

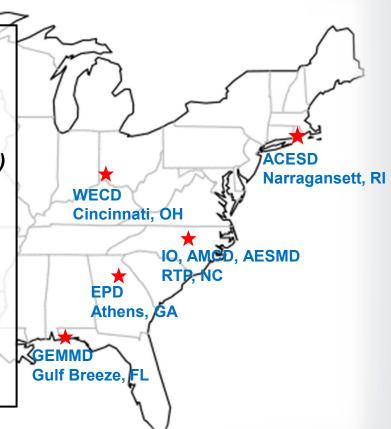
Measurement and Modeling (CEMM)

CEMM Research Mission

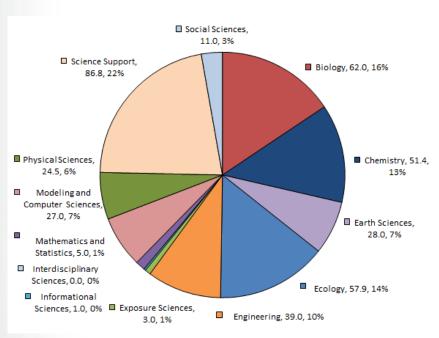
CEMM develops, evaluates, and applies measurements and models to characterize the sources, occurrence, transformation, transport and effects of pollutants and stressors in the natural environment.

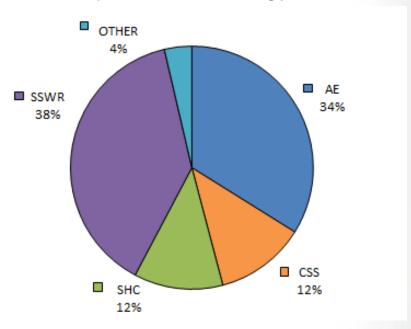
The results of CEMM research will:

- Provide fundamental methods and models required to implement environmental statutes.
- Position the Agency and it partners to take advantage of innovations in measurement and modeling science.
- Identify approaches and tools to inform effective management of water/airsheds and ecosystems.
- Generate data to inform human and ecological exposure, health, and risk assessments.


To fulfill this mission, CEMM scientists will collaborate and partner within and outside of ORD to deliver solutions-driven research that is responsive and impactful.

CEMM Locations


- CEMM total of 365 FTEs
 - 43 Managers/Supervisors
 - 283 Scientific positions (78% of CEMM)
 - 202 scientist/engineers
 - 81 support scientists/technicians
 - 39 Administrative and Operational Support Staff
- CEMM FY21 Budget \$42M (½ operations and facility costs, ½ programmatic research)



CEMM FTE Overview

FTE by Disciplines (All FTE)

National Programs (Science FTE Only)

CEMM Research in SSWR

- CEMM is conducting research in all three SSWR topic areas: Watersheds, Nutrients and Water Treatment and Infrastructure (WTI), with the largest investments in Watersheds and Nutrients
- CEMM is involved in WTI, both with leadership and PI involvement
 - Output leads: 3 of the 12 outputs are led by CEMM PIs
 - Product contacts: 4 of the 42 products are managed by CEMM product contacts
 - Total level of FTE involvement in WTI is ~10.3
- Specialized CEMM Capabilities that Support WTI
 - Aquatic Facility
 - Microbial Research Facilities-molecular methods, cell culture lab
 - Aerosol Chamber for microbial exposure
 - Non-Targeted Analysis using High Resolution Mass Spectrometry
 - Tools for modeling extreme events

CEMM Contributions to SSWR/Water Treatment and Infrastructure

RA7: Drinking	Molecular detection of drinking water opportunistic pathogens such as Legionella, and
Water and	evaluation of disinfection efficacy using the opportunistic pathogens
Distribution	
Systems	ose of serior teermology to monitor morganic contaminants (e.g., promite and loadee) in armiting
Systems	water systems that contribute to disinfection by-products
	 Animal dose-response assessment from inhalation of aerosols containing Legionella pneumophila
	 Detection of emerging viral pathogens in drinking water systems
RA8: PFAS	 Development of non-targeted analysis-based approaches to detect PFAS chemicals
RA9:	Development and standardization of Whole Effluent Toxicity Methods
Wastewater	 Development of methods for detecting SARS-CoV-2 in wastewater
and Water	 Understanding microbial contaminant removal capabilities of resource recovery water
Reuse	technologies and wastewater treatment plants for water reuse efforts
	 Evaluation of air conditioner condensate as a source for reuse water by testing for contaminants
RA10:	 Generation of stormwater monitoring data sets for selected microbial contaminants from a range
Integrated	of urban locations, including inland and coastal waters.
Stormwater	 Updates and application of the Watershed Management Optimization Support Tool (WMOST) for
Management	watershed management, including stormwater
	 Modeling stormwater microbial quality to inform onsite reuse and enhanced aquifer recharge
	 Using downscaled climate data to develop intensity-duration-frequency (IDF) curves to explore
	potential changes to extreme precipitation under future scenarios
	 Comparison of design, performance, and maintenance of groundwater spreading basins and
	drywells for stormwater infiltration and aquifer recharge in the semi-arid Southwest
RA11: Tech	Technical guidance as needed
Support	

Contact Information

Tim Watkins, Director CEMM

watkins.tim@epa.gov

(919) 541-5114