

Note: this document may contain some elements that are not fully accessible to users with disabilities. If you need assistance accessing any information in this document, please contact ORD_Webmaster@epa.gov.

Successful Oilfield Water Management 5 Unique Case Studies

Brent Halldorson Fountain Quail Water Management

EPA Technical Workshop - Wastewater Treatment and Related Modeling Research Triangle Park, NC. April 18, 2013

Charting a Logical Path

Saltwater

SALTWATER

- Lower cost (minimal treatment).
- Difficult logistics (storage + transport)

Freshwater

- •Higher cost (thermal distillation).
- •Lower risk store and transport freshwater.

FRESHWATER

(BASIC) TSS/POLYMER REMOVAL ONLY (CUSTOM) REDUCE HARDNESS, SCALING INDEX, ETC. IS THE COST WARRANTED?

LOGISTICS.

RE-USE

ZLD

Freshwater #1 – Devon Energy Barnett Shale TX

Background:

- Early on everyone used freshwater for fracs.
- Disposal was limited (until Ellenburger used for disposal).
- Devon has a large acreage position held by production.
- FQWM had to become very efficient to compete with low cost Ellenburger disposal.

Objectives:

- Move recycling (disposal + freshwater) close to drilling activity.
- Prac with freshwater
 (minimal storage & transport issues).
- ③ Reduce disposal volume.
- ④ Tie in nearby well flowback & PW using poly pipe.

Barnett

Over 900 million gallons of flowback + PW recycled back to distilled water. Move recycling with Devon's drilling

program.

Fountain Quail Mobile NOMAD Recycling Facility.

3 Hydraulic Fracture Stimulations using distilled & fresh water

Freshwater #2 – PW Into Freshwater, Upper Wolfcamp

Background:

- Customer has 17 wells tied into central SWD. Dispose of 5,000-7,000bpd.
- Freshwater is limited and costly. Customer prefers fraccing with and handling freshwater.
- Heavy brine (9.5-10#) has value to operator and others in the region.
- Early flowback hauled long distance to disposal.

Objectives:

- Use PW as source water to create freshwater using NOMADs. Become independent of groundwater.
- ② Reduce SWD volume & extend SWD life.
- ③ Re-use NOMAD
 concentrate brine (9.5#)
 for drilling & completions.
- ④ Treat high-solids flowback near source.

- Evaporation rate is very high (dry, windy).
- Nature concentrates NOMAD waste brine to 10# at no cost.

Recycling Center – Hub for Water

Saltwater #1 – Eagle Ford Shale TX

Background:

➤The Eagle Ford is in "drillto-hold" mode.

Producers need a very mobile solution and can reuse saltwater in nearby fracs.

 Customer objective was to clean flowback and PW for reuse (high capacity, low cost).
 Remove TSS, iron and polymers.

Objectives:

- Test flowback (early, middle and late) and PW removal efficiencies at the well site level.
- ② Set-up in 12 hours and be ready for flowback.

High capacity (10,000bpd). Solids removed prior to re-use.

Parameter	Metric	Influent to ROVER (Feed)	Effluent from ROVER	Removal
Alkalinity	mg/L CaCO3	406	206	49%
Iron (Fe)	mg/L	83	trace	100%
Manganese (Mn)	mg/L	1.2	trace	100%
Total Hardness (Ca+Mg)	mg/L	1025	602	41%
Silica (SiO2)	mg/L	148	27	82%
Total Suspended Solids (TSS)	mg/L	180	19	89%
Turbidity	NTU	>100	3	n/a
рН	рН	6.8	6.8	n/a
Total Dissolved Solids (TDS)	mg/L	32,835	34,610	n/a

Saltwater #2 – Woodford/Cana OK

Background:

➢Wells are drilled in "Rows". All flowback along each row is hard-pipe connected to tanks for re-use.

➢Upon completion of a Row, the PW from that Row is connected to the next for reuse.

➤The flowback and PW can easily be cleaned with the ROVER prior to re-use (TSS/polymer).

Study Objectives:

- Remove TSS from incoming flowback and PW prior to re-use.
- ② Prevents expensive cleanup when moving tanks from old Row to new Row.
- Improve frac performance (reduce scaling index).
 Difficult to quantify value.

ROW 2

- Water formed good floc using FQWM standard treatments.
- Turbidity dropped from 600 NTU to 5 NTU.

Proposed ROVER Treatment cost: \$0.79/bbl.

Customer opted to continue "as-is" and re-use the water without treatment. They recognize that high solids has potential negative impacts for production, but they cannot quantify whether improved water quality will affect production.

Re-use without treatment can be a valid water management strategy.

Saltwater #2 – RO Brackish, Wise County, TX

Background:

Customer challenged us with this problem:

- They have an area in northern Wise County with limited freshwater.
- There are saltwater wells available.
- They prefer to have a large freshwater pond and use freshwater if possible.
- Is it economic to try to go to freshwater?

Study Outcome:

①Budget cost: \$0.50/bbl for RO.

②RO recovery increased by blending up to 2,000mg/LTDS into the "freshwater" pit.

③The RO reject is sent to NOMAD treatment and is handled along with flowback and PW.

Flexibility

New Trends

- Pit covers (prevent evaporation).
- Combine Recycling & Disposal (not Recycling OR Disposal).
- More use of brackish water and saltwater be careful about hydrogeology.
- Have a common sense discussion with parties involved:
 - Landowners are often writing leases stating that E+Ps must buy groundwater from them.
- Incentivize, not mandate recycling (i.e.: TWRA). www.txwra.org

What is Needed?

1. Common Sense Approach.

- Ask the right questions & keep it simple (saltwater or freshwater).
- 2. Range of Solutions.
 - Look for a proven track record. Talk to the customers.
 - Technology must be based on real science backed up with real results.
- 3. Flexibility.
 - Solution must be adaptable to the changing needs of the industry.
- 4. Cooperation.
 - Share results and experiences (good <u>and</u> bad). We can learn as much, or more, from what has not worked.