New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids Nathaniel Warner, Robert Jackson, Tom Darrah, Gary S. Dwyer, Avner Vengosh > Nicholas School of Environment, Duke University #### **Duke study:** - 1. Since 2010 sampling over 600 shallow private wells in PA, NY, WV, AK, NC, TX; - 2. Sampling produced/flowback waters from the Marcellus Shale and other formations in PA and NY; - 3. Sampling over 100 surface waters in PA and river sediments downstream from waste waters disposal sites; - 3. Analysis of methane geochemistry in private wells concentrations, ratios (C_1/C_2), isotopes ($\delta^{13}C_{CH4}$, δ^2H_{CH4}) - 4. Analysis of the chemistry (major and trace elements) and isotopes (87 Sr/ 86 Sr, δ^{11} B, δ^{18} O, δ^{2} H, δ^{13} C-DIC) - 5. Measurements of naturally occurring radium (²²⁶Ra, ²²⁸Ra) radionuclides; - 6. Measurement of noble gas in groundwater # The challenge of tracing fracking and shale gas waste fluids in the environment: Naturally occurring tracers: 87 Sr/ 86 Sr, δ^{11} B, δ^{18} O, δ^{2} H, 228 Ra/ 226 Ra ### Thermal ionization mass spectrometry #### **Boron isotopes:** Mean ¹¹B/¹⁰B=4.0057 $SD-\delta^{11}B = 0.4\%$ N=210 #### **Strontium isotopes:** Mean ⁸⁷Sr/⁸⁶Sr=0.710246 SD= 0.013 % N=98 #### Flowback from the Marcellus gas wells Two types of flowback waters: - 1) Injection water for fracturing was fresh water; - 2) Injection water for fracturing was recycled (saline) frack water ## Stable isotopes in Flowback waters from the Marcellus gas wells Progressively increase of $\delta^{18}O$ (and $\delta^{2}H$) in flowback water \rightarrow larger proportion of the high $\delta^{18}O$ (and $d^{2}H$) formation water \rightarrow **Identification of the relative mixing proportion between injected** water and the original formation water. #### Strontium isotopes of Appalachian produced water (from Warner et al., PNAS) | | | | T | | 1 | • | 1 | | |--|--------------|--|---|----------------------------|-------------------|--|-------------------|--| | Western PA | | | Eastern PA Plateau | | | ⁸⁷ Sr/ ⁸⁶ Sr | Age | | | Conemough Gp
Allegheny Gp | | | Allegheny and Pottsville
Groups | | | 0.706
0.708
0.710
0.714
0.716
0.720
0.722 | | | | Burgoon Fm | | | Huntley Mtn, Pocono, and
Mauch Chunk Fms | | | | | | | Venango Gp
Bradford Gp | | | Catskill Fm Duncannon Mbr Sherman Mbr | | Venango | Upper
Devonian | | | | Elk Gp
Brallier Fm | | | Lock Haven Fm
Brallier Fm | | | | Devoman | | | Hamilto
Gp | | | Hamilton
Gp | Mahantango Fm Marcellus Fm | | Marcellus | | | | Onondaga Gp Huntersville Cht | | Onondaga (| Gp Selinsgrove LS | SS | | Devonian | | | | Ridgeley Ss | | | Ridgeley Ss | | 11 | Organic | | | | Helderberg Gp | | | Helderberg Gp | | Н | Rich Shales | Lower
Devonian | | | Bass Islands Dol – Keyser Fm | | | Keyser Fm | | Ш | i | | | | Salinas Gp / Wills Creek Fm | | , Salinas Gp Tonoloway Fm
, Vills Creek Fm
Bloomsburg Fm | | | Upper
Silurian | | | | | Clinton
Gp | McKenzi | Lockport Dol – McKenzie/Rochester Fm | | McKenzie/Mifflintown 7 | | Variation in Paleozoic Seawater ⁸⁷ Sr/ ⁸⁶ Sr | | | | | Rose Hill Fm | | | Rose Hill Fm | | ! | | | | Medina Gp Tuscarora Fm | | Tuscarora Fm | | | Medina | Lower
Silurian | | | | Queenston Fm Juniata Fm Oswego Fm Bald Eagle Fm Reedsville Sh Utica Sh | | Juniata Fm Bald Eagle Fm Reedsville Sh Utica Sh | | | Utica | Upper
Ordovician | | | #### The combined used of boron and strontium isotopes Distinction between the Marcellus brines and other (conventional) oil and gas produced waters #### The used of radium isotopes Distinction between the Marcellus brines and other (conventional) oil and gas produced waters ### **Conclusions** The combined application of geochemistry, stable isotopes (δ^{18} O, δ^{2} H), strontium isotopes (87 Sr/ 86 Sr), boron isotopes (δ^{11} B), and radium isotopes (228 Ra/ 226 Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.