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SIMULATION MODELING OF ZOOPLANKTON AND BENTHOS IN RESERVOIRS:
DOCUMENTATION AND DEVELOPMENT OF MODEL CONSTRUCTS

PART I: INTRODUCTION

Modeling Concepts

1. Modeling, as an approach to understanding biotic communities,
has achieved considerable attention in recent years. With the inception
of the International Biological Program in 1966, modeling has attracted
a growing number of researchers who have applied modeling techniques to
almost all areas of biological investigation. Today, modeling is con-
sidered the solution for many problems, especially in decision making for
resource management.

2. Populations and communities of organisms can be considered as
complicated, dynamic systems of regularly interacting and interdependent
components forming a unified whole. Environmental factors influence
these systems through inputs and the systems, in turn, influence the
environment through outputs. Systems analysts have attempted to provide
a quantitative description of the relationships within these systems and
their functions. However, because most biological communities are in-
tractable to detailed analysis even by direct observation, the most
common, efficient, and, in certain instances, the only method of investi-
gating these systems is through modeling (Menshutkin 1971).

3. 1In developing a2 mathematical model of a population, community,
or ecosystem, the first and most difficult step is to define the objec-
tives of the analysis. A model constructed without clearly stated ob-
jectives would in all likelihood result in the description of extraneous
components and functional relationships, the effect of which would be to
waste time, money, and effort in the collection of data and development
of concepts. Furthermore, critical components that are necessary for
the model may be omitted, seriously affecting model performance and

leading to erronecus conclusions.



4. The second step in model development is to determine which
components are necessary to meet the objectives. Third, the functional
relationships among ecosystem components must be determined and quanti-
fied. Often the development of these relationships is difficult because
it requires a thorough knowledge of the population dynamics of the
organisms modeled (e.g., population size, growth rate, and mortality
rates). Step four involves the construction of the mathematical model
itself, a step many biologists are poorly prepared to deal with.
Finally, the model is applied and the results compared to field data.

Refinements are made until the model achieves the desired objectives.

Objectives

5. Following consultation with personnel at the Environmental Lab-
oratory (EL) of the U. S. Army Engineer Waterways Experiment Station
(WES), several objectives were developed:

a. To review and evaluate the literature on zooplankton and
benthos community dynamics and to select information
suitable for developing and documenting various model
constructs.

=4

To summarize, in frequency distributions, the literature
values for various model parameters. These frequency
distributions will later be converted to probability
distributions and incorporated into the model for a
stochastic capability.

L]

To propose, where appropriate, suitable model constructs
that describe the dynamics of zooplankton and benthos
communities.

6. We did not propose a definitive compartmental scheme for model-
ing zooplankton and benthos. Based on objective b above, we have
provided frequency distributions of model parameters for potential com-
partments. Compartment selection is relegated to the modeler. They
should not create model compartments for which frequency distributions
of parameter values are unavailable. The documentation provided in this
report should allow the modeler to critically evaluate the existing data
base and understand its limitations. Stockmayer (1978) succinctly sum-

marized the data evaluation dilemma:

10



Uncritical acceptance of bad scientific information can lead
to social penalties....A particularly pernicious aspect of
this problem involves numerical data, which are essential in
all branches of science and technology and are often needed to
arrive at valid operational decisions. Unfortunately, the
scientific literature contains many erroneous values. Few
scientists or engineers seem to have given much thought to the
magnitude of the problem, and some probably regard every nu-
merical entry in a handbook as revealed truth. Yet anyone who
has had to seek a particular pumber in the literature and
searched out a dozen or more reports, only to end up with a
set of widely disparate values, comes to realize that a sub-
stantial intellectual effort and a considerable background in
the field are needed to arrive at reliable figures.

7. Recent review papers that compare and contrast existing
aquatic ecosystem models include those of Swartzman (1977), Swartzman
and Bentley (1978), and Scavia and Robertson (1979).

Scope

Model framework

8. In conducting the literature review and analyses, it was nec-
essary to organize our work so that it could be integrated with the
existing ecological model being developed at the WES. The model was
originally constructed by Water Resource Engineers, Inc., of Walnut
Creek, California. Various versions of the model have been applied to
field situations (see Chen and Orleb (1975) for a description of the
model and a summary of applications). Our analyses were formulated to
include various structural considerations of the model. The first
structural consideration was that the model use differential equations
to describe transfer rates, and, second, that the model have compart-
ments. Third, it is a mass balance model that tracks carbon, nitrogen,
and phosphorus to account for material flow in the system. Fourth, the
recommended minimum time frame for model simulation is 1 day.

Subject areas covered
by the literature review

9. A vast literature exists dealing with the population dynamics

of zooplankton and benthos. Many subjects are of direct relevance to

11



simulation modeling. The overall objective of modeling zooplankton and
benthos populations is hopefully to duplicate biomass changes in these
populations as they respond to changes in their environment. These
changes are reflected in a series of inputs to the population and out-
puts to the environment. We assume that zooplankton and benthos popu-
lation (i.e., model compartments) respond as if they were individual
organisms faced with a changing environment. To keep track of this
response we utilized the following mass-balance, differential equation

for all model compartments:

db _ A\ _ 4 _
e b [G (G) R - NPM PM:I (1)

where b = biomass (mg carbon), t = time (days), G = consumption (mg
carbon-mg carbon-l'day-]), A = assimilation (mg carbon-mg carbon-l-day-l),
A/G = assimilation efficiency (%), R = respiration (mg carbon-mg

%5,

carbon-l‘day-l), NPM = nonpredatory mortality (mg carbon-mg carbou_l-day-
and PM = predatory mortality (mg carbon-mg carbon-l-day-l).

10. Equation 1 also defined the subject areas that had to be
reviewed in order to define the equation. Each of the remaining
sections of this report describes our efforts to review and evaluate
each of the subjects on the right-hand side of the equation, with the
exception of predatory mortality. Predatory mortality is defined as the
grazing function of a consumer compartment, i.e., one compartment's

consumption is another compartment's predatory mortality.

Extent of the literature review

11. Our review of the subject areas relevant to the simulation
modeling of zooplankton and benthos was comprehensive and worldwide in
scope but selective for relevant publications for some subjects. Pro-
cesses most critical to defining zooplankton and benthos population
dynamics (e.g., grazing) were given the greatest attention.

12. Many papers that appeared highly relevant were unavailable in
English translation and were not reviewed. Most papers in this category

were from Eastern Europe, particularly the USSR (Union of Soviet

12



Socialist Republics). When translations were unavailable, English
abstracts such as those found in various abstracting periodicals or
comments by other authors were used. Papers in German and French were

translated by the authors when unavailable in translation elsewhere.
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PART II: ELEMENTAL CARBON, NITROGEN, AND PHOSPHORUS
COMPOSITION OF ZOOPLANKTON AND BENTHOS

Introduction

13. The study of elemental chemical composition has become in-
creasingly important to our understanding of bioenergetics, production,
and biochemical cycling of elements in aquatic systems (Omori 1969).

For modeling purposes, it is necessary to know the elemental carbom (C),
nitrogen (N), and phosphorus (P) composition of the various species that
compose zooplankton and benthos. This knowledge is used to trace the
cycling of nutrients through the ecosystem by application of the mass
balance equation previously described (Equation 1).

14. In most models of aquatic ecosystems, ratios of carbon to
nitrogen and of carbon to phosphorus are very useful. Estimates of zoo-
plankton and benthos carbon losses (e.g., egestion, excretion, respira-
tion, and nonpredatory and predatory mortality) can readily be used to
estimate losses of nitrogen and phosphorus. Nitrogen and phosphorus
compounds released from aguatic animals serve as important nutrients for
phytoplankton, periphyton, and macrophytes. In short, the use of C:N
and C:P ratios allows the modeler to trace the transfer of chemical
substances through various trophic levels (Chen and Orlob 1975). Scavia
et al. (1976) stoichiometrically determined the incorporation and excre-
tion of P by using a C:P ratio. Twelve models reviewed by Swartzman
and Bentley (1978) had phosphorus and nitrogen flow parallel to carbon
in zooplankton and detritus. Baca et al. (1974) used a range of ratios
(i.e., C:N = 5.9-20.0; and C:P = 33.3-200.0) to derive the quantities of
N and P excreted, or the guantities lost after nonpredatory mortality.
Steele (1974) used a C:N ratio of 5.4 to estimate N assimilated and
excreted by zooplankton. Carbon, nitrogen, and phosphorus also were
released in accordance with their concentration in zooplankton in the
models of Umnov (1972) and Menshutkin and Umnov (1970).

15. Ratios of C:N and C:P are not constant but vary significantly

among taxonomic groups of animals, as well as within single species,
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depending on sex, age, and nutritional state. Nutritional state is in-
fluenced by season of the year and geographical distribution. Methods
of determining elemental C, N, and P undoubtedly produce some variation
among ratios, but we do not believe that this effect is significant
enough, considering the wvariability due to other factors, to warrant
detailed discussion. The handling of marine zooplankton samples imme-
diately after collection (e.g., rinsing and preservation) may greatly
alter C:N and C:P ratios. Since many of the values we collected were
for marine zooplankton (Appendix A), this problem requires further
comment.

16. The determination of single C:N and C:P ratios probably is
inaccurate for broad categories of animals such as zooplankton and
benthos. The relative abundance of the various groups composing the
total biomass differs geographically and seasonally. Variations in
percent C, N, and P (i.e., percent of dry weight) exist among taxa and
are compounded when percentages are estimated for total zooplankton--an
ever changing assemblage of taxa (Beers 1966).

17. We have collected percent C, N, and P data from both the
freshwater and marine literature. With the exception of one or two
groups of animals, percent C, N, and P in marine and freshwater orga-
nisms do not differ significantly. This fact probably is a function of
the variability of percent C, N, and P in marine and freshwater animals
(Appendix A). Percent P of marine copepods was consistently 50 to
75 percent of the values for other crustacea (Beers 1966). Corner (1973)
noted that P in marine zooplankton varied from 0.14 percent in forms
such as hydromedusae and ctenophores to a range of 0.55 to 1.16 percent
in copepods. Beers (1966) also found that percent C was similar in most
marine zooplankton, except hydromedusae which typically have low per-
cent C contents. With the notable exception of the freshwater jellyfish

(Craspedacusta sowerbyi), which is extremely sporadic in occurrence,

fresh waters generally lack animals comparable to marine medusae and
ctenophores. Consequently, we did not consider percent C, N, and P data
for these forms of marine zooplankton.

18. If samples are collected from saltwater, they should be washed
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to remove adhering inorganic salts that may contain C, N, or P. Platt
et al. (1969) found that significant weights of inorganic salts were re-
moved by a 2-min rinse in distilled water. Contrary to the observation
of Omori (1978), rinses in distilled water for periods of 2 to 60 min
did not result in the osmotic rupture of cells and subsequent loss of
organic matter from specimens. Omori (1978) estimated 6 and 7 percent
reductions in the C and N contents, respectively, of zooplankters rinsed
in distilled water. However, these losses were calculated as C and N
lost per individual and not in a form comparable for animals of a
different size (e.g., percent C and N). The losses of C and N as a
percent of dry weight (recalculated from Omori (1978)) were not
significant.

19. Preservation of samples in formalin, alcohol, or other leach-
ing chemicals may alter percent C, N, and P or the ratios of C:N and C:P.

Omori (1970) found that Calanus cristatus preserved for 1 month in

formalin lost 59 and 48 percent of their original carbon and nitrogen,
respectively. In addition, the rates of loss of C and N were different
and resulted in a decreased C:N ratio. Apparently the rate of loss
depends upon the original quantity of matter present. The euphausid

Nematocelis difficilis lost 17 percent C and 19 percent N after 15 weeks

in a buffered Hexamine solution (Hopkins 1968). Hopkins believed that
most of the leached material was protein. Similar findings were pre-

sented for Sagitta nagae and Calanus sinicus (Omori 1978).

Nitrogen

20. Variations of percent N primarily result from differences in
gross body components (i.e., protein, lipid, and carbohydrate). Percent
N varies among taxa and within a single taxon, due to differences in
age, sex, or nutritional state. Most body nitrogen is included in the
amino acids of protein (Table 1).

21. Percent N usually is greater in young than in old Dreissena

polymorpha, Mollusca (Stanczykowska and Lawacz 1976); Temora stylifera

and Centropages typicus, Copepoda (Razouls 1977); Pareuchaeta novegica,
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Table 1

Percent Composition of C, N, and P in Proteins,

Lipids, and Carbohydrates

Carbon¥ Nitrogen¥* Phosphorus®#
Protein 50-55 13-17 ca 0.10
Lipid 79 ca 0 ca 0.17
Carbohydrate 37.2 ca 0 ca 0

# Carbon and nitrogen data of Schottelius and Schottelius (1973).
“*% Phosphorus data of Head and Livingston (unpublished) as cited by
Corner (1973).

Copepoda (Nemoto et al. 1976); and Daphnia hyalina, Cladocera (Baudoin

and Ravera 1972). Greater percent N content in young individuals prob-
ably stems from the fact that young organisms typically have more pro-
tein relative to dry weight than older individuals. High protein con-
tent results from rapid growth associated with protein anabolism and

insignificant lipid accumulation in young animals (e.g., Daphnia magna,

Ceriodaphnia reticulata, and Moina macrocopa (Cladocera) and Brachionus

calyciflorus (Rotajoria) (Bogatova et al. 1971)). Under the same trophic

conditions, adult female "oceanic Copepoda'" (Itoh 1973) and Calanus
cristatus (Omori 1970) often had less percent N than adult males. This
may have been due to the greater lipid content in females. The fact
that percent C was greater in females seems to support this hypothesis.

Postspawning females of Pareuchaeta novegica had less pecent N than

prespawned females (Nemoto et al. 1976). This finding suggests that
catabolism of body protein, due to the great energy demand for
reproduction, resulted in a decreased N content per unit dry weight.
Several zuthors have also observed differences in the percent N of
single species as a result of season of the year and geographical
distribution (Omori 1970, Itoh 1973, Boucher et al. 1976). Omori (1970)
found that seasonal and geographical changes in trophic conditions were

principally responsible for percent N changes in Calanus cristatus

(Copepoda). During times of (or in areas of) poor food availability,

copepods exhibited an initial fat loss that resulted in an increase of
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Ppercent N. Later, starving copepods began to metabolize protein which

decreased percent N.

Carbon

22. Percent carbon also varies among taxa and within a single
taxon due to age (Omori 1970, Baudoin and Ravera 1972, Itoh 1973,
Razouls 1977, Omori 1978), season (Beers 1966, Platt et al. 1969, Omori
1970, Stanczykowska and Lawacz 1976), geographical distribution (Boucher
et al. 1976), and reproductive condition (Nemoto et al. 1976). Percent

carbon did not vary with age in Dreissena polymorpha (Stanczykowska and

Lawacz 1976) or with season in Daphnia hyalina (Baudoin and Ravera 1972).

Omori (1970) showed that changes in trophic conditions that affect nu-
tritional state actually underlie the dependence of percent C on geo-
graphical distribution and season of the year.

23. In ecological models, either carbon transfer or energy flow
is used to link trophic levels. Since carbon and energy units are highly
correlated (Salonen et al. 1976), the choice apparently is arbitrary.
The use of carbon units does have the added advantage of providing an
index to the flux of matter through trophic levels. For this reason, we
prefer carbon transfer data and have employed the following factors:
zooplankton = 10.98 cal/mg C (Salonen et al. 1976) and phytoplankton

= 11.4 cal/mg C (Platt and Irwin 1973) to convert from energy to carbon

units.

Carbon:Nitrogen Ratios

24. The distribution of carbon and nitrogen among the major body
components, i.e., protein, lipid, and carbohydrates (Table 1), and the
relative abundance of these major components determine the percentages
of C and N present in an organism. Although percent C and N are in-
fluenced by the same environmental elements, they do not always fluctuate
in the same manner. In general, C:N ratios should vary directly with

carbohydrate and lipid content and inversely with protein content.

18



Omori (1970) found a negative correlation between changes in percent C

and percent N in Calanus cristatus. Elements affecting the C and N

composition in the copepods were trophic conditions and sex. Since
lipids contain primarily carbon and essentially no nitrogen (Table 1),
the seasonal loss or gain of lipids, as influenced by trophic conditions,
would result in a concomitant decrease or increase, respectively, of the
C:N ratio. If females of a species contain a greater proportion of fat
than males, they also would exhibit higher C:N ratios than males.

25. Using the data on percent C and N (Appendix A), we prepared
frequency distributions of C:N ratios for various categories (taxonomic
or other) of aquatic invertebrates. A frequency distribution of C:N
ratios for benthic macroinvertebrates (Figure 1) appeared to have two
potential peaks (i.e., at 3.5 to 4.0 and 5.0 to 5.5), so we attempted to
separate the distribution on the basis of feeding type. Unfortunately,
insufficient data exist on carnivore C:N ratios. When more experimental
data on these ratios are available, this potential refinement could be
used in model formulation. The basic form of the frequency distribu-
tions of C:N ratios for zooplankton, Cladocera, and Copepoda (Figures 2,
3, and 4, respectively) is essentially the same. Apparently most C:N
ratios of zooplankton and benthos are within the range of 3.5 to 5.5.

Phosphorus

26. The total P in zooplankton is normally low, often accounting
for less than 1 percent of dry weight (Corner 1973). The distribution
of phosphorus among body protein, lipid, and carbohydrate is shown in
Table 1. Phosphorus is important in the structure of nucleic acids,
which contain approximately 21 percent of the total P. Of total P,
53 percent is inorganic (unpublished data of Head and Kilvington as
cited in Corner 1973).

27. Phosphorus uptake and release by zooplankton is very important
to the cycling of P in aquatic ecosystems. Conover (1966a) recognized

two pools in Calanus finmarchicus, 6 percent as labile compounds which

have a half-life of a few hours. The remaining 94 percent has a
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half-life of roughly 13 days. Although several studies have been con-
ducted on P excretion (Pomeroy et al. 1963, Johannes 1964, Satomi and
Pomeroy 1965, Butler et al. 1970), we still do not know precisely how,
or in what form, P compounds are released (Cormer 1973).

28. Age, sex, and season of the year may influence the P content
of aquatic invertebrates. Percent P increased during the development of

Daphnia hyalina eggs but, thereafter, decreased with age (Baudoin and

Ravera 1972). Butler et al. (1970) found differences in the percent P

between male and female Calanus finmarchicus and also between adult and

stage V copepodids. Calanus finmarchicus contained about 50 percent

more P during a spring diatom increase than at other times of the year.
This large increase may have been the result of uptake beyond that re-
quired by the body. The percent composition of P in marine copepods,
euphausids, mysids, polychaetes, and chaetognaths changes significantly
during the year (Beers 1966). Changes in the percent composition in any
of these groups probably depends on differences in species or age groups
taken in collections or an adjustment of the P composition of individual
organisms.

29. Figures 5 and 6 are frequency distributions of C:P ratios for
benthos and zooplankton, respectively. In Figures 7 and 8, the zoo-
plankton distribution is split into two taxonomic categories, i.e.,
Cladocera and Copepoda. Copepods tend to have greater percentages of C
than other zooplankton (Appendix A), and this fact may account for

higher C:P ratios in Copepoda.

Summary of Constructs

30. By using frequency histograms of C:N and C:P, modelers can
calculate a range of probable nitrogen and phosphorus transfer rates for
compartment processes. The procedure involves the following: (a) con-
vert histograms (Figures 1-8) to probability distributions, (b) select a
series of C:N or C:P ratios from the appropriate probability distribu-
tions, and (c) divide weight-specific rates (mg C-mg C-]—day_l) of con-

sumption (Part III), assimilation (Part IV), egestion + excretion
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(Part 1V), respiration (Part V), and nonpredatory mortality (Part VI) by
the selected C:N and C:P ratios. The results are the weight-specific
rates of N and P transfer (mg N or mg P-mg C_l-day-l) in the above pro-
cesses. Gains and losses of N and P from a compartment may be determined
by multiplying the weight-specific rates of N and P transfer, for each

of the transfer processes mentioned above, by the biomass (mg C) of the
model compartment.

31. Frequency histograms of macrobenthos C:N and C:P ratios
(Figures 1 and 5, respectively) should be used to estimate N and P move-
ments through the benthos compartment. When no better data on the
present composition of Cladocera and Copepoda biomass in zooplankton
are available, we recommend that users assign 60 percent to caldocerans
and 40 percent to copepods and use Figures 8 and 7, respectively, to
determine their appropriate C:N or C:P ratios. The net flux of P through
Cladocera, for example, may be estimated as 0.60 b [?(A/G) - R - NPM -
PM] + (C:P), where b = total zooplankton biomass, (C:P) = carbon-
phosphorus ratio of cladocera (Figure 8), and the items in brackets are
as described in Equation 1. A similar calculation may be performed for
copepods and summed to the results for cladocera to yield the flux of P

through the zooplankton compartment.
Conclusions

32. Ratios of C:N and C:P are used to trace the movement of nu-
trients.through major energy pathways of zooplankton and benthos. Ele-
mental carbon, nitrogen, and phosphorus are not constant but vary with
gross body composition (relative proportions of lipid, carbohydrate, and
protein). Gross body composition varies among species and within a
single species due to differences in nutrition (which varies seasonally)
and in sex or age. Although C:N ratios of zooplankton and benthos are
usually within the range from 3.5 to 5.5, most C:P ratios vary greatly

in both groups (20 to 40 in benthos and 30 to 70 in zooplankton).
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