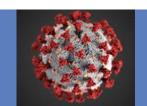


COVID-19 and Indoor Airborne Transmission

Clean Air Act Advisory Committee

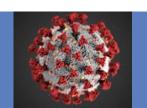
EPA ORD Research Activites
Paul White, Center for Public Health and
Environmental Assessment

December 8-9, 2020

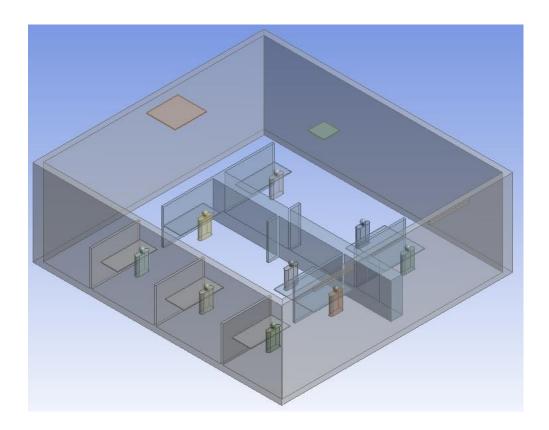

ORD Aerosol transport research

Increased recognition of airborne transport of aerosols in disease transmission

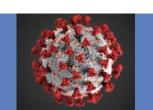
- CDC: Scientific Brief: SARS-CoV-2 and Potential Airborne Transmission. https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-sars-cov-2.html
- WHO: Coronavirus disease (COVID-19): How is it transmitted?
 https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitte
- Growing scientific literature and commentary. Example: L Morawska and DK Milton. It is Time to Address Airborne Transmission of COVID-19. Clinical Infectious Diseases, July 2020. https://academic.oup.com/cid/article/doi/10.1093/cid/ciaa939/5867798


Sparse information to gauge the magnitude of potential risks in an ordinary office environment.

- Managers have limited basis make decisions about potential risks.
- Concerns of employees returning to the workplace.
- Data on benefits from mitigating actions needed.



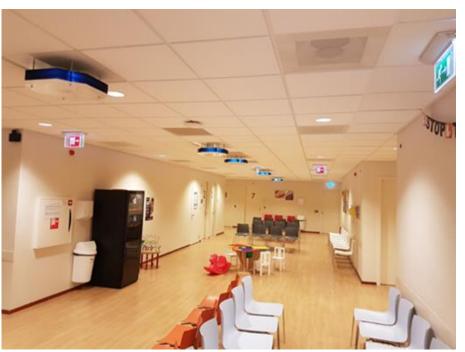
ORD Aerosol transport research

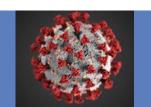

- Computational fluid dynamics (CFD) modeling of particle transport has proven value for viral exposures in medical facilities and aircraft.
- ORD applying CFD modeling to open office/cubicle work environment
 - assumed asymptomatic infected individual at work,
 - estimating aerosol levels that reach other work stations.
- Test the impact of practical office modifications that may reduce viral exposures, e.g., partition heights, overall ventilation, airflow patterns, etc.
- Literature review for estimates of viral release and current understanding of infectivity (dose-response for inhaled virus).
- Collaboration across multiple ORD Centers, OAR Indoor Environments Division, EPA Facilities personnel.

ORD Aerosol transport research

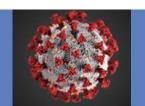
Office Space Prototype

Aerosol Treatment Research

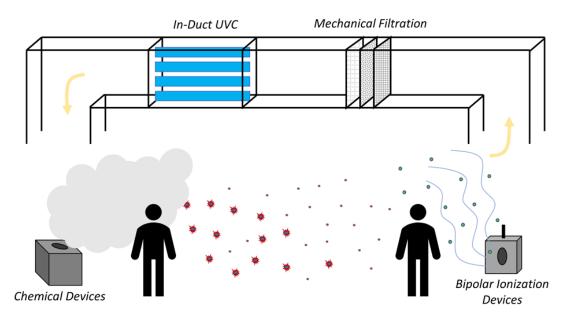

Challenge


 Growing desire and need to repopulate indoor spaces and much interest in devices that claim to reduce the risk of airborne transmission.

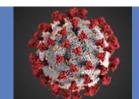
Need for verification of claims.



ORD Aerosol Treatment Research


Approach

- Evaluate technologies designed to operate in occupied spaces and that may reduce SARS-CoV-2 in air.
- Research using multiple large-scale controlled aerosol test chambers in Research Triangle Park, NC facility
- Collaboration including large transit authorities and EPA's Office of Pesticide Programs.



ORD Aerosol Treatment Research

Categories under consideration

- <u>UVC devices.</u> e.g., upper-room germicidal UVC, in-duct UVC, far UVC (proposed to be safe for use in occupied areas)
- <u>Chemical devices</u>, in-room or in-duct. e.g., low-concentration ozone, low-concentration hydrogen peroxide, bipolar ionization devices
- <u>Physical removal</u>: e.g., MERV-13 and specialized filters, passive air cleaners

