US EPA Technical Workshop on Wastewater Treatment and Related Modeling For Hydraulic Fracturing

Treatment for Beneficial Use of Produced Water and Hydraulic Fracturing Flowback Water

Dr. David R. Stewart, PhD, PE – Chief Science Officer

April 18, 2013

Introduction

- Water reuse and recycling is a significant issue in the development of oil and gas shale plays in the United States
- Water use for E&P operations is significant in areas where the drought exists – low percentage number but total consumption
- Water reuse will be dependent on the interactions of water quality constituents as they relate to water reuse and recycling
- Beneficial reuse of produced water can be for hydraulic fracturing but also for agricultural reuse, municipal augmentation and environmental benefit

Water Quality Criteria for Reuse

- Constituents of concern for water reuse:
 - Total Dissolved Solids
 - Oil and Grease
 - Suspended solids
 - Dispersed oil
 - Dissolved and volatile organic compounds
 - Heavy metals
 - Radionuclides
 - Dissolved Gases and Bacteria
 - Chemical additives such as biocides, scale and corrosion inhibitors, guar gum and emulsion/ reverse-emulsion breakers

Water Use as a Function of Overall Water Management

- What is the percentage of total fracking and energy development = 0.14% of total use in the US typical -(example is Colorado)
- Largest use is Agricultural at 85%
- Second highest use is Municipal and Industrial at 7%
- All others is 8%
- This 0.14% equals the amount of water used on an annual basis by the City of Denver.

Experience in produced water treatment

- Experience in treatment of produced water for beneficial reuse
 - Wellington Colorado
 - 5,000 bbl/ day facility
 - Operational since 2006
 - Produced water uses
 - Makeup water for hydraulic fracturing
 - Agricultural irrigation
 - Municipal augmentation water for a drinking water supply
 - Utah facility of 5,000 bbl/ day
 - Texas facility of 1,500 bbl/ day
 - Wyoming facility 100,000 bbl/ day

Impacts on Water Market

- Impacts on the water market
 - Water Availability
 - Truck Traffic
 - Surface Spills and leaks
 - Air pollution

Flowback Chemistry

Note the following

- Barium levels
- Iron levels
- ♦ TOC
- TSS
- These will be issues in treatment resulting in issues for reuse or recycling

Parameter	Feed Water	Flowback
pН	8.5	4.5 to 6.5
Calcium	22	22,200
Magnesium	6	1,940
Sodium	57	32,300
Iron	4	539
Barium	0.22	228
Strontium	0.45	4,030
Manganese	1	4
Sulfate	5	32
Chloride	20	121,000
Methanol	Neglible	2,280
TOC	Neglible	5,690
TSS	Neglible	1,211

Treatment Issues

- Treatment to what standard?
 - Frack water makeup?
 - Discharge to a surface water or tributary groundwater – 40 CFR 435
 - Disposal is Class
 II injection well
 - Disposal is surface water pond

Treatment Requirements

- Two areas of concern
 - Organic treatment
 - Inorganic treatment
- Organic
 - Heavy Oils
 - Asphaltines/ Parrafi ns
 - VOC's
 - 🌢 BTEX benzene
 - Air stripping
 - GAC
 - Guar gum
 - Micro-organisiums

- Inorganic Treatment
 - Ion exchange
 - Higgins Loop
 - Precipitation chemistry
 - Electrocoagulation
 - CM F
 - NF/ RO

Treatment Process

Treatment Steps

- Aeration removal of VOC's
- W SF heavy oils and asphaltines/ parafin

S

- EC precipitation of multi-valent ions
- CMF removal of precipitants and micro-organisiums
- GAC VOC removal
- NF/ RO control of salts

EWS Patented Technology

Contraction of the second

Scale Formation & Chemical Interference Issues for Water Reuse

Constituents of concern:

- Barium sulfate formation
- Hardness (Calcium and Magnesium) interactions
- Silicate formations
- Boron issues
- Salt removal
- Radionuclides

Table 3 – An Example of Water Quality Goals for			
Hydraulic Fracturing Fluids			
Bacteria	100,000 per 100 ml		
Barium (mg/l)	< 2		
Bicarbonates (mg/l)	250 to 100,000		
Calcium (mg/l)	300		
Chlorides (mg/l)	2,000 to 40,000		
Iron (mg/l)	10		
Hydrogen Sulfide (mg/l)	ND		
Magnesium (mg/l)	100		
pH	6.5 to 8.0		
Phosphates (mg/l)	10		
Radionuclides (pCi/l)	<15		
Reducing agents (mg/l)	ND		
Silica (mg/l)	<20		
Strontium (mg/l)	<10		
Sulfate (mg/l)	400 to 1,000		
Total Dissolved Solids (mg/l)	500 to 5,000		

Brine Control and Disposal

- Control of brine is the most difficult issue in recycling/ reuse of produced water and hydraulic flowback water
 - Brine stream can be 50,000 to 300,000 mg/ I TDS
 - Potential uses
 - 10 Pound Brine for drilling operations
 - Chlor-Alkali process for the manufacture of HCl or NaOCl and NaOH
 - By product capture
 - Lithium example

Conclusions

- Recycling and Reuse of produced water and flowback water will become a significant issue for the development of oil and gas shale plays in the United States
- Development of criteria for reuse and recycling needs to be developed
- Treatment technologies that fit the final reuse and recycling criteria will need to be deployed economically
- Economics is the driver for recycling and reuse
- Companies are committing to higher recycling and reuse rates but will need to implement more complicated treatment technologies
- Brine harvesting will need to be researched and perfected in the future