 0.85 g 98.3 Sand Medium 0.28 g #40 425 362.90 363.18 98.0 Sand Medium 250 1.47 g #60 353.27 354.74 96.4 Sand Fine #80 180 324.38 319.30 5.08 g 90.8 Sand Fine #100 150 328.44 336.94 8.50 g 81.4 Sand Fine 57.7 Sand #200 21.51 g 75 314.62 336.13 Fine 0.00 g 57.7

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 90.6

one oney i receive (i i y air onino	,							
Hydrometer Test Time (min)	Actual	Spec	. Gravity	Temp C	Particle Size	% Finer	Classification	Sub Class
	2	2	1.0185	20.	0 32.0	3 27	7.9 Silt	
	5	5	1.0165	20.	0 21.	1 24	I.4 Silt	
	15	15	1.0140	20.	0 12.	5 19	9.9 Silt	
	30	31	1.0120	20.	0 8.8	9 16	6.4 Silt	
	60	57	1.0100	20.	0 6.	7 12	2.9 Silt	
	250	235	1.0085	20.	0 3.3	3 10	0.2 Clay	
14	140 13	382	1.0070	20.	0 1.4	4 7.	53 Clay	

Sediment Grain Size - D422 Client **Date Received** 10/31/2018 Client Sample ID HT-18-05-SURF Start Date 11/09/2018 17:32 End Date Lab Sample ID 200-45980-E-8 11/15/2018 11:29 **Dry Weight Determination** Non-soil material: Tin Weight 1.08 g Shape (> #10): na Wet Sample + Tin 19.25 g Hardness (> #10): Dry Sample + Tin 7.03 g % Moisture 67.25 % Date/Time in oven 11/09/2018 17:34 11/12/2018 14:24 Date/Time out of oven Sample Weights **Hydrometer Data** Tare (g) Pan+Samp (g) Samp (g) Sample Weight (Wet) 209.70 165.59 Serial Number 542321 44.11 Calib. Date (mm/dd/yyyy) Sample Weight (Oven Dried) 54.2 01/03/2018 Low Temp (C) 17.0 Sample Split (oven dried) Reading at Low Temp 1.0035 Tare (g) Pan+Samp (g) Samp (g) High Temp (C) Sample >=#10 0.8 23.0 Sample <#10 Reading at High Temp 53.4 1.0020 % Passing #10 Hydrometer Cal Slope -0.00025 Hydrometer Cal Intercept 1.00775 Default Soil Gravity 2.6500

Gravel/Sand Fraction (Sieves)

Oravenoana Fraction (Oleves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000	1		0.00 g	100.0	Gravel	
2 inch	50000	1		0.00 g	100.0	Gravel	
1.5 inch	37500	1		0.00 g	100.0	Gravel	
1 inch	25000	1		0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500	1		0.00 g	100.0	Gravel	
#4	4750	1		0.00 g	100.0	Gravel	
#10	2000	462.69	463.49	0.80 g	98.5	Sand	Coarse
#20	850	378.71	380.14	1.43 g	95.9	Sand	Medium
#40	425	352.82	353.25	0.43 g	95.1	Sand	Medium
#60	250	348.29	348.84	0.55 g	94.1	Sand	Fine
#80	180	337.93	338.46	0.53 g	93.1	Sand	Fine
#100	150	328.55	329.17	0.62 g	92.0	Sand	Fine
#200	75	325.44	332.26	6.82 g	79.4	Sand	Fine
				0.00 g	79.4		

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 54.2

one only i radiion (ii) aromo	,									
Hydrometer Test Time (min)	Actual	Spec.	Gravity	Temp C		Particle Size Micron)	% Finer		Classification	Sub Class
	2	2	1.0150		20.0	33.9	3	6.3	Silt	
	5	5	1.0135		20.0	21.8	3	1.9	Silt	
	15	15	1.0120		20.0	12.8	2	7.4	Silt	
	30	30	1.0110		20.0	9.1	2	4.4	Silt	
	60	59	1.0090		20.0	6.6	1	8.5	Silt	
	250 2	256	1.0075		20.0	3.2	1	4.1	Clay	
1	440 14	140	1.0055		20.0	1.4	8	.15	Clay	

Sediment Grain Size - D422								
Client Client Sample ID Lab Sample ID	HT-18-06-S 200-45980-l				Date Receive Start Date End Date	ed	11/09/20	0/31/2018 018 17:37 018 11:35
Dry Weight Determination Tin Weight Wet Sample + Tin	1.04 <mark>g</mark> 17.42 g				Non-soil mate Shape (> #10 Hardness (>	0):	plant, shell na na	
Dry Sample + Tin % Moisture	6.84 g 64.59 %				Date/Time in Date/Time ou	0.0		018 17:38 018 14:25
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer	Data		
Sample Weight (Wet) Sample Weight (Oven Dried)	45.03	216.57	171.54 60.7		Serial Number Calib. Date (r Low Temp (C	mm/dd/yyyy)	01	542321 1/03/2018 17.0
Sample Split (oven dried) Sample >=#10 Sample <#10 % Passing #10	Tare (g) F	Pan+Samp (g)	Samp (g) 0.28 60.4 35.2		Reading at Louising High Temp (Control Reading at High Hydrometer Control Reading at Louising Reading at High Temp (Control Re	ow Temp C) ligh Temp Cal Slope		1.0035 23.0 1.0020 -0.00025
Gravel/Sand Fraction (Sieves) Sample Fraction	Size (um) F	Pan Tare (g)	Pan+Sample (g)	Sample	Hydrometer (Default Soil (Classification	1.00775 2.6500
3 inch 2 inch	75000 50000	an raio (g)	Tam Cample (g)	0.0	00 g 00 g	100.0) Gravel	

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750			0.00 g	100.0	Gravel	
#10	2000	462.69	9 462.97	0.28 g	99.5	Sand	Coarse
#20	850	374.61	1 375.50	0.89 g	98.0	Sand	Medium
#40	425	362.90	363.23	0.33 g	97.5	Sand	Medium
#60	250	353.27	7 353.74	0.47 g	96.7	Sand	Fine
#80	180	319.30	319.64	0.34 g	96.1	Sand	Fine
#100	150	328.44	328.92	0.48 g	95.3	Sand	Fine
#200	75	314.62	2 319.76	5.14 g	86.8	Sand	Fine
				0.00 g	86.8		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g) 60.7

Hydrometer Test Time (min)	Actual	Spec. Gravity		Particle Size (Micron)	% Finer	Classification	Sub Class
2	2 2	1.0195	20.0	32.2	44.3	Silt	
Ę	5 5	1.0180	20.0	20.7	40.3	Silt	
15	15	1.0160	20.0	12.2	35.1	Silt	
30	30	1.0140	20.0	8.8	29.8	Silt	
60	58	1.0120	20.0	6.5	24.5	Silt	
250	256	1.0095	20.0	3.2	17.9	Clay	
1440	1440	1.0075	20.0	1.4	12.6	Clay	

Sediment Grain Size - D422							
Client Client Sample ID Lab Sample ID	HT-18-07-200-45980				Date Received Start Date End Date	10/31/20 11/09/2018 17 11/15/2018 11	:41
Dry Weight Determination Tin Weight Wet Sample + Tin Dry Sample + Tin	1.03 23.40 13.51	g g			Non-soil material: Shape (> #10): Hardness (> #10):	plant na na	
% Moisture	44.21	%			Date/Time in oven Date/Time out of oven	11/09/2018 17 11/12/2018 14	—
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data		
Sample Weight (Wet) Sample Weight (Oven Dried)	44.11	250.44	206.33 115		Serial Number Calib. Date (mm/dd/yyyy) Low Temp (C)	542: 01/03/2 1	
Sample Split (oven dried) Sample >=#10 Sample <#10 % Passing #10	Tare (g)	Pan+Samp (g)	Samp (g) 0.51 114 55.3		Reading at Low Temp High Temp (C) Reading at High Temp Hydrometer Cal Slope Hydrometer Cal Intercept	1.00 -0.00	3.0 020 025
Gravel/Sand Fraction (Sieves)					Default Soil Gravity	2.6	500
Sample Fraction 3 inch 2 inch 1.5 inch 1 inch	Size (um) 75000 50000 37500 25000		Pan+Sample (g)	0.00 0.00 0.00 0.00 0.00	g 100. g 100.	Classification 0 Gravel 0 Gravel 0 Gravel 0 Gravel 0 Gravel	Su

2 111011				0.00 9	100.0 0.000	
1.5 inch 375	00			0.00 g	100.0 Gravel	
1 inch 250	00			0.00 g	100.0 Gravel	
3/4 inch 190	00			0.00 g	100.0 Gravel	
3/8 inch 95	00			0.00 g	100.0 Gravel	
#4 47	50			0.00 g	100.0 Gravel	
#10 20	00	462.69	463.20	0.51 g	99.6 Sand	Coarse
#20 8	50	378.71	379.73	1.02 g	98.7 Sand	Medium
#40 4	25	352.82	353.82	1.00 g	97.8 Sand	Medium
#60 2	50	348.29	355.38	7.09 g	91.6 Sand	Fine
#80 1	30	337.93	357.54	19.61 g	74.5 Sand	Fine
#100 1	50	328.55	341.50	12.95 g	63.2 Sand	Fine
#200	75	325.44	348.39	22.95 g	43.2 Sand	Fine
				0.00 g	43.2	

Adjusted Hydrometer Sample Mass

115 Hydrometer Sample Mass (g)

Hydrometer Test Time (min)	Actual	Sr	pec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
rigarometer reet rime (rimi)	2	2	1.0145	- 1	34.1		Silt	
	5	5	1.0130		21.9		Silt	
	15	15	1.0120	20.0	12.8	12.9	Silt	
	30	29	1.0105	20.0	9.3	10.8	Silt	
	60	58	1.0090	20.0	6.7	8.73	Silt	
	250	250	1.0075	20.0	3.3	6.63	Clay	
	1440	1434	1.0060	20.0	1.4	4.54	Clay	

Sediment Grain Size - D422						
Seulinent Grant Size - D422						
Client Client Sample ID Lab Sample ID	HT-18-13 200-4598				Date Received Start Date End Date	10/31/2018 11/09/2018 17:45 11/15/2018 11:48
Dry Weight Determination	0.00				Non-soil material:	plant, shell
Tin Weight Wet Sample + Tin Dry Sample + Tin	0.99 23.23 8.69	g g			Shape (> #10): Hardness (> #10):	na na
% Moisture	65.38	•			Date/Time in oven Date/Time out of oven	11/09/2018 17:46 11/12/2018 14:25
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data	
Sample Weight (Wet) Sample Weight (Oven Dried)	44.10	213.11	169.01 58.5		Serial Number Calib. Date (mm/dd/yyyy)	542321 01/03/2018
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Low Temp (C) Reading at Low Temp	17.0 1.0035
Sample >=#10 Sample <#10			0.64 57.9		High Temp (C) Reading at High Temp	23.0 1.0020
% Passing #10			34.3		Hydrometer Cal Slope Hydrometer Cal Intercept	-0.00025 1.00775
Gravel/Sand Fraction (Sieves))				Default Soil Gravity	2.6500
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification
0 !	75000	`		0.00	400.0	0

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750			0.00 g	100.0	Gravel	
#10	2000	462.69	9 463.33	0.64 g	98.9	Sand	Coarse
#20	850	374.6	1 375.16	0.55 g	98.0	Sand	Medium
#40	425	362.90	362.95	0.05 g	97.9	Sand	Medium
#60	250	353.27	7 353.45	0.18 g	97.6	Sand	Fine
#80	180	319.30	319.56	0.26 g	97.2	Sand	Fine
#100	150	328.44	4 328.88	0.44 g	96.4	Sand	Fine
#200	75	314.62	2 318.69	4.07 g	89.4	Sand	Fine
				0.00 g	89.4		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

one oray i raction (riyaromotor	,						
Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
riyurometer rest rime (miir)	Actual	Spec. Gravity	Tellip C	(IVIICIOII)	70 T IIICI	Ciassilication	Sub Class
	2 2	1.0240	20.0	30.4	58.3	Silt	
	5 5	1.0215	20.0	19.9	51.5	Silt	
1	15	1.0195	20.0	11.8	46	Silt	
30	29	1.0165	20.0	8.8	37.7	Silt	
6	63	1.0140	20.0	6.1	30.9	Silt	
250	250	1.0110	20.0	3.2	22.6	Clay	
144	1434	1.0085	20.0	1.4	15.8	Clay	

Sediment Grain Size - D422						
Client					Date Received	11/1/201
Client Sample ID	HT18-14-	CLIDE			Start Date	11/09/2018 17:5
Lab Sample ID	200-4599				End Date	11/15/2018 11:5
Lab Sample ID	200-4598	10-E-Z			Eliu Dale	11/15/2010 11.5
Dry Weight Determination					Non-soil material:	shell, glass
Tin Weight	1.0	0 g			Shape (> #10):	subangular
Wet Sample + Tin	27.2	•			Hardness (> #10):	hard
Dry Sample + Tin	16.7	•				Tion
% Moisture	40.1	U			Date/Time in oven	11/09/2018 17:5
					Date/Time out of oven	11/12/2018 14:2
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data	
Sample Weight (Wet)	44.7	7 280.94	236.17		Serial Number	54232
Sample Weight (Oven Dried)			141		Calib. Date (mm/dd/yyyy)	01/03/201
					Low Temp (C)	17
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.003
Sample >=#10			95.1		High Temp (C)	23
Sample <#10			45.9		Reading at High Temp	1.002
% Passing #10			19.4		Hydrometer Cal Slope	-0.0002
					Hydrometer Cal Intercept	1.0077
					Default Soil Gravity	2.650
Gravel/Sand Fraction (Sieves)						
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500	447.26	501.33	54.07 g	61.7	Gravel	
#4	4750	488.00	512.74	24.74 g	44.2	Gravel	
#10	2000	462.69	478.94	16.25 g	32.7	Sand	Coarse
#20	850	378.71	384.32	5.61 g	28.7	Sand	Medium
#40	425	352.82	359.59	6.77 g	23.9	Sand	Medium
#60	250	348.29	357.38	9.09 g	17.5	Sand	Fine
#80	180	337.93	342.94	5.01 g	13.9	Sand	Fine
#100	150	328.55	330.44	1.89 g	12.6	Sand	Fine
#200	75	325.44	329.20	3.76 g	9.9	Sand	Fine
				0.00 g	9.9	1	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 141

one only i receive (ii) an onlotte receiv								
		Particle Size						
Hydrometer Test Time (min)	Actual		Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0120	20.0	35	10.5	Silt	
	5	5	1.0095	20.0	22.7	7.69	Silt	
	15	15	1.0085	20.0	13.2	6.55	Silt	
	30	31	1.0065	20.0	9.4	4.27	' Silt	
	60	60	1.0060	20.0	6.8	3.7	' Silt	
	250	240	1.0050	20.0	3.4	2.56	Clay	
	1440	1424	1.0045	20.0	1.4	1.99	Clay	