# Targeted National Sewage Sludge Survey (TNSSS): Summary Statistics and Estimates of $95^{\text {th }}$ Percentiles for 84 Additional Analytes 

U.S. Environmental Protection Agency<br>Office of Water (4301T)<br>Office of Science and Technology<br>Health and Ecological Criteria Division<br>1200 Pennsylvania Avenue, NW<br>Washington, DC 20460

EPA 822-R-21-003

April 2021

## Prepared by:

Battelle<br>505 King Avenue<br>Columbus, Ohio 43201

## Table of Contents

Page

1. Introduction ..... 1
1.1 TNSSS Design Overview ..... 1
1.2 Compounds Analyzed in the TNSSS ..... 2
2. Approach ..... 5
2.1 ProUCL Software ..... 7
2.2 Methods for Testing Distributional Goodness-of-Fit ..... 8
2.3 Methods for Identifying Statistical Outliers ..... 8
2.4 Methods for Estimating the $95^{\text {th }}$ Percentile ..... 9
2.4.1.Detection Limit Substitution Methods ..... 9
2.4.2.MLE Methods ..... 10
2.4.3.ROS Substitution Method ..... 10
2.4.4. Kaplan-Meier Nonparametric Method ..... 10
2.4.5. Summary of $95^{\text {th }}$ Percentile Calculation Methods ..... 12
3. Results ..... 13
4. Key Findings and Conclusions ..... 33
5. References ..... 34
List of Tables
Page
Table 1. Numbers of POTWs within the TNSSS, by Average Flow Rate. ..... 1
Table 2. Listing of 34 Analytes Measured in the TNSSS, Whose Measurements Were Subject to In-Depth Statistical Analysis in USEPA (2009a). ..... 2
Table 3. Listing of 27 Analytes Measured in the TNSSS, With No More than One Detected Outcome from Among the 84 Collected Samples of Treated Biosolids ..... 3
Table 4. Listing of 84 Analytes Measured in the TNSSS, and the Percentage of Detected Outcomes from Among the 84 Collected Samples of Treated Biosolids. ..... 4
Table 5. Criteria for Classifying Within-Facility Aggregated Measurements as a Detect or Non- Detect in the TNSSS. ..... 5
Table 6. Summary Statistics for Detected Outcomes for 84 Analytes Measured in the TNSSS ..... 6
Table 7. Summary of $95^{\text {th }}$ Percentiles Calculation Methods in ProUCL. ..... 12
Table 8. Outcome of Goodness-of-Fit Tests, and Estimates of 95th Percentiles Using Various Statistical Methods and Assumptions, for 84 Analytes Measured in the TNSSS. ..... 14
Table 9. Detected Facility Measurements Labeled as Statistical Outliers by Outlier Tests for 84 Analytes Measured in the TNSSS ..... 17
Table 10. Recommended (Nonparametric) Estimates of the $95^{\text {th }}$ Percentile for the Pharmaceuticals, Steroids, and Hormones, Along with the Maximum Observed Concentration ..... 18
Table 11. Recommended (Lognormal-Based) Estimates of the $95^{\text {th }}$ Percentile for the 84 Metals, Organics, Anions, and PBDEs, Along with the Maximum Observed Concentration. ..... 19
Table 12. Weighted Summary Statistics and 95 ${ }^{\text {th }}$ Percentile Estimates for the 84 Analytes, Using Statistical Techniques Applied in the Weighted (Preliminary) Analysis Performed in USEPA (2009a). ..... 20
Table 13. $95^{\text {th }}$ Percentile Estimates for the Prioritized Analytes, as Reported in USEPA (2009a), and Unweighted Estimates Generated by ProUCL. ..... 23
List of Figures
Page
Figure 1. Histograms of Facility-Specific Concentrations for Non-Prioritized Metals in the TNSSS ..... 24
Figure 2. Histograms of Facility-Specific Concentrations for Non-Prioritized Organics and Classicals (Anions) in the TNSSS. ..... 26
Figure 3. Histograms of Facility-Specific Concentrations for Non-Prioritized PBDEs in the TNSSS ..... 27
Figure 4. Histograms of Facility-Specific Concentrations for Non-Prioritized Pharmaceuticals in the TNSSS ..... 28
Figure 5. Histograms of Facility-Specific Concentrations for Non-Prioritized Steroids/Hormones in the TNSSS ..... 31

## 1. Introduction

The Targeted National Sewage Sludge Survey (TNSSS), collected and analyzed a total of 145 analytes in treated biosolids taken from a statistically representative subset of the nation's Publicly Owned Treatment Works (POTWs). The TNSSS statistical report (USEPA, 2009a) presented results of in-depth statistical analyses performed on the measurements of 34 prioritized analytes. This report presents the results of data analyses performed on measurements for 84 additional analytes, which were not prioritized in 2009. For each of the 84 analytes, this report assesses the distribution of measurements from the TNSSS and utilizes an appropriate statistical approach to estimate the $95^{\text {th }}$ percentile of the distribution based on these data. EPA's ProUCL software serves as the tool for generating these estimates, while accounting for non-detected outcomes present among the measurements. Detections of 27 analytes were too limited to conduct statistical analyses; 16 analytes had zero detections and 11 analytes had one detection.

Following a brief overview of the TNSSS and the list of analytes measured in the sampled biosolids, Section 2 of this report discusses the statistical approaches considered for estimating the $95^{\text {th }}$ percentiles. Section 3 presents the estimates that were calculated under these approaches. Section 4 presents key findings and conclusions.

### 1.1 TNSSS Design Overview

The target population for the TNSSS consisted of 3,337 POTWs that met the following criteria:

- Were in full operation in 2002 and/or 2004,
- Had flow rates greater than 1 million gallons per day (MGD),
- Employed a minimum of secondary treatment ${ }^{1}$,
- Were located in the contiguous United States, and
- Were neither privately-owned, non-publicly owned, nor Tribal facilities.

EPA used statistical survey sampling techniques to select POTWs from which to collect biosolids samples in the TNSSS. Sample collection occurred from August 2006 to March 2007. To ensure that the sampled facilities covered the entire range of flow rates, the sampling design divided the sample frame into three strata defined by flow rate. Table 1 shows the three strata and the sample sizes resulting from each one. USEPA (2009a) contains more detail on the TNSSS design.

Table 1. Numbers of POTWs within the TNSSS, by Average Flow Rate.

| Average Flow Rate | Number of POTWS <br> Sampled in the TNSSS |
| :--- | ---: |
| $>100 \mathrm{MGD}$ | 8 |
| 10 to 100 MGD | 12 |
| 1 to 10 MGD | 54 |
|  | $\mathbf{7 4}$ |

[^0]Within each sampled POTW, EPA collected one grab sample of biosolids for analysis, except in the following situations where two grab samples were selected:

- At six facilities, duplicate grab samples were collected
- For four facilities that each utilized two treatment systems, EPA collected one grab sample from each system.

Therefore, EPA collected a total of 84 grab samples of treated biosolids in the TNSSS from the 74 sampled POTWs.

### 1.2 Compounds Analyzed in the TNSSS

The TNSSS statistical analysis report (USEPA, 2009a) presents nationally representative estimates of means and upper percentiles of the concentrations of 34 analytes measured in the biosolids samples. Table 2 lists these analytes, according to the class of chemicals in which they reside.

Table 2. Listing of 34 Analytes Measured in the TNSSS, Whose Measurements Were Subject to InDepth Statistical Analysis in USEPA (2009a).

| Metals | Barium Beryllium Manganese | Molybdenum Silver |
| :---: | :---: | :---: |
| Organics | 4-Chloroaniline Fluoranthene | Pyrene |
| Classicals (Anions) | Nitrate/Nitrite |  |
| PBDEs | ```BDE-47 (2,2',4,4'- tetrabromodiphenyl) BDE-99 (2,2',4,4',5- pentabromodiphenyl)``` | BDE-153 (2,2',4,4',5,5'- <br> hexabromodiphenyl) <br> BDE-209 (decabromodiphenyl) |
| Pharmaceuticals | 4-Epitetracycline (ETC) <br> Azithromycin <br> Carbamazepine <br> Cimetidine <br> Ciprofloxacin <br> Diphenhydramine <br> Doxycycline | Erythromycin-Total <br> Fluoxetine <br> Miconazole <br> Ofloxacin <br> Tetracycline (TC) <br> Triclocarban <br> Triclosan |
| Steroids and Hormones | Beta Stigmastanol Campesterol Cholestanol Cholesterol | Coprostanol Epicoprostanol Stigmasterol |

Along with the 34 analytes in Table 2, EPA measured the concentrations of 111 additional analytes in the biosolids samples. These 111 analytes were not subject to the in-depth data analysis featured in that report. Table 3 lists 27 of these non-prioritized analytes which had no more than one detected concentration reported among the 84 collected samples. The lack of a sufficient number of detected, quantifiable analysis outcomes for characterizing uncertainty in the measurements made it inappropriate to apply a rigorous statistical analysis to data for these 27 analytes (which were exclusively pharmaceuticals, steroids, and hormones).

Table 3. Listing of 27 Analytes Measured in the TNSSS, With No More than One Detected Outcome from Among the 84 Collected Samples of Treated Biosolids.

| Pharmaceuticals | 4-Epianhydrochlortetracycline <br> (EACTC) <br> 4-Epichlortetracycline (ECTC) <br> Albuterol <br> Anhydrochlortetracycline (ACTC) <br> Carbadox <br> Cefotaxime <br> Chlortetracycline (CTC) <br> Clinafloxacin <br> Cloxacillin <br> Digoxigenin <br> Digoxin | Flumequine <br> Isochlortetracycline (ICTC) <br> Norgestimate <br> Ormetoprim <br> Oxacillin <br> Oxolinic Acid <br> Penicillin G <br> Penicillin V <br> Sulfamera-zine <br> Sulfamethi-zole <br> Sulfathiazole <br> Tylosin <br> Warfarin |
| :---: | :---: | :---: |
| Steroids and Hormones | 17 Alpha-Dihydroequilin 17 Alpha-Ethinyl-Estradiol | Equilenin |

Table 4 lists the remaining 84 analytes and the percentage of collected samples of biosolids in the TNSSS for which the analytical method yielded a detected outcome for that analyte. This report uses statistical techniques to estimate the $95^{\text {th }}$ percentile of the concentration of these analytes in treated biosolids, based on data collected in the TNSSS.

Table 4. Listing of 84 Analytes Measured in the TNSSS, and the Percentage of Detected Outcomes from Among the 84 Collected Samples of Treated Biosolids.

| Metals | Aluminum | 100.0\% | Magnesium | 100.0\% |
| :---: | :---: | :---: | :---: | :---: |
|  | Antimony | 86.5\% | Mercury | 100.0\% |
|  | Arsenic | 100.0\% | Nickel | 100.0\% |
|  | Boron | 97.3\% | Phosphorus | 100.0\% |
|  | Cadmium | 100.0\% | Selenium | 100.0\% |
|  | Calcium | 100.0\% | Sodium | 100.0\% |
|  | Chromium | 100.0\% | Thallium | 94.6\% |
|  | Cobalt | 100.0\% | Tin | 94.6\% |
|  | Copper | 100.0\% | Titanium | 98.6\% |
|  | Iron | 100.0\% | Vanadium | 100.0\% |
|  | Lead | 100.0\% | Yttrium | 100.0\% |
|  |  |  | Zinc | 100.0\% |
| Organics | 2-Methylnaphthalene | 44.6\% | Benzo(a)pyrene | 77.0\% |
|  |  |  | Bis(2-ethylhexyl) phthalate | 100.0\% |
| Classicals | Fluoride | 100.0\% | Water-Extractable | 100.0\% |
| (Anions) |  |  | Phosphorus |  |
| PBDEs | BDE-028 | 100.0\% | BDE-100 | 100.0\% |
|  | BDE-066 | 100.0\% | BDE-138 | 67.9\% |
|  | BDE-085 | 100.0\% | BDE-154 | 100.0\% |
|  |  |  | BDE-183 | 100.0\% |
| Pharmaceuticals | 1,7-Dimethylxanthine | 5.1\% | Metformin | 7.8\% |
|  | 4-EOTC | 10.3\% | Minocycline | 43.3\% |
|  | 4-Epianhydrotetracycline | 34.6\% | Naproxen | 51.3\% |
|  | (EATC) |  | Norfloxacin | 33.3\% |
|  | Acetaminophen | 2.6\% | Oxytetracycline (OTC) | 35.9\% |
|  | Anhydrotetracycline (ATC) | 60.3\% | Ranitidine | 57.1\% |
|  | Caffeine | 46.2\% | Roxithromycin | 2.6\% |
|  | Clarithromycin | 53.8\% | Sarafloxacin | 2.6\% |
|  | Codeine | 24.4\% | Sulfachloropyridazine | 2.6\% |
|  | Cotinine | 44.9\% | Sulfadiazine | 3.9\% |
|  | Dehydronifedipine | 21.8\% | Sulfadimethoxine | 6.5\% |
|  | Demeclocycline | 3.8\% | Sulfamethazine | 2.6\% |
|  | Diltiazem | 82.1\% | Sulfamethoxazole | 37.7\% |
|  | Enrofloxacin | 15.4\% | Sulfanilamide | 10.4\% |
|  | Gemfibrozil | 89.7\% | Thiabendazole | 69.2\% |
|  | Ibuprofen | 62.8\% | Trimethoprim | 29.5\% |
|  | Lincomycin | 3.8\% | Virginiamycin | 17.9\% |
|  | Lomefloxacin | 2.6\% |  |  |
| Steroids and Hormones | 17 Alpha-estradiol | 6.8\% | Equilin | 17.8\% |
|  | 17 Beta-estradiol | 11.5\% | Ergosterol | 61.5\% |
|  | Androstenedione | 41.1\% | Estriol | 21.6\% |
|  | Androsterone | 65.8\% | Estrone | 76.7\% |
|  | Beta-Estradiol 3-Benzoate | 23.0\% | Norethindrone | 6.6\% |
|  | Beta-Sitosterol | 85.9\% | Norgestrel | 5.4\% |
|  | Desmosterol | 66.7\% | Progesterone | 22.1\% |
|  |  |  | Testosterone | 23.3\% |

## 2. Approach

This section describes the statistical methodology for estimating the $95^{\text {th }}$ percentile of the concentration of the 84 additional analytes (listed in Table 4) in treated biosolids across the POTWs sampled in the TNSSS.

As noted in Section 2.4.3 of USEPA (2009a), the TNSSS aimed to collect a single sample of final treated biosolids from a facility; the measurements taken from this single sample represented the facility's average concentration for the pollutant at a single point in time. Therefore, in the ten instances when a facility had two biosolids samples collected, either for quality control purposes or because the facility generated two types of biosolids products, EPA investigated whether the two data values for a given analyte could be aggregated (averaged) into a single value prior to performing the data review and analysis. For the statistical analysis of the 34 prioritized analytes (USEPA, 2009a), EPA aggregated data values within a facility in the following instances:

- For all analytes, when the second sample was a field duplicate sample (6 facilities).
- For analytes within the classicals, metals, and organics classifications, when the two samples represented different treatment systems (4 facilities). Aggregation did not occur for other classifications (i.e., PBDEs, pharmaceuticals, steroids, and hormones) within these facilities because measurements often differed considerably between samples collected from different systems, especially between solid and liquid samples.

When data aggregation occurred, the criteria for classifying a facility's aggregated (average) value as a detect or non-detect result matched that used in USEPA (2009a) and is documented in Table 5.

Table 5. Criteria for Classifying Within-Facility Aggregated Measurements as a Detect or NonDetect in the TNSSS.

| If the two sample date values are ... | The aggregated value is calculated as the ... | The result is classified as a |
| :---: | :---: | :---: |
| Both detected | Arithmetic average of the measured values | Detect |
| Both non-detected | Arithmetic average of the sample-specific detection limits | Non-detect |
| A mixture of detected and non-detected samples | Arithmetic average of the measured value (for the detected sample) and samplespecific detection limit (for the nondetected sample) | Detect |

Thus, following this within-facility data aggregation, the $95^{\text {th }}$ percentile was estimated using a set of 74 data values for each of the metals, organics, and classicals, and a maximum set of 78 data values for PDBEs, pharmaceuticals, steroids, and hormones. (For selected pharmaceuticals, steroids, and hormones, fewer than 78 data values were available for the calculation, as the laboratory did not report a value for certain samples/facilities.)

When the laboratory reported a non-detect outcome, it reported the sample-specific detection limit rather than a measured value for that sample. For a given analyte, different samples could have different detection limits whose values can overlap the distribution of detected outcomes. Table 6 lists the 84 analytes and some summary statistics on the observed detected measurements and on the reported detection limits (for non-detects).

Table 6. Summary Statistics for Detected Outcomes for 84 Analytes Measured in the TNSSS.

| Analyte | CAS <br> Number | Total N | Detected Concentrations |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Minimum | Median | Maximum | Mean |
| Metals (mg/kg) |  |  |  |  |  |  |  |
| Aluminum | 7429905 | 74 | 74 | 1,400.00 | 11,200.00 | 57,300.00 | 13,494.66 |
| Antimony | 7440360 | 74 | 64 | 0.45 | 1.71 | 20.50 | 2.53 |
| Arsenic | 7440382 | 74 | 74 | 1.18 | 4.96 | 49.20 | 6.94 |
| Boron | 7440428 | 74 | 72 | 5.70 | 33.00 | 131.00 | 41.48 |
| Cadmium | 7440439 | 74 | 74 | 0.21 | 1.76 | 11.80 | 2.64 |
| Calcium | 7440702 | 74 | 74 | 9,480.00 | 27,000.00 | 243,000.00 | 41,025.41 |
| Chromium | 7440473 | 74 | 74 | 6.74 | 32.68 | 1,160.00 | 80.16 |
| Cobalt | 7440484 | 74 | 74 | 0.87 | 4.59 | 290.00 | 10.73 |
| Copper | 7440508 | 74 | 74 | 115.00 | 456.00 | 1,720.00 | 553.13 |
| Iron | 7439896 | 74 | 74 | 1,580.00 | 15,650.00 | 131,000.00 | 26,252.50 |
| Lead | 7439921 | 74 | 74 | 5.81 | 46.15 | 350.00 | 76.19 |
| Magnesium | 7439954 | 74 | 74 | 713.50 | 4,460.00 | 18,050.00 | 4,956.61 |
| Mercury | 7439976 | 74 | 74 | 0.19 | 0.83 | 7.50 | 1.23 |
| Nickel | 7440020 | 74 | 74 | 7.61 | 23.45 | 526.00 | 48.32 |
| Phosphorus | 7723140 | 74 | 74 | 5,715.00 | 19,300.00 | 69,400.00 | 21,806.49 |
| Selenium | 7782492 | 74 | 74 | 1.10 | 6.20 | 24.20 | 7.00 |
| Sodium | 7440235 | 74 | 74 | 154.00 | 1,017.75 | 26,600.00 | 2,699.97 |
| Thallium | 7440280 | 74 | 70 | 0.02 | 0.13 | 1.68 | 0.18 |
| Tin | 7440315 | 74 | 70 | 7.50 | 36.15 | 522.00 | 49.08 |
| Titanium | 7440326 | 74 | 73 | 18.50 | 86.90 | 4,805.00 | 281.73 |
| Vanadium | 7440622 | 74 | 74 | 2.04 | 12.65 | 617.00 | 36.19 |
| Yttrium | 7440655 | 74 | 74 | 0.70 | 3.89 | 26.30 | 4.82 |
| Zinc | 7440666 | 74 | 74 | 216.00 | 784.00 | 8,550.00 | 970.01 |
| Organics ( $\mu \mathrm{g} / \mathrm{kg}$ ) |  |  |  |  |  |  |  |
| 2-Methylnaphthalene | 91576 | 74 | 33 | 10.00 | 250.00 | 4,600.00 | 498.12 |
| Benzo(a)pyrene | 50328 | 74 | 57 | 63.00 | 360.00 | 4,000.00 | 810.69 |
| Bis(2-ethylhexyl) phthalate | 117817 | 74 | 74 | 657.35 | 24,000.00 | 310,000.00 | 52,862.48 |
| Anions (mg/kg) |  |  |  |  |  |  |  |
| Fluoride | 16984488 | 74 | 74 | 14.70 | 54.10 | 234.00 | 59.42 |
| Water-Extractable Phosphorus | C055 | 74 | 74 | 11.00 | 420.75 | 9,550.00 | 988.08 |
| BDEs (ng/kg) |  |  |  |  |  |  |  |
| BDE 028 | 41318756 | 78 | 78 | 2,200.00 | 8,900.00 | 160,000.00 | 15,348.72 |
| BDE 066 | 189084615 | 78 | 78 | 1,800.00 | 12,000.00 | 110,000.00 | 17,396.79 |
| BDE 085 | 182346210 | 78 | 78 | 3,200.00 | 23,000.00 | 150,000.00 | 27,943.59 |
| BDE 100 | 189084648 | 78 | 78 | 13,000.00 | 120,000.00 | 1100000.00 | 150,365.38 |
| BDE 138 | 182677301 | 78 | 53 | 1,900.00 | 7,900.00 | 40,000.00 | 10,247.17 |
| BDE 154 | 207122154 | 78 | 78 | 7,700.00 | 46,500.00 | 440,000.00 | 59,900.00 |
| BDE 183 | 207122165 | 78 | 78 | 2,100.00 | 10,000.00 | 120,000.00 | 16,664.74 |
| Pharmaceuticals ( $\mathrm{\mu} / \mathrm{/kg}$ ) |  |  |  |  |  |  |  |
| 1,7-Dimethylxanthine | 611596 | 78 | 4 | 1,130.00 | 2,245.00 | 9,580.00 | 3,800.00 |
| 4-Epianhydrotetracycline (EATC) | 4465650 | 78 | 27 | 126.00 | 299.00 | 2,160.00 | 434.29 |
| 4-Epioxytetracycline (EOTC) | 14206587 | 78 | 8 | 35.70 | 45.80 | 54.90 | 45.60 |
| Acetaminophen | 103902 | 78 | 2 | 1,120.00 | 1,210.00 | 1,300.00 | 1,210.00 |
| Anhydrotetracycline (ATC) | 4496859 | 78 | 47 | 94.30 | 205.00 | 1,960.00 | 330.06 |
| Caffeine | 58082 | 78 | 36 | 72.90 | 262.50 | 1,110.00 | 369.16 |
| Clarithromycin | 81103119 | 78 | 42 | 8.68 | 34.50 | 617.00 | 65.53 |
| Codeine | 76573 | 78 | 19 | 10.70 | 35.80 | 328.00 | 61.28 |
| Cotinine | 486566 | 78 | 35 | 11.40 | 21.00 | 690.00 | 99.36 |
| Dehydronifedipine | 67035227 | 78 | 17 | 3.48 | 5.96 | 21.65 | 7.97 |
| Demeclocycline | 127333 | 78 | 3 | 96.00 | 164.00 | 200.00 | 153.33 |
| Diltiazem | 42399417 | 78 | 64 | 1.81 | 18.25 | 225.00 | 44.45 |
| Enrofloxacin | 93106606 | 78 | 12 | 12.55 | 32.20 | 66.00 | 34.42 |
| Gemfibrozil | 25812300 | 78 | 70 | 12.10 | 115.00 | 2,650.00 | 234.12 |
| Ibuprofen | 15687271 | 78 | 49 | 99.50 | 255.00 | 11,900.00 | 920.67 |
| Lincomycin | 154212 | 78 | 3 | 12.85 | 29.10 | 33.40 | 25.12 |
| Lomefloxacin | 98079517 | 78 | 2 | 33.30 | 36.55 | 39.80 | 36.55 |
| Metformin | 657249 | 77 | 6 | 550.00 | 756.00 | 1,160.00 | 781.50 |
| Minocycline | 10118908 | 67 | 29 | 351.00 | 475.00 | 8,650.00 | 883.40 |
| Naproxen | 22204531 | 78 | 40 | 20.90 | 75.75 | 1,020.00 | 137.37 |
| Norfloxacin | 70458967 | 78 | 26 | 99.30 | 203.00 | 995.50 | 297.30 |


| Analyte | CAS Number | Total N | Detected Concentrations |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Minimum | Median | Maximum | Mean |
| Oxytetracycline (OTC) | 79572 | 78 | 28 | 21.05 | 62.50 | 467.00 | 83.07 |
| Ranitidine | 66357355 | 77 | 44 | 3.85 | 18.15 | 2,250.00 | 81.98 |
| Roxithromycin | 80214831 | 78 | 2 | 14.30 | 18.33 | 22.35 | 18.33 |
| Sarafloxacin | 98105998 | 78 | 2 | 179.00 | 1,079.50 | 1,980.00 | 1,079.50 |
| Sulfachloropyridazine | 80320 | 77 | 2 | 26.00 | 42.35 | 58.70 | 42.35 |
| Sulfadiazine | 68359 | 77 | 3 | 22.90 | 77.30 | 140.00 | 80.07 |
| Sulfadimethoxine | 122112 | 77 | 5 | 3.58 | 7.35 | 62.20 | 18.30 |
| Sulfamethazine | 57681 | 77 | 2 | 21.50 | 22.35 | 23.20 | 22.35 |
| Sulfamethoxazole | 723466 | 77 | 29 | 3.91 | 12.30 | 651.00 | 43.26 |
| Sulfanilamide | 63741 | 77 | 8 | 191.00 | 1,593.50 | 15,600.00 | 3,651.50 |
| Thiabendazole | 148798 | 78 | 54 | 8.42 | 22.05 | 238.00 | 46.32 |
| Trimethoprim | 738705 | 78 | 23 | 12.65 | 38.90 | 204.00 | 51.37 |
| Virginiamycin | 11006761 | 78 | 14 | 43.50 | 125.25 | 469.00 | 162.56 |
| Steroids/Hormones ( $\mathrm{\mu g} / \mathrm{kg}$ ) |  |  |  |  |  |  |  |
| 17 Alpha-Estradiol | 57910 | 73 | 5 | 14.45 | 21.90 | 48.80 | 26.13 |
| 17 Beta-Estradiol | 50282 | 78 | 9 | 22.00 | 33.20 | 222.25 | 60.89 |
| Androstenedione | 63058 | 73 | 30 | 108.00 | 387.50 | 1,520.00 | 495.15 |
| Androsterone | 53418 | 73 | 48 | 17.65 | 107.50 | 1,030.00 | 157.26 |
| Beta-Estradiol 3-Benzoate | 50500 | 74 | 17 | 30.20 | 145.00 | 1,850.00 | 449.16 |
| Beta-Sitosterol | 83465 | 78 | 67 | 24,400.00 | 260,000.00 | 1640000.00 | 333,643.28 |
| Desmosterol | 313042 | 78 | 52 | 2,730.00 | 14,700.00 | 94,400.00 | 19,037.69 |
| Equilin | 474862 | 73 | 13 | 22.30 | 36.75 | 100.30 | 48.31 |
| Ergosterol | 57874 | 78 | 48 | 4,530.00 | 21,700.00 | 91,900.00 | 27,988.33 |
| Estriol | 50271 | 74 | 16 | 7.56 | 77.85 | 232.00 | 79.24 |
| Estrone | 53167 | 73 | 56 | 26.70 | 74.90 | 965.00 | 133.78 |
| Norethindrone | 68224 | 76 | 5 | 21.00 | 41.10 | 1,360.00 | 305.82 |
| Norgestrel | 6533002 | 74 | 4 | 43.80 | 113.75 | 1,300.00 | 392.83 |
| Progesterone | 57830 | 77 | 17 | 143.00 | 757.00 | 1,290.00 | 753.50 |
| Testosterone | 58220 | 73 | 17 | 30.80 | 97.90 | 2,040.00 | 291.79 |

Section 2.1 introduces the ProUCL software used to calculate the $95^{\text {th }}$ percentile estimates for the 84 analytes in Table 6. Sections 2.2 and 2.3 present goodness-of-fit distributional tests and statistical outlier tests, respectively, which were used in preparing the datasets for analysis and determining an appropriate statistical approach for estimating the $95^{\text {th }}$ percentile. Section 2.4 presents brief overviews of these statistical approaches; the results of applying these approaches to data for the 84 analytes follow in Section 3.

### 2.1 ProUCL Software

The analysis in this report utilized Version 4.1.00 of EPA's ProUCL software, an open-source statistical estimation software tool available for download at https://www.epa.gov/land-research/proucl-software. ProUCL offers a variety of parametric and nonparametric statistical approaches for calculating estimates of the upper percentiles of a statistical distribution. These approaches differ in the assumed underlying distribution of the data and in how non-detects are treated. Most approaches regard non-detects as leftcensored at the reported sample-specific detection limit (i.e., the reported result is known only to fall below the limit), and some can handle multiple values for detection limits among the non-detects. Because the $95^{\text {th }}$ percentile was of interest to estimate here, because ProUCL offers approaches that are more rigorous than simple substitution methods for handling non-detects and which have demonstrated good performance in peer reviewed publications, and because the reported data in the TNSSS contain non-detects at multiple detection limits (when non-detects were present) for a given analyte, EPA considered ProUCL to be an appropriate tool for estimating $95^{\text {th }}$ percentiles for the 84 analytes in this report.

ProUCL was designed to analyze environmental concentration data associated with a localized site characterization. Thus, it was not designed to analyze data from complex sampling designs, such as stratification or the use of sampling weights. The in-depth statistical analysis performed in USEPA (2009a) did account for the sampling weights, and thus, generated nationally representative estimates.

### 2.2 Methods for Testing Distributional Goodness-of-Fit

ProUCL considers three different data distributions as a basic assumption in its parametric estimation methods: normal, lognormal, and gamma distributions. Thus, ProUCL offers goodness-of-fit tests for each of these three distribution models. ProUCL recommends that the results of these tests be reviewed with histograms or quantile-quantile (Q-Q) plots of the data in order to get a more complete assessment of distributional goodness-of-fit. These data plots also provide useful information about the presence of potential outliers and influential data values. This, histograms of detected measurements for the individual analytes can be found at the end of Section 3.

Because of the unknown quantitative value of non-detects, the goodness-of-fit tests were applied only to the set of detected measurements for each analyte. That is, any non-detects were excluded from the test.

ProUCL uses the Shapiro-Wilk test for normality (Gilbert 1987), as well as Lilliefors test (Dudewicz and Misra, 1988; Conover, 1999) when the sample size exceeds 50. (ProUCL indicates that Lilliefors test performs well for samples of this size, while recognizing that the Shapiro-Wilk test can be applied to samples with larger sample sizes.) Lognormality tests are equivalent to normality tests performed on logtransformed data.

To test for goodness-of-fit to a gamma distribution, ProUCL uses two empirical distribution function (EDF)-based methods: the Kolmogorov-Smirnov (K-S) test and the Anderson-Darling (A-D) test (D‘Agostino and Stephens, 1986; Stephens, 1970). The critical values for these two test statistics originate from Monte Carlo simulation experiments.

Conclusions derived solely from goodness-of-fit tests need to be made with caution. Because the null hypothesis of these tests is that the given distributional model holds (e.g., normality) and the alternative is that it does not hold, then the outcome of these tests is either the distributional model can or cannot be rejected based on the data. Thus, if one fails to reject the given distribution, this does not mean that the distribution is the best fit to the data, only that it cannot be outright rejected. Furthermore, the outcome of the test is highly influenced by the sample size -- fewer data points make it more difficult to reject the distributional model, thereby making it more likely to conclude that the distribution is reasonable when in fact it is not, while many data points can result in rejecting the distribution with high likelihood, even when the distribution is appropriate. The test outcomes can also be influenced by extreme data values. Thus, these goodness-of-fit tests provide only a general indication of the relevance of a given distributional assumption.

### 2.3 Methods for Identifying Statistical Outliers

The presence of outliers among the collected concentration data could distort the estimates of distributional parameters such as upper percentiles. To identify and assess potential outliers in the measurements for the 84 analytes, the following outlier detection tests were accessed in ProUCL:

- Dixon's Extreme Value test (Dixon, 1953), when the sample size is less than 25.
- Rosner's test (Gilbert, 1987), which can detect up to 10 outliers for sample sizes of 25 or more.

The outcomes of both outlier tests are sensitive to the assumption that the data are normally distributed in the absence of outliers. Therefore, the extent to which normality holds in the data was checked along with the results of the outlier tests (or equivalently, lognormality if the tests are performed on logtransformed data). Furthermore, using outlier tests to identify a single (i.e., most extreme) outlier often suffer from masking effects when multiple outliers are present, as these outliers inflate the standard deviation, which makes it more difficult to identify the most extreme data point as an outlier. For both tests, non-detects can be either excluded from the dataset or represented by one-half of the detection limit. (In this analysis, non-detects were excluded; that is, outlier tests were performed only on detected outcomes, and thus, the sample size refers to the number of detected outcomes.)

As always, the decision regarding the proper disposition of outliers (e.g., to include or not to include outliers in statistical analyses) should consider the extent to which conditions associated with sampling and analysis, as well as facility conditions on the day of collection, are not typical, and thus, warrant exclusion. Because no data exclusions could be warranted for such reasons, no outliers were excluded from the calculation of $95^{\text {th }}$ percentiles based on applying these outlier tests.

### 2.4 Methods for Estimating the 95 ${ }^{\text {th }}$ Percentile

ProUCL provides four basic statistical approaches to calculating the $95^{\text {th }}$ percentile. They typically calculate a $95^{\text {th }}$ percentile as:

$$
\begin{equation*}
\hat{x}_{p}=\hat{\mu}+c \sqrt{\hat{\sigma}^{2}} \tag{1}
\end{equation*}
$$

where $\hat{\mu}$ and $\hat{\sigma}^{2}$ represent the estimate of the mean and variance, respectively, of the underlying distribution, and $c$ is a multiplier that is linked to the percentile of interest (i.e., $95^{\text {th }}$ ). The four approaches differ in the treatment of non-detects, as follows:

- A traditional substitution approach (Section 2.4.1) that assumed either normality or lognormality, where non-detects are substituted by one-half of the detection limit and treated as detected outcomes in the estimation.
- A maximum likelihood estimation (MLE) approach (Section 2.4.2)
- For normal or lognormal distributions, the MLE approach was used only when at least one non-detect was; non-detects were treated as left-censored values at the detection limit.
- For a gamma distribution, the MLE approach was used only when $100 \%$ detected outcomes occurred.
- An approach that assumes lognormality or a gamma distribution, where non-detects are substituted by values obtained from extrapolated regression on order statistics (ROS) techniques (Section 2.4.3).
- A nonparametric approach that utilizes Kaplan-Meier (KM) estimates for the mean and standard deviation (Section 2.4.4).

The following sections describe each of the four approaches in more detail.

### 2.4.1. Detection Limit Substitution Methods

ProUCL makes available substitution methods that replace non-detects with either the detection limit or one-half of the detection limit and then treat the result as detected when calculating the mean and variance of the data. Over the years, scientists have frequently used this approach with datasets containing non-detects due to its simple and straightforward application. However, the arbitrary nature of the substitution makes it less appealing than more statistically rigorous (and computer intensive) approaches. Furthermore, the performance of substitution methods is considerably degraded when multiple detection limits are present, as they are with the TNSSS data. Thus, estimates of the $95^{\text {th }}$ percentiles using substitution methods were included in this analysis as a means of comparison only.

Using substitution methods, ProUCL can calculate $95^{\text {th }}$ percentiles in all instances, as long as the sample size is sufficient to calculate a sample variance. These calculations are as follows:

- Under normality, Equation (1) is applied to the data after substituting non-detects with one-half of the detection limit, $\hat{\mu}$ and $\hat{\sigma}^{2}$ are the sample mean and variance of these data, and $c=1.645$.
- Under lognormality, Equation (1) is applied to the log-transformed data after substituting non-detects with one-half of the detection limit, $\hat{\mu}$ and $\hat{\sigma}^{2}$ are the sample mean and variance of these logtransformed data, and $c=1.645$. The result is then exponentiated.


### 2.4.2. MLE Methods

ProUCL utilized MLE methods in two situations:

- Under the assumption of normality and at least one non-detect outcome,
- Under the assumption of a gamma distribution and $100 \%$ detected outcomes.

In the first situation (i.e., normality and at least one non-detect outcome), ProUCL estimates a $95^{\text {th }}$ percentile using Cohen's MLE method (Cohen, 1950, 1959) for those analytes having data that can accommodate the method's numerical analysis. Among the 84 analytes, 21 had sufficient data to calculate MLE estimates for the $95^{\text {th }}$ percentile under the normality assumption. Here, $\hat{\mu}$ and $\hat{\sigma}^{2}$ are the MLEs of the mean and variance, with non-detects assumed to be left-censored at their respective detection limits. The value of $c=1.645$, and $\hat{x}_{p}$ from Equation (1) is the estimated $95^{\text {th }}$ percentile.

In the second situation (i.e., gamma distribution and no non-detects), the $95^{\text {th }}$ percentile estimate corresponds to the $95^{\text {th }}$ percentile of the gamma distribution with shape and scale parameters estimated by their MLEs.

### 2.4.3. ROS Substitution Method

ProUCL applies the ROS method (Gilliom and Helsel, 1986; Helsel, 1990) only when non-detects are present. The method is applied under a specific distributional assumption (either normality, lognormality, or gamma). ProUCL fits an ordinary least squares regression line to the normal (or lognormal, or gamma) scores of the order statistics for the detected outcomes, and then uses values extrapolated from the fitted line to replace each of the non-detects. As a result, at least three detected outcomes are needed to apply ROS methods, to allow the regression line to be fitted. The extrapolated values for non-detects are then treated as detected outcomes when estimating the mean and variance, and the $95^{\text {th }}$ percentile is then calculated using the standard formulas for the given distribution (e.g., Equation 1 for normal and lognormal distributions).

The ROS method can handle situations where multiple detection limits are present, and when some of the detection limits (for non-detects) exceed the observed detected values. This makes it appealing for use with the TNSSS data.

### 2.4.4. Kaplan-Meier Nonparametric Method

The nonparametric Kaplan Meier (K-M) approach (Kaplan and Meier, 1958) is also applicable when nondetects are present at multiple detection limits. It was initially developed for survival analysis applications. Because these applications often involve censored data at multiple time points (typically right censored data, such as time until disease occurs or the end of the study, whichever occurs first), the K-M approach accounts for such outcomes. The K-M approach estimates the cumulative distribution function of the underlying parameter of interest, from which percentiles and other distributional-related parameters can be estimated.

The flexibility and distribution-free nature of the K-M approach have led analysts to recognize its potential for analyzing concentration data that include non-detects at multiple detection limits. However, because non-detected outcomes are left-censored in nature, concentration data need to be "flipped" to resemble right-censored data when applying the K-M approach (i.e., subtracted from a large positive value). When the smallest value of a concentration dataset is a non-detect, the K-M approach can yield mean estimates that are biased high, although this does not cause estimates of upper percentiles to be biased (Helsel, 2005).

As modified to apply to left-censored data with possibly multiple detection limits, the K-M approach estimates the cumulative distribution function in the following manner. Let $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ represent the
(observed) measured concentrations (the detection limits for non-detects) for $n$ samples for which the concentrations originate from a common underlying distribution, and assume $y_{1}<y_{2}<\ldots<y_{p}$ represent the $p$ distinct values among the detected concentrations (where $1 \leq p \leq n$. Thus, assume that at least one detected value exists among the $n$ samples). For $j=1, \ldots, p$, let $m_{j}$ represent the number of samples whose measured concentrations are classified as detected and are equal to $y_{j}$, and let $n_{j}$ represent the number of samples with reported detected measurements (if detected), or reported detection limits (if non-detected), that are less than or equal to $y_{j}$. Then the cumulative distribution function $F(x)$, as estimated by the K-M approach, equals the following:

$$
\begin{aligned}
& F(x)=1 \quad \text { if } x \geq y_{p} \quad \text { (i.e., } x \text { exceeds the maximum observed detected value) } \\
&=\prod_{j \text { suchthat } y_{j}>x} \frac{n_{j}-m_{j}}{n_{j}} \text { if } y_{1} \leq x<y_{p} \quad \text { (i.e., } x \text { falls between the smallest and largest } \\
& \text { observed detected values) } \\
&=F\left(y_{1}\right) \text { if } x_{1} \leq x<y_{1} \quad \begin{array}{r}
\text { (i.e., } x \text { falls between the smallest detection limit and the smallest } \\
\text { detected value) }
\end{array} \\
&=0 \text { if } 0 \leq x<x_{1}=y_{1} \quad \begin{array}{r}
\text { (i.e., } x \text { falls below all observed detected measurements, and the } \\
\text { smallest value is detected) }
\end{array} \\
&=\text { undefined if } 0 \leq x<x_{1}<y_{1} \quad \begin{array}{l}
\text { (i.e., } x \text { falls below all observed detected measurements, } \\
\text { and the smallest observed value is a non-detect). }
\end{array}
\end{aligned}
$$

Therefore, the estimate $F(x)$ is a step function that is calculated from the highest observed measurement down to the smallest, as follows:

- if $y_{p-1} \leq x<y_{p}$, then $F(x)=\left(n_{p}-m_{p}\right) / n_{p}$
- if $y_{p-2} \leq x<y_{p-1}$, then $F(x)=\left[\left(n_{p-1}-m_{p-1}\right) / n_{p-1}\right] *\left[\left(n_{p}-m_{p}\right) / n_{p}\right]$
- etc.

Note that when $x$ is below the smallest of the $n$ reported measurements $\left(x_{1}\right), F(x)$ is undefined if $x_{1}$ is a non-detect, and is zero if $x_{1}$ is a detected value.

Using the estimate $F(x)$ and the set of $p$ detected measurements, the mean of the distribution is estimated as follows:

$$
\begin{equation*}
\hat{\mu}=\sum_{i=1}^{p} y_{i}\left[F\left(y_{i}\right)-F\left(y_{i-1}\right)\right] \quad\left(\text { where } F\left(y_{0}\right)=0\right) \tag{2}
\end{equation*}
$$

The variance is estimated as follows:

$$
\begin{equation*}
\hat{\sigma}^{2}=\sum_{i=1}^{p} y_{i}^{2}\left[F\left(y_{i}\right)-F\left(y_{i-1}\right)\right]-\hat{\mu}^{2} \quad\left(\text { where } F\left(y_{0}\right)=0\right) \tag{3}
\end{equation*}
$$

One estimate of the $95^{\text {th }}$ percentile based on the $\mathrm{K}-\mathrm{M}$ approach is the value of $x$ for which $F(x)=0.95$. (If multiple values of $x$ satisfy this criterion, then any of these values could be chosen, such as the midpoint or minimum value.)

Alternatively, the $95^{\text {th }}$ percentile could be estimated from K-M estimates and standard normal z-scores by calculating the K-M mean and variance from Equations (2) and (3) and inserting those values into Equation 1, letting $c=1.645$. This alternative approach assumes an underlying normal distribution in the data.

### 2.4.5. Summary of $95^{\text {th }}$ Percentile Calculation Methods

Table 7 contains a summary of the statistical methods used in ProUCL to calculate $95^{\text {th }}$ percentiles, as discussed in Sections 2.4.1 through 2.4.4. Section 3 applies these methods to the measurement data for the 84 analytes.

Table 7. Summary of $95^{\text {th }}$ Percentiles Calculation Methods in ProUCL.

| Normal 95th <br> Percentile (DL/2 <br> Sub.) | $95^{\text {th }}$ percentile calculated from the sample mean and standard deviation (sd) with non-detects replaced by one-half of the detection limit: mean $+1.645^{*}$ sd. Here, 1.645 is the $95^{\text {th }}$ percentile of the standard normal distribution. ProUCL calculates this estimate in all situations, but does not recommend this substitution method and includes this calculation only for historic reasons. |
| :---: | :---: |
| Normal 95th Percentile (MLE) | $95^{\text {th }}$ percentile calculated from Cohen's MLE estimates of the mean and standard deviation (sd): mean $+1.645 *$ sd. ProUCL calculates this value only when at least one non-detected sample result exists and when a sufficient number of detected sample results exist to perform the MLE estimation technique. |
| Lognormal 95th Percentile (DL/2 Sub.) | $95^{\text {th }}$ percentile calculated from the sample mean and standard deviation (sd) of logtransformed concentrations with non-detects replaced by one-half of the log-transformed detection limit: (exp[mean $\left.+1.645^{*} s d\right]$ ). ProUCL calculates this estimate in all situations, but does not recommend this substitution method and includes this calculation only for historic reasons. |
| Lognormal-ROS 95th Percentile | Regression on order statistics (ROS) approach assuming that non-detected outcomes follow a lognormal distribution. $95^{\text {th }}$ percentile calculated as ( $\exp \left[\right.$ mean $\left.+1.645^{*} s d\right]$ ), where the mean and standard deviation (sd) are calculated as the sample mean and standard deviation with non-detects replaced by estimates obtained from a linear regression fitted to detected measurements paired with lognormal quantiles. ProUCL calculates this value only when at least one non-detect and three detected sample results exist. |
| Gamma 95th Percentile (MLE) | $95^{\text {th }}$ percentile calculated by $y^{*}$ theta $/ 2$, where $y$ is the $95^{\text {th }}$ percentile of a chi-square distribution with $2^{*} k$ degrees of freedom (where $k$ is the MLE of the shape parameter of the Gamma distribution), and theta is the MLE of the scale parameter of the Gamma distribution. ProUCL calculates this value only when all sample results are detected. |
| Gamma-ROS 95th Percentile | Regression on order statistics (ROS) approach assuming that non-detected outcomes follow a gamma distribution with shape and scale parameters ( $y$ and theta, respectively) represented by their MLEs calculated from detected data. $95^{\text {th }}$ percentile calculated as $y^{*}$ theta/2, with nondetects replaced by estimates obtained from a linear regression fitted to detected measurements paired with quantiles from the same gamma distribution. ProUCL calculates this value only when at least one non-detect and four detected sample results exist. |
| Nonparametric 95th Percentile (Order stats.) | $95^{\text {th }}$ percentile calculated by $\left(0.95^{*} \mathrm{n}\right)^{\text {th }}$ order statistic. If $\left(0.95^{*} \mathrm{n}\right)$ is not an integer, then if I is the next lowest integer and $e=\left(0.95^{*} n\right)-l$, and if $x(k)$ denotes the $k^{\text {th }}$ order statistic, then the $95^{\text {th }}$ percentile is $x(1)+e^{*}(x(1+1)-x(1))$. ProUCL calculates this value only when all sample results are detected. |
| K-M 95th Percentile | $95^{\text {th }}$ percentile calculated from the Kaplan-Meier estimate of the cumulative distribution function (Section 2.4.4). ProUCL calculates this value only when at least one non-detected sample result exists. |

## 3. Results

Using ProUCL, the methods of Section 2 were applied to the set of concentration data summarized in Table 6, for each of the 84 non-prioritized analytes having at least two detected outcomes. Table 8 summarizes the results of the tests of goodness-of-fit discussed in Section 2.2 and presents estimates of the $95^{\text {th }}$ percentile of the underlying distribution of data under the various approaches presented in Section 2.4 and summarized in Table 7.

For a given analyte, the estimates in Table 8 can vary considerably among the different approaches. In fact, some of these approaches may not be suitable for estimating an analyte's $95^{\text {th }}$ percentile due to the data failing to satisfy important underlying assumptions related to the distribution of the data. This section investigates the distributional properties of the analyte data in order to make a proper decision on an approach for a final estimate of the $95 \%$ percentile for each analyte. To assist the decision-making, the detected measurements for each analyte are plotted in histograms within Figures 1 through 5 at the end of this section. (Each bar within these figures represents the number of samples/facilities whose data values fall within a specified range, with the median of the range specified to the left of the bar.)

Goodness of fit test outcomes. For pollutant measurements in environmental media, lognormal or gamma distributions are often good models for the underlying concentration distribution, as they cover only positive values and are skewed toward low values, with long right-hand tails to represent possible large measurements. Table 8 includes the results of goodness-of-fit tests (described in Section 2.2) for the normal, lognormal, and gamma distributions when applied to the detected measurements for each of the 84 analytes. For a given analyte, an " $X$ " is specified in a given column of the table if the distribution specified in the column heading cannot be rejected at a 0.05 significance level. Thus, if no X is specified for a given distribution, then the approaches that require this distribution to hold should not be used to estimate a $95^{\text {th }}$ percentile.

Table 8 shows that when considering the detected observations only, the lognormal and gamma distributions are most frequently deemed satisfactory for the 84 analytes (i.e., could not be rejected by the goodness-of-fit tests). However, nearly one-third of the analytes (27) had neither the lognormal nor gamma distributions as sufficient representations of the observed data based on the outcomes of the goodness-of-fit tests. Nevertheless, the histograms (Figures 1 through 5) demonstrate a skewed distribution for most analytes that resembles a lognormal or gamma distribution.

Of the 84 analytes, the majority of the 35 metals, anions, organics, and PBDEs had 100\% detected outcomes, and only one of these analytes was below $50 \%$ detected. The lognormal distribution could not be rejected for 23 of these analytes, the gamma distribution fitted satisfactorily to two additional analytes, and all three distributions were rejected for the remaining 10 analytes. In USEPA (2009a), a lognormal assumption was made for the metals, organics, and PBDEs. One could, therefore, recommend using a lognormal-based approach to calculate $95^{\text {th }}$ percentiles among the metals, classicals, organics, and PBDEs, given their high detection percentages and to be consistent with the approach taken in USEPA (2009a). However, for the 12 analytes for which the goodness-of-fit tests for lognormality were rejected, it would be worthwhile to compare the lognormal-based estimates with those under the nonparametric approach and note any differences.

Of the 84 analytes, for the 49 pharmaceuticals, steroids, and hormones, the detection percentages were considerably lower than for the other analytes. Thus, it was more difficult to characterize these distributions. When identifying a common approach to calculating the $95^{\text {th }}$ percentile across these analytes, the overall conclusion from the distributional goodness-of-fit tests is that nonparametric techniques (e.g., Kaplan-Meier) are more appropriate for the pharmaceuticals and steroids/hormones that have a relatively high proportion of non-detects. This conclusion is consistent with ProUCL's recommendations for calculating $95 \%$ upper confidence limits on the means when detection percentages were low. It differs, however, from USEPA (2009a), where a lognormal approach was used for the prioritized pharmaceuticals, steroids, and hormones (for which the detection percentages were higher).

Table 8. Outcome of Goodness-of-Fit Tests, and Estimates of $95^{\text {th }}$ Percentiles Using Various Statistical Methods and Assumptions, for 84 Analytes Measured in the TNSSS.

| Analyte | $n$ |  | Goodness-of-Fit Test Outcomes (on Detected Results Only) |  |  | Normal-Based $95^{\text {th }}$ Percentile Estimates |  | Lognormal-Based $95^{\text {th }}$ Percentile Estimates |  | Gamma-Based 95 ${ }^{\text {th }}$ <br> Percentile <br> Estimates |  | Nonparametric $95^{\text {th }}$ Percentile Estimates |  | Mini- <br> mum <br> 95th <br> Percent <br> -ile | Obs. Max. <br> Detected Conc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Normal | Log- normal test | $\begin{gathered} \text { Gamma } \\ \text { test } \end{gathered}$ | $\begin{aligned} & \text { DL/2 } \\ & \text { Sub. } \end{aligned}$ | MLE | DL/2 Sub. | $\begin{gathered} \text { ROS } \\ \text { Extra- } \\ \text { polation } \end{gathered}$ | MLE | $\begin{gathered} \text { ROS } \\ \text { Extra- } \\ \text { polation } \\ \hline \end{gathered}$ | Order stats. | K-M |  |  |
| Metals (mg/kg) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aluminum | 74 | 100.0\% |  | X | X | 29,773 |  | 34,255 |  | 30,870 |  | 29,960 |  | 29,773 | 57,300 |
| Antimony | 74 | 86.5\% |  | X |  | 6.93 | 7.16 | 14.9 | 6.49 |  | 9.85 |  | 6.89 | 6.49 | 20.5 |
| Arsenic | 74 | 100.0\% |  | X |  | 17.9 |  | 15.7 |  | 16.1 |  | 14.0 |  | 14.0 | 49.2 |
| Boron | 74 | 97.3\% |  | X | X | 94.0 | 135 | 115 | 112 |  | 119 |  | 93.5 | 93.5 | 131 |
| Cadmium | 74 | 100.0\% |  |  |  | 6.65 |  | 6.68 |  | 6.54 |  | 8.31 |  | 6.54 | 11.8 |
| Calcium | 74 | 100.0\% |  | X |  | 111,421 |  | 100,753 |  | 103,717 |  | 109,700 |  | 100,753 | 243,000 |
| Chromium | 74 | 100.0\% |  |  |  | 323 |  | 227 |  | 253 |  | 265 |  | 227 | 1,160 |
| Cobalt | 74 | 100.0\% |  |  |  | 68.1 |  | 22.0 |  | 36.0 |  | 20.4 |  | 20.4 | 290 |
| Copper | 74 | 100.0\% |  | X | X | 1,146 |  | 1,298 |  | 1,202 |  | 1,248 |  | 1,146 | 1,720 |
| Iron | 74 | 100.0\% |  | X |  | 70,814 |  | 78,323 |  | 71,689 |  | 91,795 |  | 70,814 | 131,000 |
| Lead | 74 | 100.0\% |  | X |  | 195 |  | 220 |  | 201 |  | 241 |  | 195 | 350 |
| Magnesium | 74 | 100.0\% |  | X | X | 10,402 |  | 12,096 |  | 11,050 |  | 11,945 |  | 10,402 | 18,050 |
| Mercury | 74 | 100.0\% |  | X |  | 3.28 |  | 3.09 |  | 3.09 |  | 3.56 |  | 3.09 | 7.50 |
| Nickel | 74 | 100.0\% |  |  |  | 197 |  | 115 |  | 148 |  | 189 |  | 115 | 526 |
| Phosphorus | 74 | 100.0\% |  | X | X | 40,871 |  | 44,114 |  | 42,278 |  | 40,780 |  | 40,780 | 69,400 |
| Selenium | 74 | 100.0\% |  | X | X | 13.8 |  | 15.6 |  | 14.4 |  | 14.5 |  | 13.8 | 24.2 |
| Sodium | 74 | 100.0\% |  |  |  | 10,899 |  | 7,653 |  | 8,934 |  | 10,128 |  | 7,653 | 26,600 |
| Thallium | 74 | 94.6\% |  | X | X | 0.517 | 0.592 | 0.439 | 0.439 |  | 0.446 |  | 0.515 | 0.439 | 1.68 |
| Tin | 74 | 94.6\% |  |  |  | 155 | 175 | 109 | 108 |  | 175 |  | 155 | 108 | 522 |
| Titanium | 74 | 98.6\% |  |  |  | 1,555 | 1,550 | 675 | 674 |  | 1,063 |  | 1,547 | 674 | 4,805 |
| Vanadium | 74 | 100.0\% |  |  |  | 162 |  | 101 |  | 118 |  | 111 |  | 101 | 617 |
| Yttrium | 74 | 100.0\% |  | X | X | 11.8 |  | 12.8 |  | 11.9 |  | 14.2 |  | 11.8 | 26.3 |
| Zinc | 74 | 100.0\% |  | X |  | 2,622 |  | 2,087 |  | 2,178 |  | 1,839 |  | 1,839 | 8,550 |
| Organics (ug/kg) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2-Methylnaphthalene | 74 | 44.6\% |  | X | X | 1,349 |  | 1,124 | 728 |  | 1,334 |  | 1,229 | 728 | 4,600 |
| Benzo(a)pyrene | 74 | 77.0\% |  | X |  | 2,220 | 2,838 | 2,397 | 2,194 |  | 3,252 |  | 2,207 | 2,194 | 4,000 |
| Bis(2-ethylhexyl) phthalate | 74 | 100.0\% |  | X | X | 161,178 |  | 266,644 |  | 180,771 |  | 184,000 |  | 161,178 | 310,000 |
| Anions (mg/kg) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Fluoride | 74 | 100.0\% |  | X | X | 124 |  | 135 |  | 128 |  | 131 |  | 124 | 234 |
| Water-Extractable Phosphorus | 74 | 100.0\% |  |  | X | 3,792 |  | 4,910 |  | 3,628 |  | 3,733 |  | 3,628 | 9,550 |
| PBDEs (ng/kg) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BDE-028 | 78 | 100.0\% |  |  |  | 54,936 |  | 38,006 |  | 43,681 |  | 55,600 |  | 38,006 | 160,000 |
| BDE-066 | 78 | 100.0\% |  | X |  | 47,906 |  | 45,781 |  | 44,914 |  | 57,300 |  | 44,914 | 110,000 |
| BDE-085 | 78 | 100.0\% |  | X |  | 64,134 |  | 69,656 |  | 64,202 |  | 61,150 |  | 61,150 | 150,000 |

3. RESULTS

Table 8. (cont.)

| Analyte | $n$ |  | Goodness-of-Fit Test Outcomes (on Detected Results Only) |  |  | Normal-Based $95^{\text {th }}$ Percentile Estimates |  | Lognormal-Based $95^{\text {th }}$ Percentile Estimates |  | Gamma-Based 95 ${ }^{\text {th }}$ Percentile Estimates |  | Nonparametric $95^{\text {th }}$ Percentile Estimates |  | $\begin{aligned} & \text { Mini- } \\ & \text { mum } \\ & \text { 95th } \\ & \text { Percent } \\ & \text {-ile } \\ & \hline \end{aligned}$ | Obs. Max. <br> Detected Conc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Normal Test | Log- normal test | $\begin{aligned} & \text { Gamma } \\ & \text { test } \end{aligned}$ | DL/2 Sub. | MLE | DL/2 Sub. | ROS Extrapolation | MLE | ROS <br> Extrapolation | Order stats. | K-M |  |  |
| BDE-100 | 78 | 100.0\% |  |  | X | 386,860 |  | 387,979 |  | 363,164 |  | 314,500 |  | 314,500 | 1,100,000 |
| BDE-138 | 78 | 67.9\% |  | X |  | 22,310 |  | 23,144 | 19,114 |  | 39,832 |  | 18,787 | 18,787 | 40,000 |
| BDE-154 | 78 | 100.0\% |  | X | X | 155,163 |  | 149,085 |  | 143,689 |  | 130,000 |  | 130,000 | 440,000 |
| BDE-183 | 78 | 100.0\% |  |  |  | 50,338 |  | 41,314 |  | 44,090 |  | 57,300 |  | 41,314 | 120,000 |
| Pharmaceuticals ( $\mu \mathrm{g} / \mathrm{kg}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $1,7-$ <br> Dimethylxanthine | 78 | 5.1\% | X | X | X | 2,439 |  | 1,125 | 107 |  | 1,071 |  | 2,868 | 107 | 9,580 |
| 4-EOTC | 78 | 10.3\% | X | X | X | 40.2 |  | 40.0 | 38.8 |  | 31.3 |  | 43.5 | 31.3 | 54.9 |
| 4-Epianhydrotetracycline (EATC) | 78 | 34.6\% |  | X | X | 694 | 839 | 531 | 517 |  | 872 |  | 702 | 517 | 2,160 |
| Acetaminophen | 78 | 2.6\% |  |  |  | 528 |  | 406 |  |  |  |  | 1,156 | 406 | 1,300 |
| Anhydrotetracycline (ATC) | 78 | 60.3\% |  |  |  | 694 | 848 | 638 | 640 |  | 1,144 |  | 693 | 638 | 1,960 |
| Caffeine | 78 | 46.2\% |  | X | X | 604 | 723 | 587 | 585 |  | 993 |  | 602 | 585 | 1,110 |
| Clarithromycin | 78 | 53.8\% |  |  | X | 168 | 192 | 117 | 123 |  | 204 |  | 168 | 117 | 617 |
| Codeine | 78 | 24.4\% |  | X |  | 90.0 |  | 48.9 | 49.5 |  | 87.0 |  | 89.8 | 48.9 | 328 |
| Cotinine | 78 | 44.9\% |  |  |  | 242 | 679 | 125 | 134 |  | 260 |  | 241 | 125 | 690 |
| Dehydronifedipine | 78 | 21.8\% |  |  |  | 9.03 | 8.71 | 6.95 | 6.55 |  | 10.1 |  | 9.42 | 6.55 | 21.7 |
| Demeclocycline | 78 | 3.8\% | X | X |  | 94.1 |  | 83.2 | 50.5 |  |  |  | 121 | 50.5 | 200 |
| Diltiazem | 78 | 82.1\% |  | X |  | 127 | 147 | 182 | 173 |  | 187 |  | 126 | 126 | 225 |
| Enrofloxacin | 78 | 15.4\% | X | X | X | 44.1 |  | 32.4 | 26.9 |  | 56.0 |  | 33.1 | 26.9 | 66.0 |
| Gemfibrozil | 78 | 89.7\% |  | X |  | 904 | 920 | 885 | 791 |  | 993 |  | 900 | 791 | 2,650 |
| Ibuprofen | 78 | 62.8\% |  |  |  | 3,300 | 3,641 | 1,515 | 1,799 |  | 3,338 |  | 3,291 | 1,515 | 11,900 |
| Lincomycin | 78 | 3.8\% | X | X |  | 36.7 |  | 29.5 | 18.3 |  |  |  | 18.7 | 18.3 | 33.4 |
| Lomefloxacin | 78 | 2.6\% |  |  |  | 25.4 |  | 18.9 |  |  |  |  | 34.6 | 18.9 | 39.8 |
| Metformin | 77 | 7.8\% | X | X | X | 716 |  | 742 | 445 |  | 341 |  | 709 | 341 | 1,160 |
| Minocycline | 67 | 43.3\% |  |  |  | 2,224 | 2,167 | 1,038 | 1,075 |  | 2,226 |  | 2,261 | 1,038 | 8,650 |
| Naproxen | 78 | 51.3\% |  | X |  | 305 | 361 | 248 | 255 |  | 409 |  | 305 | 248 | 1,020 |
| Norfloxacin | 78 | 33.3\% |  |  | X | 763 |  | 426 | 345 |  | 575 |  | 448 | 345 | 995 |
| Oxytetracycline (OTC) | 78 | 35.9\% |  |  |  | 136 | 161 | 96.6 | 97.9 |  | 176 |  | 137 | 96.6 | 467 |
| Ranitidine | 77 | 57.1\% |  |  |  | 469 | 501 | 91.3 | 98.8 |  | 271 |  | 467 | 91.3 | 2,250 |
| Roxithromycin | 78 | 2.6\% |  |  |  | 12.2 |  | 11.0 |  |  |  |  | 15.9 | 11.0 | 22.4 |
| Sarafloxacin | 78 | 2.6\% |  |  |  | 775 |  | 295 |  |  |  |  | 538 | 295 | 1,980 |
| Sulfachloropyridazine | 77 | 2.6\% |  |  |  | 18.6 |  | 10.8 |  |  |  |  | 32.6 | 10.8 | 58.7 |
| Sulfadiazine | 77 | 3.9\% | X | X |  | 36.8 |  | 13.8 | 1.11 |  |  |  | 49.1 | 1.11 | 140 |
| Sulfadimethoxine | 77 | 6.5\% |  | X | X | 14.0 |  | 3.90 | 0.683 |  | 6.86 |  | 15.6 | 0.683 | 62.2 |
| Sulfamethazine | 77 | 2.6\% |  |  |  | 14.5 |  | 7.68 |  |  |  |  | 21.8 | 7.68 | 23.2 |
| Sulfamethoxazole | 77 | 37.7\% |  |  |  | 142 | 156 | 31.4 | 36.1 |  | 94.9 |  | 142 | 31.4 | 651 |
| Sulfanilamide | 77 | 10.4\% |  | X | X | 3,650 | 2,620 | 451 | 82.3 |  | 2,096 |  | 3,715 | 82.3 | 15,600 |

3. RESULTS

Table 8. (cont.)

| Analyte | $n$ | \% Detected | Goodness-of-Fit Test Outcomes (on Detected Results Only) |  |  | Normal-Based <br> $95^{\text {th }}$ Percentile Estimates |  | Lognormal-Based $95^{\text {th }}$ Percentile Estimates |  | Gamma-Based $95^{\text {th }}$ <br> Percentile <br> Estimates |  | Nonparametric 95th Percentile Estimates |  | $\begin{aligned} & \text { Mini- } \\ & \text { mum } \\ & \text { 95th } \\ & \text { Percent } \\ & \text {-ile } \\ & \hline \end{aligned}$ | Obs. Max. <br> Detected Conc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Normal Test | Lognormal test | Gamma test | DL/2 Sub. | MLIE | DL/2 Sub. | ROS Extrapolation | MLE | ROS Extrapolation | Order stats. | K-M |  |  |
| Thiabendazole | 78 | 69.2\% |  |  |  | 113 | 124 | 107 | 110 |  | 177 |  | 112 | 107 | 238 |
| Trimethoprim | 78 | 29.5\% |  | X | X | 76 |  | 65.1 | 50.7 |  | 88.1 |  | 74.2 | 50.7 | 204 |
| Virginiamycin | 78 | 17.9\% |  | X | X | 284 |  | 234 | 93.6 |  | 167 |  | 183 | 93.6 | 469 |
| Steroids/Hormones ( $\mu \mathrm{g} / \mathrm{kg}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 Alpha-estradiol | 73 | 6.8\% | X | X | X | 21.5 |  | 18.3 | 21.1 |  | 40.3 |  | 23.4 | 18.3 | 48.8 |
| 17 Beta-estradiol | 78 | 11.5\% |  |  |  | 69.2 |  | 41.0 | 18.8 |  | 40.3 |  | 67.0 | 18.8 | 222 |
| Androstenedione | 73 | 41.1\% |  | X | X | 785 | 1,049 | 795 | 736 |  | 1,184 |  | 774 | 736 | 1,520 |
| Androsterone | 73 | 65.8\% |  | X | X | 365 | 442 | 390 | 366 |  | 579 |  | 363 | 363 | 1,030 |
| Beta-Estradiol 3Benzoate | 74 | 23.0\% |  | X | X | 652 | 826 | 245 | 192 |  | 591 |  | 650 | 192 | 1,850 |
| Beta-Sitosterol | 78 | 85.9\% |  | X | X | 756,638 | 786,498 | 3,422,184 | 1,069,746 |  | 1,492,776 |  | 751,640 | 751,640 | 1,640,000 |
| Desmosterol | 78 | 66.7\% |  | X | X | 40,327 | 46,638 | 47,737 | 42,371 |  | 73,162 |  | 40,145 | 40,145 | 94,400 |
| Equilin | 73 | 17.8\% | X | X | X | 52.6 |  | 49.4 | 34.1 |  | 49.7 |  | 51.7 | 34.1 | 100 |
| Ergosterol | 78 | 61.5\% |  | X | X | 51,969 | 58,455 | 77,101 | 60,380 |  | 100,132 |  | 51,566 | 51,566 | 91,900 |
| Estriol | 74 | 21.6\% | X | X | X | 93.9 | 121 | 70.3 | 51.2 |  | 99.0 |  | 91.7 | 51.2 | 232 |
| Estrone | 73 | 76.7\% |  |  |  | 376 | 460 | 339 | 328 |  | 544 |  | 375 | 328 | 965 |
| Norethindrone | 76 | 6.6\% |  | X |  | 397 |  | 87.4 | 114 |  | 293 |  | 293 | 87.4 | 1,360 |
| Norgestrel | 74 | 5.4\% |  | X | X | 289 |  | 65.8 | 2.29 |  | 120 |  | 302 | 2.29 | 1,300 |
| Progesterone | 77 | 22.1\% | X |  | X | 810 |  | 731 | 600 |  | 949 |  | 797 | 600 | 1,290 |
| Testosterone | 73 | 23.3\% |  | X |  | 544 | 356 | 273 | 161 |  | 390 |  | 526 | 161 | 2,040 |

X: The hypothesis that the given distribution holds cannot be rejected at the 0.05 level.

In those few instances where normality could not be rejected at a 0.05 level (i.e., 11 pharmaceuticals and steroids/hormones), only a small number of detected outcomes (less than $25 \%$ ) were available for the goodness-of-fit test. As a result, for these analytes, there is typically not sufficient power to declare that a given distributional form is not appropriate, as these tests require the data to demonstrate that the distribution model does not hold. Thus, normality was not considered to be a viable distributional assumption for the analytes in Table 8.

Identifying possible statistical outliers. Section 2.3 noted the two outlier tests that ProUCL uses to identify statistical outliers among a set of detected outcomes: Dixon's test (which identifies a maximum of one outlier and is applied when the number of detected outcomes is less than 25), and Rosner's test (which can identify up to 10 outliers and is applied when at least 25 detected outcomes are available). These tests were applied to the set of log-transformed detected measurements for each of the 84 analytes (as Figures 1 through 5 indicate that the log-measurements are more likely to resemble a normal distribution compared to the untransformed measurements, and these outlier tests assume normality in the data being analyzed). When Rosner's test was applied in this analysis, a maximum of five outliers was specified given the sample sizes.

Outlier testing resulted in identifying one or more statistical outliers at the 0.05 significance level for 13 of the 84 analytes. Table 9 lists these analytes and those measurements identified as statistical outliers (with the ID number for the surveyed facility that was linked to the outcome in parentheses following each measurement). Because the number of detected outcomes for each of these 13 analytes exceeded 25, Rosner's test was used to identify the outliers (listed in the last column of Table 9). As a means of comparison, Table 9 also includes the largest detected measurement for the analyte which was not labeled as an outlier - each outlier listed in the last column of Table 9 ranged from $50 \%$ higher (BDE 028) to over 14 times higher (Rantidine) than the analyte's highest non-outlier measurement. These outliers are clearly visible in the histograms within Figures 1 through 5. Finally, Table 9 indicates that the outliers are associated with a variety of facilities, and no one facility tends to be the source of many outliers (which would have suggested a possible issue with that facility which would make its measurements incompatible with the distribution of measurements from the other facilities).

Table 9. Detected Facility Measurements Labeled as Statistical Outliers by Outlier Tests for 84 Analytes Measured in the TNSSS.


While the presence of large outliers has the potential for impacting the $95^{\text {th }}$ percentile estimates considerably, no evidence was apparent to exclude any of the measurements listed in Table 9 from the calculation of $95^{\text {th }}$ percentile estimates due to quality concerns. However, if other concerns remain for these outliers, nonparametric approaches tend to be less impacted by the presence of outliers compared to the approaches that are specific to a distributional model form.
$9^{\text {th }}$ percentile estimates for the pharmaceuticals, steroids, and hormones (use of nonparametric estimation techniques). For the pharmaceuticals, steroids, and hormones, the relatively high non-detect percentages warranted that the $95^{\text {th }}$ percentile estimates should be based upon nonparametric K-M techniques (e.g., MLE techniques tend to yield unstable estimates when the percentage of non-detects is high). Table 10 lists the recommended estimates of the $95^{\text {th }}$ percentile for these analytes, along with their maximum observed values.

Table 10. Recommended (Nonparametric) Estimates of the $95^{\text {th }}$ Percentile for the Pharmaceuticals, Steroids, and Hormones, Along with the Maximum Observed Concentration

| Analyte | $95^{\text {th }}$ <br> Percentile | Observed Maximum Conc. | Analyte | $\begin{gathered} 95^{\text {th }} \\ \text { Percentile } \\ \hline \end{gathered}$ | Observed Maximum Conc. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pharmaceuticals ( $\mathrm{pg} / \mathrm{kg}$ ) |  |  |  |  |  |
| 1,7-Dimethylxanthine | 2,868 | 9,580 | Sulfachloro-pyridazine | 32.6 | 58.7 |
| 4-EOTC | 43.5 | 54.9 | Sulfadiazine | 49.1 | 140 |
| 4-Epianhydrotetra-cycline (EATC) | 702 | 2,160 | Sulfadimethoxine | 15.6 | 62.2 |
| Acetaminophen | 1,156 | 1,300 | Sulfamethazine | 21.8 | 23.2 |
| Anhydrotetracycline (ATC) | 693 | 1,960 | Sulfamethoxazole | 142 | 651 |
| Caffeine | 602 | 1,110 | Sulfanilamide | 3,715 | 15,600 |
| Clarithromycin | 168 | 617 | Thiabendazole | 112 | 238 |
| Codeine | 89.8 | 328 | Trimethoprim | 74.2 | 204 |
| Cotinine | 241 | 690 | Virginiamycin | 183 | 469 |
| Dehydronifedipine | 9.42 | 21.7 | Steroids/Hormones ( $\mu \mathrm{g} / \mathrm{kg}$ ) |  |  |
| Demeclocycline | 121 | 200 | 17 Alpha-estradiol | 23.4 | 48.8 |
| Diltiazem | 126 | 225 | 17 Beta-estradiol | 67.0 | 222 |
| Enrofloxacin | 33.1 | 66.0 | Androstenedione | 774 | 1,520 |
| Gemfibrozil | 900 | 2,650 | Androsterone | 363 | 1,030 |
| Ibuprofen | 3,291 | 11,900 | Beta-Estradiol 3-Benzoate | 650 | 1,850 |
| Lincomycin | 18.7 | 33.4 | Beta-Sitosterol | 751,640 | 1,640,000 |
| Lomefloxacin | 34.6 | 39.8 | Desmosterol | 40,145 | 94,400 |
| Metformin | 709 | 1,160 | Equilin | 51.7 | 100 |
| Minocycline | 2,261 | 8,650 | Ergosterol | 51,566 | 91,900 |
| Naproxen | 305 | 1,020 | Estriol | 91.7 | 232 |
| Norfloxacin | 448 | 995 | Estrone | 375 | 965 |
| Oxytetracycline (OTC) | 137 | 467 | Norethindrone | 293 | 1,360 |
| Ranitidine | 467 | 2,250 | Norgestrel | 302 | 1,300 |
| Roxithromycin | 15.9 | 22.4 | Progesterone | 797 | 1,290 |
| Sarafloxacin | 538 | 1,980 | Testosterone | 526 | 2,040 |

Note that the $95^{\text {th }}$ percentile estimates (second column of Table 10) are, on average, 43 percent of the size of the observed maximum concentration (last column). These estimates range from 21 percent (Ranitidine, which has a large outlier as noted in Table 9) to 94 percent (Sulfamethazine) of the observed maximum. These estimates tended to be in line with the estimates from other techniques, and more importantly, do not appear to be underestimates.
$95^{\text {th }}$ percentile estimates for the non-prioritized metals, anions, organics, and PBDEs (use of lognormal estimation techniques). The metals, anions, organics, and PBDEs had relatively high percentages of detected measurements which tended to be well-represented by a lognormal distribution. Table 11 lists the recommended lognormal-based estimates of the $95^{\text {th }}$ percentiles for these analytes along with their maximum observed values. Like the pharmaceuticals, steroids, and hormones in Table 10, the $95^{\text {th }}$ percentiles in Table 11 are $43 \%$ of the observed maximum concentrations, on average. They range from 8\% (cobalt, which had two large outliers as noted in Table 9) to 86\% (Bis(2-ethylhexyl) phthalate) of the observed maximum. They are similar in magnitude to the nonparametric estimates for these analytes.

Table 11. Recommended (Lognormal-Based) Estimates of the $95^{\text {th }}$ Percentile for the 84 Metals, Organics, Anions, and PBDEs, Along with the Maximum Observed Concentration.

| Analyte | $95^{\text {th }}$ <br> Percentile | Observed <br> Maximum <br> Conc. |
| :--- | ---: | ---: |
| Metals (mg/kg) | 34,255 | 57,300 |
| Aluminum | 6.49 | 20.5 |
| Antimony | 15.7 | 49.2 |
| Arsenic | 112 | 131 |
| Boron | 6.68 | 11.8 |
| Cadmium | 100,753 | 243,000 |
| Calcium | 227 | 1,160 |
| Chromium | 22.0 | 290 |
| Cobalt | 1,298 | 1,720 |
| Copper | 78,323 | 131,000 |
| Iron | 220 | 350 |
| Lead | 12,096 | 18,050 |
| Magnesium | 3.09 | 7.50 |
| Mercury | 115 | 526 |
| Nickel | 44,114 | 69,400 |
| Phosphorus | 15.6 | 24.2 |
| Selenium | 7,653 | 26,600 |
| Sodium | 0.439 | 1.68 |
| Thallium | 108 | 522 |
| Tin | 674 | 4,805 |
| Titanium | 101 | 617 |
| Vanadium | 12.8 | 26.3 |
| Yttrium | 2,087 | 8,550 |
| Zinc |  |  |


| Analyte | $\begin{gathered} 95^{\mathrm{th}} \\ \text { Percentile } \\ \hline \end{gathered}$ | Observed Maximum Conc. |
| :---: | :---: | :---: |
| Organics ( $\mu \mathrm{g} / \mathrm{kg}$ ) |  |  |
| 2-Methyl-naphthalene | 728 | 4,600 |
| Benzo(a)pyrene | 2,194 | 4,000 |
| Bis(2-ethylhexyl) phthalate | 266,644 | 310,000 |
| Classicals (mg/kg) |  |  |
| Fluoride | 135 | 234 |
| Water-Extractable Phosphorus | 4,910 | 9,550 |
| PBDEs (ng/kg) |  |  |
| BDE-028 | 38,006 | 160,000 |
| BDE-066 | 45,781 | 110,000 |
| BDE-085 | 69,656 | 150,000 |
| BDE-100 | 387,979 | 1,100,000 |
| BDE-138 | 19,114 | 40,000 |
| BDE-154 | 149,085 | 440,000 |
| BDE-183 | 41,314 | 120,000 |

Note from Table 8 that only modest differences in the $95^{\text {th }}$ percentile estimates occur between the lognormal-based and nonparametric approaches for the 12 analytes in Table 11 for which the goodness-of-fit test for lognormality was rejected. Thus, taking a lognormal approach to estimating $95^{\text {th }}$ percentiles for each of the analytes in Table 11 is not highly impactful when lognormality is rejected.

Updated $95^{\text {th }}$ percentile estimates for an analyte in the 2009 report having an outlier excluded. The $95^{\text {th }}$ percentile estimates in Tables 10 and 11 utilized all available data without excluding any of the outliers listed in Table 9. In contrast, USEPA (2009a) presented the $95^{\text {th }}$ percentile estimate for silver upon excluding one outlier ( $856 \mathrm{mg} / \mathrm{kg}$ ) from the calculation. This outlier was suspected to be the result of an anomaly to normal operations at the POTW, although the value of the sample analysis was confirmed with the facility (USEPA, 2009b). The $95^{\text {th }}$ percentile estimates for silver were as follows:

- 95 ${ }^{\text {th }}$ percentile estimate with outlier excluded: $57 \mathrm{mg} / \mathrm{kg}$ (as reported in USEPA, 2009a).
- $95^{\text {th }}$ percentile estimate with outlier included: $74 \mathrm{mg} / \mathrm{kg}$ (a 30 percent increase).

Note that among the other analytes in the 2009 report, one sample measurement for cimetidine and two sample measurements for fluoxetine were also omitted from estimation in USEPA (2009a), but the exclusions were due to failing chemical quality assurance criteria rather than classification as a statistical outlier.

## Comparing $95^{\text {th }}$ percentile estimates with estimates that result from applying the analysis

 approach used on prioritized analytes in the 2009 report. Table B-7 of USEPA (2009a) included preliminary estimates of the $95^{\text {th }}$ percentile for the 84 analytes in this report using the statistical techniques that were applied to the 34 prioritized analytes. Table 12 replicates the estimates from this table, as a means of comparing to the $95^{\text {th }}$ percentile estimates given in Tables 10 and 11. The 2009 statistical analysis accounted for the survey weights assigned to the sampled POTWs and the survey's stratified sample design.Table 12. Weighted Summary Statistics and $95^{\text {th }}$ Percentile Estimates for the 84 Analytes, Using Statistical Techniques Applied in the Weighted (Preliminary) Analysis Performed in USEPA (2009a).

| Analyte | \# Sampled POTWs | Mean | Standard <br> Deviation | Median | $\begin{gathered} 95^{\text {th }} \\ \text { Percentile } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Metals (mg/kg) |  |  |  |  |  |
| Aluminum | 74 | 13,477.80 | 10,020.66 | 11,200.00 | 34,525.52 |
| Antimony | 74 | 2.26 | 2.99 | 1.42 | 14.18 |
| Arsenic | 74 | 6.76 | 6.84 | 4.95 | 15.13 |
| Boron | 74 | 43.25 | 33.70 | 33.00 | 122.42 |
| Cadmium | 74 | 2.48 | 2.28 | 1.72 | 6.09 |
| Calcium | 74 | 39,539.11 | 39,847.24 | 25,950.00 | 96,371.30 |
| Chromium | 74 | 78.15 | 152.58 | 30.60 | 212.92 |
| Cobalt | 74 | 10.99 | 36.71 | 4.44 | 21.51 |
| Copper | 74 | 558.54 | 368.89 | 449.00 | 1,330.71 |
| Iron | 74 | 24,742.64 | 27,716.08 | 13,250.00 | 71,425.51 |
| Lead | 74 | 73.96 | 73.51 | 44.40 | 210.31 |
| Magnesium | 74 | 4,705.62 | 2,978.38 | 4,300.00 | 11,295.55 |
| Mercury | 74 | 1.27 | 1.29 | 0.83 | 3.20 |
| Nickel | 74 | 47.38 | 92.09 | 22.80 | 108.42 |
| Phosphorus | 74 | 21,668.72 | 11,761.54 | 18,300.00 | 43,262.02 |
| Selenium | 74 | 7.10 | 4.18 | 6.20 | 15.97 |
| Sodium | 74 | 2,873.59 | 5,102.50 | 1,110.00 | 8,344.24 |
| Thallium | 74 | 0.17 | 0.21 | 0.13 | 0.41 |
| Tin | 74 | 43.54 | 40.38 | 36.20 | 102.33 |
| Titanium | 74 | 221.31 | 601.17 | 80.90 | 627.73 |
| Vanadium | 74 | 33.94 | 79.63 | 11.60 | 86.76 |
| Yttrium | 74 | 4.55 | 3.63 | 3.54 | 12.07 |
| Zinc | 74 | 969.77 | 1,054.80 | 759.00 | 2,110.95 |
| Organics ( $\mu \mathrm{g} / \mathrm{kg}$ ) |  |  |  |  |  |
| 2-MethyInaphthalene | 74 | 449.04 | 746.50 | 200.00 | 1,111.65 |
| Benzo(A)Pyrene | 74 | 661.00 | 849.06 | 320.00 | 2,259.31 |
| Bis(2-Ethylhexyl) Phthalate | 74 | 48,142.54 | 65,207.23 | 23,000.00 | 226,937.29 |
| Anions (mg/kg) |  |  |  |  |  |
| Fluoride | 74 | 58.20 | 35.87 | 54.20 | 132.68 |
| Water-Extractable Phosphorus | 74 | 1,062.09 | 1,770.57 | 480.00 | 5,012.47 |
| PBDEs (ng/kg) |  |  |  |  |  |
| BDE 28 | 78 | 13,990.24 | 20,783.92 | 8,500.00 | 33,076.02 |
| BDE 66 | 78 | 16,536.70 | 16,088.17 | 12,000.00 | 41,134.17 |
| BDE 85 | 78 | 27,824.89 | 20,202.11 | 23,000.00 | 66,312.15 |
| BDE 100 | 78 | 148,973.10 | 125,545.38 | 120,000.00 | 362,133.61 |
| BDE 138 | 78 | 10,807.30 | 12,722.42 | 7,000.00 | 20,822.02 |
| BDE 154 | 78 | 58,730.15 | 50,756.61 | 49,000.00 | 143,826.47 |
| BDE 183 | 78 | 15,079.78 | 17,215.83 | 10,000.00 | 36,522.57 |
| Pharmaceuticals (ug/kg) |  |  |  |  |  |
| 1,7-Dimethylxanthine | 78 | 1,180.46 | 1,088.76 | 986.50 | 1,440.00 |
| 4-Epioxytetracycline (EOTC) | 78 | 45.30 | 11.66 | 41.50 | 68.60 |
| 4-Epianhydrotetracycline (EATC) | 78 | 251.31 | 301.11 | 140.00 | 797.00 |
| Acetaminophen | 78 | 461.80 | 200.38 | 395.50 | 973.00 |
| Anhydrotetracycline (ATC) | 78 | 262.91 | 283.89 | 153.00 | 680.00 |
| Caffeine | 78 | 231.59 | 239.33 | 103.00 | 881.00 |
| Clarithromycin | 78 | 41.58 | 81.76 | 13.40 | 141.00 |
| Codeine | 78 | 30.63 | 40.75 | 19.90 | 70.40 |
| Cotinine | 78 | 57.97 | 120.79 | 13.20 | 332.00 |
| Dehydronifedipine | 78 | 5.03 | 3.12 | 4.04 | 10.70 |
| Demeclocycline | 78 | 105.97 | 24.36 | 99.20 | 147.00 |
| Diltiazem | 78 | 40.20 | 56.35 | 14.80 | 199.00 |
| Enrofloxacin | 78 | 27.87 | 30.69 | 19.80 | 66.00 |

Table 12. (cont.)

| Analyte | \# Sampled POTWs | Mean | Standard Deviation | Median | $\begin{gathered} 95^{\text {th }} \\ \text { Percentile } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gemfibrozil | 78 | 213.56 | 437.13 | 101.00 | 665.00 |
| Ibuprofen | 78 | 652.80 | 1,703.48 | 143.00 | 2,980.00 |
| Lincomycin | 78 | 30.20 | 27.43 | 19.90 | 85.10 |
| Lomefloxacin | 78 | 22.93 | 15.84 | 19.80 | 33.30 |
| Metformin | 77 | 533.68 | 451.80 | 546.00 | 1,160.00 |
| Minocycline | 67 | 660.76 | 1,090.03 | 433.00 | 1,180.00 |
| Naproxen | 78 | 86.20 | 146.58 | 31.60 | 316.00 |
| Norfloxacin | 78 | 274.57 | 699.46 | 109.00 | 684.00 |
| Oxytetracycline (OTC) | 78 | 57.87 | 53.47 | 43.15 | 113.00 |
| Ranitidine | 77 | 57.66 | 276.53 | 12.50 | 89.80 |
| Roxithromycin | 78 | 8.10 | 9.17 | 4.72 | 22.35 |
| Sarafloxacin | 78 | 293.65 | 718.92 | 91.90 | 1,150.00 |
| Sulfachloropyridazine | 77 | 11.96 | 9.91 | 9.84 | 14.00 |
| Sulfadiazine | 77 | 13.61 | 18.22 | 9.84 | 22.90 |
| Sulfadimethoxine | 77 | 3.57 | 7.67 | 2.01 | 7.35 |
| Sulfamethazine | 77 | 7.38 | 12.57 | 4.02 | 21.50 |
| Sulfamethoxazole | 77 | 21.65 | 81.60 | 4.32 | 67.70 |
| Sulfanilamide | 77 | 536.88 | 2,110.35 | 99.20 | 2,390.00 |
| Thiabendazole | 78 | 36.59 | 49.33 | 16.50 | 137.00 |
| Trimethoprim | 78 | 30.37 | 37.72 | 10.80 | 114.00 |
| Virginiamycin | 78 | 137.50 | 233.05 | 73.30 | 469.00 |
| Steroids and Hormones (ug/kg) |  |  |  |  |  |
| 17 Alpha-Estradiol | 73 | 22.54 | 6.45 | 21.40 | 27.20 |
| 17 Beta-Estradiol | 78 | 34.33 | 40.48 | 21.50 | 131.00 |
| Androstenedione | 73 | 326.82 | 325.94 | 158.00 | 1,100.00 |
| Androsterone | 73 | 120.29 | 130.72 | 84.90 | 332.00 |
| Beta-Estradiol 3-Benzoate | 74 | 146.80 | 345.64 | 23.20 | 695.00 |
| Beta-Sitosterol | 78 | 291,398.60 | 294,849.73 | 207,000.00 | 885,000.00 |
| Desmosterol | 78 | 15,654.68 | 16,484.25 | 10,800.00 | 38,500.00 |
| Equilin | 73 | 34.77 | 22.37 | 23.00 | 80.60 |
| Ergosterol | 78 | 19,829.93 | 18,535.97 | 12,600.00 | 56,100.00 |
| Estriol | 74 | 38.70 | 38.78 | 24.80 | 128.00 |
| Estrone | 73 | 105.97 | 160.61 | 51.20 | 326.00 |
| Norethindrone | 76 | 101.84 | 338.51 | 22.30 | 146.00 |
| Norgestrel | 74 | 66.94 | 155.02 | 42.00 | 111.00 |
| Progesterone | 77 | 322.37 | 355.78 | 139.00 | 1,260.00 |
| Testosterone | 73 | 162.85 | 270.69 | 95.20 | 511.00 |

Taken from Table B-7 of USEPA (2009a).
Like the analyses presented in Tables 10 and 11, the weighted analysis estimates presented in Table 12 utilized a nonparametric approach for pharmaceuticals, steroids, and hormones, and a lognormal-based approach for all other analytes:

- The weighted lognormal approach is documented in Section C. 1 of Appendix C of USEPA (2009a). This approach used Cohen's MLE techniques when non-detects were present.
- The nonparametric approach is documented in Section C. 2 of Appendix C of USEPA (2009a). It utilized a weighted order statistics approach to identifying the $95^{\text {th }}$ percentile, but substituted nondetects with the detection limit.

In general, the $95^{\text {th }}$ percentile estimates in the last column of Table 12 compared favorably with the estimates given in Tables 10 and 11. The following specific findings were noted:

- For metals, organics, anions, and PBDEs, the estimates differed on average by about one percent. The weighted analysis tended to yield larger estimates than the above unweighted analyses. The largest observed difference was a $54 \%$ decrease, from 14.2 to $6.5 \mathrm{mg} / \mathrm{kg}$, in the $95^{\text {th }}$ percentile estimate for antimony from the weighted analysis estimate to the unweighted estimate in this report.
- For pharmaceuticals and steroids/hormones, the difference was about 16 percent, on average. Larger differences between the two methods were observed, in part due to the nonparametric approach and the smaller number of detected outcomes compared to the other analytes. The number of analytes with estimates from the weighted analysis that were lower than the estimates presented in Table 10 was about equal to the number that had higher estimates.

Table 13 lists the 34 prioritized analytes and estimates of the $95^{\text {th }}$ percentile under the in-depth (weighted) analysis used in USEPA (2009a), as well as both the lognormal-based and nonparametric (unweighted) approaches used for the non-prioritized analytes in this report. The lognormal-based unweighted estimates averaged about $7 \%$ lower than the weighted estimates for these analytes. (The weighted analysis for all but one of these analytes was lognormal-based.) The nonparametric unweighted estimates averaged $17 \%$ lower than the weighted estimates. Thus, using techniques that utilize a lognormal distributional assumption, the $95^{\text {th }}$ percentile estimates differ as a whole in only a minor way between the weighted and unweighted approaches.

Thus, as a result of this investigation, it is not apparent that accounting for the weighting and stratified sample design as was done by using the in-depth analysis approach (Tables 12) would lead to considerably different estimates for the $95^{\text {th }}$ percentile compared to the results from the unweighted analysis that are presented in Tables 10 and 11.

Table 13. $95^{\text {th }}$ Percentile Estimates for the Prioritized Analytes, as Reported in USEPA (2009a), and Unweighted Estimates Generated by ProUCL.

| Analyte | 95 ${ }^{\text {th }}$ Percentile Estimates |  |  |
| :---: | :---: | :---: | :---: |
|  | As reported in USEPA (2009a) ${ }^{1}$ | Unweighted Estimates from ProUCL -Lognormal | Unweighted Estimates from ProUCL -Nonparametric |
| Metals (mg/kg) |  |  |  |
| Barium | 1,396 | 1,336 | 1,674 |
| Beryllium | 1.04 | 1.06 | 0.99 |
| Manganese | 4,156 | 4,020 | 3,430 |
| Molybdenum | 40.5 | 40.9 | 43.5 |
| Silver | 57 | 71.5 | 63.6 |
| Organics ( $\mu \mathrm{g} / \mathrm{kg}$ ) |  |  |  |
| 4-Chloroaniline | 4,762 | 3,541 | 2,648 |
| Fluoranthene | 5,256 | 5,774 | 5,374 |
| Pyrene | 6,184 | 6,398 | 6,477 |
| Classicals (mg/kg) |  |  |  |
| Nitrate/Nitrite | 960 | 473 | 712 |
| PBDEs (ng/kg) |  |  |  |
| BDE-47 | 1,688,881 | 1,776,508 | 1,575,000 |
| BDE-99 | 1,713,370 | 1,812,193 | 1,530,000 |
| BDE-153 | 166,454 | 170,769 | 150,000 |
| BDE-209 | 7,360,103 | 8,029,037 | 7,606,248 |
| Pharmaceuticals (ug/kg) |  |  |  |
| 4-Epitetracycline (ETC) | 3,787 | 3,513 | 2,470 |
| Azithromycin | 3,172 | 2,689 | 2,484 |
| Carbamazepine | 497 | 468 | 1,317 |
| Cimetidine* | 4,789 | 3,631 | 3,429 |
| Ciprofloxacin | 36,095 | 34,531 | 21,690 |
| Diphenhydramine | 2,696 | 2,662 | 2,005 |
| Doxycycline | 3,082 | 2,348 | 1,988 |
| Erythromycin-Total | 123 | 103 | 82.8 |
| Fluoxetine* | 778 | 688 | 863 |
| Miconazole | 4,652 | 3,643 | 3,417 |
| Ofloxacin | 32,363 | 27,133 | 19,753 |
| Tetracycline (TC) | 4,458 | 4,185 | 2,823 |
| Triclocarban | 131,079 | 144,599 | 95,475 |
| Triclosan | 62,217 | 63,043 | 40,268 |
| Steroids and Hormones (ug/kg) |  |  |  |
| Beta Stigmastanol | 632,009 | 631,228 | 504,913 |
| Campesterol | 360,119 | 360,990 | 257,550 |
| Cholestanol | 2,629,149 | 2,519,426 | 1,446,500 |
| Cholesterol | 4,369,111 | 3,355,221 | 1,976,463 |
| Coprostanol | 16,626,022 | 16,249,696 | 8,001,500 |
| Epicoprostanol | 5,143,938 | 5,948,141 | 2,716,385 |
| Stigmasterol | 1,157,099 | 365,893 | 281,498 |

${ }^{1}$ In-depth analysis was based on a lognormal approach for all but nitrate/nitrite, for which a nonparametric approach was used.


Figure 1. Histograms of Facility-Specific Concentrations for Non-Prioritized Metals in the TNSSS.


Figure 1. (cont.)


Figure 2. Histograms of Facility-Specific Concentrations for Non-Prioritized Organics and Classicals (Anions) in the TNSSS.


Figure 3. Histograms of Facility-Specific Concentrations for Non-Prioritized PBDEs in the TNSSS.

## 1,7-Dimethylxanthine

4-Epioxytetracycline (EOTC)



Acetaminophen


Dehydronifedipine



Codeine


Demeclocycline
Andydrotetracycline (ATC)


Cotinine


Diltiazem


Figure 4. Histograms of Facility-Specific Concentrations for Non-Prioritized Pharmaceuticals in the TNSSS.


Figure 4. (cont.)

## Sarafloxacin





## Sulfadimethoxine

Sulfamethazine




## Sulfanilamide





## Virginiamycin



Figure 4. (cont.)


Figure 5. Histograms of Facility-Specific Concentrations for Non-Prioritized Steroids/Hormones in the TNSSS.

Norgestrel


Figure 5. (cont.)

## 4. Key Findings and Conclusions

This report presented estimates of the $95^{\text {th }}$ percentile for 84 additional analytes which were measured in the treated biosolids sampled within the TNSSS. These 84 analytes had at least two detected outcomes among the tested biosolids from the sampled facilities. The statistical techniques available within EPA's ProUCL open-source software tool were applied to yield the $95^{\text {th }}$ percentile estimates. Because the measurements in the TNSSS were frequently below detection limits, and because multiple detection limit values were observed for a given analyte, the ProUCL software was especially relevant for use here. ProUCL offers rigorous statistical estimation techniques that handle non-detects more appropriately than simple substitution methods that treat non-detects as detected outcomes. These estimation techniques allow for non-detects at multiple detection limits and include the Kaplan-Meier nonparametric technique and regression on order statistics (ROS) methods that extrapolate values for non-detects based on information available from the detected outcomes.

## Conclusions for the 84 analytes:

- For the metals, organics, anions, and PBDEs, which tended to have a high prevalence of detected outcomes, a lognormal-based approach was recommended for estimating the $95^{\text {th }}$ percentile. When non-detects were present for a given analyte, ROS estimates were assigned to the non-detects. These ROS estimates were obtained by extrapolating from a fitted ordinary least squares regression line that was fitted to the observed log-transformed detected outcomes and corresponding normal scores.
- For the pharmaceuticals, steroids, and hormones, which often had detection percentages that fell below $50 \%$, a nonparametric Kaplan-Meier approach was recommended for estimating the $95^{\text {th }}$ percentile. The low detection percentages resulted in less stable and defensible percentile estimates from parametric-based approaches, and goodness-of-fit test outcomes were less certain due to limited detected data and non-consistent across the analytes. This is in accord with ProUCL recommendations, where nonparametric techniques are recommended when detection percentages are low.

While the sample data occasionally contained large measurement values for selected analytes, evidence was insufficient to warrant excluding these measurements from the analysis. In addition, outliers were not clustered among one or more facilities, nor were outliers flagged with data qualifiers in the survey database which would have suggested invalidity. However, it is appropriate to assess how the presence of large values may impact the estimates by performing the analysis both with and without outliers.

## 5. References

Cohen, A. C. Jr. 1950. Estimating the Mean and Variance of Normal Populations from Singly Truncated and Double Truncated Samples. Ann. Math. Statist., Vol. 21, pp. 557-569.

Cohen, A. C. Jr. 1959. Simplified Estimators for the Normal Distribution When Samples Are Singly Censored or Truncated. Technometrics, Vol. 1, No. 3, pp. 217-237.

Conover W.J. 1999. Practical Nonparametric Statistics, 3rd Edition, John Wiley \& Sons, New York.
CSC, 2007. CSC's Sampling and Analysis Report for the 2006-2007 Targeted National Sewage Sludge Survey. Technical report prepared by CSC Environmental Solutions to Rick Stevens, Office of Water, U.S. Environmental Protection Agency. 30 September 2007.

D‘Agostino, R.B. and Stephens, M.A. 1986. Goodness-of-Fit Techniques. Marcel Dekker, Inc.
Dixon, W.J. 1953. Processing data for outliers. Biometrics. Vol. 9, No. 1, pp. 74-89.
Dudewicz, E.D. and Misra, S.N. 1988. Modern Mathematical Statistics. John Wiley, New York.
Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York.

Gilliom, R. H. and Helsel, D.R. 1986. Estimations of Distributional Parameters for Censored Trace Level Water Quality Data 1. Estimation Techniques. Water Resources Research, 22, pp. 135-146.

Helsel, D.R. 2005. Nondetects and Data Analysis. Statistics for Censored Environmental Data. John Wiley and Sons, NY.

Helsel, D.R. 1990. Less Than Obvious, Statistical Treatment of Data Below the Detection Limit. ES\&T Features Environmental Sci. Technol., Vol. 24, No. 12, pp. 1767-1774.

Kaplan, E.L. and Meier, O. 1958. Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, Vol. 53, pp. 457-481.

NRC, 2002. Biosolids Applied to Land: Advancing Standards and Practices. Report by the National Research Council. Washington, DC: National Academy Press. July 2002.

Stephens, M. A. 1970. Use of Kolmogorov-Smirnov, Cramer-von Mises and Related Statistics Without Extensive Tables. Journal of Royal Statistical Society, Vol. B 32, pp. 115-122.

USEPA. 2009a. Targeted National Sewage Sludge Survey: Statistical Analysis Report. Washington, DC: Office of Water, U.S. Environmental Protection Agency. EPA-822-R-08-018.

USEPA. 2009b. Targeted National Sewage Sludge Survey: Sampling and Analysis Technical Report. Washington, DC: Office of Water, U.S. Environmental Protection Agency. EPA-822-R-08-016.


[^0]:    ${ }^{1}$ At a POTW, all wastewater first must go through the primary treatment process, which involves screening and settling out large particles. The wastewater then moves on to the secondary treatment process, during which organic matter is removed by allowing bacteria to break down the pollutants.

