The Microbiology of Wastewater Treatment

Life in the Aeration Tank: Bacteria, Protozoa, and Metazoa

USEPA Webinar Series

November 17, 2020

Jon van Dommelen
Ohio EPA Compliance Assistance Unit

Fig. 1. Phase Contrast Microscopy Specimen Direct light Condenser Objective Image lens lens Diffracted light Phase plate Ring aperture

Essential Resources

Dispersed Bacteria

Beginning of Flocculation

Small Flocs

Dense, Compact Flocs

Internal Filaments Low Density Flocs

Extending FilamentsInterfloc Bridging

Too Much Mass

Too Much Filament

Amoeba

Flagellates

Crawling Ciliates

Stalked Ciliates

Stalked Ciliates

Vaginicola

Suctoria

Rotifers

Nematodes

Bristleworm

Paramecium

Stentor

Water Bear

Filamentous Bacteria Commonly Found in WWTPs

Low F/M:

Type 0041

Type 0675

Type 1851

Type 0803

Oil and Grease:

Microthrix parvicella

Nocardia spp.

Type 1863

Low DO

Sphaerotilus natans

Type 1701

Haliscomenobacter hydrossis

Septicity

Type 021N

Thiothrix I and II

Beggiatoa

Type 0961

Type 0581

Type 0411

Type 0092

Nostocoida limicola I, II, and III

Type 0914

Nutrient Deficiency:

Type 021N

Thiothrix I and II

Nostocoida limicola III

Haliscomenobacter hydrossis

Nocardia **Growth Conditions:** Fats, Oil and Grease (lipids) - Foam trapping Lower organic loading (Low F/M environment) Low aeration tank pH Response: Oil and Grease control (primary clarifier) Foam trapping eliminated Increase in-tank pH Waste...a lot (Note: Neisser positive granules occur)

Foam Trapping

From Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and other Solids Separation Problem, Jenkins, D., et al.

Low pH

From Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and other Solids Separation Problem, Jenkins, D., et al.

Maintain Short MCRT

Haliscomenobacter hydrosis

Growth Conditions:

- Septicity
- Low dissolved oxygen
- High influent nitrogen (ammonia)
- Wide range of F/M

Response:

- Remove sources of septicity (long forcemains, excessive clarifier sludge blankets, digester decant)
- Increase dissolved oxygen in aeration tanks

TABLE 3.6
Relationship of Specific Filamentous Organisms to MCRT and F/M in Activated Sludge

^a F/M as kg BOD₅/kg MLSS, d.

Sources: From Richard, M.G. (1989), Activated Sludge Microbiology, Waer Polution Control Federation, Alexandria VA and Eikelboom, D.H. (2000), Process Control of Activated Sludge Plants by Microscopic Investigation, IWA Publishing, London.

22 Filamentous Bacteria Found in WWTPs

Low F/M: **Type 0041 Type 0675 Type 1851 Type 0803** Oil and Grease: Microthrix parvicella Nocardia spp. **Type 1863** Low DO: Sphaerotilus natans **Type 1701** Haliscomenobacter hydrossis Septicity: **Type 021N** Thiothrix I and II Beggiatoa **Type 0961 Type 0581 Type 0411 Type 0092** Nostocoida limicola I, II, and III **Type 0914 Nutrient Deficiency:** Type 021N Thiothrix I and II Nostocoida limicola III

Haliscomenobacter hydrossis

Filaments Identifiable by Staining

Gram Positive

Microthrix parvicella Nocardia Nostocoida limicola Type 0041/0675 Type 1851 Type 0914

Neisser Positive

Microthrix parvicella (granules)
Nocardia (granules)
Nostocoida limicola
Type 0092

Gram Staining Procedure

1. Gram Crystal Violet Solution

- Flood slide for 1 minute
- Rinse with DI water

2. Gram Iodine Solution

- Flood slide for 1 minute
- Rinse with DI water

3. Gram Decolorizing Solution

- Hold slide at 45 degrees and apply dropwise until blue color stops rinsing off (15-20 seconds max)
- Blast with DI water to stop reaction, blot dry with paper towel

4. Gram Safranin Solution

- Flood slide for 1 minute
- Rinse with DI water
- 5. View Slide at 1000x under bright light (not phase contrast)

Neisser Staining Procedure

1. Methyl Blue / Crystal Violet Solution

- Mix 2 parts Methly Blue and 1 part Crystal Violet in a small container
- Flood slide for 30 seconds
- Rinse with DI water

2. Bismark Brown Solution

- Flood slide for 1 minute
- Rinse with DI water and blot dry (do not rub the slide)
- 3. View Slide at 1000x bright light (not phase contrast)

- 1) Staining is actually very easy
- 2) Staining bacteria will help determine what is growing
- 3) Staining will show what is hidden in a wet mount
- 4) Staining can be effective if a phase contrast microscope is not available

